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Abstract 

 
This thesis aims to demonstrate Danish upper secondary students’ understanding of the equal sign 

motivated by its strong affiliation to school algebra. We have used the methods of didactic 

transposition and diagnostic test to answer the following two research questions: 

RQ1: Based on external didactic transposition, how do the scholarly meanings of the equal sign 

come into view in knowledge to be taught in Danish upper secondary school?  

RQ2: Which challenges related to the external didactic transposition of the equal sign can be 

detected through a diagnostic test for Danish students in upper secondary school? 

We refer to the six meanings of the equal sign proposed by Prediger (2010) in the analysis; the 

meaning of operational, symmetric arithmetic identity, formal equivalence, conditional equation 

characterizing unknowns, contextual identity in formula and specification. The external 

transposition was the reference in constructing the diagnostic test in which we wished to find the 

internal didactic transposition of learned knowledge. We show that it is challenging to construct a 

diagnostic test of the equal sign as it is an entity treated implicitly in knowledge to be taught.  The 

test results demonstrate challenges concerning the meanings of the equal sign, especially what 

regards contextual identity and formal equivalence. Moreover, we have shown how some of the 

challenges link to the analyzed knowledge to be taught. However, contrary to prior studies, we 

show that most students do not favor an operational approach alone. On the other hand, the test 

show difficulties in distinguishing between misconceptions of the equal sign and school algebra. 

We conclude that this indeed stresses the relevance of becoming more explicit with the equal sign’s 

many disguises. 
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1. Introduction 

1.1 Background 

Former studies have proposed several indications of challenges in the transition between arithmetic 

and algebra in middle school, among others we mention in a Danish context the studies of Cosan 

(2021) and Poulsen (2015). They illustrate algebra's significant role in the current Danish school 

system. Understanding algebra is essential to understanding other concepts, such as equality 

(Knuth, Stephens, McNeil., & Alibali, 2006). However, research shows that students' understanding 

of the equal sign is defective. Furthermore, as it appears universally throughout mathematics 

education, this assesses its high relevance (e.g., (Kieran, 1981) (Falkner, Levi, & Carpenter, 1999) 

(Theis, 2005; Prediger, 2010) (Knuth, Stephens, McNeil., & Alibali, 2006) (Molina, Desarrollo del 

pensamiento relacional y comprensión del signo por alumnos de tercero de educación primaria, 

2006) (McNeil, et al., 2006), (Prediger, 2010), (Stephens, et al., 2013) (Vincent, Bardini, Pierce, & 

Pearn, 2015) (Faulkner, Walkowiak, Cain, & Lee, 2016)).  

 

The main discussion in many studies is the one regarding an operational approach instead of a 

relational approach. Kieran (1981) mentions that although the equal sign is to show equivalence, it 

is not always interpreted as this. A study by Ginsburg (1977) in Kieran (1981) about addition and 

subtraction detected that both + and = are understood by elementary school students as actions to be 

performed, i.e., "the equal sign means what it adds up to" when describing 3 + 4 = , or saying "3 

and 5 make 8". In addition, they showed that younger school children want to change the equation 

= 3 + 4 and say 4 + 3 = ,  as the former is written "backward" (Kieran, 1981, p. 318). Hence, 

former data shows that students of compulsory school have an operational approach, especially in 

the early grades. One can see the operational strategy as linked to arithmetic and relational as linked 

to algebra. The former gives an answer such that the equal sign indicates that one has found the 

answer, whereas the latter represents a relationship of equivalence (Vincent, Bardini, Pierce, & 

Pearn, 2015). 

 

The challenges of the equal sign in connection to school algebra have been known for decades. 

However, not many studies have done research on students of older grades than middle school and 

seeing the equal sign from more perspectives than just a binary one. Thus, this dissertation wants to 

investigate how we can see challenges of the equal sign among Danish students who have entered 

upper secondary school. Do they have the same challenges, or can the challenges here be different? 
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To assert some more precise research questions, we will first need to introduce the theory of 

didactic transposition, which will help find the notions of the equal sign in a teaching context. This 

will then be the baseline to which we can construct a diagnostic test that wishes to uncover the 

students' challenges of the equal sign. 

 

 

1.2 Structure of the thesis 

The thesis consists of two research questions, which each have its methodologies and analyses. 

Section 2 introduces the theory of didactic transposition before introducing the two research 

questions that we will examine. In section 3, the methodology of RQ1 will be presented, which 

describes the considerations to what material we have used. Subsequently, we give the analysis of 

RQ1 in section 4. This will function as the theory to which we can construct a diagnostic test in 

answering RQ2. The methodology of RQ2 appears subsequently in section 5, which describes the 

participants in the study, the theory of diagnostic tests, the pilot test, the final test, and the process 

of analyzing the test results. In section 6, we give the results of RQ2. Lastly, we provide the 

discussion of RQ1 and RQ2 in section 7 before we propose the conclusion in section 8 answering 

the two research questions.  

Throughout this thesis, I have made the translations from Danish, both what regards the knowledge 

to be taught in section 4, describing the test items in section 5, and presenting the students’ answers 

in section 6. 

 

 

2. Didactic transposition 

The theory of didactic transposition was presented for the first time by Yves Chevallard in 1980 at a 

summer school, which he published in his La transposition didactique. Du savoir savant au savoir 

enseigné [Didactic transposition. From scholarly knowledge to taught knowledge] (Bosch & 

Gascón, 2006). The process to which Chevallard refers as the didactic transposition is the one that 

describes what transformations an object undergoes from it is constructed, applied, selected, and 

formed to be taught until it is actually taught in a given educational institution. Didactic 

transposition today has been generalized into institutional transposition, i.e., how knowledge is 

transposed from one social institution to another. One, therefore, considers that knowledge is a 

changing reality taking place in social institutions. It is from this that the anthropological theory of 
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didactic arose (Chevallard & Bosch, 2014). When wanting to transpose a body of knowledge, one 

needs to carry out transpositive work to make the given knowledge "teachable".  

 

Figure 1. The process of didactic transposition (Chevallard & Bosch, 2014) 

There are different participants to this.  One divides the transposition into three steps as illustrated 

in Figure 1. Scholarly knowledge refers to the knowledge proposed by the "scholars," which is 

produced in scholarly institutions such as universities. The knowledge to be taught is what one 

occasionally denounces as 'the noosphere,' i.e., the educational system, which includes curriculum 

designers, among others (Chevallard & Bosch, 2014). In practice, the product of knowledge to be 

taught is what we find in curricula, which one refers to in Denmark as official programs and 

ministerial guidelines. In addition, textbooks and other didactic materials constitute this part.  

 

Taught knowledge relates to the teachers in the classrooms and what they actually teach. The last 

step of the transposition is related to what can be seen as the end of the didactic process, namely 

what is actually learned by the students (Bosch & Gascón, 2006), i.e. the learned knowledge. One 

often refers to scholarly knowledge and knowledge to be taught as the external didactic 

transposition, and the taught and learned knowledge as the internal didactic transposition. Based on 

this view, one can say that “phenomena of didactic transposition are at the very core of any didactic 

problem (Bosch & Gascón, 2006, p. 58).  

 

The transpositive work makes it possible to teach, but on the other hand, also creates a lot of 

limitations. After the transposition process, the school might have lost the reasoning behind the 

knowledge to be taught, i.e., in mathematics, we might ask ourselves what triangles or limits of 

functions are suitable for (Bosch & Gascón, 2006). Nonetheless, the transpositive work can also 

sometimes improve the organization of knowledge and make it more understandable and structured 

than the original scholarly knowledge (Chevallard & Bosch, 2014). In textbooks, some 

mathematical concepts are more explicitly stated than others - for example, the concept of a 
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function compared to the concept of the equal sign. Consequently, some mathematical concepts are 

more explicit than others (Lundberg & Kilhamn, 2016).  

 

2.1 Example of external didactic transposition 

The following will consider the external didactic transposition, i.e., the step from scholarly 

knowledge to knowledge to be taught. We will illustrate this through an example concerning the 

concept of a function. Considering the scholarly knowledge of functions, one can at university 

encounter the definition of a function given as 

 

Let A,  B be non-empty sets. A relation 𝑓  between A and B is called a map or a 

function from A into B (and we write 𝑓:  A  → B), if the following two properties are 

satisfied:  

1. For all x  ∈ A there exists y  ∈ B such that xfy (or (x, y)  ∈ f)  

2. If xfy1 and xfy2 (or (x, y1)  ∈ f and (𝑥, 𝑦2)  ∈ f), then 𝑦1 = 𝑦2.  

(Lützen, 2019, p. 134) 

 

To consider the possible gap between the scholarly knowledge and knowledge to be taught, we look 

at a textbook from the upper secondary level. Here we find the following two definitions of a 

function: 

 

Def 1: A function is a correlation between two sizes x and y, that satisfies the 

following: 

For every value of x there is exactly one corresponding value of y. 

If this is the case, one says that y is a function of x. If the function is called f, we write 

𝑦 = 𝑓(𝑥). 

(Carstensen, Frandsen, Lorenzen, & Madsen, 2019, p. 11) 

 

Def 2: The set of numbers in which the independent variable x can vary is called the 

definition set of the function and is denoted as Dm(𝑓). 

The set of numbers in which we find the values of the function, is called the value set 

of the function and is denoted as Vm(𝑓).  

(Carstensen, Frandsen, Lorenzen, & Madsen, 2019, p. 11) 
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There are several things to point out here. First, the notion of a relation does not exist in the 

knowledge to be taught. Instead, one merely considers "sizes" and "values", terms that are 

undefined in the textbook itself, and thus presumably considers the terms as part of everyday 

language. However, a set is denounced in Def 2, namely the set of numbers. In the scholarly 

knowledge, on the other hand, the notion of a "relation" and "set" are explicitly defined (see Chap 7 

and 10 in (Lützen, 2019)). Moreover, the set is arbitrary in this definition. Secondly, the property of 

existence is described less explicitly in knowledge to be taught i.e., that there exists a corresponding 

value of y if there exists a value x. Instead, the definition starts out by stating the property of 

uniqueness as proposed in 2., i.e., there is a unique value y for each value of x, and then stating if 

that is the case, we can call it a function. Thirdly, we note that stating that 𝑦 = 𝑓(𝑥) may confuse in 

the cases where f is not a linear function, as this no longer (strictly) maintains a one-to-one 

correspondence. Hence, there might be several values of x that correspond to the same value y, e.g., 

y = f(𝑥1) = f(𝑥2) = f(𝑥3)... and so on. 

 

To conclude, we see clear gaps between scholarly knowledge and knowledge to be taught in terms 

of the concept of a function. However, one could argue that defining a "relation" and "arbitrary 

sets" is unnecessary in upper secondary school to understand the methods introduced here. Thus, 

this gap is not to be seen necessarily as a critique, but instead making us know that a concept in 

upper secondary school will need to be contextualized and made teachable for the students. We note 

that generally, transpositions already made like this one can be of varying quality. Thus, it is always 

relevant to relate to these objectively so that we can understand and investigate them and determine 

to what extent they can represent a challenge for teaching and learning – or even lead to 

misinterpretations. 

  

2.2 Research questions 
Based on the theory of didactic transposition, we are now able to phrase the two research questions 

we pursue to investigate: 

RQ1: Based on external didactic transposition, how do the scholarly meanings of the equal sign 

come into view in knowledge to be taught in Danish upper secondary school?  

RQ2: Which challenges related to the external didactic transposition of the equal sign can be 

detected through a diagnostic test for Danish students in upper secondary school? 
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Thus, to answer RQ2, we will first need to analyze the external didactic transposition of the equal 

sign to establish the theory of meanings of the equal sign before constructing the diagnostic test of 

RQ2.  Hence, the two questions are interdependent. 

 

 

3. Methodology for RQ1 

The material used for scholarly knowledge concerns both the scholarly knowledge of mathematics 

and didactics of mathematics. Regarding the former, we will consider the history of the equal sign 

and the mathematical definition of the equal sign today. Concerning the scholarly knowledge of 

didactics of mathematics, this will include the notion of operational vs. relational approach and a 

different model that identifies further ideas of the equal sign. We advocate that these two sides of 

scholarly knowledge are equally necessary for helping us see the various facets of the equal sign. 

 

The materials chosen as the knowledge to be taught have taken outset in what type of school the 

diagnostic test will be handed out to, which is a general upper secondary school (STX) and business 

upper secondary school (HHX). Firstly, the official programs and ministerial guidelines are 

included. The curriculum describes the content of the subject mathematics, and the ministerial 

guidelines serve as the intentions of the curriculum. The textbooks are an interpretation of the 

formulations of the curriculum (Danish Ministry of Education, Matematik A/B/C, stx Vejledning, 

2020, p. 2). As we have students from both STX and HHX, we will revise guidelines from both.  

Furthermore, the participants of the diagnostic test have just finished their introductory period 

which is a three-month program before they are to choose their study line, which typically is either 

a specialization of languages, natural sciences, or social sciences. Thus, what regards textbooks, 

three books have been analyzed; one textbook covering the introductory period of STX and two 

general textbooks; one of STX and HHX. When choosing study line In Denmark, there are three 

levels of mathematics - A, B and C - where A is the highest level. The general textbooks cover 

mathematics B-level which is the most common level. Thirdly, exemplary screening tests of the 

introductory period will be analyzed, as they take outset in what the students should have learned at 

the time when the diagnostic test is given to them. The screening tests that have been analyzed are 

example test sets as it was not possible to gain access to the official screening tests that have been 

given. The screening tests consist of three example sets, one of 2017 and two of 2018 which is 

worked out by the Danish Ministry of Education. Altogether, these materials will show a fair 
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representation of the knowledge to be taught as they are based on official programs, tests and 

textbooks based on the revised guidelines from 2017 of which the participants of the test are under. 

 

4. Analysis of RQ1 

4.1 Analysis I: Scholarly knowledge 

4.1.1 History of the equal sign 

The equal sign "=" that we use today was first introduced by the British mathematician Robert 

Recorde in 1557, just about one year before his death. Although he had a background in medicine, 

he did several mathematical works within algebra, arithmetic, geometry, and astronomy. He had a 

great sense of pedagogy and wanted to create a dialogue with the reader by giving explanations for 

each step in an introduced technique (Katz, 2009). In his algebra book The Whetstone of Witte, 

Recorde gave the equal sign that we use today. The book's content is not considered as highly 

original as he had most of it from other sources. However, his work was to be taught to a whole 

generation of English scientists, and the equal sign to many more (Katz, 2009).  

He argues for the need for the equality sign by saying the following  

 

To avoid the tedious repetition of these words—is equal to—I will set as I do often in 

work use, a pair of parallels, or gemow [twin] lines of one length, thus =, because no 2 

things can be more equal. (Katz, 2009, p. 396) 

 

Before and after Recorde, other mathematicians used different types of equal signs. It was first in 

the 16th and 17th centuries that mathematics and algebra were beginning to create the symbols that 

we use today (Katz, 2009). Mathematicians before this era also did not have common notation. For 

instance, François Viète’s notation for 𝑥2 in 1591 was “A quadr.” where A represented the 

unknown number (Cajori, 1993, p. 345), and the same goes with the equal sign. Words such as 

eaequales, esgale, faciunt, and gleich are all previous notations for equality. However, there were 

also people before Recorde who used symbols instead of words, e.g., 'eq' was used by Pérez de 

Moya en 1558, three horizontal lines by Ghaligai in 1552, and the oldest mathematical document 

that one knows of - the Rhind. Papyrus (1650 BC.) -  the symbol is a beetle that means 'becomes' 

(Molina, Castro, & Castro, Historia del signo igual, 2007). 



 15 

The original look of Recorde's equal sign had two parallel lines of the same length, which was 

longer than the one we know today. Other writers such as Weigel in the late 17th century and 

Swedenborg in the early 18th century used a shorter sign (Molina, Castro, & Castro, Historia del 

signo igual, 2007). Although Recorde published his work in 1557, it was not implemented and 

acknowledged among others before much later. The biggest rival of Recorde is likely Rene 

Descartes, who introduced his equal sign in 1637, much similar to an open infinity sign ∝. It was 

probably thanks to, among others, Leibniz and Newton, who used Recorde's equal sign that made it 

generally accepted (Cajori, 1993). 

 

One has given various meanings to the equal sign throughout history. For instance, Viète used it to 

indicate that two numbers were not equal, whereas others used it to denote decimals (e.g., 102=857 

denoted 102.857). Moreover, some used it to separate numbers, Descartes used it as plus ou moins 

±, and a fifth use denotes parallel lines (Cajori, 1993).  Several of the previous uses of the equal 

sign we consider incorrect today. We can find yet another example of this in the "The Colombian 

Arithmetician" from 1811, where one used the equal sign between different operations like this: 1 +

6, = 7,    × 6 = 42,   /2 = 21 (Cajori, 1993, p. 307) 

 

Today as well, the equal sign has several uses, some of which are more acceptable than others. 

Nonetheless, there is not one pure definition of the equal sign in the mathematical world, most 

likely because it has been used in so many different fields and contexts. However, the notion of an 

equivalence relation, of which the equal sign can be correctly defined mathematically, will be 

described in the next section.  

 

4.1.2 The equal sign as an equivalence relation 

Although history has shown that the equal sign has had many different looks in terms of symbols 

and other meanings, there is a sector in which we can describe the equal sign mathematically, 

namely within the notion of relations, where the equal sign is an example of an equivalence 

relation. One can define an equivalence relation as the following:  

 

The relation = on an arbitrary set A is an equivalence relation to which it implies that it is 

reflexive, symmetric, and transitive: 

1) Reflexivity: ∀a  ∈ A:  a = a 
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2) Symmetry: a  = b  ⟹ b = a 

3) Transitivity: if a = b  and   b = c  ⟹ a = c 

(Lützen, 2019, p. 120, 124) 

 

Thus, the property of reflexivity expresses that every number is equal to itself; symmetry states that 

the equal sign works like a mirror – we can read it from both directions; and the property of 

transitivity affirms that if two numbers are equal to a third number, then the two numbers are equal. 

As we see below, these three properties of the equal sign have inspired how we define the equal 

sign in didactics of mathematics. 

 

4.1.3 The equal sign in didactics of mathematics 

The big question regarding the relational vs. operational approach is how this way of interpreting 

the equal sign is developed. Is it because of cognitive limitations, or is it the teaching or textbooks 

they had? Among others, this has been investigated by McNeil et al. (2006). Students in middle 

school (ages 11-14) have, according to psychology, fewer cognitive limitations than in elementary 

school. Therefore, one would think they have a unique understanding of the equal sign. Studies 

provided by Baroody and Ginsburg (1983) in Kieran (1981) suggested that age alone cannot be the 

reason behind the operational view of the sign. To solve standard operation-equals-answer 

equations (i.e., 9 − 3 = 6), one does not need to understand the symbol of equality (Kieran, 1981). 

Students can, for example solving the equation 2x + 3 = 11 without a relational view by a guess 

and check approach (Vincent, Bardini, Pierce, & Pearn, 2015). The claim of McNeil et al. (2006) is 

that performing these arithmetic operations consequently creates an association of the equal sign 

with those operational procedures. 

Additionally, there is not a lot of instructional time, if any, given by the teacher or the books 

explicitly on the equal sign. A possible resolution from the study is that instead of always 

presenting the equal sign in standard contexts - that is, the operation-equals-answer - teachers could 

try and show it in non-standard contexts. One cannot expect students in middle school to create new 

ways of thinking if we only expose them to a limited range of contexts. Hence, although their 

cognitive abilities are mature enough, they will not necessarily adopt a relational view of the equal 

sign (Kieran, 1981). A consequence of seeing the equal sign as operational is that students use it to 

mean "then I did this" and write strings of false equalities, where each step represents a step in a 

multi-step calculation. For instance, when computing 5 ⋅ (13 + 27), many students write 13 +
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27 = 40 ⋅ 5  = 200, as they would do on their calculator (Vincent, Bardini, Pierce, & Pearn, 2015). 

The string of equalities shows that the student understands the problem; thus, the difficulty is at the 

symbolic level (Kieran, 1981), which refers to understanding algebraic notation. We denote the 

string of equalities as string operations in this thesis, to assess its connection to the operational 

misconception that it represents. 

 

We will in this dissertation extend the meanings of the equal sign as proposed by (Prediger, 2010). 

Her model has taken outset from the earlier studies that distinguish between an operational 

approach and the relational approach. The model consists of six meanings of the equal sign, which 

all satisfy the notion of an equivalence relation. Thus, one can say that they are all equally accurate 

and valid meanings of the equal sign. We suggest that the binary approach of operational and 

relational is too small and that the categorization of Prediger captures more nuances of the role 

played by the equal sign.  

 

The first meaning relates to the operational meaning as we know it from former studies. What 

concerns the relational meaning, Prediger distinguishes between four types: symmetric arithmetic, 

formal equivalence, conditional equation characterizing unknowns, and contextual identities in 

formula. What goes for all of them is that they focus on the symmetric use of the equal sign. 

(Prediger, 2010, s. 81). Regarding symmetric arithmetic identity, it is an “extension” of the 

symmetry property in an equivalence relation. “Arithmetic” is included in the name to distinguish it 

from the cases involving one or several variables x. A variable x is here either a placeholder, an 

unknown, a meaningless symbol, or a changing quantity (Prediger, 2010).  The symmetric property 

induces commutativity when we consider compositions of two elements a, b in an arbitrary set A. 

Furthermore, numerical identities such as 102 − 92 = 19 – which are easy to compute the one way, 

but not the opposite – are also considered symmetric arithmetic identities (Prediger, 2010, p. 81). 

Regarding string operations, we will categorize them here as a misconception of symmetric 

arithmetic.  

 

In reference to formal equivalences, these are equations that always are true, that is, true for 

arbitrary variables. Thus, it concerns equations of algebraic terms, contrary to symmetric arithmetic. 

E.g., we can write (𝑥 − 2)(𝑥 + 3) = 𝑥2 + x − 6 (Prediger, 2010).  In Poulsen (2015), we find some 

categories which can help us better understand what constitutes formal equivalence. We have 

identified the laws of distributivity, associativity, and commutativity of field theory (Poulsen, 2015) 
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i.e., 5𝑥 + 5 = 5(𝑥 + 1) which is due to the multiplicative law of distributivity. Furthermore, formal 

equivalence is when simplifying an expression (Poulsen, 2015) e.g., (2𝑥 + 1) − 5 = 2𝑥 − 4. Lastly, 

rewriting an expression (Poulsen, 2015) refers to the identities of mathematical objects such as 

logarithms, exponents, and fractions e.g., we can rewrite 
𝑎

𝑏
+

𝑏

𝑎
 into 

𝑎2+𝑏2

𝑎𝑏
 . In other words, one can 

see formal equivalence as applying calculation rules of a specific mathematical object. Notice that 

all three ways of interpreting formal equivalence can also be used for symmetric arithmetic. The 

only difference between the two is whether we consider precise numbers or variables. 

 

What concerns conditional equation characterizing unknownss for unknowns, they represent 

equations that are true for a particular condition, as the name indicates. Even if (𝑥 − 2)(𝑥 + 3) =

𝑥2 + 𝑥 − 6 and the equation 𝑥2 =   −  𝑥  + 6 are symbolically near each other; the latter does not 

apply to all x. Thus, it represents an equation of unknowns which we find by solving the equation 

(Prediger, 2010, p. 82). We will simplify the term in this thesis by only referring to it as the 

meaning of conditional equation. 

 

Regarding contextual identity in formula, this is to be understood as typical or 'known' formulas, 

such as Pythagoras theorem 𝑐2 = 𝑎2 + 𝑏2. These types of equations are general statements, but as it 

does not apply to all a, b, it is named contextual identity in formula since the equal sign is valid 

only in a specific context (Prediger, 2010). Prediger does not define explicitly her notion of 

formula.  Thus, we will in this thesis develop the meaning of contextual identity to make it apply to 

any expression that is true for some numbers and demands some assumptions. We will refer to 

contextual identity in formula as simply a contextual identity. Notice that the difference between the 

conditional equation and the contextual identity then is that the former can be solved, contrary to 

contextual identities, which can contain several unknowns and not be solved.  

 

In addition to the operational and relational category, there is a third category that Prediger names 

specification. It refers to the cases where the equal sign is used as defining identities. From an 

epistemological point of view, it is to distinguish definitions and propositions from each other 

(Prediger, 2010). Thus, for example, we can write f(𝑥) = 4𝑥 + 5, which means that f(𝑥) is a name 

for the function defined as 4𝑥 + 5. 
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4.2 Analysis II: Knowledge to be taught 

4.2.1 Ministerial guidelines 

Regarding the curriculum and guidelines of STX, they do not mention the equal sign explicitly 

anywhere. However, we can find statements in which we can interpret the meanings of the equal 

sign. The curriculum consists of disciplinary goals and content goals. One of the disciplinary goals 

is "to operate with numbers and representations of numbers (…)," to which we can interpret the 

meaning of the operational sign. Moreover, it states "to handle formulas (…)" (Danish Ministry of 

Education, Bilag 112, Matematik B – stx, august 2017, 2017, p. 1) which it does not further explain, 

but what we still can somehow identify as contextual identity. Additionally, they mention 

“calculation of percentage and annuities (…) interest rate formula” (Danish Ministry of Education, 

Bilag 112, Matematik B – stx, 2017, p. 2). From the ministerial guidelines, the minimum 

requirements include "to know term designations (words and symbols) and the meaning of 

concepts". Here one can see the equal sign and the meaning of equality as a subset of this. 

However, this is not explicitly mentioned as such. Moreover, regarding formulas and functions, 

they mention "rewriting and reducing formulas and expression by paper/pencil (…)", which can be 

categorized as the meaning of formal equivalence and thus partly symmetric arithmetic. The 

meaning of conditional equation can be identified under the headline "equation solving," where it 

says, "to algebraically solve equations by paper/pencil" (Danish Ministry of Education, Matematik 

A/B/C, stx Vejledning, 2020, p. 16). Considering the meaning of specification, this does not appear 

anywhere except for the subchapter of functions in the guidelines where they state to "clarify the 

difference between a rule and an equation" (Danish Ministry of Education, Matematik A/B/C, stx 

Vejledning, 2020, p. 10), for instance distinguishing between 𝑓(𝑥) = 2𝑥 + 1 and 2𝑥 + 1 = 5. 

Thus, all the meanings of the equal sign can somehow be interpreted from the guidelines and 

curriculum, nonetheless solely implicitly. One can also examine the mentioned goals and 

definitions without necessarily having an equal sign in mind. 

 

In the official program of HHX, the equal sign is not explicitly mentioned either. However, one of 

the disciplinary goals is "to handle formulas, including translating between mathematical symbol 

language and colloquial spoken or written language and symbol language for the solution of 

problems with mathematical content". We identify this as a meaning of contextual identity in 

handling formulas and, parallel, the meaning of the conditional equation when they refer to 

“solution of problems”. More precisely, we see in the content goals that one of these are 
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"fundamental computation skills, calculation of percentage and indices, (…), reduction, (…)" to 

which we can interpret "computation skills" as meaning of the operational sign and "reduction" as a 

meaning of formal equivalence and symmetric arithmetic. Moreover, the content goal of "equation 

solving; analytically, graphically and by the help of IT" is implicitly stating the meaning of 

conditional equation (Danish Ministry of Education, Bilag 41, Matematik B - hhx, 2017, p. 1). 

Nonetheless, it is difficult to identify the meaning of specification. Concerning the ministerial 

guidelines of HHX, they mention in the introduction "the mathematical content competencies" and 

"the competence of ways of thinking" in which they exemplify with "(…), what an equal sign 

means, and where they are used" (Danish Ministry of Education, Matematik A/B/C, hhx 

Vejledning, 2021, p. 5). Nevertheless, this merely serves as an example which they do not dig 

deeper into.  

 

4.2.2 Screening test exercises 

The screening test is the final test after the introductory period. The exercises are primarily about 

linear functions for the table, graph, formula, and linguistic description representation forms. 

Hence, tasks only involving table, graph, or linguistical description representations, are of no 

interest if they do not include the fourth type of representation, namely formula. With the latter, we 

encounter the use of the equal sign in the task and the solutions. Thus, the examples we give are 

tasks of this form.  

 

Type of exercise: Investigate whether a point P(a,b) is on the line of the linear function f(x): 

This example is exercise 3a from the example screening test set 3 of 2017: 

 

 Two linear functions are determined by 𝑓(𝑥) = −0,5𝑥 + 7 and 𝑔(𝑥) = 2𝑥 + 10,4 

 Investigate whether the point P(4,5) lies on the graph of f 

(Danish Ministry of Education, Matematik Screening studentereksamen vejlædende opgavesæt 3, 

STX-MAT-GRUNDFORLØB, 2017) 

 

The task itself displays a meaning of specification as the functions are simply defined as 𝑓(𝑥) and 

𝑔(𝑥) and thus do not represent an equation as such, but more of naming two objects, i.e. the two 

linear functions. Furthermore, the meaning of the operational sign will be helpful in the task since 

one is to compute 𝑓(4), which indicates that one will set 𝑥 = 4 (specification) everywhere in the 
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expression, obtaining the following: 𝑓(4) = −0,5 ⋅ 4 + 7 = −2 + 7 = 5. Thus, the last two equal 

signs function as operational signs.  

 

Type of exercise: Given intersection in x-axis and y-axis, find the formula of f 

In exercise 4 from the same set, one is to find a rule of f, 

The graph of a linear function f intersects the first axis in x=5 and the second axis in y=10. 

a) Decide a rule of f. 

(Danish Ministry of Education, Matematik Screening studentereksamen vejlædende opgavesæt 3, 

STX-MAT-GRUNDFORLØB, 2017) 

 

 

The following table shows what meanings of the equal sign appear when we have solved the 

problem: 

Solution Meaning of the equal sign 

𝑓(5) = 0 Specification 

𝑓(0) = 10 Specification 

Since we have the assumption that it is a linear 

function, we know that we can write f(x) as 

𝑓(𝑥) = 𝑎𝑥 + 𝑏 

Contextual identity 

𝑓(0) = 𝑎 ⋅ 𝑥 + 𝑏 = 𝑎 ⋅ 𝑥 + 10 Specification 

b = 10 Conditional equation 

𝑓(5) = 𝑎 ⋅ 5 + 10 Specification 

𝑓(5) = 0 ⟹ 0 = 𝑎 ⋅ 5 + 10 Specification 

−5a = 10 Conditional equation 

−5𝑎

5
=

10

5
 

Conditional equation 

a = −2 Operational 

𝑓(𝑥) = 𝑎𝑥 + 𝑏;  𝑎 = −2;  𝑏 = 10 

⟺ 𝑓(𝑥) = −2𝑥 + 10 

Specification 

Table 1. Meanings of the equal sign in finding the rule of f 

We see from this solution that the meaning of specification appears quite frequently alongside 

conditional equation, but we also observe the meaning of operational and contextual identity.  
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Type of exercise: Solve a linear one-variable equation of the form f(x)=y or f(x)=g(x)  

 

The rules for two linear functions f and g are given by 

𝑓(𝑥) = 2𝑥 + 1 

𝑔(𝑥) = 𝑘𝑥 − 3 

where k is a constant. 

a) Set 𝑘 = −2 and determine the first coordinate in the intersection between the 

graphs of f and g. 

(Danish Ministry of Education, Matematik Screening studentereksamen vejlædende opgavesæt 5, 

STX-MAT-GRUNDFORLØB, 2018, p. 3) 

Solution of the task Meaning of the equal sign 

𝑓(𝑥) = 2𝑥 + 1              𝑔(𝑥) = 𝑘𝑥 − 3 Specification 

𝑘 = −2 Specification 

𝑔(𝑥) = −2𝑥 − 3 Specification 

𝑔(𝑥) = 𝑓(𝑥) Conditional equation 

−2𝑥 − 3 = 2𝑥 + 1 Specification 

−4𝑥 = 4 Conditional equation 

𝑥 =
4

−4
 

Conditional equation 

𝑥 = −1 Operational sign 

Table 2. Meanings of the equal sign - solving exercise 7 in example screening test 5, 2018 

The first three lines of the solution are simply statements of what is 𝑓(𝑥),  𝑔(𝑥) and k, and the 

meaning of the equal sign thus is a specification. When setting up the equation and solving it, the 

meaning of the equal sign is that of a conditional equation. Finally, when calculating the value of 

x =
4

−4
 makes x = −1, this shows an operational sign. 

 

Type of exercise: Explain the steps of an equation 

In this type of exercise, the student is to explain what has happened in each step in the equation 

solving. 

The statements of the task Meaning of the equal sign 
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3𝑥 = 2 ⋅ (
1

2
− 𝑥) − 6 

Conditional equation 

3𝑥 = 1 − 2𝑥 − 6 Formal equivalence 

3𝑥 = −2𝑥 − 5 Formal equivalence 

5𝑥 = −5 Conditional equation 

𝑥 =
−5

5
 

Conditional equation 

𝑥 = −1 Operational sign 

Table 3. Meanings of the equal sign in exercise 4 of example screening test 5 2018 

(Danish Ministry of Education, Matematik Screening studentereksamen vejlædende opgavesæt 5, 

STX-MAT-GRUNDFORLØB, 2018, p. 2) 

 

We observe that formal equivalence appears although we are solving an equation. We observe 

formal equivalence as 2 ⋅ (
1

2
− 𝑥) − 6 = 1 − 2x − 6, which is due to the law of distributivity of 

multiplication. Further on, 1 − 2x − 6 = −2x − 5 which represents a reduction. This shows that 

several meanings of the equal sign can be at stake when solving an equation.  

 

The statements of the task Meaning of equal sign 

𝑎 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
 Contextual identity 

𝑎 =
6 − (−2)

7 − 3
 

Specification 

𝑎 =
8

4
 

Operational sign 

𝑎 = 2 Operational sign 

Table 4. Meanings of the equal sign in exercise 5 of example screening test 6 2018 

(Danish Ministry of Education, Matematik Screening studentereksamen vejlædende opgavesæt 6, 

STX-MAT-GRUNDFORLØB, 2018, p. 2) 

We see a similar pattern to that of the former exercise, although the first step in this one is a 

contextual identity, as it occurs from some assumptions stated in the task. 

 

We detected throughout several of the tasks from the screening tests that they follow a typical 

pattern in their solution that we will now describe. Firstly, a function is defined, and thus the 
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meaning of specification is the usual starting point, expressing the mathematical object in the task. 

Secondly, one is to solve an equation, and hence the meaning of a conditional equation with an 

unknown appears. In finding the solution, one isolates the unknown, and here the meaning of 

formal equivalence may sometimes appear in some of the steps. Lastly, one calculates the value of 

the unknown. Thus, one often finalizes these tasks with the operational meaning of the sign. Hence, 

one could argue that many of the exercises create a result-oriented approach as the meaning of the 

operational sign is what the solution always comes down to. Accordingly, one needs an 

understanding of computing just as much as a relational meaning. The meaning of contextual 

identity does not occur as frequently throughout the tasks of the analyzed screening tests. It appears 

in the exercises of linear regression or when using a formula related to linear functions. What 

regards symmetric arithmetic, we did not detect this. However, this is following the ministerial 

guidelines who proposes it quite vaguely.  

 

4.2.3 Textbooks  

The first book of the analysis is a book of the introductory period of STX, MAT STX grundforløb 

(2017). There are three chapters in the book; linear models, mathematical modeling, and number 

and letter-computation before the book's final part containing tasks.  We will refer to the book as 

the "book of the introductory period". The second book of the analysis is a general book of 

mathematics B-level of STX, MAT B1 STX (2019). The book consists of the topics on functions, 

[square] roots and powers, annuity, vectors, statistics, and classical geometry. We will refer to the 

book as the "book of STX". Regarding the third and last book, this is a general book of mathematics 

B-level of HHX Matemat10k (2019). We will refer to the book as the "book of HHX". The book 

chapters include the subjects of functions, annuities, statistics, and differential calculus.  

Overall, the books show a diverse set of topics, and as they are from 2017 and later, they are all 

under the updated ministerial guidelines of 2017.  We will begin the analysis with the cases in 

which the books present some questionable uses of the equal sign.  

 

Questionable uses of the equal sign 

In chapter 1 of MAT STX grundforløb, we encounter in exercise 6 a linear function where y is to 

denote a numerical value in cm.  

y = 6,31 ⋅ 12 + 79,8 = 155,5 cm 

(Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 17) 
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The calculation itself is correct but concluding that the number we compute equals a number in cm 

shows inconsistency, as this does not maintain the equilibrium of the equal sign. We suggest that 

this is to be categorized as false formal equivalence, as the terms on each side of the equal sign are 

no longer equivalent; the left-hand side represents a number. In contrast, the right-hand side 

represents a number with the unit cm. We find a similar example in the textbook of STX, 

 

 A trip of 35 km costs 15 + 35 ⋅  17 = 610 kr    

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 10) 

 

This is the same type of example, only this time, we have more text included alongside the equation 

and the second unit of km, complicating the equation even more. Thus, the equation is included as 

part of a non-mathematical sentence, concluding with a number in kr [Danish currency]. Lastly, we 

give a similar example from the book of HHX: 

 

E(𝑋) = n ⋅ 𝑝 = 125 ⋅ 0,32 = 40 people 
(Axelsen & Dalsgaard, 2019, p. 182) 

 

Conclusively, this shows a misconception of the equal sign, more specifically regarding the 

meaning of formal equivalence, as maintaining equivalent terms on both sides of the equal sign 

fails. By either removing all units or making sure that each term has the correct unit, one would 

balance the equation, thus satisfying the formal equivalence and the relational meaning of the equal 

sign. Although the text in the given examples explains that it is about cm, kr, and people, one 

cannot, from a mathematical point of view – mix this non-mathematical language into the 

mathematical one, i.e., the equation, without stating the units explicitly in the equation. 

Incorporating non-mathematical notation with mathematical will undoubtedly strengthen the 

students' difficulties if they are to fully understand the concept of the equal sign or any other 

symbol for that matter.  

 

We will conclude this section of questionable uses by calculation of percentage, which we have 

shown is explicitly stated in the official programs of both STX and HHX. In the book of HHX, it 

gives the following example, 
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Thomas makes 30000kr. a month and gets a pay raise of 3,2%. His new monthly 

salary is thus: 

30000 + 3,2% = 30000 ⋅ 1,032 = 30960 
(Axelsen & Dalsgaard, 2019, p. 39) 

 

The first equal sign is mathematically invalid as 

 

30000 + 3,2% = 30000 +
3,2

100
= 30000 + 0,032 = 30000,032  ≠ 30960 

 

where we used the definition of % of chapter 3 of the book: 

Percent comes from Latin, pro cent, and means per hundred, i.e. 
1

100
  and is written %.  

(Axelsen & Dalsgaard, 2019, p. 37) 

 

Moreover, we find a similar misapplication in the book of STX, 

7

100
⋅ 100 = 7%, 

that is precisely the difference in the indices: 107 – 100 = 7 percentage points. 

(…) 107-103 = 4 percentage points, whereas the percentage-wise increase is 

4

103
⋅ 100  ≈ 3,9% 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 276) 

 

Like the former examples, one mixes standard language with mathematical notation – the books 

speak of percentages but do not use the %-sign on both sides of the equal sign. Subsequently, the 

equations do not hold mathematically but merely serve as part of the written text in the examples. 

Consequently, they do not represent any of the six meanings of the equal sign, and we must thus 

consider them as deceptive. 

 

Operational meaning 

In the very introduction of the last chapter regarding "Number and letter-computation" in the book 

of the introductory period, we are given some examples as to what one can consider "elementary 

mathematics": 

 

3 + 2 = 5 

2𝑎 + 𝑎 = 3𝑎 

3𝑥 + 2𝑥 = 5𝑥 
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4 ⋅ 5𝑦 = 20𝑦 

2𝑝 ⋅ 3𝑝 = 6𝑝2 

(Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 68) 

 

All six examples given in the book show an operational approach. None of them are written as, for 

example  

5 = 3 + 2 

2𝑎 + 𝑎 = 𝑎 + 𝑎 + 𝑎 

4 ⋅ 5𝑦 = 2 ⋅ (2 ⋅ 5)𝑦 

5𝑥 = 2 ⋅ (𝑥 + 𝑥) + 𝑥 

2𝑝 ⋅ 3𝑝 = 2 ⋅  3𝑝2 

Thus, the book itself implicitly shows an operational meaning of the equal sign, as it does not 

promote the meaning of symmetric arithmetic identity or formal equivalence in these examples.  

 

There is another example in the book in which this view of the equal sign again comes into sight. It 

is in relation with calculations of fractions, where it's stated the following: 

 

42

60
=

2 ⋅ 3 ⋅ 7

2 ⋅ 2 ⋅ 3 ⋅ 5
=

7

2 ⋅ 5
=

7

10
 

(Carstensen, Frandsen, Lorenzen, & Jørgensen, 2017, p. 75) 

 

The calculation is yet another example of an operational meaning of the sign, which declares how 

one can go from one fraction and simply reduce it straight-forward. This creates in its turn a result-

oriented approach as one does not encounter examples in which one does the opposite.  

 

Considering the general books of STX and HHX at the mathematics B level, the topics and 

problems are more diverse. In general, we find similarities to the screening test regarding the book 

of the introductory period; it is with linear functions that we find the operational sign occur, i.e., 

when one is to compute a value of 𝑓(𝑥). However, we also see it when computing annuities or the 

length of vectors. Like the screening tests, an operational sign turns out to be helpful in most 

exercises, also within equation solving when one is to deduce the value of the found x. 
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Specification 

We will give the first examples concerning specification from the book of the introductory period, 

but they are similar to what we found in the books of STX and HHX.  

 

𝑦 = 𝑓(𝑥) = −𝑥 + 5 

(Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 108) 

 

This expression shows the meaning of specification occurring twice. First, one defines y as 𝑓(𝑥), 

which then is defined by −𝑥 + 5. However, in the subsequent exercise, the book has, for some 

unclear reason removed y, and simply stated: 

𝑓(𝑥) = −
2

5
𝑥 +

3

5
 

(Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 108) 

 

Although both functions are of the same form – they are linear (and single variable). Moreover, we 

encounter a third example where the book defines a line as: 

𝑚: 3𝑥 − 4 = 2 

 (Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 120) 

 

 

Here m defines what the line is. Consequently, we do not find a complete consistency in the 

difference between using "=" and ":" when asserting a line. In this regard, we have one more 

example we would like to point out, 

 

 

Dissolve numerator and denominator in factors and reduce the fraction 

 1.  𝑧 =
4𝑥2 − 9

4𝑥2 + 9 − 12𝑥
 

(Carstensen, Frandsen, Lorenzen, & Jørgensen, 2017, p. 154) 

 

Here, the equal sign serves as a meaning of specification as z is the name of the fraction. 

Accordingly, one does not need to use z to solve this task. Thus, we again encounter some 

inconsistencies of notation in the book, which are not incorrect uses of the equal sign.  However, it 
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is highly contributing to confuse when something is an equation and when something is just a 

definition, as the guidelines of STX mentions: "clarify the difference between a rule and an 

equation” (Danish Ministry of Education, Matematik A/B/C, stx Vejledning, 2020). In other words, 

in what contexts is the meaning of the equal sign a conditional equation or a specification?  

 

We end this section of the meaning of specification, by giving some examples from the books of 

STX and HHX that we encountered. Regarding the book of STX, we find the meaning of 

specification in other contexts than just functions and general equations. We also find it when 

naming terms in statistics, e.g., 

μ = E(𝑋) 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 285),  

 

Which mere states that we define the expectation value E(X) as μ. 

 

Moreover, we find specification concerning geometry when asserting length, e.g., in a figure that 

illustrates a triangle Δ𝐴BC, the side AB is defined as c, BC as a = 7 and AC as b = 10 (Carstensen, 

Frandsen, Lorenzen, & Madsen, 2019, p. 247).  

 

In the book of HHX, there is no geometry included. However, the topics of functions and statistics 

are essential, especially regarding the meaning of specification. Hence, we give one example from 

here similar to that of STX, namely defining variance, Var (𝑋) 

σ2 = Var (𝑋) = ∑(𝑥 − μ)2 ⋅ 𝑓(𝑥) 

(Axelsen & Dalsgaard, 2019, p. 173) 

 

Overall, we have detected the meaning of specification appears in the books as definitions of 

objects within functions and statistics, alongside asserting lengths in a geometrical context (only 

STX). 

 

The relational meanings of the equal sign 

We finish the analysis of the textbooks by considering how the relational meanings of the equal 

sign come into view in the textbooks. The section will end with an example from one of the books 
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in which we display how the different meanings of the equal sign come into view in the same 

exercise. 

 

Symmetric arithmetic 

The meaning of symmetric arithmetic is vaguely mentioned in the guidelines of STX as “Rewriting 

and reducing formulas and expression by paper/pencil (…)”. However, we found some examples of 

it in the books about historical mathematics, such as Fermat’s little theorem: 

 

84 − 1 = 4095 = 5 ⋅ 819 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 51) 

 

Here we see an operational meaning in the first equal sign, followed by the symmetric arithmetic 

identity. Furthermore, in the book of the introductory period, we find Goldbach’s conjecture 

 

We have, for example, that 

6 = 3 + 3,   98 = 37 + 61 = 79 + 19,     112 = 3 + 109 = 5 + 107 

(Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 103) 

Where each equal sign here represents symmetric arithmetic identity. In the calculation of annuities, 

we also find symmetric arithmetic: 

 

(…) after the first year, the balance is calculated as: 

2100 = 2000 + 100 = 1 ⋅ 2000 + 0,05 ⋅ 2000 = (1 + 0,05) ⋅ 2000 = 1,05 ⋅ 2000 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 76) 

 

However, they do not make up a significant part of the books. We did not find any example of 

symmetric arithmetic in the book of HHX. This is most likely because one sees symmetric 

arithmetic identities in a more generalized context alongside algebraic expressions, hence in the 

shape of formal equivalence.  

 

Formal equivalence 

Regarding formal equivalence, it typically arises as identities of vectors, exponents, logarithms, 

square roots, and rewriting expressions in solving equations. For instance,  
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For non-negative numbers a and b, we have that 

√a ⋅ b = √a ⋅ √b 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 44) 

 

This identity represents a rewriting of the expression which applies for all a and b thus, the 

definition of formal equivalence. Moreover, one of the identities of a logarithm is that, 

 

For the functions log and ln, we have for all positive numbers a and b (…), the 

following rules: 

1.   log(𝑎𝑏) = log 𝑎 + log 𝑏 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 68) 

 

This also shows a rewriting of the expression for any a and b, hence a formal equivalence. 

Furthermore, the meaning of formal equivalence occurs when using the binomial theorems of a 

square in reduction of polynomials: 

 

𝑥2 + 6𝑥 + 9

𝑥2 − 9
=

(𝑥 + 3)2

(𝑥 + 3)(𝑥 − 3)
=

(𝑥 + 3)(𝑥 + 3)

(𝑥 + 3)(𝑥 − 3)
=

𝑥 + 3

𝑥 − 3
, x ≠ ±3 

(Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 81) 

 

Notice that one has made use of both the identities (𝑎 + 𝑏)2 and (𝑎 + 𝑏)(𝑎 − 𝑏). First, one uses the 

law of distributivity of multiplication to deduce the binomial formula. Second, one rewrites the 

expressions in the numerator and denominator, allowing us to simplify or reduce the expression. 

We finish the examples of formal equivalence with an example of the book of HHX, which regards 

identities of probabilities (and implicitly set theory): 

 For events in a sample space U, there are the following computation rules: 

 (…) 

 P(𝐴 ∪ 𝐵) = P(𝐴) + P(𝐵) − P(𝐴 ∩ 𝐵) 

(Axelsen & Dalsgaard, 2019, p. 165) 

 

This is yet another example of a rewriting of an expression. We also note that formal equivalence 

appears in solving equations parallel to what we portrayed in the section of the screening tests. 
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Conditional equation 

The meaning of conditional equation is probably one of the most frequently appearing meanings of 

the equal sign in mathematics in upper secondary school because of the focus on algebra. In 

general, we find it in the context of solving equations of different types of functions, or just 

expressions in general: 

2(3𝑥 − 1) = 𝑥 − 4(2 − 𝑥) ⟺ 6𝑥 − 2 = 𝑥 − 8 + 4𝑥 

                                                                 ⟺ 6𝑥 − 2 = 5𝑥 − 8 ⟺ 𝑥 = −6 

(Carstensen , Frandsen, Lorenzen, & Jørgensen, 2017, p. 24) 

 

We see from this example that the first equation represents the meaning of the conditional equation, 

whereas, in the following two equations, the equal sign has the meaning of formal equivalence. We 

see this as no changes have been made on the left-hand side, whereas we have rewritten the right-

hand side as 𝑥 − 8 + 𝑥 = 5𝑥 − 8 which is true for all 𝑥. In the final equation, we see the meaning 

of the operational sign. Thus, although the equation, to begin with, represents the equal sign as a 

conditional equation, it will often (almost always) have several meanings appearing throughout the 

solving, which we will show at the end of the section. 

 

Contextual identity 

Considering the meaning of contextual identity, this is identified in the books predominantly within 

geometry, such as finding the area, sum of angles, or applying Pythagoras theorem – but can also be 

seen with the calculation of annuities and differential calculus.  The first example we give is about 

the topic of annuities, in the book of STX:  

 

The formula of interest (the formula of capital) calculates the balance on a saving that 

begins with the value 𝐾0, and that for each term becomes increased with interest by a 

fixed interest rate r. The balance after n terms is given by the following formula: 

𝐾𝑛 = 𝐾0 ⋅ (1 + 𝑟)𝑛, 

where 𝐾0 is the start capital, r is the interest rate, n is the number of terms, and 𝐾𝑛 is 

the end capital (the balance) after those n terms. 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 77) 

 

The equation given includes some assumptions of several variables, i.e., 𝐾𝑛,   𝐾0,  𝑟,  and 𝑛, thus the 

equation holds for some numbers, but not in general like a formal equivalence. Furthermore, it 
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cannot be solved like an equation with an unknown as the equation involves more than one 

unknown. Thus, we see that this represents a contextual identity. We found a similar example 

within the same topic in the book of HHX, 

 

For the exponential function 𝑓(𝑥) = 𝑏 ⋅ 𝑎𝑥, the relative gain is constant. For each time 

x increases by 1, then the relative gain is 

𝑟 = 𝑎 − 1 
(Axelsen & Dalsgaard, 2019, p. 45) 

 

This again shows contextual identity as we have given some assumptions for an equation with 

several unknowns.  We give Pythagoras’ theorem as a third example of contextual identity. 

 

In a right-angled ΔABC, where ∠C = 90∘,  we have that 

𝑎2 + 𝑏2 = 𝑐2 

(Carstensen , Frandsen, Lorenzen, & Madsen, 2019, p. 252) 

 

We observe here that the context of using Pythagoras’s theorem refers to the assumption of having 

a right-angled triangle. Said differently, if this equation holds, then the triangle must be right-

angled. However, finding a, b, and c where it does not hold does not disprove the equation, as it has 

solutions. It merely shows that it does not generally fit like a formal equivalence – and nor can we 

solve it as we have several variables. 

Last, we give an example related to differential calculus, which is given in the book of HHX: 

 

Given a differentiable function 𝑓. The equation for the tangent of the graph, that 

touches 𝑥0, has the equation 

𝑦 = 𝑓’(𝑥0) ⋅ (𝑥 − 𝑥0) + 𝑓(𝑥0) 

(Axelsen & Dalsgaard, 2019, p. 132) 

 

To use the stated equation, we need the assumption that 𝑓 is differentiable. Hence, we note that 

contextual identity represents equations whose solutions exist. Accordingly, a contextual identity 

stated alone is true and false at the same time if no assumption is given. We note that it has been 

challenging to detect contextual identities in the textbooks, especially what concerns finding 

identities that the students know at the time when they are given the test. 
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Before summarizing the 

knowledge to be taught, we show an example of an equation solving, in  

which we see every meaning of the equal sign appear, except symmetric arithmetic. The example 

was found in the book of HHX and concerns the topic of annuities. The book itself has made  

explanations for each step, which we have decoded into the meanings of the equal sign: 

 

 

 

 

Determining n in 𝑨𝒏 Explanations of the book Meanings of the 

equal sign 

𝐴𝑛 = 𝑦 ⋅
(1 + 𝑟)𝑛 − 1

𝑟
 

 

None 

 

 

Contextual identity 

 

100000 = 2000 ⋅
1,0033𝑛 − 1

0,0033
 

 

the numbers are inserted 

 

Specification 

 

100000 ⋅ 0,0033  =  2000 ⋅ (1,0033𝑛 − 1) 

 

Multiply with the interest 

 

Conditional 

equation 

 
100000 ⋅ 0,0033

2000
= 1,0033𝑛 − 1 

 

Divide with interest and 

capital repayment [y] 

 

Conditional 

equation 

1,0033𝑛 =  
100000 ⋅ 0,0033

2000
+ 1 

Add 1  

Conditional 

equation 

1,0033𝑛 = 1,165 Compute the right-hand side  

Operational 

meaning 

 

  ln (1,0033𝑛) =    ln(1,165) 

 

Use the logarithm 

 

Formal equivalence 

 

n ⋅ ln(1,0033) = ln(1,165) 

 

Use the computation rule 

ln(𝑎𝑏) = b ⋅ ln(𝑎) 

 

Formal equivalence 

 

n =
ln(1,0033)

ln(1,165)
 

 

Divide by 𝑙𝑛(1,0033) 

 

Conditional 

equation  

 

n = 46,36 

 

Compute the right-hand side 

 

Operational 

Table 5. Meanings of the equal sign in example 14 in (Axelsen & Dalsgaard, 2019, p. 72) 
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We see that the structure resembles that of the screening test exercises analyzed. What concerns the 

operational meaning, this comes into view when computing during the equation, and in the end, 

when having found the unknown n. Regarding the relational meanings, formal equivalence occurs 

when rewriting using identities of the mathematical object in consideration, which in this case are 

calculation rules of the logarithm. Moreover, the conditional equation appears when solving the 

equation and thus finding the unknown n. Contextual identity appears when using a specific 

formula in a particular context with assumptions, so to construct the equation with the unknown – in 

this case, the formula of an annuity. What regards the meaning of symmetric arithmetic identity, 

this remains hidden. However, it is mentioned vaguely in official programs, so it is not transposed 

to knowledge to be taught at the same level as the other ones. Lastly, the meaning of specification 

comes into view when inserting the precise values given in the exercise, namely the assertations of 

y, r and𝐴𝑛. We finish the analysis of knowledge to be taught by summarizing our findings in the 

table below. 

 

Meanings of 

the equal 

sign 

Ministerial guidelines Screening tests Textbooks 

Operational  Refers to the operation of 

numbers and computation 

skills 

 

  

When calculating the value 

of an unknown x at the end 

of the equation solving; 

computing a value of f(x) 

for a specific x 

Computing function values, 

annuities, length of vectors, 

in general, every solution of 

an equation ends with finding 

an expression of x one is to 

compute  

Symmetric 

arithmetic 

Vaguely described as 

rewriting and reducing 

expressions (by 

paper/pencil) 

None Deducing the formula of 

annuity concerning historical 

mathematics 

Formal 

equivalence 

Similar to symmetric 

arithmetic: Concerning 

rewriting and reducing 

expressions and formulas 

(by paper/pencil) 

In steps of equation solving Rewriting polynomials, 

calculation rules/identities of, 

e.g., vectors, logarithms, 

exponents, can occur in steps 

of equation solving 
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Conditional 

equation 

Refers to solving equations 

algebraically and to 

understand the balance 

principle when finding the 

unknown; by making 

repetitive applications of 

opposite operations 

 

When solving an equation 

with an unknown, either in 

the context of a linear 

function or when explaining 

an equation solving in steps 

With functions, finding x 

when you have a function f(x) 

and a given y-value or vice 

versa, or generally solving 

any equation with an 

unknown 

Contextual 

identity 

Vaguely described as “to 

handle formulas”, 

calculation of percentage 

and interest are specified 

 

Concerning linear functions 

and identities of the slope 

coefficient a and constant 

value b 

Formulas; concerning 

geometry (sum of angles, 

Pythagoras), formulas of 

annuities/interest rate, 

differential calculus; line of a 

tangent 

Specification Shortly mentioned as to be 

able to distinguish between 

a rule (of a function) and 

an equation 

Naming linear functions at 

the beginning of the task, 

when finding the rule for a 

linear function f 

Naming functions, terms in 

statistics and probabilities, 

vectors, geometry, e.g., when 

asserting length of a square, 

defining (probability) sets 

Table 6. Illustration of the analysis of knowledge to be taught in reference to the meanings of the equal sign in Danish upper 
secondary school 

 

 

5. Methodology for RQ2 

5.1 Participants 
There were four classes altogether of 77 participants in the diagnostic test. 37 of the students 

attended a business upper secondary school (HHX), and 40 at the general upper secondary school 

(STX). The schools were located in the capital region of Denmark and were selected based on 

contacts to teachers we had from before. Although we had a third HHX class who had said yes, the 

students here never issued their declaration of consent; thus, we could not use the data in the 

analysis. However, we suggest that two classes of each school provide a representative distribution 

of the two groups. We wanted this segment of students as the test to say something about the 
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transition from compulsory school to upper secondary and whether misconceptions can continue 

even after many years of mathematics teaching. When the students were given the test, they had just 

finished up their introductory period.  We argue that testing them in the introductory period is 

valuable since it creates a greater diversity in the student segment, as they have not chosen their 

specialization in mathematics yet. We will in the next section introduce more thoroughly the 

method of diagnostic tests and the definition of a misconception. 

 

5.2 Diagnostic tests 
Diagnostic teaching sprung out from seeing learning in the view of constructivism which is a way 

of seeing learning as three steps: acting and obtaining some experience, the measure of reflection, 

and lastly, the stage of learning (Brekke, 2002). Before diagnosing, we need the notion of concept 

structure which is relevant in understanding the case of the equal sign. It refers to the fact that no 

mathematical concept stands alone with one single idea. They often consist of complex networks of 

ideas, of which the equal sign is indeed an excellent example. In this regard, in the analysis of RQ1, 

we have presented six different meanings of the equal sign. There is seemingly a strong tradition of 

giving the students repetitive tasks of facts and skills to make greater sense of a concept in 

mathematics education. Thus, the claim is that one can first achieve a great and functional concept 

when different concept structures are all included in the teaching (Brekke, 2002). 

 

It is essential to understand the notion of a misconception and partial concepts in developing 

diagnostic tasks. These are highly important as one sees diagnostic tasks with the development of 

concepts. What concepts does the student have so far, and how do the possible misconceptions 

challenge the process of obtaining a solid concept structure? Brekke defines misconceptions as 

having "incomplete thoughts of a concept" (Brekke, 2002, p. 10). It is crucial to distinguish 

misconceptions from mistakes, as the latter can be coincidental due to not reading the task correctly. 

Misconceptions, on the other hand, are not coincidental. When having a misconception, one 

perceives one specific idea consistently throughout the mathematical work (Brekke, 2002). Brekke 

gives an example of learning multiplication. He declares that if one only gets one type of task 

concerning multiplication, one will develop a small thinking model of what the concept of 

multiplication is. Moreover, misconceptions occur when students cannot distinguish the concept of 

multiplication and the multiplication algorithm (Brekke, 2002) – in our case, we consider the 

concept of the equal sign versus the algorithm "operations equal answer". However, one cannot 

entirely avoid misconceptions as they are part of the children's normal development. From a 
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constructivist point of view, the students make new ideas by interpreting their prior experience 

(Brekke, 2002). 

 

One can give diagnostic tasks at any point in the classroom as they do not relate to a specific 

teaching sequence. Therefore, the tasks may contain exercises that the students have not necessarily 

seen before. One must inform the students that one will use the test differently from other ordinary 

tests. The primary purpose of the test is to discover what thoughts they have about different 

concepts, get to know the complexities related to these concepts, and help the teacher plan the 

instruction. The test is not supposed to evaluate the students from high to low. Instead, one of its 

primary functions is to identify and point out misconceptions even if there has not been any explicit 

teaching on the concept (Brekke, 2002). They should be presented both orally and written. One 

should question the students how they solved the tasks in some of the problems. The more written 

material one can get, the more valuable information one can receive about the students' strategies 

and ideas of the concepts and misconceptions (Brekke, 2002). 

Moreover, one should avoid asking questions where the students can obtain a correct answer even if 

they have wrong ideas to the concept. Diagnostic tests should be regarded as a tool that helps give 

knowledge about the students' way of thinking and how many students share the different kinds of 

ideas in the classroom. Finally, one should highlight that each task in a diagnostic test is associated 

with a specific problem area within the concept investigated (Brekke, 2002).  

 

 

5.3 Constructing the diagnostic test 

Considering the misconceptions from former studies and the meanings of the equal sign introduced 

in RQ1, we constructed the diagnostic test. In addition, the work of Darr (2003) inspired us with 

suggestions in what alternative ways one can show the equal sign. The article suggests, among other 

things, to include true and false number sentences, varying our representations of equations, and to 

create new names for numbers (Darr, 2003). Moreover, we also seized inspiration from the 

detection test presented in Jankvist & Niss (2018). As the main topic in the introductory period is 

linear functions, some examples from this were implemented, along with basic arithmetic, single 

variable, linear equations, and formulas that the students are supposed to know from before, e.g., 

the binomial formula and the area of a rectangle. We constructed the test in four parts; A, B, C, and 

D. Part A was primarily based on the former studies in RQ1 of operational and relational. It 

consisted of fill-in tasks where the students alongside were to describe their strategies in brief. 
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We suggest that one first needs to make sure they can solve some exercises procedurally before 

asking for justification and an explanation. Furthermore, we regard symmetric arithmetic as the one 

most related to arithmetic. Hence, Part A serves as the least theoretical part in which we have 

included the most symmetric arithmetic. Accordingly, part B was made such that the students were 

to determine whether a statement was true or not and justify their given answer. Thus, there were 

more tasks here, and most of them related to the other meanings of the equal sign. 

The B-tasks were thus both based on the former studies, alongside the findings in the textbook and 

screening tests. Furthermore, part C concerned pure problem solving where the student was to give 

a calculation followed by a conclusion, which thus was a mix of both procedure and reasoning. 

Finally, Part D was purely reflection tasks that urged the students to reflect and describe their ways 

of thinking the equal sign. Since part C and D are considered more theoretical and open tasks, there 

are fewer test items than in part A and B. Open text boxes was included in each problem to 

understand the students’ ways of thinking.  Below we have summarized the purpose behind each 

part of the test. 

 

Parts of the test Purpose 

Part A (A1, A2, A3, A4, A5, A6, A7, A8, A9, 

A10, A11) 

Fill-in tasks: Examine if the students can insert 

numbers in equations such that the equal sign 

maintains equilibrium 

Part B (B1, B2, B3, B4, B5, B6, B7, B8, B9, 

B10, B11, B12, B13, B14, B15, B16, 17) 

True/false sentences: Examine if the students 

can validate an equation and give an argument 

for it  

Part C (C1, C2, C3, C4, C5) Problem-solving: Examine how the students 

use the equal sign in solving an exercise  

Part D (D1, D2, D3) Reflection: Examine the students' 

understanding of the equal sign and equality 

Table 7. Overview of the purpose behind the four parts of the test 

 

5.4 Pilot test 

We did a pilot test on ten individuals who had passed upper secondary school and were at the 

university level but whose backgrounds were non-mathematical. The overall results from the pilot 

test showed that there were many exercises of part A and Part B concerning symmetric arithmetic 
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that all had high success rates. Initially, all these tasks had a focus on operations regarding addition. 

Thus, it was revised to change some of the tasks with subtraction instead. Nonetheless, we decided 

not to include multiplication and division as this could create too many different actions in the task. 

Hence, if a student was not to solve some parts of the test, it would be difficult to determine 

whether it was due to a weaker ability to multiply instead of adding and vice versa. In other words, 

it could create too many factors in the test we would make it more perplexing to conclude the one 

thing or the other - was the students' answers wrong because of a common misconception of the 

equal sign, or merely because she was not strong in computing in general? In addition to this, we 

rephrased some of the exercises as they were not clear enough for several of the participants. For 

instance, the first edition of exercise B13 was the following 

(Pilot test) B13: 

 

 

 

 

 

And was rephrased into  

B13: 

 

 

 

 

 

The rephrasing was made to make it more straightforward for the student that each expression is an 

equation to entirely understand the statement given in the task. Some of the exercises in the pilot 

test were quite similar and only differed by minor details. Similar strategies in two different 

exercises suggested that the exercises were identical. Thus, it was concluded to remove some of the 

symmetric arithmetic tasks in part A and replace them with a task of the conditional equation, 

formal equivalence, contextual identity, and specification. Thus, in the revision of the pilot test, we 

also ensured that each meaning of the equal sign was included in the parts of A, B, and C. 

Regarding part D, this was seeing the equal sign from the binary approach of relational vs. 

operational. Hence, there was a coherence in that each meaning of the equal sign was represented in 

each part to see whether the students just used the meanings of them without being able to justify 

3𝑥 +  2  =  13 +  5𝑥  

and 

−2𝑥 –  6 =  5  

Is the same equation 

The equation  

3𝑥 + 2 = 13 + 5𝑥  
And the equation  

−2𝑥 − 6 = 5  
is the same equation 
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(as in Part B and C) and for them to explain by own words in Part D what they think of the equal 

sign. 

 

All four parts are constructed so that they all serve their purpose. Hence, the student must give 

answers in all four to make a most valid sample. If the students were not to make it through the 

whole test, we would not get an answer from part D, where they will explain their thoughts about 

the equal sign. Thus, if we were only receiving responses from the first parts of the test, it would be 

challenging to conclude whether they overall have misconceptions and what categories of the equal 

sign they do or do not identify.  

 

One of the tasks, which was more challenging to construct than others, was the one concerning 

string operations in B4. The pilot test showed that many participants declared this as false, which is 

a satisfying result. However, one could argue that this task is too "arranged”; thus, an additional 

spring operation exercise, B, was made with three adjustments.  

 

B16: 

 

 

 

 

 

Firstly, a context in terms of a task formulation was constructed. Secondly, a calculation in several 

steps was given. As there are several steps in this new calculation, the student is forced to think it 

through slightly more than the original version. Thirdly, there are two mistakes given in the task 

and not merely one. The first is regarding the mix of notation between 𝑓(𝑥) and 𝑓(2), which we 

identify as a false meaning of specification. The second concerns the original topic of string 

operations and thus incorrect symmetric arithmetic. 

 

B15: 

A student has solved the following task: 
A function is given by 𝑓(𝑥) = 4𝑥 − 5. 

Find 𝑓(2). Determine whether the solution is true or false. 
The student’s solution: 

“I find 𝑓(2) by inserting 2 in the equation: 
𝑓(𝑥) = 4 ⋅ 2 = 8 − 5 = 3. " 
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This task was initially part of part C. However, we saw from the pilot test that the majority correctly 

explained where it goes wrong in the equation. Thus, to make the task a slightly bit more 

challenging, we moved it to part B to force the student to justify herself whether it was true or false 

in the first place. We will now describe more in detail how the different meanings of the equal sign 

appear in the final test. 

 

5.5 Final test 
The misconceptions concerning operational meaning have been incorporated in the test as the 

meaning of symmetric arithmetic since we argue that understanding symmetric arithmetic, one will 

need to use the relational approach instead of the operational. Thus, if one answers the exercise 

correctly, one has shown symmetric arithmetic, hence a relational approach. Moreover, what 

concerns string operations, are also regarded as false symmetric arithmetic. Accordingly, we 

suggest that searching for symmetric arithmetic comes into view when using the scholarly 

knowledge of the relational vs. operational approach. We did not find a substantial amount of 

symmetric arithmetic in knowledge to be taught which makes it interesting to see whether the 

students can solve the exercises. What concerns the questionable use of units, this is categorized as 

false formal equivalence. Below, we have summarized how the meanings of the equal sign appear 

in the test.  

 

Meanings of the equal sign Test items 

Symmetric arithmetic A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, 

B8, B16, C1, C5 

Formal equivalence A9, A10, B5, B7, B8, B11, B13, C2, C3, C4, 

C5 

Conditional equation A8, B7, B13, B14, B15, C5 

A student solved the following equation.  

8𝑥 + 2 = 18  

8𝑥 + 2 − 2 = 18  

8𝑥 = 18 − 2  
8𝑥

8
= 16  

𝑥 =
16

8
= 2 

Determine whether the calculation is  

correct or not 
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Notice that there are more test items with symmetric arithmetic and formal equivalence. This is due 

to the misconceptions in string operations and misuse of units that apply to the two, respectively. 

Thus, these meanings are both represented in the misconception form and its true meanings. We 

also note that there are fewer meanings of specification and contextual identity. We reason that our 

findings of the two in RQ1 portray knowledge to be taught, which has not been introduced when the 

students are given the test. Thus, we had fewer examples of exercises that would be meaningful to 

offer at this time. What 

regards the conditional 

equation, we also did not want to make too many tasks with this as it is strongly linked to school 

algebra. 

 

Even though diagnostic tasks are to investigate one concept within specific problem areas, this turns 

out to be challenging what regards the equal sign as the different meanings of the equal sign can all 

appear within the same problem area, as we have shown in RQ1. Moreover, the more open the 

exercises become in part B, and C, the more meanings of the equal sign can appear in the same 

exercise depending on what strategy the student uses. We argue that it is challenging to avoid these 

overlaps in some of the tasks. However, we claim that even though they overlap, we can still get an 

overview of what meanings of the equal sign are more challenging than others by looking at the 

whole test gathered. 

 

5.5.1 Symmetric arithmetic 

We will now describe the link between each meaning of the equal sign to each part of the test. What 

regards symmetric arithmetic, we ask in Part A to fill in the number(s) that are missing, e.g.,   

 

A6: 

 

 

 

Contextual identity B9, B10, B17, C3, C4 

Specification A11, B6, B12, B16, C4 

Table 8. Summary of the meanings of the equal sign as they appear in the diagnostic test. 

8 – ___ = 6 – ___ 
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We will see whether the student will take the operational approach, which presupposes that the 

student will just add the numbers in the equation and set the missing numbers equal to that. We then 

test in Part B whether the student can validate the equality of symmetric arithmetic to be true. One 

of the symmetric arithmetic tasks in part B looks like this: 

 

B2: 

 

 

 

We need the symmetric arithmetic identity to justify that since 3+2 is equal to 5 and 5 is equal to 8-

4+1, the statement is true - assessing the transitivity of the equal sign. There is also a problem in 

part B which can represent both symmetric arithmetic and formal equivalence, 

B8: 

 

 

 

The symmetric arithmetic appears in the rewriting of the number √4 = 2 and then deducing that  

4

√4
= 2 = √4, hence the statement is true. The formal equivalence occurs if one rewrites the 

expression by using the identity of the square given as √𝑛  ⋅ √𝑛 = 𝑛 for all real numbers n. Thus,  

√4 = √4   ⟺ √4 ⋅ √4 = √4 ⋅ √4  ⟺ √4 =
4

√4
 

 

Continuing in Part C, we ask the student the following:  

 

C1: 

 

 

 

 

The problem-solving of Part C is to see whether the student will satisfy the notion of symmetric 

arithmetic, or the opposite, use string operations in the calculation. The latter will thus show a 

misconception and that the student has not adopted to symmetric arithmetic identity. 

 

5.5.2 Conditional equation 

When testing conditional equation for unknowns in A, we give the following equation 

3 +  2 =  5 =  8 –  4 +  1 

Add 1200 to 30,  subtract 10,  and multiply that by 2.   
What do you get?  Show your calculation. 

√4 =  
4

√4
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A8: 

 

 

Being able to fill in the blank with 2 shows that one has understood the meaning of the equal sign in 

a conditional equation for an unknown. Continuing in Part B, one of the conditional equation-items 

looks like this:  

 

 

 

 

 

B15: 

 

 

 

 

 

 

 

 

Thus, in this task of the conditional equation, the student is given someone’s solution to finding an 

unknown. Hence, instead of asking the student to solve it, she is now asked to consider a solution’s 

validity and argues why. In Part C, we then give a task where the student is given an equation with 

an unknown she is to find: 

C2:  

  
 

 

This exercise both uses formal equivalence and conditional equation of an unknown. The former is 

since the expression is a rewriting, whereas the latter determines for what values of x the expression 

is true.  One will answer partially correct if one gives a finite number of values of x. We emphasize 

that we were not interested in making too many tasks related to the pure conditional equation, as it 

is strongly linked to school algebra. Thus, we acknowledge that it is challenging to seek this 

2𝑥 +  4 =  2 

𝑥 =  ___ 

A student solved the following equation.  

8𝑥 + 2 = 18 

8𝑥 + 2 − 2 = 18 

8𝑥 = 18 − 2 
8𝑥

8
= 16 

𝑥 =
16

8
= 2 

Determine whether the calculation is correct 

or not. 

For what values of 𝑥 is 7𝑥 = 8𝑥 − 𝑥? 
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meaning of the equal sign, as failing in these exercises might show difficulties regarding school 

algebra than that of the equal sign. 

 

5.5.3 Contextual identity 

What regards contextual identity, we had not found sufficient material knowledge to be taught, and 

we thus failed in constructing a meaningful task in part A. In part B, we give  

B9: 

 

 

 

We made B9 to see if the students accept a valid contextual identity with the necessary assumptions 

of l and b denoting the length and width of a rectangle, i.e. a right-angled square. We note that this 

formula is not from the analyzed knowledge to be taught but is expected to be known from 

compulsory school. Thus, the subsequent exercise is Pythagoras’ theorem which we detected in the 

book, although now without giving the necessary assumptions of the theorem: 

 

B10:  

 

 

 

The equation of a contextual identity is true and false when we do not give assumptions, in this case 

not assuming a right-angled triangle. Thus, this exercise can reveal several aspects. If the student 

states true or false, this will be partially correct as she acknowledges there are solutions. However, 

this is not the whole story, and it only demonstrates the meaning of symmetric arithmetic in 

showing this. Moreover, if the students declare this equation to be Pythagoras’ theorem, it will 

show us that they do not strictly consider assumptions of equations. Accordingly, partially correct 

and incorrect will reveal a challenge in understanding the meaning of contextual identity. 

 

B17:  

 

 

 

  𝑐2 = 𝑎2 + 𝑏2 

Where a, b and c are natural numbers 

(1, 2, 3, 4, …) 

 5𝑥 = 𝑦  
𝑥 and 𝑦 are natural numbers (1,  2,  3,  4) 

The area of a rectangle = 𝑙 ⋅ 𝑏 

Where l denotes the length and b the width of the rectangle 
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B17 is not a known formula from knowledge to be taught like Pythagoras and was thus included as 

an alternative contextual identity. Will the student accept this just as much as the former two? 

Regarding part C and the contextual identity, we constructed C3 and C5. 

C3:   

 

 

 

 

C3 includes several meanings interdependently. First, it represents formal equivalence because we 

can see that we can rewrite the same product of (𝑥 + 2)(𝑥 − 2) on both sides of the sign. Second, it 

represents the meaning of the conditional equation of the same arguments as in C2.  Third, it 

characterizes contextual identity, as we need the assumption of 𝑥  ≠ 2  to say that it is always true. 

 

5.5.4 Formal equivalence 

We give the meaning of formal equivalence in two exercises of part A, 

A9: 

 

 

This represents a rewriting of an expression, which uses the law of distributivity of multiplication. 

A10: 

 

 

This task item represents a false meaning of formal equivalence in which we want the student to 

add three terms together and see if they will give the correct units in the answer. In part B, as one of 

our findings in RQ1, we have constructed a task of calculating percentage to see if the student will 

accept the textbook as such. 

 

B5: 

 

 

If we for instance have the equation 

 
(𝑥 − 2) ⋅ (𝑥 + 2)

𝑥 − 2
= 𝑥 + 2 

Is this always true? 

 0,20 ⋅ 100 = 20% 

 9𝑥 + 6 =  _____  ⋅ (3𝑥 + 2) 

 10cm +  2cm +  3kr = ___ 
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This is like A10, a false formal equivalence in which we have non-equivalent terms of units that is, 

a number a is set equal to the number a in %. Moreover, we have included one of the identities of 

the binomial formulas, 

B10: 

 

 

 

We have rewritten the theorem so that the terms in the equation are reordered a bit to see if this will 

affect the way the student will interpret the equation. In addition to these exercises of formal 

equivalence in B, we also made an equation mixing non-mathematical language in the equation and 

misuse of units, as we found in RQ1: 

B7: 

 

 

 

There are two mistakes included in this exercise. Firstly, we have not defined a travel card in the 

exercise. Thus, we cannot deduce that 1 travel card must be equal to 80, as this is not a given 

definition. Secondly, 120kr+80 makes 120kr+80 and not 200kr, as they do not have the same unit; 

thus, it is considered a false formal equivalence. In part C, formal equivalence appears in all but C1. 

C2 and C3 involve more school algebra (see the section on symmetric arithmetic and contextual 

identity), whereas C4 and C5 can be solved arithmetically.  

 

C5: 

C4 and C5 will be graded partially correct if the student does not apply the correct units in the 

calculation and conclusion in maintaining equivalent terms and thus the formal equivalence.  

 

5.5.5 Specification 

In part A, we gave the meaning of specification the task of A11, which we got inspired from the 

textbook using double definitions. 

 2𝑎𝑏 + 𝑎2 + 𝑏2 = (𝑎 + 𝑏)2  

a and b are natural numbers (1, 2, 3, 4, ….) 

120kr + 1 travel card 
= 120kr + 80 

= 200kr 

2 theater tickets, and 1 popcorn of 30kr, cost 120kr in total. How much does one theater ticket cost? 
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A11: 

 

  

 

 

 

The specification states that a is defined as y, which is defined as 5x − 3, which we can also 

recognize as the transitivity of the equal sign. Thus, the student will need this relation to find a+10. 

Therefore, if the student answers 32, she shows how to use specifications procedurally. Continuing 

in part B, we assert x as 4 cm, 

 

B6: 

 

We made this to see whether the student will answer differently in this, compared to meanings of 

specification that we encountered in the textbook, such as defining a linear function 

 

B12:  

 

 

If the student answers B6 as false, and B12 as true, we will have found that they have not fully 

adapted to the specification meaning as they do not recognize that 4 cm  =  𝑥 is just as valid as the 

notation  𝑓(𝑥) =  3𝑥  +  2, as they both satisfy the equivalence relation. We follow up on this in 

Part C, 

 

C4: 

Here we assert two values in a geometrical context to see if the students distinguish between being 

given a meaningful context compared to a random assertation. 

 

What regards part D, we wanted to check the research from before regarding many younger 

students having an operational approach. Is this still the case in upper secondary school? And is the 

student able to both explain by words and give mathematical examples of when to use the equal 

You are informed that 

𝑎 =  𝑦 =  5𝑥 –  3 

and that 

𝑦 =  22. 

a + 10 = ___ 

4 cm =  𝑥 

𝑓(𝑥)  =  3𝑥 +  2 

𝐼𝑛 𝑎 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑠 𝑙 = 2𝑐𝑚 𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ 𝑏 = 3𝑐𝑚. 𝑊ℎ𝑎𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒? 
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sign without giving misconceptions related to the operational? In D3, we ask for the students’ 

argument of two graphs being equal. This was inspired by Molina (2006) and was to see if the 

students define equality from an arithmetical, algebraic, or geometric/graphic point of view.  

 

5.6 Process of analyzing the test results 

A mixed-method approach was adopted when analyzing the test results, i.e., we both made a 

quantitative analysis and qualitative analysis. First, we made a quantitative analysis in the shape of 

a 0/1 analysis where 1 was defined as correct answer and 0 as the complementary. We suggest that 

the test items with a success rate greater than 50% were not relevant to dig deeper into, as this 

indicates that the majority mastered what the task item was looking for. Second, we considered a 

substantial difference between answering incorrect, partially correct, and leaving the exercise 

unanswered. Hence, we made a further distinction of the 0’s in the test items with a success rate 

lower than 50% and subsequently made a discourse analysis. This was to recognize the students’ 

way of thinking better. Accordingly, when grading the tests, the students’ argumentation for each 

exercise was noted down and categorized for each new strategy identified to give examples of 

correct, partially correct, and incorrect arguments. We assembled this in a document and classified 

the test items as either of the three or correct. Moreover, we have analyzed the results of the HHX-

classes and STX-classes separately as we rejected the following zero-hypothesis: 

𝐻0: there is no difference between the number of correct answers of the students of 

HHX and STX 

Which we rejected with a significance level of 5%.  

6. Results of RQ2 

6.1 The A-tasks 

 

Success 

% 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 

HHX 100 97,3 100 100 100 83,8 91,9 67,6 75,7 81,1 62,2 

STX 97,5 100 97,5 90 97,5 87,5 95 75 60 67,5 52,5 

Table 9. Results from the quantitative (0/1) analysis of the A-tasks 

In all the A-tasks, HHX and STX had an average success rate greater than 50% for each test item. 

This must imply that generally, they have the procedures to answer exercises concerning symmetric 
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arithmetic (which most of the tasks here were an example of). In addition, the majority master 

conditional equation (A8), formal equivalence (A9, A10) and specification (A11). However, we can 

see a decreasing percentage towards the right in the table, which might be due to the last tasks 

concerning other meanings than the symmetric arithmetic. They concern school algebra as letters 

and symbols are involved. The test items A1 throughout A7 only concerned numbers – moreover, 

they were small numbers, indicating that the students might have used a guess and try-strategy 

when solving the tasks. However, even with guess and try, one still needs to be able to validate 

whether the answer given is correct. Based on this, we will not look further into these results as they 

are generally satisfactory.  

 

 

 6.2 The B-tasks 

Table 10. Results from the quantitative (0/1) analysis of the B-tasks 

The table shows that HHX and STX also show a success rate greater than 50% of symmetric 

arithmetic in the first tasks until B5. As B1-B4 were symmetric arithmetic tasks parallel to some of 

the symmetric arithmetic tasks in A, this is adequate as the success rate in the A-tasks also 

measured more than 50%.  Additionally, the results count more than 50% in the task of formal 

equivalence of B8, the contextual identity of B9, and the specification task of B12. We emphasize 

that the complementary of these success rates constitute partially correct, incorrect, and 

unanswered. We will now present the discourse analysis of the tasks with less than 50% success to 

better understand the students' way of thinking. 

 

B5: 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 10,8 70,3 0 

STX 17,5 60 7,5 

Success 
 

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 

HHX 100 100 64,9 97,3 18,9 45,9 24,3 56,8 91,9 16,2 29,7 64,9 56,8 27,0 18,9 8,1 18,9 

STX 100 95 62,5 82,5 15 37,5 15 65 80 7,5 22,5 72,5 47,5 30 7,5 10 10 

0,20 ⋅ 100 = 20% 
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Table 11. Results from the discourse analysis of the 0's of B6 

B5 deals with a problem we did not encounter in the A-tasks, namely computing with percentage. 

We can see that most HHX and STX students have answered the task incorrectly. We will now give 

a couple of examples of what kind of arguments the students gave when giving an incorrect answer. 

 

Incorrect answers: 

% means 'out of 100' where these two statements are equal to each other when one 

converts to %  

(Student answer B5) 

 

This statement from a student declares that she partly knows the meaning of the %-sign. However, 

she implies that one will convert to % even though our task does not state this anywhere. There is 

an expectation from the student's side that it must be true, which can also be related to the books 

they read, which also showed examples of questionable percentage calculations. This task can 

connect to a contextual identity of the equal sign. The student makes a context and assumption for 

herself that if we calculate with percentages, it must be correct – although we do not state this 

assumption in the task. However, we will regard it here as missing the formal equivalence.  

 

Because if one multiplies 100 with 0,2 it gives 20. and therefore it is the same as 20% 

(Student answer B5) 

This type of argument was proposed by several. The first deduction is correct; however, the 

students lead to a wrong conclusion, hence what one can call an inconsistent statement. Thus, 

although the student knows 0,2 ⋅ 100 = 20, they still accept that one has added a %-sign as if it 

serves as a symbol. 

 

0,20 is the same as 20%, as 1,00 is 100%. By multiplying by 100 one rewrites 

decimal numbers to percent  

(Student answer B5) 

 

This statement is similar to the former argument in which the student states 0,20 is the same as 

20%. What's more striking about this given argument is that the student makes the point that to 

convert to %, one multiplies by 100. Indeed, one might convert to % on the calculator by first 
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simply multiplying by 100, then adding the %-sign afterward. Nonetheless, the student has learned 

how to transform a number to a percentage, which is to multiply by 100, but not including the %-

sign, although she first stated that 1,00 is 100 percent.  Thus, this is also an inconsistent argument 

like the former. One could argue that the reasoning behind the statement is missing. The student 

knows that one is to compute by 100 to obtain percent but has not understood when the %-sign is 

included or not. Hence, this also shows a lack of the meaning of contextual identity. The student 

makes extra assumptions in the form of a percentage formula. However, this is similar to the 

findings in RQ1. 

 

 

Correct answers: 

 We have not been told that we are converting into percent 

(Student answer B5) 

 

This argument does not relate to the numbers stated directly but simply says that one has not noted 

the context of converting into a percent in the task. Thus the statement is false, which shows that the 

student has learned to pay attention to what assumptions we must put forward before looking at the 

calculation. Therefore, this student shows a meaning of contextual identity in this reasoning. 

 

1,00 = 100% 

0,20 = 20% 

0,20 ⋅ 100 = 2000% 

 (Student answer B5) 

Here, we see an arithmetic argument, which shows that the student has learned that 100% is equals 

1,00 and knows how to use this in the calculation. She shows formal equivalence as the unit is 

correctly used. Because of this, one might explain some of the wrong answers as the students not 

having mastered school algebra since they have not been able to put forward this "simple" 

calculation argument. 

 

Partially correct answers: 

It is a number 20. It is also 20% of 100 

(Student answer B5) 
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A handful of students also stated the statement as both true and false (B. These students declare 

both sides of the story, namely that both 20 and 20% are correct answers, which is interesting 

because they state that a calculation can give two answers, which one could see as a not well-

defined function. Consequently, it is reasonable to comprehend this way of thinking as a perception 

of the %-sign as a meaningless symbol and not a number. 

 

General observations 

Many students perceive percentage as a manipulative symbol rather than the numerical value 

defined as the rational number x %  =
𝑥

100
. Therefore, many of the arguments go according to this 

way of thinking. Various students announce that 0,2 = 20%, but still, conclude that the statement 

must be correct. Hence, they use a valid argument but finalize with a conclusion inconsistent with 

it. Do these results imply a misconception with the equal sign? Not necessarily, as it might involve 

a deception concerning computation with percentage. 

On the other hand, one could argue that since the incorrect argument often is that 0,2  = 20%, the 

students have chosen to ignore the factor of 100, and therefore do not operate strictly with the equal 

sign. Moreover, one could see this as a result-oriented approach, namely that 0,20 ⋅ 100 = 20, 

which could indicate that 20=20% in some given context, and thus be correct. Consequently, the 

students make additional assumptions than the task gives, which shows the challenge of the 

contextual identity meaning. Furthermore, they have not fully adopted the meaning of formal 

equivalence. However, this goes hand in hand with what we identified in one of the textbooks 

analyzed in RQ1. Thus, the students might have learned what the textbook told them. 

 

B6:    

 

Rate % Partially correct Incorrect Unanswered 

HHX 21,6 29,7 2,7 

STX 20 30 12,5 

Table 12. Results from the discourse analysis of the 0's of B6 

We observe that approximately 1 out of 5 declared it both true and false (B), which we categorized 

as partially correct. The percentage rate of those who answered incorrectly is almost 10% higher. 

4 𝑐𝑚 =  𝑥 
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Thus, we will now consider some of the most common incorrect and partially correct answers to 

better understand these students' thinking. 

 

Incorrect answers 

Missing a context 

 

x can vary after situation. In one situation it may well be 4cm, whereas in another [it] 

is a different number  

(Student answer B6) 

 

The student demands a context to assert that x can be equal to 4 cm. Hence, it seems like the 

meaning of the contextual identity exists. Still, the student does not acknowledge the meaning of 

specification, i.e., that one uses the equal sign to name mathematical objects. Thus, she concedes 

that x can be a variable, but not that x can be assigned to one specific value like 4 cm.  

 

𝑥 is not a variable  

Not true because we don't have a unit behind x  

(Student answer B6) 

This statement displays a misconception related more to school algebra than the equal sign. x is just 

a placeholder for any quantity and its corresponding unit. Without a unit, there is no context or 

relation that we can say something about. Faulkner et al. highlight the importance of unit as an 

attribute:" In one situation we might want to know if things are equal in weight, but in another 

situation, if they are equal in length. Two objects, then, can be equal in one numerical attribute but 

not in another" (Faulkner, Walkowiak, Cain, & Lee, 2016, p. 12). In one way, the student has 

understood the consistency of units but not understood that equations will always need an attribute 

to which we can relate the numerical value, in this case, the shape of length. Based on this, one 

could argue that the student understands the meaning of a conditional equation, but not the meaning 

of specification.  

Correct answers 

𝑥 can vary  
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x is a variable it can be just anything it wants  

(Student answer B6) 

This argument is parallel to the incorrect 1). Thus, where some students argue that because x is a 

variable, it cannot be one precise value, other students use the same idea to say that hence, the 

sentence is true. This argument shows a specification meaning as the student declares that one can 

define x as anything one wants. 

 

 No more information  

 

Since there is no more information it is correct [it is] an ascertainment 

(Student answer B6) 

 

This idea is a clear indicator that the student acknowledges the meaning of specification. She 

declares it valid as nothing else is stated – it is just a proclamation, hence true. 

 

Arithmetic  

 

 x is unknown, so hence it actually says 4cm = 4cm 
(Student answer B6) 

 

This argument uses symmetric arithmetic in arguing, as the student uses the information of 𝑥 =

4cm to deduce that 4cm = 4cm, thus true. In that way, the student does not directly acknowledge 

the meaning of specification but indirectly obtains this realization by using other meanings of the 

equal sign. 

 

Partially correct answers 

It [is] just an ascertainment  

(Student answer B6) 

 

This student proclaims that because the expression is just an ascertainment, it cannot be true solely, 

thus partly true. Hence, the meaning of specification is not completely acknowledged. 

 

It depends on what x is  
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(Student answer B6) 

 

This argument can be seen to be inconsistent as the student says it depends on what x is (which is 

4𝑐𝑚, after all). This may indicate that she needs a meaningful context that is not attained 

algebraically but possibly with a different representation such as an illustration or a written text. 

 

General observations 

What's striking about this task is that in specification task A11, the success rate for HHX and STX 

are respectively 62% and 52%. Why do so many define it as incorrect or partially incorrect in B6? 

The argument is often about missing a context; hence they see the equal sign as a meaning of 

contextual identity instead of identifying it as a meaning of specification. Regarding the 

specification task of B12, the success rate here is 64,9% (HHX) and 72,5% (STX). Here the 

students do not question the context as much because they most likely have met the object of 𝑓(𝑥) 

several times during the introductory period. Thus, many stated that the expression was true 

because they saw it as a function, although it is not specified explicitly with words. It is simply a 

naming of an object and thus a specification. 

 

B7: 

 

 

B7 Partially correct Incorrect Unanswered 

HHX 18,9 56,8 0 

STX 12,5 60 12,5 

Table 13. Results from the discourse analysis of the 0's of B7 

The partially correct answers are pretty similar to those incorrect, so we will only consider the 

incorrect ones here.  

 

Incorrect answers 

Adding assumptions 

If travel card costs 80 kr it is true. Then I add. 

(Student answer B7) 

 

120𝑘𝑟 + 1 𝑡𝑟𝑎𝑣𝑒𝑙 𝑐𝑎𝑟𝑑 
= 120𝑘𝑟 + 80 

= 200𝑘𝑟 
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The student makes assumptions and creates a context on her own. Thus, one could say that the 

meaning of contextual identity is not fully adapted since one needs to follow the assumptions given 

to deduce the given result. This assumption is interesting in two ways; firstly, it shows a result-

oriented approach from the students' side as the argument is "since the rest fits, a travel card must 

be 80 kr" and secondly, ignoring the misuse of units as the second equation says +80 and not 

+80kr, thus not using the meaning of formal equivalence. However, we also detected this type of 

misuse of kr in the external didactic transposition. 

 

Result-oriented argument 

120 + 80 = 200 

(Student answer B7) 

 

This way of answering the task also shows a desire to obtain the correct calculation of the numbers 

given, not relating to which context the numbers appear and where they come from, like the 

attribute mentioned above proposed by Faulkner et al. (2016). Since this task has two equal signs 

given, it could be possible to believe that the students who answered arithmetically simply focused 

on the second equation, thus not on the assumptions of the task.  

 

Correct answers: 

Unknown price 

I use only my bike (with basket) so [I] do not really know what a travel card costs, 

therefore it is not necessarily correct that a travel card costs 80 kr 

(Student answer B7) 

 

The student uses the meaning of specification when stating that we don't know what a travel card 

costs and, based on this, declares it as false. She consequently denies a result-oriented approach. 

 

Different units 

It does not say anywhere that travel card is 80 it also doesn't say that it's kr. if that is 

ok then it is correct 

(Student answer B7) 
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This student uses more arguments than the one above, namely that neither is the value of travel card 

known nor can this supposed amount of 80 be added to 120kr. Thus, this student both shows a 

meaning of specification but also the meaning of formal equivalence. 

 

General observations 

One can point at this task as a type of contextual identity task because we see from the students who 

answered incorrect that they accept the not-given context entirely. They do not consider under what 

restrictions these equations can hold, i.e., if it was defined from the beginning that 1 travel card = 

80 (the meaning of specification). Secondly, the meaning of formal equivalence in ensuring 

consistency in the use of units is also not present in the incorrect answers. The latter is quite 

interesting; overall, there was an excellent success rate in operating with units correctly in A10 

(81,1% among HHX and 67,5 in STX), where there was a unit behind each term, whereas in this 

one it is the term 120kr vs. the term 80. Thus, it can also be the case that the student has assumed 

that kr was just missing behind 80 and that they, therefore, added it themselves. 

 

B10: 

 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 62,2 5,4 16,2 

STX 65 2,5 25 

Table 14. Results from the discourse analysis of the 0's of B10 

We observe that the percentage of incorrect is strictly less than 10% for both HHX and STX and 

will therefore focus on the rate of partially correct, which measures 62,2% for HHX and 65% for 

STX. As B10 is both true and false (B), we have graded the student as partially correct when stating 

1) True or 2) False. 

 

Partially correct answers 

True 

It is the Pythagoras theorem. c2 has the same value as a2 and b2 when one computes 

with right-angled triangles  

𝑐2 = 𝑎2 + 𝑏2 

Where a, b and c are natural numbers 

(1, 2, 3, 4, …) 
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(Student answer B7) 

 

This argument shows that the student makes some extra assumptions that are not given in the task, 

namely that the equation goes for right-angled triangles. Thus, the meaning of contextual identity is 

on trial as the student is to consider that the equality only holds in some particular cases. However, 

the student declares the equation as true because she made the extra assumptions to make it work. It 

is likely, the textbook has presented this equality as Pythagoras theorem, which is the only context 

the student has seen. Thus, the student makes herself believe that the task is similar to the former 

experience and therefore that it holds the same assumptions. 

 

If c2 is 4 and a2 + b2 is 2 then it will be the same 

(Student answer B7) 

 

This argument implies that the student finds proof in a statement if one can find an example in 

which it fits. It is unclear whether the student knows of this right-angled triangle in advance or if 

she came up with the example herself. Either way, this way of arguing shows a lack of meaning of 

contextual identity. Although something is true for some numbers, this is not a general formal 

equivalence which one can apply to any number. It fits in a specific context, and hence under some 

given assumptions, which we have not provided in the task. Thus, it demands the meaning of 

contextual identity, which is here not adapted by the student.  

 

False 

The equation only works on specific triangles 

(Student answer B7) 

 

The argument proposed here is indeed true, and here it seems like the student has not been sure of 

what it takes for something to be true or false. Although something is not always true, it can be true 

in some cases. Thus, the student shows a meaning of symmetric arithmetic (pointing at specific 

cases, i.e. numbers) but does not entirely master that of contextual identity. Hence, like the students 

who answered true in this task, it goes for both parties that they have not adapted the meaning of 

contextual identity. Understanding the meaning of contextual identity implies that one 

acknowledges that equalities can be true for some numbers and other numbers not.  
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Not all numbers can give a proper answer to 𝑐2. 

a2 = 2                         b2 = 3 

a2 = 2 ⋅ 2 = 4           b2 = 3 ⋅ 3 = 9 

There is not a whole number that is multiplied by itself that becomes 4 + 9 = 13 

(Student answer B7) 

 

This example is a parallel argument to those who answered true, using an example of where it was 

valid. Therefore, they function as the same argument for both cases as the student uses an example 

to declare it true or false, depending on what the example showed. This implies again, that the 

student does not master the meaning of contextual identity. 

 

Correct answers 

It will be true for specific numbers, but not other 

(Student answer B7) 

 

This argument shows a meaning of contextual identity as the student states that for specific numbers 

- what we can categorize as something within a given context - the equality is true. Similarly, the 

equation is not true for other particular numbers, i.e., other contexts.  

However, some students answered correctly in this task that gave an argument that was not as solid:   

 

They are not always natural numbers, it can also be decimal numbers 

(Student answer B7) 

 

Here the student is correct that it is not always natural numbers – it is not even all natural numbers. 

Thus, the argumentation here is a little bit looser. Nonetheless, the student still seems to have 

adopted a partly meaning of contextual identity by considering other cases. 

 

General observations 

The true arguments are either 1) referring to Pythagoras theorem 2) showing the existence of the 

equality, whereas false arguments are 1) showing non-existence with the equality 2) saying that it 

only works on specific triangles. Hence, one can argue that for both sides, true and false, some of 
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the students might have misunderstood the fact when something is true or false. Their way of 

proving is in the form of examples and cannot be generalized. Therefore, the presented results 

imply that the students do not entirely master the meaning of contextual identity. Although they 

have strategies in the A-tasks, using a contextual identity of a function in A11, they do not consider 

when an equation is true or not. This is similar to B5, which also had a success rate of less than 50% 

(with a low rate of unanswered). Many students did not consider the context in which the task was 

given. 

B11: 

 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 2,7 43,2 24,3 

STX 2,5 47,5 27,5 

Table 15. Results from the discourse analysis of the 0's of B11 

We defined the partially correct as when the student declared true and false (B). It is strictly less 

than 10% for both STX and HHX; hence we will not look further into it. The unanswered rate is 

approximately ¼ among HHX and STX and can indicate that the students have misunderstood the 

exercise. However, it is remarkable that 43,2% of HHX and 47,5% of STX had answered it 

incorrectly, which is when they defined the statement as false. 

 

Incorrect answers: 2ab should not be there:  

This type of argument constituted the great majority of the incorrect answers; thus, this is the one 

that we will comment on. 

 

Not the same. [I] would never be able to create 2ab on the right-hand side hence it 

would not be the same value. It says after all a2 + b2 on both sides only expressed 

differently 

(Student answer B11) 

 

(𝑎 + 𝑏)2 gives 𝑎2 + 𝑏2 which is not 2ab + 𝑎2 + 𝑏2 

(Student answer B11) 

 

2𝑎𝑏 + 𝑎2 + 𝑏2 = (𝑎 + 𝑏)2  

a and b are natural numbers (1, 2, 3, 4, ….) 
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There is not equilibrium, 2𝑎𝑏 is missing on the right side and a2 + b2 is not the same 

as (a + b)2 

(Student answer B11) 

 

What is interesting about this argumentation is that it expresses a relational meaning. There is a 

misunderstanding of the notation of 𝑎2 + 𝑏2 vs. (𝑎 + 𝑏)2 as the students claim they are the same. 

Thus, they argue that 2𝑎𝑏 should not be on the left-hand side as it is missing on the right-hand side, 

hence not maintaining equilibrium. This argument was not foreseen in the apriori analysis and is 

therefore surprising to find. The intention of the task, which was to detect whether the students 

understand the meaning of formal equivalence, turned out to catch whether they have a relational 

approach at all – which these answers indicate that these students have. Hence, we also have 

detected challenges related to their competencies in school algebra. 

 

Correct answers 

Algebraic 

It is true as we multiply the parenthesis 

(𝑎 + 𝑏)2   = (𝑎 + 𝑏) ⋅ (𝑎 + 𝑏) = 𝑎2 + 𝑎𝑏 + 𝑏2 + 𝑎𝑏 = 2𝑎𝑏 + 𝑎2 + 𝑏2  

(Student answer B11) 

 

This way of proving the statement true shows the student's understanding of formal equivalence. 

Moreover, she also masters school algebra very well. 

 

Existence 

If a = 1 and b  = 2 

2 ⋅ (1 ⋅ 2) + 1 + 4 = 9 

(1 + 2)2 = 9 

(Student answer B11) 

 

This argument is less abstract and is no actual proof of why the sentence is generally correct. It is 

the same way of confirming and declining the expression in B10. Thus, there is an absence of 

meaning of formal equivalence, which was what we wanted to detect with this test item. 
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General observations 

Firstly, it is remarkable that few students have tried to show existence by inserting some arbitrary 

numbers. Perhaps this way of solving a task is not familiar to them. Secondly, many of the 

arguments that have made the students answer incorrectly indicate that the student did not 

understand the notation of (𝑎 + 𝑏)2 in parenthesis vs. 𝑎2 + 𝑏2 without parenthesis. Many argue that 

the equation thus is not balanced – a relational argument that unfortunately leads to the wrong 

conclusion. Therefore, we cannot determine that this high rate of incorrect answers is due to a 

misconception of the equal sign. Instead, it can be just as much about not having understood the 

school algebra, which unintentionally is luring in this task.  

 

B13: 

 

 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 5,4 24,3 13,5 

STX 7,5 20 25 

Table 16. Results from the discourse analysis of the 0's of B13 

B13 is the only test item in which STX and HHX differ in having a > 50% success rate or not.  

HHX scored just above 50% by 56,8% and STX just below 47,5%. Thus, we will also look deeper 

into this test item. Since the rate of partially correct is shallow for both schools and the arguments 

are similar to those that answered correct and incorrect, we refer the interested reader to look in the 

appendix for these answers.  

 

Incorrect answers: Misunderstanding the question  

The equation 4𝑥 + 6 = 2𝑥 + 14 is twice as great as the equation 2𝑥 + 3 = 𝑥 + 7 

(Student answer B13) 

 

This answer clarifies a misunderstanding of what it means for two equations to be the same. The 

student has detected that the two equations differ by multiplication of 2. From a relational meaning 

of the equal sign - if all the terms of the first equation have been multiplied by 2 - this indicates that 

The equation 

2𝑥 + 3 = 𝑥 + 7  
and the equation 

 4x + 6 = 2x + 14  

is the same equation 
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the equation is balanced, and thus no change has been made regarding the solution of the equation. 

Therefore, this way of answering this task does, to some extent, imply that the student has not fully 

adopted a relational meaning of the sign, which can be related to having challenges with school 

algebra.  

 

The equation has the same construction but does not give the same result as all 

numbers here have the doubled value (however one could also argue that it is the same 

equation but different places in the calculation) 

(Student answer B13) 

 

This argument also acknowledges that the difference between the two equations is the 

multiplication of two as the student says, "the equation has the same construction" and that all the 

numbers have the doubled value. However, the conclusion from the student is that it implies that the 

"result" – what we can translate as the solution of the equation – is not the same. Moreover, she 

acknowledges (in parenthesis), that this could be the same equation but in two different stages of 

the solving. Hence, this answer also shows that the student might have misunderstood the question's 

phrasing or do not master the school algebra part of the task. 

 

𝑥 = 4  

2𝑥 = 8 

It is not the same. I calculated both equations. 

(Student answer B13) 

 

This third argument also relates somewhat to the other two presented. The student has gathered 

terms for both equations and deduced that 𝑥 = 4 and 2𝑥 = 8, which is correct but unfortunately 

leads to a wrong conclusion. Thus, the student seems to know how to use the meaning of 

conditional equation in finding these two solutions but failing to see that 2x = 8 also must imply 

that 𝑥 = 4 and vice versa. Hence, it can be the case that she oversaw this last step or misunderstood 

the question. 

 



 66 

Correct answers 

Multiplication of 2/formal equivalence: 

It gives the same because the change is on the whole of it 

(Student answer B13) 

 

This argument is relational, which relates to the two equations being equal as they only differ by a 

factor, or what the student here refers to as "change". The change of factor 2 is on the whole of it, 

and therefore it gives the same. Hence, one can see this argument as a formal equivalence; the 

expression has been rewritten and is therefore identical to the original one. 

 

Same solution/conditional equation:  

The equation itself is after all not the same, but the result is the same 

(Student answer B13) 

 

This correct argument represents a different strategy in which the student says the solutions of the 

equations are the same and hence must be accurate. Consequently, she shows a meaning of 

conditional equation to deduce this, which indicates that there are different meanings of the equal 

sign that one can use to argue correctly in B13. 

 

General observations 

The incorrect answers show us that many students have noticed the correct observation, either 

acknowledging that; 1) the solutions are the same – conditional equation or 2) the second equation 

is twice as big as the first equation – formal equivalence. Thus, many students have somewhat 

misunderstood the question, as they can see the connection between the two but do not conclude 

that indicates they are the same equation. Again, this can show a not fully developed concept of 

equations, which is highly related to school algebra. Moreover, it can be just as much about 

understanding mathematical phrasing, then that of equations and understanding the equal sign. 

 

B14: 

 

 

 

The equation 

3𝑥 + 2 = 13 + 5𝑥  
And the equation 

−2𝑥 − 6 = 5  
is the same equation 
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Rate % Partially correct Incorrect Unanswered 

HHX 0 51,3 21,6 

STX 2,5 25 42,5 

Table 17. Results from the discourse analysis of the 0's of B14 

B13 and B14 are similar test items, although B14 is slightly more complicated as we have made 

several changes between going from the first equation to the second (and conversely). Accordingly, 

we see that the incorrect rate in this one for HHX went from 24,3% to 51,3% - more than doubled – 

whereas for STX, it went from 20 to 25%. Furthermore, unanswered rates for both schools are 

higher than B13 (from 13,5% to 21,6% for HHX and from 25% to 42,5% for STX). What is more 

attention-grabbing is the difference in rates of incorrect and unanswered between HHX and STX; 

they are almost opposite each other. While 51,3% has answered incorrect and 21,6% unanswered in 

HHX, the same categories measure 25% to 42,5%, respectively, for STX.  Nonetheless, the partially 

correct rate was meager for both parties in B13, and the same goes for B14. Since the test item has 

several similarities to the previous one, we will see some of the same arguments, which we thus will 

not comment on as thoroughly as the previous one.  

 

Incorrect answers 

Misunderstanding the question 

Nope. there are 2 x'es in the upper [first] equation and much higher values 

(Student answer B14) 

 

This arithmetical argument does not use school algebra as the student argues that there are 2x'es in 

the upper. Additionally, she declares that there are much higher values in the first and thus 

concludes that the equations are not the same. We also saw this among the incorrect answers in 

B13; hence they are of the same character. 

 

 

Inconsistent argument 

It does not seem right since one cannot do the same things on both sides 

(Student answer B14) 
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This argument is somewhat more challenging to interpret fully. We cannot be sure of what "things" 

cannot be done the same on both sides. However, we can partly deduce from this statement that the 

student does not fully master the justification of why one can go from one equation to another. We 

find the justification in the relational meaning of the equal sign, namely that one must do the same 

operations to maintain equality. Thus, this answer might imply that the student does not master 

school algebra. 

 

−11 = 2𝑥 

  − 2𝑥 = 11 

I calculated it. It did not give the same 

(Student answer B14) 

 

This is similar to one of the incorrect answers in B13, where the student also proposed a correct 

solution with an erroneous conclusion. The student does, to some extent, show the meaning of the 

conditional equation but concludes that the equations cannot be the same before having isolated x in 

the two.  

 

Correct answers: Same solution 

𝑥  = −2/11 and 𝑥  = −2/11 

(Student answer B14) 

 

 The equation has the same result, as we only are further ahead in the calculation 

(Student answer B14) 

 

Both answers represent the same type, so we will comment on them together. 

In B13, it was possible to state two correct arguments: either formal equivalence (multiplication by 

2) and conditional equation (the solutions are the same). Hence, this test item was made additionally 

to B13 to extricate the ones that succeeded to see that there was a factor of 2 i.e. the meaning of 

formal equivalence, vs. finding the solutions by equation solving, i.e.. the meaning of conditional 

equation. The latter is the only possibility of the two (in addition to guessing and trying) in solving 

B14. Therefore, these correct answers show that the student must master school algebra to some 

extent to give the correct answer (T). 
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General observations 

Fewer students assert that the equations have the same solutions in B14 compared to B13 (per 

success rate in the two). Thus this can explain why there is a higher rate of incorrect answers among 

STX and HHX. B14 is not as straightforward as B13, in which the difference between the two 

equations was the multiplication of 2. Like B13, this test item might have caused misunderstandings 

among the students. Therefore, it is problematic to conclude whether a relational approach exists or 

not among these students. However, there is evidence that the incorrect arguments the students have 

proposed show challenges related to school algebra. 

 

B15: 

 

 

 

 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 2,7 59,4 18,9 

STX 2,5 42,5 47,5 

Table 18. Results from the discourse analysis of the 0's of B15 

We observe that the partially correct rate is meager and will not look deeper into those answers. 

Regarding STX, there is an equal distribution between the amount incorrect and unanswered, in 

contrast to HHX, where the incorrect rate measures 59,4% and the unanswered 18,9%.  

 

Incorrect answers 

Result-oriented 

The calculation is correct 

8 ⋅ 2 = 16 

(Student answer B14) 

 

A student solved the following equation.  

8𝑥 + 2 = 18  

8𝑥 + 2 − 2 = 18  

8𝑥 = 18 − 2  
8𝑥

8
= 16  

𝑥 =
16

8
= 2 

Determine whether the calculation is 

correct or not 
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This argument appeared among several participants and shows that the student prefers looking for 

the correct result instead of the mathematical procedure. Hence, one can categorize it as a result-

oriented approach, which can imply an operational meaning of the equal sign. 

 

Inconsistent argument 

The calculation does everything on both sides 

(Student answer B14) 

 

This argument is partly inconsistent since the student declares that the calculation does everything 

on both sides - which is only partially true as it is not done consistently for each equation. Thus, one 

could argue that the argument tends toward a more result-oriented approach and hence an 

operational meaning. Nevertheless, it also has a relational meaning when stating "both sides", 

which might imply that the student sees the equal sign partly from both perspectives. 

 

Suggesting alternative (correct) solution 

8𝑥 + 2 = 18 

8𝑥 = 16 

8𝑥

8
=

16

8
 

𝑥 = 2 

It is correct would have just written it down a little differently 

(Student answer B14) 

 

 

This is the third type of typical argument proposed in which the student writes down her proper 

solution, which indeed is true, as it satisfies the relational meaning of the equal sign. However, the 

student concludes that the statement must be true, implying that she solved the equation to see if 

one would obtain the same result. Thus, this shows a relational meaning but is also partly 

operational as the conclusion from the student's side is that the original statement must be true. 

 

Correct answers 

x ends up with the correct value but = is not satisfied in lines 2, 3 and 4 



 71 

(Student answer B14) 

 

This argument is more a statement from the student, even if it is true. The student does not justify 

why this is not satisfied. Hence, we are not aware of the meaning of the equal sign, but we have 

reason to believe it is relational since the student rejects the operational meaning. 

 

Because he inserts −2 for no reason I would say that it is incorrect! 

(Student answer B14) 

 

This argument also affirms that something happened in line 2 "for no reason"; thus, it cannot be 

correct. Similar to the other correct views presented, the student yields reasoning or justification in 

solving the equation. Therefore, it displays a more relational approach, in this case as a conditional 

equation – contrary to an operational one in which the correct result is the only important thing.  

 

General observations 

In several cases where people state B15 as true, the students argue that the value of 𝑥 = 2 does 

apply to the equation, and therefore, the equation is true. Thus, there seems to be a tendency for a 

result-oriented understanding of the task and hence an operational meaning. A calculation is 

declared as true if the answer is correct, which is parallel to making string operations; if the 

computations are not completely strict, we look beyond this and merely consider the result. If the 

result is correct, the rest will do either way. However, based on the high percentage of unanswered 

among STX, especially (47,5%), one could also argue that this type of exercise is not typical in the 

students' books. Thus, they did not know how to relate or understand this test item properly. 

Therefore, based on this test item, we cannot fully conclude that they only have an operational 

meaning of the equal sign. Nonetheless, the incorrect answers can be due to a result-oriented 

approach. 
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B16: 

 

 

 

 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 10,8 56,8 24,3 

STX 2,5 40 47,5 

Table 19. Results from the discourse analysis of the 0's of B16 

 

Before noting the results in the table, we remind the reader that this test item is also similar to B13, 

B14, and B15. It is false like B15 was – in this case, due to string operations. Concerning partially 

correct, this is when the student has answered both true and false (B). However, the success rate 

was highest among STX; 10% succeeded vs. 8% among HHX. However, the rate is shallow, and 

therefore it is considered to reflect whether the design of the task itself might be the challenge. 

Indeed, one could argue that the formulation "Determine whether the solution is true or false" is 

misleading as one can interpret this as only confirming or declining the given answer. The answer 

"𝑓(2) = 3" is correct, and it is equitable to think that the students might have misunderstood the 

question, hence explaining the high incorrect rate of 56,8% and 40% for HHX and STX, 

respectively. We consider some examples of the students' answers: 

 

Incorrect answers 

Result-oriented 

As 𝑓(2) is equal to the result. We hold on to the previous equal sign 

(Student answer B16) 

 

This is parallel to the answer of B15, in which the student shows a result-oriented approach and 

does not relate to the given procedure in the task. Furthermore, it is challenging to comprehend 

what the student implies as we cannot determine what the "previous equal sign" and the implication 

of "hold on to is". 

A student has solved the following task: 
A function is given by 𝑓(𝑥) = 4𝑥 − 5. 

Find 𝑓(2). Determine whether the solution is true or false. 
The student’s solution: 

“I find 𝑓(2) by inserting 2 in the equation: 
𝑓(𝑥) = 4 ⋅ 2 = 8 − 5 = 3. " 
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Suggesting alternative (correct) solution 

𝑓(2) = 4 ⋅ 2 − 5 

𝑓(2) = 8 − 5 

𝑓(2) = 3  

(Student answer B14) 

 

This incorrect answer can also be related to the one in B15. The student shows her proper solution, 

which is correct but concludes that the statement is true. Hence, she shows both the equal sign's 

operational and relational meaning. 

 

Correct answers 

Direct argument:  

𝑓(2) gets the correct value but = is not satisfied 

(Student answer B16) 

 

The student declares both the operational and relational meaning but concludes based on the latter 

that the statement is false.   

 

Referring to string operations: 

𝑓(2) is 3[,] in the equation the students missed a – 5 after 4  ⋅ 2 

(Student answer B16) 

 

This student makes aware of the string operation but does not comment on the mix of notation 

between 𝑓(𝑥) and 𝑓(2). Thus, she shows a meaning of symmetric arithmetic, but not ultimately the 

meaning of specification, and why 𝑓(𝑥) ≠ 𝑓(2). 

 

General observations 

In a future test, one should consider rephrasing as one can interpret the statement as only 

considering whether the answer is correct. However, one could argue that this test item is closely 

related to B16, B15, and B14. They all show a student's solution and whether the calculation is 

correct. What concerns the high rates of incorrect answers, this might indicate that the students have 
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a greater focus on whether the result one has inferred is the correct answer rather than the process of 

arriving at the correct result. In this way, one could argue that it shows a result-oriented approach, 

consequently producing an operational view of the equal sign. There is another interesting aspect 

about the way the students answered here. Several students show their solution to it, which is 

mathematically correct and therefore different from the one proposed in the question. However, 

they still respond to the test item as true (T), supporting a result-oriented approach.  Lastly, what 

considers the distribution of partially correct, incorrect, and unanswered of B15 and B16 seems to 

go very much hand in hand, both what regards the distribution of each category and within the two 

groups (STX and HHX). Hence, this can explain the resemblances of both the correct and incorrect 

arguments proposed in the two test items. 

 

 

B17: 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 43,2 2,7 35,1 

STX 42,5 0 47,5 

Table 20. Results from the discourse analysis of the 0's of B17 

The relatively high unanswered rates among HHX and STX here can be due to the restricted time 

frame and some students who did not make it through the whole test. The rate of incorrect is 

superbly low – 43,2% of HHX and 42,5% of STX have answered partially correct; that is, either 

stated it true (T) or false (F), as the correct answer is both true and false (B).  

 

Partially correct 

True 

5𝑥  =  𝑦 

𝑥  =  5 

5 ⋅ 5  =  25 

𝑦  =  25 

(Student answer B17) 

 

5𝑥 = 𝑦  
𝑥 𝑎𝑛𝑑 𝑦 𝑎𝑟𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 (1, 2, 3, 4) 
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This existence argument made the student declare the statement as true, which is a parallel 

argument to what one saw in B10. Based on this "proof by example", the student asserts that the 

statement is true in general, thus showing a meaning of symmetric arithmetic but not of contextual 

identity. 

 

 y is going to be 5 times as big as x 

5 ⋅ 5 = 25 

(Student answer B17) 

 

The student announces that y has an accurate restriction but still concludes the expression to be true. 

Thus, this can imply a misunderstanding of the question or a misconception of when something is 

correct in general or only sometimes correct – the same challenge for the previous example, i.e., 

understanding contextual identity. 

 

  y and x are unknown, so it [the expression] is correct 

(Student answer B17) 

 

This student uses the meaning of a conditional equation to state that it is true so that the argument 

goes, "assume x and y are unknown and that 5x = y, then the expression is solvable", which is true. 

Nonetheless, the student does not master the meaning of contextual identity as she does not 

consider the restrictions of what domain of numbers in which the equation is true.  

 

False 

y depends on what x is 

(Student answer B17) 

 

This student has understood the expression partially correct from the opposite point of view. She 

has started the assumption the other way around by saying that we can find y that satisfies 5x, but 

this will depend on what y we choose. Therefore, there are cases where it is not valid (take, for 

example, y = 13). Thus, this student declines the statement by considering a counterexample, 

although not explicitly expressing what this could be. However, we can tell from this argument that 
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the student has adapted to the meaning of contextual identity, although not having conceded that it 

implies the expression is both true and false.  

 

5 times a number does not give the number one multiplies by 

(Student answer B17) 

 

This argument is puzzling as the student has not distinguished between x and y. Certainly, the 

argument is valid, implying in a mathematical language that  ∄𝑥:  5 ⋅ 𝑥 = 𝑥 [unless x = 0]. In this 

way, one could interpret the statement as the student stressing the property of reflexivity. 

Nonetheless, we cannot be definite in that the student has read x and y as the same symbol. 

Alternatively, she has merely misjudged the question. 

 

 

Correct answers 

5-table 

 It can partly add up but only when y adds up in the 5-table 

(Student answer B17) 

 

This argument demonstrates that the student has adapted to a meaning of contextual identity when 

asserting that the expression is sometimes true – that is, for multiples of 5. Thus, one could argue 

that it is difficult for a student to state that it is true without the meaning of contextual identity. This 

is also parallel to the correct arguments in B10.  

 

Example 

 It depends on what one inserts. But if one inserts 2 and 10 it fits 

(Student answer B17) 

 

This argument is less general, but the student still expresses the meaning of contextual identity by 

affirming that it is valid for 2, but that it depends on what numbers, i.e., context one considers. 

 



 77 

General observations 

B17 is parallel to B10 as it promotes the meaning of contextual identity. Thus, we recognize some 

of the similar correct arguments given in B10. However, the rate of partially correct measures above 

60% for B10 is a bit higher, most likely because many could recognize it as Pythagoras theorem. 

On the other hand, this expression is not a general theorem from the textbooks as such - and can 

explain the relatively lower success rate in addition to the factor of restricted time frame.  

 

 

 

 

 

 

 

 

 

6.3 The C-tasks 

 

Success % C1 C2 C3 C4 C5 

HHX 40,6 29,8 8,1 10,8 29,8 

STX 50 17,5 0 7,5 17,5 

Table 21. Results from the quantitative 0/1 analysis of the C-tasks 

Overall, the success rate in all the C-tasks rates 50% or lower for each problem for both HHX and 

STX. Time frame is undoubtedly one of the main factors causing that. Secondly, these test items are 

more open. They request a calculation and answer from the student, contrary to parts A and B, 

where either the students were to fill out the missing number(s) or validate whether a given 

statement was true. The C-tasks are text tasks and therefore demand a more significant part of 

reasoning and explanation while at the same time coming up with an answer.  

 

 

 

C1 

 

Rate % Partially correct Incorrect Unanswered 

HHX 35,1 8,1 16,2 

STX 15 12,5 22,5 

Add 1200 to 30, subtract 10, and multiply that by 2.  
What do you get?  Show your calculation. 
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Table 22. Results from the discourse analysis of the 0's of C1 

We defined partially correct as when the answer was correct, but the calculation had one or several 

string operations. Thus, we made this test item to see if string operations exist among the students. 

We observe a higher rate of string operations among HHX vs. STX, specifically 35,1% vs. 15% 

among the STX students. However, among the two groups, roughly 1 out of 4 students did not 

respond. 

 

 

Incorrect: string operations 

1200 + 30 = 1230 − 10 = 1220 ⋅ 2 = 2440 

(Student answer C1) 

 

We note that the answer achieved by the student is correct. However, this answer was categorized 

as representing the misconception of a string operation. The student computes step by step, the 

different calculations and sets a "="-sign for each step. Thus, symmetric arithmetic is not satisfied. 

Hence, it seems like the student uses the equal sign to divide the task into several parts and connect 

each step by using the sign. 

 

Correct 

1200 + 30  =  1230 

1230 –  10 =  1220 

1220 ⋅ 2  =  2440 

(Student answer C1) 

 

This answer is categorized as correct as the student gives satisfactorily separate equations for each 

step. The student makes a new line and computes for each step before concluding that the answer of 

the task is 2440. This demonstrates that the student in this setting preserves equilibrium and thus 

uses the equal sign relationally. 

 

C2 

 

Rate % Partially correct Incorrect Unanswered 

For what values of 𝑥 is 7𝑥 = 8𝑥 − 𝑥? 
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HHX 18,9 2,7 48,6 

STX 12,5 7,5 62,5 

Table 23. Results from the discourse analysis of the 0's of C2 

Partially correct was here defined as showing existence. The biggest group in this test item is the 

one that goes unanswered – both for HHX and STX. One of the most likely reasons for this was the 

restricted time frame. Hence, it is difficult to conclude whether this group of students would be able 

to answer it correct or partially correct. Moreover, there is an exceptionally higher rate of partially 

correct than correct of the HHX students. However, there is not the same difference between 

partially correct and incorrect for the STX students. They either 1) stated it was true in general, 2) 

left the exercise unanswered, or 3) responded incorrectly. Another reason for this exceptionally high 

unanswered rate can also be the phrasing of the question, and that it can be peculiar and thus 

puzzling for the student. This low success rate of C2 can show a somewhat challenging concept of 

school algebra. Therefore, it is not straightforward to detect it as a misconception of the equal sign, 

but rather that a significant share of the students does not fully master school algebra. 

 

 

Incorrect: non-traceable 

7𝑥 = 8𝑥 − 𝑥 

7𝑥 = 7𝑥 

(Student answer C2) 

 

The incorrect arguments are all non-traceable, which is when the student responded without giving 

a conclusion. Thus, one could also argue that they might as well be categorized as unanswered, as 

we are not entirely sure of what to make of it. Their statement is true, but it does not tell us what the 

student thinks of the final answer.  

 

Correct: all values 

All values 8𝑥 − 𝑥 gives 7x so it says 7𝑥 = 7𝑥 

(Student answer C2) 

 

This is a correct argument as the student validates the meaning of formal equivalence and affirms 

that it is valid for all values of x. This way of resonating shows an understanding of school algebra. 
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Partially correct: existence 

𝑥 = 3 as 7 ⋅ 3 = 21 

8  ⋅ 3 − 3 = 21 

(Student answer C2) 

 

This argument does not relate to school algebra as theoretically, as the student does not make use of 

the formal equivalence. Instead, she inserts a value for x and confirms that it is true. Thus, the 

conclusion from the student is that it is valid for this random set value rather than all numbers. 

 

C3: 

 

 

 

 

Rate % Partially correct Incorrect Unanswered 

HHX 16,2 24,3 51,4 

STX 10 25 65 

Table 24. Results from the discourse analysis of the 0's of C3 

0 students answered C3 correctly among the STX students. This percentage was equal to 8,1% 

among the HHX students. Furthermore, we notice from the table that 51,4% and 65% of HHX and 

STX respectively did not answer the task, which again can refer to similar reasons to the results of 

C3. As the test item refers to formal equivalence when one needs to consider the numerical 

restrictions, it is a particular case of formal equivalence. The meaning of contextual identity also 

plays a role. Firstly, the student might not have understood the phrasing correctly. Secondly, if the 

students are not strong in fractions, this can make the task too complicated to solve. Thirdly, the 

task is related to school algebra, implying that it will be challenging to solve without a fundamental 

understanding of that. 

 

Incorrect 

Formal equivalence: 

Yes because one can remove (x − 2) 

If we for instance have the equation 

 
(𝑥 − 2) ⋅ (𝑥 + 2)

𝑥 − 2
= 𝑥 + 2 

Is this always true? 
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(Student answer C2) 

 

This argument follows the meaning of formal equivalence as the student declares that one is 

allowed to remove (𝑥 − 2), i.e., rewrite the expression. However, the student has not considered 

that there are restrictions in terms of the domain of numbers. One can remove a denominator if one 

has assured that it is not equal to 0. Thus, it is not sufficient even if one masters the relational 

meaning in terms of the formal equivalence. One also needs to understand the meaning of 

contextual identity. 

 

Existence 

(𝑥 − 2) ⋅ (𝑥 + 2)                   
𝑥2−4

𝑥−2
= 𝑥 + 2 

 𝑥2 + 2𝑥 − 2𝑥 − 4  

𝑥 2 − 4 

Always true 

(Student answer C3) 

 

As we have seen in previous test items with the meaning of contextual identity, the argument of 

existence also appears among some students. The inconsistency of this argument is that the question 

of the task was whether the equation is always to be regarded as true. The student has responded 

with one specific example to answer the question generally. On the other hand, one could argue that 

the student had taken an 'arbitrary' number and saw that it fit instead of the strategy in finding a 

counterexample. Nonetheless, the given approach shows that this student does not identify the 

meaning of contextual identity. 

 

Correct 

If it is true once it will always be, if you don't change on something 

(Student answer C3) 

 

No, not as long as one divides 

(Student answer C3) 

 

No because there are other numbers that you cannot use 
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(Student answer C3) 

 

These three answers are the only ones that we detected as correct. One could argue that they should 

not be, as they do not justify specifically the case of what happens when 𝑥 = 2. However, these 

arguments do mention that "if you don't change on anything", "divides", and that there are "other 

numbers that you cannot use", they have affirmed that there are cases in which an equality can be 

true, and other times where it is not. They have thus implicitly referred to the meaning of contextual 

identity.  

 

 

C4: 

 

Rate % Partially correct Incorrect Unanswered 

HHX 54,1 5,4 29,7 

STX 55 2,5 35 

Table 25. Results from the discourse analysis of the 0's of C4 

The rate of incorrect is meager both for HHX and STX. Although almost 1/3 goes unanswered for 

both groups, the biggest group is the one that has answered partially correct. One was put into this 

category if one had replied either 6 or  6 cm, whereas we defined correct as 6cm2. The numbers in 

the test item are small and easy to compute in this sense, which can be one of the reasons for the 

high rate of partially correct. Moreover, the formula of a rectangle is a formula that they are 

supposed to know from compulsory school and that we mentioned in part B. However, answering 6 

or 6 cm shows like B7, that the students do not consider the correct use of units in finding the 

answer. Thus, this supports the former findings again in that the students have not fully developed 

the meaning of formal equivalence and that a result-oriented approach is desirable. 

Regarding the meaning of specification in this task, we recall that the former test items of B6 and 

B12 measured 45,9/37,5 (HHX/STX) and 64,9/72,5 (HHX/STX), respectively, in success rates. 

What we see in B6 is that statement 4cm = 𝑥 has a relatively lower success rate than that of B12. 

This can be since B12 is a standard function, which they have worked a tremendous amount of time 

on in the introductory period as it represents a linear function. The former is introduced less 

explicitly, and thus several students declared that they were missing a context. This supports the 

In a rectangle the length is 𝑙 = 2 cm and width 𝑏 = 3 cm. What is the area of the rectangle? 
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findings in C4, as we see the students indeed use the information given, namely that l = 2cm and 

b = 3cm without questioning it. This is perhaps because of the context in which it is introduced; we 

are looking at a rectangle and thus at a precise context.  

 

 

 

C5: 

 

Rate % Partially correct Incorrect Unanswered 

HHX 35,1 8,1 27,0 

STX 32,5 15 35 

Table 26. Results from the discourse analysis of the 0's of C5 

Similar to C4, the success rates and partially correct rates added together make out roughly the 

same rate, both for HHX and STX. The incorrect rates are strictly less than 50% among both 

groups, so this is not considerably high. However, the partially correct and unanswered rate almost 

goes hand in hand as the distribution is almost the same for both STX and HHX. What regards 

partially correct was defined as the answer 45, and the correct answer defined as 45 kr. Hence, 

many have the same way as in C4 given the right number but have not put the correct unit on, thus 

not showing the meaning of formal equivalence. However, we note that many show the meaning of 

the conditional equation when correctly solving the task. This can be due to the tasks consisting of 

small numbers and that it is possible to solve them without school algebra. We show an example of 

each method that we identified. 

 

Correct 

Arithmetical solution: symmetric arithmetic 

120 − 30  = 90 

90𝑘𝑟/2  =  45kr 

(Student answer C5) 

 

2 theater tickets, and 1 popcorn of 30kr, cost 120kr in total. How much does one theater ticket cost? 
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Algebraic solution: conditional equation/formal equivalence 

2𝑥 + 30 = 120 

2𝑥 + 30 − 30 = 120 − 30 

2𝑥 = 90 

2𝑥/2  =  90/2  =  45 

45kr 

(Student answer C5) 

 

Partially correct: String operations 

120 − 30 = 90/2 = 45 kr 

(Student answer C5) 

General observations of the C-tasks 

In practice, the C-tasks were the very last test items for some, as we told the students to go to part D 

when there were 10 minutes left. This was because categorizing what ways the students see the 

equal sign was prioritized. Therefore, time frame could be the reason for the low success rates. 

However, we do see that the unanswered rate of C4 and C5 are lower than for C2 and C3, which 

might be since it does not demand the use of school algebra and arithmetical strategies can also be 

used. 

 

6.4 The D-tasks 

D1 

 

 

When categorizing the answers given in D1, we first made a 0/1 analysis. All answers including a 

relational argument corresponded to 1, whereas either operational or non-traceable answers were 

graded as 0. Subsequently, we categorized how many were operational and non-traceable to see 

how many students one can deduce shares a pure operational view. Although a student gave an 

operational answer, this was not identified as operational when they also had given a relational 

argument. The following table shows the distribution of relational, operational, and non-traceable 

answers. Non-traceable is when 1) we could detect the given answer as neither operational nor 

relational or 2) unanswered. 

 

In what ways can we see “=” as? 
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Rate %  HHX STX 

Relational 73,1 65 

Operational 13,5 25 

Non-traceable 13,5 10 

Table 27. Results of relational vs. operational arguments 

 

For HHX and STX, the rate of relational answers measures more significant than 50%, which is a 

clear indicator that we cannot say that the students have great misconceptions of the equal sign. 

Indeed, they are more towards a relational approach, even if it is not 100% relational. This will be 

elaborated further in the discussion. We will now give some examples of arguments for each 

category. 

 

Operational 

It means what the answer gives 

(Student answer D1) 

 

A solution to a calculation 

(Student answer D1) 

 

I understand it as the last sign before the final result 

(Student answer D1) 

 

These answers reveal that the student affirms the operational meaning, meaning that they perceive 

the equal sign as an operator of a 'do something' signal. However, one cannot solely conclude their 

view is merely operational as this might be just as much about a lack of expression of mathematical 

vocabulary. 

Relational  

Both numbers by an equal sign are the same 

(Student answer D1) 

 

As a result or maybe a mirror in equations as both sides give the same 

(Student answer D1) 
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The equal sign is just like a weight, there must be made equilibrium 

(Student answer D1) 

 

When something is the same so it says exactly the same on both sides 

(Student answer D1) 

We categorized an argument as relational if it included a relational phrasing such as "is the same" or 

"gives the same" or referring to equilibrium. Both for HHX and STX, more than 50% gave a 

relational argument, which indicates that the students at the beginning of upper secondary school 

share a relational view of the equal sign. 

 

Non-traceable 

As a comparison 

(Student answer D1) 

 

That the one side = the other 

(Student answer D1) 

 

For me it gives me an explanation to why something is as it is, but it can also be a help 

when one is to compute equations 

(Student answer D1) 

 

These arguments neither show an operational view nor a relational, and we can thus not conclude 

what idea the students have of the equal sign.  

 

D2 

 

Rate % Correct Partially correct Incorrect Unanswered 

HHX 70,3 13,5 5,4 10,8 

STX 55 22,5 5 17,5 

Give an example of when to use “=” and an example where one cannot use it. Remember 

to elucidate your examples. 
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Table 28. Results of the quantitative analysis of D2 

Partially correct is when the student only gave one valid example, whereas incorrect is defined as 

when both examples offered were wrong. We note that 83,5% HHX and 77,5% of STX have shown 

one or two correct examples, thus, we will not look further into this as the rate is strictly greater 

than 50% for both groups. The specific examples can be found in the appendix for the interested 

reader. The examples given varied in the character of and can be categorized into three main 

categories 1) comparing two numbers (e.g., 0 = 0 and 1  ≠ 0) 2) comparing two equations (e.g., 

2 + 2 = 4 and 2 + 2 ≠ 5) 3), text answers ("for result or equation. cannot stand alone"). Thus, 

based on this test item, one cannot conclude whether the students show an operational or relational 

meaning.  

 

D3 

 

In categorizing these answers, we chose the categories arithmetic, geometric and algebraic as 

proposed by (Molina, Desarrollo del pensamiento relacional y comprensión del signo por alumnos 

de tercero de educación primaria, 2006, p. 103-105). In addition, we also added 'uses more than one 

argument' and 'unanswered' as two additional categories. The table below shows the distribution of 

each argument. 

 

Argument Rate % 

Arithmetic 3/77=4% 

Geometric/graphic 32/77 = 42% 

Algebraic 18/77=23% 

Uses more than one argument 16/77=21% 

No argument/Unanswered 8/77=10% 

Table 29. Results of analysis of equivalence argument given 

Arithmetic 

Yes because they are the same length 

(Student answer D3) 

 

Geometric/graphic 

 

Is h and p equal? Justify why/why not. 
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They have the same slope, but if you extend it they won't intersect the same place so 

they are not entirely equal each other 

(Student answer D3) 

 

They are because they are parallel 

(Student answer D3) 

 

No, as they don't start in the same point 

(Student answer D3 

 

Algebraic 

No because they don't have the same equation 

(Student answer D3) 

 

Yes, the slope coefficient is the same, they just start different places 

(Student answer D3) 

 

D3 was included as one of the test items to overview how the students see equality. Thus, this test 

item did not look for correct and incorrect answers since there is no precise answer to it. This test 

item is more related to what kinds of arguments the students use to say that something is equal or 

not. We observe a meager rate of pure arithmetical ideas, most likely because the students learned 

about linear functions in the introductory period, both HHX and STX. Thus, not so surprisingly, we 

find that more than 42% (STX and HHX altogether) argue with a graphic argument. This can also 

be because the representation form given is graphical. 

 

7. Discussion 

7.1 Reviewing the results of RQ2 in relation to RQ1 

Regarding symmetric arithmetic, it was hidden in knowledge to be taught. However, the success 

rates in parts A and B indicates that most students mastered it. Thus, we believe that this relational 

meaning of the equal sign is supported. However, the high success rate can also be due to small 

numbers, or that symmetric arithmetic is not as strongly linked to school algebra as such. 
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Nonetheless, one still needs to know when guessing the answer to validate whether it is true. Thus, 

if the student had an operational approach, we expected that they just added the numbers in the 

equation and set it equal to the missing number instead of looking for equilibrium. However, they 

have shown a relational meaning different from former studies presented in RQ1. 

 

Furthermore, the meaning of formal equivalence is challenging for the students. In part A, both 

rewriting an expression and adding units of the same kind had a high success rate.  However, in part 

B, only B8 had a success rate greater than 50%. Moreover, formal equivalence fails in the 

calculation of percentage (B5), mixed notation (B7), binomial formula (B11), and what regards Part 

C (C2-C5). Nonetheless, the binomial formula (B11), C2, and C3 can demonstrate challenges to 

school algebra. Concerning the tasks of misuse of units (B5, B7, C4, C5), the students’ answers go 

hand in hand with the mathematical notation detected in RQ1. Thus, we can argue that the students 

have adapted the textbook methods and hence learned the knowledge to be taught. 

 

Considering conditional equation, this was difficult to detect fully, as we did not make too many 

tasks with this category. Thus, the findings here can be partly misrepresentative. We see that many 

students show a result-oriented approach when arguing whether one has solved an equation with an 

unknown correctly or not (B15); they favor the result instead of the method, which is supported in 

the tasks of formal equivalence as well and symmetric arithmetic in B16. In addition, determining 

whether the two equations are the same (B13 and B14) turns out to be difficult, as the phrasing 

itself has seemed to cause some misunderstandings. This can also be due to challenges related to 

school algebra. 

 

Regarding contextual identities, these are not mastered very well, although knowledge to be taught 

makes correct use of assumptions when stating theorems. Moreover, it is challenging to detect 

directly from the tasks affiliated with it, as there were fewer of them. Nonetheless, we have 

tendencies that the student does not make a difference in solving a task with an assumption (B9, 

C4) and without (B10). If they have met an equation before, they will act upon it the same way, 

even if we do not present them with the same assumptions. One could also see this with the tasks of 

formal equivalence with different units – even if the tasks do not give assumptions of calculating 

with percentage or what the price of a travel card is defined as, the students might have seen similar 

arguments in the textbooks. Accordingly, it seems like a focus on restrictions and assumptions may 
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be lacking. This problem of contextual identity is also highlighted in Schou & Bikner-Ahsbahs 

(2021) where they declare that “formula is seldom questioned or defined in an instructional 

practice, nor in written materials” and how the equal sign is closely related to this problematic 

(Schou & Bikner-Ahsbahs, 2021, p. 1). We confirm these challenges in detecting few contextual 

identities in the knowledge to be taught. 

 

The meaning of specification is likewise a perplexing one. However, there were not many tasks 

affiliated with it to conclude something fully. Nonetheless, a tendency we observed is that the 

students accept the meaning if they have encountered the object before, i.e., a (linear) function 

(A11, B12) or asserting lengths of a geometrical figure (C4) which were objects encountered in 

RQ1. On the other hand, if they only are given a ‘random’ statement (B6), they cannot relate and 

hence not be sure of the information. 

 

Part D reveals that most students have ideas of the relational approach, which goes against former 

studies. However, the presented challenges of the different meanings of the equal sign indicate that 

it is not black or white. Thus, we suggest a continuum between the relational and operational 

approaches. The arguments we are given in Part D advocate that the majority are on their way onto 

a more relational point of view but still maintaining an understanding of the operational. 

 

7.2 The external didactic transposition of RQ1 

In a future project, one could consider removing the factor of HHX and STX and simply examine 

one of the two. However, the schools we established contact to happened to be both HHX and STX, 

and as we wanted to hand out the tests to a sample of a reasonable size, we suggest that we had four 

classes (two from each school) instead of two (of the same school). In addition to the screening 

tests, one could have included exam exercises from compulsory school to see what the students are 

supposed to know from before. However, it was not possible to retrieve this data because of 

restricted access. Regarding the textbooks analyzed, one could have included a book of the 

introductory period of HHX as well. Nonetheless, there was no access to these in either the public 

or university libraries at the time.  

 

However, this analysis was not to say something about the frequency of meanings of the equal sign, 

but how we can see them come into view in knowledge to be taught. Thus, we have shown in the 
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analysis of RQ1 how the scholarly meanings of the equal sign are transposed onto knowledge to be 

taught by giving concrete examples of how they can come into view. However, what concerns 

symmetric arithmetic, this was not easy to find.  Nonetheless, as the primary focus in upper 

secondary school is algebra, one could argue that symmetric arithmetic is extended to being that of 

formal equivalence. Our detection of the latter can give an understanding of the former. For future 

work, it could be interesting to consider an analysis in which one detected the frequencies of the 

meanings of the equal sign – do some meanings transpire more occasionally than others? If yes, is 

there causality between what meanings occur most frequently, and is this meaning understood 

better than the others?  

 

We have also shown in the analysis of RQ1 the hybrid scholarly knowledge that exists between the 

scholars of mathematics and scholars of didactics. The history of the equal sign shows that its 

meaning has developed throughout time. Thus, when history itself is complicated, there is maybe no 

wonder why we are still discussing its connotation today. Some of the uses we consider incorrect 

and a misconception today had a different epistemic value in the beginning. Regarding the scholars 

of didactics of mathematics, one can see that the model of Prediger has been valuable in detecting 

the nuances more than what an operational/relational approach would be able to. However, it turned 

out to be challenging when we noticed questionable uses in knowledge to be taught, and we were to 

categorize them within the six meanings. 

 

Regarding these doubtful uses, one could argue that the textbooks presenting them have 

intentionally wanted to simplify mathematics by linking it to a linguistic description. Nonetheless, 

as much as this can be helpful for some as there is less to read, others may reproduce the 

resolutions. Consequently, the students do not understand the “conventions” and thus do not grasp 

computation of, e.g. percentage, which after all, is part of the official programs for HHX and STX.   

 

7.3 Limitations of the diagnostic test in RQ2 

As mentioned in RQ1, in a future project, one could consider only HHX or STX. Furthermore, one 

could have included more schools in different parts of Denmark to make the sample more 

representative of a general STX or HHX context. However, we argue that since the classes were in 

the introductory period, the sample’s variation in terms of the student segment was good. 

Furthermore, we had a sample of 77 students, which we suggest is a fair volume. More tasks in the 
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test could create a bigger picture of the understandings of the equal sign. However, this would 

require demanding more time from the teachers. It was challenging to schedule the date of the tests, 

as it was going to happen before the introductory period stopped – but after the screening test – to 

make it fit with the time we were making out this dissertation. When we gave the students the test, 

they had not met topics such as probability theory, annuities, and differential calculus which could 

give rise to more aspects, as we saw in RQ1. On the other hand, we also wanted to test the students 

at the beginning of upper secondary school, as this is a good mark between the transition between 

arithmetic and school algebra. Thus, we suggest that the findings in the test are still valid in helping 

us see what challenges may exist in understanding the meanings of the equal sign.  

 

Concerning the diagnostic test method, it turns out to be essential considering to what degree we 

can identify the given test as a truly diagnostic one. Regarding diagnostic tasks, one should avoid 

asking questions where the students can answer correctly, even if they have wrong ideas to the 

concept, which we cannot be entirely sure of. However, we have still detected students’ way of 

thinking when doing the discourse analysis of the tasks with less than 50% success rate. 

Nonetheless, we failed to construct tasks associated with only one specific problem area: one 

unique problem linked to one unique meaning of the equal sign. We found this challenging as the 

equal sign is one specific object perceived from various perspectives. Even within one unique 

problem area, the equal sign’s different meanings can appear at the one and the same time.  

 

Thus, on the one hand, we can say that we have observed how the students see the equal sign in 

different cases. On the other hand, we cannot say that we have been able to cover clear 

misconceptions, but only tendencies. However, the findings in the results of RQ2 still provide an 

understanding of how the equal sign can shed light on challenges, particularly regarding those 

linked to school algebra. Accordingly, we have shown the challenge of making a diagnostic test on 

one specific object used in many settings. 

 

7.4 The categorization of incorrect answers in the diagnostic test 

Some tasks in the diagnostic test had a relatively high number of students that left the problem 

unanswered. We point out the last tasks of B; B14, B15, and B16 in addition to C2-C5. Here, more 

than 30% left the problem unanswered. On the one hand, one could argue that this indicates that the 
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statements of the tasks were unfamiliar or not understood by the students. Alternatively, it might 

show challenges to school algebra as the tasks are highly related to it. 

Nevertheless, we observe that the STX group makes out a more significant rate of unanswered in 

each of the mentioned tasks than those from HHX. One possible explanation is that one uses fewer 

arguments and reasoning in mathematics in HHX, as the central aspect is applied mathematics 

concerning economics. Thus, an answer is preferable against no answer at all. For STX, the 

standard focus is theoretical mathematics with more reasoning. Hence the students may not show 

the same need for an answer if they do not have the arguments for it. What regards partially correct, 

we see that this rate is relatively high for the test items in Part B in the category both true and false 

(B10 and B17). This can be since stating either true (T) or false (F) was categorized as partially 

correct. However, the likelihood of answering (T), (F), or (B) is, in theory, equal; thus, the same 

probability goes for each task. Nonetheless, one could argue that given that the answer is both true 

and false, it indirectly creates a higher probability of answering correctly than given the task was 

either T or F because of an assumption that a problem typically has one answer. What regards the 

C-tasks, these also showed higher rates of partially correct. In C1, it was due to string operations, 

whereas C4 and C5 pointed out misuse of units when graded partially correct. The latter follows the 

findings of RQ1, and we can thus say that the students’ answers here satisfy the notation observed 

in the textbooks.  

 

 

7.5 The equal sign as an independent object 

We would like to finalize the discussion by considering the validity of the equal sign as an 

independent object. The diagnostic test has shown us challenges in establishing tasks that 

completely isolate other aspects of mathematics, mainly the question of school algebra. From the 

findings in RQ1, we saw how the equal sign is implicitly described in the knowledge to be taught. 

Thus, it is harder to investigate the equal sign thoroughly as it represents a core subject matter that 

appears in so many different contexts and generally all over mathematics – both in upper secondary 

school and compulsory school. The following study is different from the former ones by various 

means. Firstly, few studies have used diagnostic tests but rather investigation during classroom 

teaching or other tests than diagnostic ones. Secondly, most have taken outset in younger grades of 

the compulsory school where the students have not been introduced to the topic of algebra to the 
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same extent as a student in upper secondary school. Thirdly, many former studies have only 

considered the binary approach of operational vs. relational.  

 

We have in this dissertation mentioned the challenge that school algebra is linked to several test 

items and how it makes it hard to give clear conclusions about what is challenging. However, in 

which direction can we see the causality between understanding the equal sign correctly and school 

algebra? Does school algebra make us understand the equal sign, or does the equal sign make us 

understand school algebra? One could argue that there is an interaction between the two, just like 

the constructivist point of view declares - our former experiences make us understand new 

concepts. Thus, examples of when to use the equal sign correctly and vice versa with school algebra 

could help improve the understanding of the other. Therefore, we endorse to be more explicit with 

the equal sign and talk about the elephant in the room.  

 

 

8. Conclusion 

We will now conclude by answering our two research questions: 

 

RQ1: Based on external didactic transposition, how do the scholarly meanings of the equal sign 

come into view in knowledge to be taught in Danish upper secondary school?  

RQ2: Which challenges related to the external didactic transposition of the equal sign can be 

detected through a diagnostic test for Danish students in upper secondary school? 

 

Regarding RQ1, the external didactic transposition we have compiled in this dissertation has 

demonstrated how the scholarly meanings of the equal sign come into view in knowledge to be 

taught. The equal sign is not mentioned explicitly in official programs. However, all the six 

meanings proposed by Prediger (2010) have come into view in the analyzed knowledge to be 

taught, although some meanings are more evident than others. Symmetric arithmetic and contextual 

identity were more challenging to detect, whereas the conditional equation is what most often 

appears in knowledge to be taught. Moreover, we have shown that several of the meanings of the 

equal sign often come into view together in the same problem, often concerning equation solving, 

which supports the findings of Prediger (2010). Additionally, the analysis has revealed some added 

meanings to the equal sign in knowledge to be taught, which is not considered scholarly knowledge, 

but doubtful uses of the equal sign. 
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The findings from the external didactic transposition made it possible to construct a diagnostic test 

and detect the internal didactic transposition of the learned knowledge, which answers RQ2. 

Specifically, we have revealed different kinds of challenges related to the meanings of the equal 

sign, some of which relate to the questionable uses found in knowledge to be taught. Especially 

what concerns units and assumptions in equations turn out to be more challenging, which denotes 

the meaning of formal equivalence and contextual identity, respectively. Although the meaning of 

symmetric arithmetic is challenging to identify in the knowledge to be taught, it shows a high 

success rate. We can thus not proclaim it an apparent misconception. Concerning the meaning of a 

conditional equation, this is highly linked to school algebra, indicating that it may be the latter that 

is challenging for the students. Regarding the meaning of specification, the students acknowledge 

this meaning when they encounter objects that we had detected in knowledge to be taught.  

 

Regarding the operational vs. operational approach, the diagnostic test has shown that most students 

give a relational argument when defining the meaning of the equal sign. Additionally, the overall 

results of the test suggest that one should see the students’ view of relational and operational as 

more of a continuum rather than discrete views.  

 

Furthermore, this paper demonstrates the experiment of making a diagnostic test of the equal sign 

as an independent entity.  Some of the tasks with low success rates may imply misconceptions of 

school algebra just as much as the equal sign.  Nonetheless, this shows the complexities and the 

interdependence of the two. Thus, we advocate the importance of the equal sign alongside school 

algebra to make their interdependence clearer. 
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Appendix B: Final test 
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Appendix C: Declaration of consent template 
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Appendix D: Excel-Analysis  (0/1) 

A-tasks 
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B-tasks 
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C-tasks 
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Appendix E: Excel-Analysis of the 0’s  

B-tasks 
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C-tasks 
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D-tasks 
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Appendix F: Comments from the test 
 

A – tasks 
 

A1: 
Symmetry:  

“I look at both sides and can see that it is the same that is subtracted” 

“left and right is the same, that is “=”” 

“for the equality to be valid I wrote 9, so that it stood the same on both sides of the equal sign” 

“because 9-4 and 4-9 that is the same result.” – misconception of negatives 

“I have chosen to set 9 because it only tells us what is on the one side is also on the other side” 

“I look on the other side of the equal sign and find out is missing” 

“\sqrt 81 \\ it is the same” 

“because what says on the one side is the same as the other [side]” 

 

 

Guess and try/trial and error: 

“I subtracted 9-4 and found a number that -4 [subtracting 4, ed.] made it the same” 

 

reflexivity 

“that is because 9-4 is the same as 9-4” > 2 

 

operational 

“because I would think it should have the same result, and hence stand “equal” each other” 

“9-4 makes 5 and therefore I write that on both sides of the equal sign” 

 

Conditional equation 

“it is 9 as it is going to give 5 on both sides of the equal sign. 9-4 makes 5 and -4 is going to have 9 

for it also to be 5” 

“there are no unknowns, so I calculate ‘9-4’ (on the left-hand side), and it gives 5. Then I add 5 to 4 

(on the right-hand side)=9” 

 

misconception 

“9-4=5-4 \\ I calculated” 

 

 

A2:   
> 16 using division of three  

“one could also have done it differently but I just did it this way” 

 

Other combinations 

“9+1+2” 

“5+5+2”  > 2 “2+5+5” > 1 

“6+2+4” “4+6+2” 

“3+5+4” “3+4+5” {5,4,3} 

“1+1+10” “10+1+1” > 2 

“3+3+6” {6,3,3} 
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A3: 
13 : here there was not so many other options 

“this is much like a normal calculation only with the answer first. so I just sat 5+8 together and got 

13” – answer equals operation 

“13=5+8 is the same \\ 5+8=5+8 is also the same” 

 

misconception 

“3=5+8 \\ I calculated” 

 

A4: 
misconception: 

“3+5=8-2 because 3+5 makes 8” 

 

A5:  
- “both sides of the equal sign must be the same” 

“I wrote 2 because 2 has the same value as 2” 

“1+1 gives 2 \\ 2=2 is 2” > 1 

“Have just inserted 2, because 2 is only equal to 2” 

“2 is only equal to 2” 

 

A6: 
Different combinations of numbers/trial and error 

8-2 = 6-0 > 2 

8-3=6-1 (> 17) 

8-4=6-2 (> 21) 

8-6=6-4 > 6 

8-7=6-5 > 0 

8-10=6-8 

8-2=6-0 

8-8=6-6 > 4 

8-10=6-8 > 3 

8- -6 = 6 - -8 > 0 

 

There is a tendency that the lowest numbers added are also the combinations which appear most 

often 

 

Difference of two-argument 

“8-4=6-2 \\ 8 is 2 higher than 6 so I just added the number by 2 on the left-hand side” > 2 

“I inserted 7 in both places and afterwards I subtracted 2 from the right-hand side as 8 is 2 greater 

than 6” 

 

“first took 6-1 since it was the easiest and calculated afterwards 8-x=5” 

 

“I don’t think one can, it can’t give the same” 
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not distinguishing negative numbers from positives: 

“8-6=6-8. \\ it gets repeated”  

“8-3=6-11 \\ all of it I wanted to be 5 so set that number in for it to be 5 on both sides” 

“8-6=6-8 \\ again, as the two calculations in principle will give the same no matter what way it 

goes” – symmetric argument, but rejecting the difference between plus sign and minus sign 

“8-6=6-8 I guessed” 

 

misconception 

“8-2=6 and hereafter I think it does not matter what 6 gets subtracted by but [I] have inserted 2” 

“8-2=6-2=4 \\ in order to obtain 6 we must minus by 2” 

“8-2=6-2 \\ don’t know what I’m doing” 

 

A7: 
-24 “I added all the number son the one side of “=” and wrote it on the other” (this student 

answersed the other A’s correctly) > 1 

 

A8: 
conditional equation solving 

-“I moved 2 on the other side and added 4 and divided by 2x with 6 and got 3” 

 

guess and try: 

-string operation, but correct result: “2*-1 = -2+4=2” 

 

false 

“if one minuses with 4 one finds x” – the student ignored the term 2 in front of the x 

“if one adds 4 to -2 it gives 2” 

x=1 

“there is not added any more x’es, so therefore x has always been 1” 

 

A9: 
setting x=1 > 3 

-“I sat x=0 so it gave 15, then I added 3 with 2 which gave 5, then I found out how many times 5 

goes up in 15.” – most likely the student meant x=1 here, and then it makes sense. 

 

"x = 1\ \ \ \ \𝑙𝑒𝑓𝑡(3𝑥 + 2\𝑟𝑖𝑔ℎ𝑡) = 5 

9 + 6 = 15 = 3 ∗ 5" 

 

using the value of x detected in the previous task 

-after deducing that x= -1 in the previous task, the student refers to this in the next one and has 

chosen __ = -3: “I set x=-1 in x’s place” 

 

A10: 
separating units 

-“I started to add 10 cm and 2 cm since they have the same letters and that made 12, and since kr 

and cm is not the same I just sat a plus between them” 

“kr and cm cannot be put together” 

“cm and kr is not the same it is like a and b. so I just add cm together and let kr be.” 
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“put those of the same kind [type, ed.] together” 

“you can’t put a length and a money value together” 

“replaced cm and kr with a and b” 

“it can be reduced, but not enough. They can’t be put together” 

“I would say that one cannot mix two things that has nothing to do with each other. fx one can also 

not say 2a+7b and put them together that would give (2a+7b=2a+7b)” 

“cm is its own unit together with kr” 

“I see that it will only see it in whole units and not mixed together” 

“There are different terms. cm+cm is okay, but cm+kr is not okay” 

 

“12 cm \\ Uhm?” 

 

false:  

“12=3x” 

“because 10cm+2cm+3cm gives 15” – maybe (s)he didn’t look at it correct 

“18\\ a 2-kr and a 1-kr put next to each other measure 6 cm” 

“15cm \\ just plussed the numbers and wrote it in cm” 

 

A11: 
-wrong answer, but correct thinking: 

 “when a is the same as y and then I could see that it was going to be 10y” 

“I know that a=y so I added y with 10” – this student answered A10 correctly, separating the two 

units, but does not argue the same way when there is a unit vs a solo number 

“a+10 = a= 10” – the same student declared in A10 that __=12=3x, separating the two different 

units from each other from both sides, but not changing the sign. 

 

transitivity argument: 
 “think that when a=y and y=22 that a also is 22” > 1 

“a=y 

y=22 

a=22 

22+10=32” 

 

confusing x with y: 

1. “I compute x=25 and then must have a=x\\ a+10=35 \\ 25+10=35” 
 

2. “5x − 3 = 22 
5x = 25 (+3)  

x = 5  

 

One sets it up as an equation and the result of the equation is 5 – so a=5 \\ 

a+10=15” 

 

3. S33: setting x=1, then calculation the value of the line, adding 22, making a mistake and 
saying that it’s 34 instead of 24. Then lastly concluding that a+10 → 34+10=44 

4. “so I calculate a in order to set it in the calculations and calculate it”  
 

5. “a+10=32\\  
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22=5x-3  afterwards one plusses  

find x   22+10= result /32 

x=5   → 

 

 

5 ∗ 5 − 3 = 22 ⟺ 𝑦 = 22     a = 22 ⟺ 22 + 10 = 32 

 
 

6. “a = 22 = 5x − 3 
5 ∗ 5 = 25 − 3 = 22  

a=22=5*5-3 

a+10=32 

22+10=32” 

7. “a+10=15/ because when one multiplies 5*5 one obtains (25)-3 which then gives 22” 
8. [the student started out stating that 5x − 3 + 10 = 22 (y + 10 = 22 = y ⟺  0 = 10)] 

“5x-3+10=22 
5x.3+3+10-10=22+3-10 
5x=15 x=3 
 
didn’t quite understand it”  

9. [the student starts out stating that a = 5x − 3 + 22 ⟹ 𝑎 = y + y = 2y = 44] 
“5x-3+22. y=5x-3 and 22 (+) so  
a=5x-3+22+10=5x+29 or 
5x-3 +3 = 22 +3 
5𝑥

5
=

25

5
= [⟺,  𝑒𝑑. ] x = 5  

a + 10 = 5x +
29

𝑥
= 5 ” 

 

misconception 

22=2x 

a+10=12x 

[the student has most likely said: “a=y=5x-3; 5x-3=2x, then y=22=2x, therefore 

a+10=y+10=2x+10=12x”, thus the property of transitivity is accepted by the student. However 

there is a misconception regarding what terms can be added together. This is also seen in B10 

where S62 declares the result is 15 ] 

 

B – tasks 
 

B1: 
 “true because it is not a calculation but simply just a statement” 

“7 apples are just as many as 7 pears” 

“because 7 computed with nothing is just 7” 

 

reflexivity 

“there is equilibrium in the expression as 7 is the same value”  

“7 and 7 is the same” 

“7 has the value 7 therefore it is correct” 
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“If you have 7 apples then you also can eat 7 apples” 

symmetry: “because both sides of an equal sign is the same” 

 

B2 
> 18: everything makes 5 

– same arithmetical argument comparing numerical values → same goes for 4 

“all the sides are equal” 

 

B3  
– string operation: 

 

false: 

“(…) so the equal sign is not equal” [så lighedstegnet er ikke lige] 

“12 \neq 15” 

“if it was written differently it would be correct” #explainingbutnotexplaining 

“12=15=15” 

“as only two out of three terms give the same value” 

“7 is 2 greater than 5 so it becomes 12 and 12+3=15” 

“there is not equilibrium” 

“because I would assume that a number cannot be = with another number if we don’t get any other 

numbers stated” 

“it says that 7+5 gives the same as 12+3 \\ 7+5=12 \\ 12+3=15” 

“7+5 does not have the same value as 12+3” 

true: 

1. “both the first part gives the correct result and the second part does as well” 
2. “adds up” 
3. “it is a correct calculation” 
4. “7+5 makes 12 and then +3 makes 15” > 1 
5. “7 and 5 give after all 12, but because it says 12+3 it could also be 15, which it is equal to” 
6. “I have calculated that 7+5=12+3 gives 15 so therefore it is true” 
7. “they both give the same as the number says = afterwards” 
8. “7+5=12+3= 15 
9. 7+5=12 

12+3=15 

hence true” 

 

B4: 
S6: B “first part with 2+9=2 is not correct, but if one splits them up as: 2+9 and 2+4+5, it gives the 

same result which is 11”  

correct answer but wrong explanation (string operation) “11=5+4=9+2” 

“as 9+2 never can give 2, and so 4+5 never can give 9” 

“mistake in the calculation as 2+9 does not give 2.” 

 

B5  
– percentage: 

 

True: 
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-“% means 100. Which makes that when you multiply 0,20*100 it makes 20%” 

-“0,20 and 20% is the same. Therefore true” 

-“0,20*100=20 if one multiplies 0,2 with something one obtains 20%” 

-“it is just 20% rewritten to decimal” 

-“because if you multiply with a comma [decimal, ed.] number you get %” 

-“0,20 one writes one per cent and one always multiplies percent with 100 so it gives 20%” 

-“because if one multiplies 100 with 0,2 it gives 20. and therefore it is the same as 20%” 

-“I saw that we were to multiply by 100, so there I moved the comma 2 times to the right” 

-“because you move the comma twice” > 3 

-“% means ‘out of 100’ there these two statements are equal each other when one converts to %” 

-“0,20 is 20% written as a decimal, if one multiplies it by 100 one gets it in percent” 

-“0,20 ∗ 100 = 20,0 

20,0 = 20%  

20% is the same as 0,20*100” 

-“if you multiply 0,20*100 then it gives 20%. Therefore it is true.” 

“0,20*100=20 

20=20%”  

“yes because 0,20*100 makes 20% \\ when one multiplies decimal numbers by 100 one typically 

finds %” 

 

the argument is inconsistent with the answer T 

-“0,20*100=20” 

-“0,20 100 times becomes 20” 

-“as 0,20*100=20 so it is correct” 

-“one can say 20% of 100=0,20” 

“0,20*100 is 20 and it can also be in %” 

“0,20 is the same as 20%, as 1,00 is 100%. By multiplying by 100 one rewrites decimal numbers to 

percent” 

“0,2*100=20%, which is true, as 0,2*100 gives 20% \\ 20%=2%” 

“0,2*100=20 therefore it is 20%” 

“20%=0,2” 

 

False: 

“doesn’t have to be percent”  

“100*0,2 is 20 and not 0,2 that is 20%”  

“that is how I would calculate %, but the task says nothing about % \\ 0,2*100=20” 

“20 is 2000%” 

“we have not been told that we’re converting into percent” 

“0,20 is 20%. so 20,0 is 200%” 

“1,00=100% 

0,20=20% 

0,20*100=2000%” 

“0,20=20%” 

 

t/f: 

 “it gives 20, if one wants it to be % one can [do, ed.] that” percent 

“it is a number 20. It is also 20% of 100” 
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“if you have a number * with 0,20 you will obtain 20% of this number \\ the calculation is incorrect 

it would give 20 but it is 20% of 100” 

 

B6  
– defining x=4cm: 

 

true 
“true since x can be anything” 

“x is a variable it can be just anything it wants” 

“x=everything” #meta 

“x can very well be =4. if that is the value set” 

“because x kan be everything it is just a deputy [substitute, ed.]” 

“since there is no more information it is correct \\ an ascertainment [konstatering, ed.]” 

“x is unknown and can be everything. in this case known as 4” 

“in an occasion this could be true” 

“it depends on the context. x can definitely be 4 cm” 

“suppose one can use it no matter what side x is sitting [placed, ed]. it could also be named: x=4 

cm” 

“x is 4cm” 

“x=4cm \\ 4cm=4cm” 

“i.e. that x corresponds to 4 cm fx. if one [has] a calculation that was \\ 8cm-x, and knew that x was 

4cm.” 

“if x is 4cm which we don’t know” 

“4cm can very well be x because x is variable and can be everything” 

“x is unknown, so hence it actually says 4cm=4cm” 

“x=4cm it is the value of x” 

“I don’t really get to know anything else, so x must be equal to 4cm” 

“because x can be everything it is not wrong” 

“if it says: 
2𝑥

2
=

8𝑐𝑚

2
= [⟺ 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 =] x = 4cm \\ that’s how I thought” – string operation 

“4cm could be termed x in a task” 

“because x is always x it may very well say a number” 

“it is just true” 

“if one says 1+3cm or 2+2cm it is true enough” 

 

t/f:  

“because x does not have a value so one decides oneself what value it should have” 

“it [is, ed.] just an ascertainment” 

“because one can write it as unknown (x) or as a number (4 cm).” 

“it depends on what x is”  

“well 4cm may well be =x in an equation but 4cm is not equal x outside of context” 

“as we don’t know the value of x we can neither confirm or decline whether 4cm=x or not” 

“x is just an unknown. x may well be 4cm, but it is not always correct” 

 

 

/: “there is nothing that explains what x is” 

 

the student mixes units (cm, kr, kg) with unknowns (a, x, \theta, banana, ) 

“false. cm and x are two different”  
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“4 cm cannot be the same as x” 

“4cm is not = x” 

 

false: 

“x can vary after situation. in one situation it may well be 4cm, whereas in another [it] is a different 

number” 

“4 cm is not unknown” 

inconsistent argument "4cm=4cm" 

“not true because we don’t have a unit behind x” 

“does not make sense in my head” 

“false because it is not supposed to say cm.” 

“can be different numbers, not necessarily 4” – acknowledging that x is a variable, but not 

accepting that this can be true is not contradicting the fact that it also can be other things (at the 

same time) 

“x is not 4” 

“it does not have a context” 

“because x can be all numbers, not necessarily 4” 

 

B7  
– travel card 

 

assuming rejsekort is 80kr > 10 

 – this makes the student make some assumption for herself. They do not state the problem with 

units (a number + a unit with a number) 

“ because rejsekort is 80” 

“if rejsekort costs 80kr it is true. then I add.” 

“depends on the price of the rejsekort” 

“a rejsekort costs 80kr. That fits well with 200kr” 

“but only when it is an adult rejsekort youth rejsekort costs 50kr” 

“it doesn’t say anything about the effect of the rejsekort so it is just numbers we can follow” 

“80kr=1 rejsekort” 

“this is probably true, 1 rejsekort costs 80kr?” 

“not sure but would say true as the rejsekort only is =x” 

“120kr we don’t know what is, but since it says +80, 80 must be 1 rejsekort. 120+80 makes 200kr” 

 

arithmetic argument, 

“120+80=200” – > 8: not considering the assumptions, simply calculating  

 

False 

don’t know the price 

“I use only my bike (with basket) so don’t really know what a rejsekort costs, therefore it is not 

necessarily correct that a rejsekort costs 80kr” 

different units 

“it does not say anywhere that rejsekort is 80 it also doesn’t say that it’s kr. if that is ok then it is 

correct” 

“if 1 rejsekort corresponds to 80 kr. but it doesn’t say kr behind. so it must be false” 

“there are three different units, so it cannot give 200kr” > 3 

“we don’t know what a rejsekort costs” 
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“1 rejsekort can never become kr” 

“we don’t know how much many kroner [Danish Currency] a rejsekort [costs]” 

 

 

B8: 
Arithmetic argument/comparing numbers: 

“if it was the same it would have said \sqrt 4 instead of 4/\sqrt 4” 

“\sqrt 4 = 4^2” 

“\frac{4}{\sqrt{4}} gives more than \sqrt4” 

“it. says 2=1 and that is not correct” 

““\frac{4}{\sqrt{4}} becomes far less than \sqrt 4” 

“16=4/16 is not the same” – relational argument 

 

Algebraic statement 

“\sqrt4=2  

4/2=2 

It is the same if you write \sqrt{x} or \frac{x}{\sqrt {x}}” 

 

false:  

a student declared \sqrt4=2 but then said that 4 divided by 2 makes 0,5. > 1  

 

B9  
 “it is the correct formula” > 1 

“since l and b are placeholders” 

t/f: “they [the length l and the widt b] have probably a different symbol, but one may very well use 

them” 

“just facts” 

“prior knowledge” 

B: “we don’t know what it leads to” 

 

B10:  
Pythagoras theorem? 

 

Referring to a formula () > 14 

“Pythagoras thm only the other way around” – first of all, it’s the reference to thm whose 

assumptions are not included in the task. Second of all, he or she declares that it is “turned around” 

“opposite pythagoras” 

“it is Pythagoras, so of course it can be natural numbers” 

“a, b and c are placeholders and hence the expression can be true” 

“it is the Pythagoras theorem. c^2 has the same value as a^2 and b^2 when one computes with 

right-angled triangles” 

“suppose it is the normal/natural numbers those that include or actually are Pythagoras theorem” 

“it is used to find a length of a side in a triangle” – not emphasizing right-angled triangle 

“Pythagoras theorem. There will always be equilibrium on both sides of the sign” 

“made a drawing of a right-angled triangle and stating the letters” – constructing assumptions which 

are not mentioned in the task 

“𝑎2 + 𝑏2 = 𝑐2  

this is how you find an unknown side in a right-angled triangle 
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 52 + 52  =  50   √  50 = 𝑐2 ” 

“the formula is used for right-angled triangles a^2+b^2=c^2” 

“ [showing a drawing of the squares specified ]the square of a+ the square of b = the square of c” 

 

 

Existence argument 

 

1) (S) 
𝑐2 = 52 = 25 

𝑎2 = 42 = 16 

𝑏2 = 32 = 9 

25 = 16 + 9      16 + 9 = 25 

 

2) equal to the one above 
3) (F) 𝑐2 = 𝑎2 + 𝑏2   52 = 12 + 22 

a=1     
b=1    25 = 1 + 4 = 5 
c=5 
1*1 =1 
2*2=4 
1+4=5 

4) one finds an unknown by finding the two others 
5) if 𝑐2 is 4 and 𝑎2 + 𝑏2  is 2 then it will be the same 
 

 

 

t/f: 

“it depends on what one is going to use it for” 

“they are not always natural numbers, it can also be decimal numbers” 

“It will be true for specific numbers, but not other” 

“one can write both numbers and letters” - misconception 

 

false:  

“the equation only works on specific triangles “ 

“it doesn’t add up. if a, b and c are whole numbers” 

“not all numbers can give a proper answer to c^2.  

a^2=2  b^2 = 3  

a^2=2*2=4 b^2=3*3=9 

There is not a whole number that is multiplied by itself that becomes 4+9=13” 

“there is not included c on both sides” – relational argument 

“it can change depending on the length of the triangle” 

 

 

B11  
– the binomial formula: 

 

2ab should not be there/not distinguishing between parentheses >12 
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-“2ab is not natural [number, ed.]” 

-“I would say that it should be 2ab + (𝑎 + 𝑏)2 = 2ab(𝑎 + 𝑏)2 if it was correct”  

-“not the same. Would never be able to create 2ab on the right-hand side hence it would not be the 

same value. It says after all 𝑎2 + 𝑏2 on both sides only expressed differently” – mixing notation 

between (𝑎 + 𝑏)2 with parenthesis and 𝑎2 + 𝑏2 

−“(𝑎 + 𝑏)2 gives 𝑎2 + 𝑏2 which is not 2ab + 𝑎2 + 𝑏2” 

-“2 times a and b is not the same as a*a and b*b” 

-“we’re missing the firs term, that is 2ab. (𝑎 + 𝑏)2 = a ∗ 𝑎 + b ∗ 𝑏” 

-“those 2ab have disappeared” 

-“there is not equilibrium, 2ab is missing on the right side and a^2+b^2 is not the same as (a+b)^2” 

– contradictory argument, as (s)he first announces that the 2ab term is missing, but at the same time 

that the remaining terms are not equal – which indeed is true. 

-“there is missing 2ab on the right-hand side” 

-“if “2ab” not was included it could have been correct. I think…” 

-“𝑎2 + 𝑏2 = (𝑎 + 𝑏)2 

2ab makes it unequal because the value becomes too great/big/large” 

-“2ab is 2ab where 𝑎2 = a ∗ 𝑎 so it is false as (𝑎 + 𝑏)2 = 𝑎2 + 𝑏2” 

“it is (a+b)*(a+b) that gives 2ab+a^2+b^2” 

 

referring to the square formula 

“there Pythagoras theorem is not included in the same way, as there is neither a use of c^2” 

 

False calculation 

“if a was 2 and b was 3 the terms would not give the same” 

 

2 ∗ 2 ∗ 3 + 22 + 32 = (𝑎 + 𝑏)2 

12 + 4 + 27 = (2 + 3)2 

43 = 52 

 

 

 

algebraic 

-“if one computes (𝑎 + 𝑏)2 it gives the same” 

-correct conclusion, but wrong explanation: 

2ab + 𝑎2 + 𝑏2 = (𝑎 + 𝑏)2 = a𝑏2 + 𝑎2 + 𝑏2 

-it is true as we multiply the parenthesis  
(𝑎 + 𝑏)2   = (𝑎 + 𝑏) ∗ (𝑎 + 𝑏) = 𝑎2 + ab + 𝑏2 + ab = 2ab + 𝑎2 + 𝑏2  > 1 

“multiply in ( ) [the parenthesis]” > 1 [STX2]  

 

existence 

-“2*(2*2)+2^2+2^2=(2+2)^2=8 \\ = 8+4+4=(4)^2 \\ = 16=16” 

-“ja:  

a is 3 

b is 4 

 

2*7+9+16=7*7 

49=49 

can’t explain why?” 
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-“if a=1 and b =2  

2*(1*2)+1+4=9 

(1+2)^2=9” 

   

B12  
– defining f(x): 

notion of a function > 9: 

“f(x)=ax+b// a function must have ax and b// a= b=+2” 

“linear functions” 

graphical representation (S4) 

“function” > 1 said this 

“F(x) can also vary” 

“that is how a function can look like yes” 

“it is a linear function” 

“linear formula” 

“it is F(x)=ax+b with numbers inserted. the results on each side are therefore equal” 

“the formula of a linear line” 

“slope of 3 \\ intersects in b on the y-axis” 

“it is just a rule. 3x=a \\2a=b” 

“it is a completely ordinary function rule” 

 

notion of an unknown: 

-“F(x) is unknown so it may well fit” 

“an equation” 

“F(x) gives the value in a rule and as x is unknown the equation is true” 

“it is a rule, which means that f(x)=3x+2 → the value” 

“it’s an equation” 

“linear equation” 

Specification 

“F(x) is specified 3x+2” 

“yes, it is after all just a rule that is specified and can be computed” 

“F(x)=3x+2 is just a rule” 

“it is a random equation” 

 

Balance 

“equivalent value [ligeværdi]” 

“one may well write it as an equation.” 

 

existence 

f(x)=3x+2 

x=4 

3*4+2 

12+2=14 

f(4)=3*4+2=14 

 

both/neither:  

“if one assumes x and f(x) is placeholder” 

“we don’t get other information so we don’t know whether it is correct” 

file://///2a=b
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“it is a linear rule for a linear function but it is neither correct nor incorrect” 

“it can be correct” 

“it can’t be correct or incorrect” 

 

 

false:  

“not anything capital F it needs to be little” 

“depends on function” 

 

B13  
– multiplying an equation by two:  

False: misunderstanding the question  

S4: “not at all. all the values in the lower [second, ed.] equation is the double” – confusing the 

question. But correctly stating that it is multiplied by 2. > 3 

“they are not equal” –  

“the equation 4x+6=2x+14 is twice as great as the equation 2x+3=x+7” 

“there is by no means equilibrium between the two equations and therefore the expression is false” 

“the numbers have been enlarged” 

“the equation has the same construction but does not give the same result as all numbers here have 

the doubled value (however one could also argue for that it is the same equation but different places 

in the calculation)” 

“the other [second equation] is way too big” 

“x=4 \\ 2x=8 \\ it is not the same. I calculated both of the equations.” 

 

  

True:  

S7: “it gives the same because the change is on the whole of it” > 0 

“[*showing that both solutions are the same* > 8] the equation itself is after all not the same, but 

the result is the same” 

“Multiplying first equation with 2” > 9 

“each term is just multiplied by two in the lower [second equation], and that has no change on x” 

 

t/f: 

 “it is not the same equation, but you end up with the same result” 

“it is not the same equation but one can use the same numbers on them both 4” 

“nr 2 is twice as big as no 1 but x will always be the same” 

 

B14: 
false 

S4: “nope. there are 2 x’es in the upper [first, ed.] equation and much higher values” 

“false because one of them will be negative” 

“doesn’t seem right since one cannot do the same things on both sides” 

“you can’t do the same on both sides” 

“not the same amount of x’es in each equation” 

“not the same equation because completely different numbers are included” 

“-11=2x\\ -2x=11 \\ I calculated it. It did not give the same” 

 

True. 
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 “x=-2/11 and x=-2/11” > 2 

“the equation has the same result, as we only are further ahead in the calculation” 

 

 

B15: 
false:  

“the student began to multiply, where one was to divide” 

“x ends up with the correct value but = is not satisfied in line 2, 3 and 4” 

“8x+2=18 and 8x+2-2-18 never can give the same” > 1 

false-false: “the student has put 8x and 2 together. They are not the same unit, one cannot [do, ed.] 

that” 

“because he inserts -2 for no reason I would say that it is incorrect!” 

“correct in the beginning but then it goes wrong” 

“8x=18-2 

8x/8 \\ that [is] incorrect, because 18-2=16 and not 8” 

“strange calculation” 

 

true: 

 “because he has computed it correctly” 

“the calculation does everything on both sides” 

“the calculation is correct \\ 8*2=16” 

“8x + 2 = 18 

8x = 16  
8𝑥

8
=

16

8
  

x = 2  

it is correct would’ve just written it down a little differently” > 1 

“it is a correct way of calculating it” 

“it is s [true] but the calculation is confusing as the student does not do the same in each term” 

“8x+2=18 

8x=16 

x=2” 

“all the calculations give the result if x=8” – inconsistent argument 

 

B16:  
false 

“f(2) gets the correct value but = is not satisfied” 

“f(2) is 3 \\ in the equation the students missed. a -5 after 4*2” 

“she resolves x in that calculation” 

 

true: 

 “as f(2) is equal to the result. we hold on to the previous equal sign” 

“f(2) = 4x − 5 

f(2) = 4 ∗ 2 − 5  

f(2) = 8 − 5  

f(2) = 3 “ > 2 

“the student has computed correctly” 
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t/f: “the calculation is incorrect, but the answer is correct” 

 

B17: 
B V t/f: 

“it might as well be true but it might as well be false” 

“it depends on what one inserts. but if one inserts 2 and 10 it fits” 

“can be correct, e.g.  

x=1 y=5  or 

x=3 y=15” 

“it can partly add up but only when y adds up in the 5-table” 

 

true 

- “y need only be 5 times as great like 5 and 25” – stating there is a restriction, but declaring it as 

true. Can also be because one didn’t understand what the task asked for the student to proclaim. 

“5 is the natural number” 

“y is a variable it can be all things” 

“x and y is placeholder and one can well make it be true” 

“correct y can be anything” 

“y and x is unknown, so it [the equation, ed.] is correct” 

“it may well be. i.e. if y=10 and x=2” 

“x can be everything thus 5*x may well constitute y” 

-“5x=y 

x=5 

5*5=25 

y=25” 

“y is going to be 5 times as big as x 

5*5=25” 

“x and y is not the same so it can absolutely be correct” 

“5x=y 

x+x+x+x+x=y 

5 times smaller than y” 

“as you can decide the numbers yourself” 

“because x and y [are] regular numbers so If one inserts the correct numbers it is correct” 

“one may well insert numbers.” 

“y is just a term for other numbers if one can put it that way” 

 

false 

“5 times a number does not give the number one multiplies by” 

“5x=x and not y” 

“x and y are not the same” – valid argument as it implies that they need to have a one-to-one 

correspondence in order to make the mapping bijective 

“as it does not make any sense” 

“as x y can have different numbers” 

“y depends on what x is” – notion of a (linear) function 

 

C – tasks 
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C1: 
false/string operation: 

a. 1200+30=1230-10=1220*2=2440 (> 2) 
b.  
 

(1200 + 30 − 10) ∗ 2 

1230 − 10 = 1220 ∗ 2 

1440  

What we see here is partly a string operation, 

but not 100%. This might imply that the student is aware of 

the meaning of the equal sign, but still uses it as way of 

noting what computation (s)he has been doing 

c. 1200+30=1230-10 
1220*2=2440 >1 
 

d. 1200 
    30 

1230 -10 

      10 

1220 * 2 = 2440 

 

Student 3 answered C1 correct not using string units, but these appeared in C5. 

 

 

C2: 
All values: > 12 

“all values 8x-x gives 7x so it says 7x=7x” 

“all even numbers” 

“true for 1,2,3,4,…” 

“if x=7 it says 49=56-7 \\ x can be all natural numbers” 

“that you can do with all numbers right?” 

“all values. it says 7x=7x. x Is the same value for all x” – reflexivity 

“in these cases I typically tend to guessing game [trial and error] and use my sense \\ but all cases. 

since x is the same value”  

“1,2,3,4,5 \\ I result [conclude] that it is all natural numbers” 

“x = [−∞; ∞]” 

“7x=7x 

x=x” 

“all positive, real numbers?” 

“don’t understand but believe all x-values” 

 

Existence (0,5 pts): > 7 

“7=8-1// 1” 

“2” 

“1” 

“x=2  

7*2=14 and 8*2-2=14” 
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“x=3 as 7*3=21 \\ 8*3-3=21” > 1 

“all but 1” 

“x=1” 

 

non-traceable 

-“7x=8x-x 

7x=7x” 

-“8x would like to isolate x” 

-“uhm…the value is that we minus by 1x” 

“there is multiplication sign between [x and the number] og one can set – in front of x” 

“Idk [I don’t know]? 14x?” 

 

 

 

C3  
–division by zero: 

 

correct answer 

 “if it is true once it will always be, if you don’t change on something” 

“no, not as long as one divides” 

“no because there are other numbers that you cannot use” 

incorrect answer 

1. “yes because one can remove (x-2)” > 3 
2. “I think I can equalize so: [showing calculation] Thus I think it is always true” – equalizing: > 

1 
3. “yes, one can probably solve all equations” 
4. “it depends on whether x is negative or positive” 
5. [inserts for x=3 and computes the following:] 

“(x-2)=-1 
(x+2)=3 

-1*3=-3 

x-2=-1 

 

-3/-1=3 

 

x+2=3 

 

it is not always true, as x can amend” – bland argument. 

 

6. “(𝑥 − 2) ∗ (𝑥 + 2)    
𝑥2−4

𝑥−2
= x + 2 

𝑥2 + 2x − 2x − 4  ⟺    
𝑥2 − 4  

Always true” 

7. S19: showing what happens when inserting x=2 

8. “
(4−2)∗(4+2)

4−2
= 4 + 2 yes” 
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C5:  
arithmetical technique 

“120-30=90/2=45kr” 

“120 

   -30 

90/2 = 45” 

 

-many students with arithmetic solution > 6 – note down if there is anyone with algebraic. (check 

the ones with full score?) 

 

Algebraic solution: > 4 

2x+30=120 

2x+30-30=120-30 

2x=90 

2x/2=90/2 = 45 

 

Student pattern: 

1) in one of the questionnaires, the student answered B5, B16 as correct, but B3 as wrong. He 
or she rejects pure string operations, but it seems like the case is different when one 
operates with units as well. In C1, C4 and C5, we see string operations and declaring the 
area without a unit on. (Student 1) 

 
D – tasks:  
 

D1: 
operational 

-S6: “as a result” 

“a break in a calculation that splits up the calculations” 

“that it is a sign that asks for a conclusion of the calculation” 

“that it is the sum of something that one is going to put something together to get the sum of 

something” 

“a solution to a calculation” 

“that = stands there to separate between the calculation and the result” 

“when one is going to compare something or get the final answer” 

“that one can compute how to understand the task, that one can rarely without =, as they can be put 

different places in the task and give different answers” 

“that the sign symbolizes an “equality” on both sides of the sign. Or it can symbolize a result. 

Depends on what context in which it appears” 

“that is what shows what something gives or should give” 

“I understand it as the last sign before the final result” 

“either both sides are going to give the same, or that the answer is…” 

”it is a sign that shows result on the right-hand side or equation” 

“equilibrium, result” 

“the way to a result or when something is/is going to be the same” 

“a result, something it can become” 

“when one has a result, or when something is to be compared” 

“it means what the answer gives” 
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non-traceable: > 1 

-can occur when the student is not good in formulating him or herself 

“as a comparison” – using the notion of a sort of relation. 

“equals (er lig med)” 

“for me it gives me an explanation to why something is as it is, but it can also be a help when one is 

to compute equations” 

“that something is equal with the other \\ that one is in the process of a calculation” 

“it is the sign that decides whether a result is correct” 

“that the one side = the other” 

“that the one side = the other |=) does not matter” 

 

 

operational and relational → relational 

-“both numbers by an equal sign is the same”  (Relational with arithmetic reasoning) 

-S5: “every possible sum and the same as” 

“= can both mean that one is to solve a calculation. But it can also mean that the value on the two 

sides are equal” 

“one can understand it as the value is the same on both sides of the sign, which makes placeholders 

possible. However one can also understand it exactly as so that placeholders not are legal” 

“that something is just as big as something else” 

“that something is the same on both sides \\ that something is to give this” 

“= is the same as, ‘is’ or ‘gives’ ” 

“it is used when something has the same value on both sides of it. something can look different, but 

one can use computation rules” 

“it can be used to show what the calculation gives but it can also be used to show that 2 things give 

the same” 

“the same as and equal to” 

“I feel that it can be understood in 2 ways \\it is that it is an equality or if one ends ones calculation” 

“the sign means that e.g. two numbers have the same value, and that there is equal distribution of 

values on both sides” 

“as a result or maybe a mirror in equations as both sides give the same” 

“it simply means that it’s going to be the same amount or letters/things/words etc on both sides” 

 

pure relational 

S6: “as in that it is the same on both sides of the equal sign” 

“it means the same as but one can also see it as a weight that always is to be straight [lige]” 

-“that there should be just as much on both sides” > 1 

“the same as” 

“one can understand it as a weight where both sides are going to be equally heavy \\ both sides is 

going look alike” 

“that the numbers or equations on each side of the ‘=’-sign are the same” 

“that the values or statements have the same value or meaning even if they stand on their own side” 

“as “has/have the same valuea as” \\ what is on each side is that can that is be replaced with each 

other” 

“that it gives the same on both sides fx 5+2=5+2” 

“it is like the same thing, it means the same or is just as much” 

“when something is the same \\ so it says exactly the same on both sides” 

file://///it
file://///both
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“when two or more things/numbers are the same” 

“that it should be the same on both sides” 

“the same” 

“= is the same as, which means that it is going to give the same on both sides of the “=”sign.” 

“the equal sign is just like a weight, there must be made equilibrium” 

“the quantity on each side is the same, when one calculates it” 

 

 

D2: 
-comparing numbers (> 12). 

“4=4 because it is the same number, f(8=16) because it is not the same number” 

“0=0, because 0 is 0 \\ 0=1, because 0 is not 1” 

“can 2=2 \\ cannot 2=3 \\ in examples, where the values or the statements have the same value or 

meaning” 

“a=a it is the same \\ 5=2 it Is not the same” 

“2=2 if I have 2 apples and you have 2 apples then we have exactly equal amount \\ 2=3 if I have 2 

apples and you have 3 apples then we do not have equal amount and therefore not the same” 

“1=1 it is the same \\ 1=2 it is not the same” 

“when one is to add amounts together: purchases/bills etc.” 

 

comparing two equations: 

“2+2=1+3, here one can use it because the value is the same\\ 1+3=4+2, here one cannot, because 

the values are different” 

-“fx between an equation and the result” 

“7+3=10 one can use it because it describes what the calculation gives” 

“5+3=8 but if you make a calculation one must use if and only if \Longleftrightarrow \\ 2+3+5 

5+2++3 \Longleftrightarrow 5+5 = 10.” 

“20kr=10kr+10kr but not 20=10 

-“4+1=5” 

-“14=7*2. Here one can, as it is the same value \\ 20=17/2 v. It does not end up with the same value 

x ” 

“2+2=4 because 2+2 makes 4 \\ 2*3=4 because it does not give 4” 

“7+7=14 v \\ =7+7=14%” 

“2+1=3  here there is the same value on both sides of the equal sign \\ 3*2=3^2 here the power 

states that 3 is to be multiplied with itself: 3*3, which is not the same as 3*2 ” 

“2+3=6-1, may well be used as it is the same value on both sides \\ 12=5+5, cannot be used as there 

are different values” 

-“2+2=4 due to 2+2 gives 4 \\ 2+2=5 due to 2+2 not = 5” 

“4+4 =8 \\ 2+5=+8+9+7 \\ you use it as a completion or to link two things to each other not just for 

fun” 

“one can use it like this: 9+10=19 \\ one cannot use it like this: 9-10=19” 

“2+2=4 \\ 2+2=10 \\ one of them is correct that is equal each other whereas the other one does not 

make sense” 

“In an equation, that can be solved, = can be used e.g. 2x=4 where x=2 \\ not in 3x=4 where x=2, 

then it becomes 3x ≠ 4” 

“5+3=8 there is equilibrium and it might as well have said 8=8 \\ 11=10+5 there is not equilibrium 

and it really says that 11 is the same as 15” 
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“1+2=2+1 – give the same \\ 5+1=10+10 – both sides do not give the same \\ [example not to use 

the equal sign]I don’t think I can think of that” 

“1+1=2 \\ f(x)=ax+b \\ l*b=areal” – operational, specification and contextual identity 

“x*2=0” 

“5+5=10 is an example on how one can use =. But if one writes 5+5=12 then here one has used it 

incorrectly” 

 

both comparing numbers and equations 

-“2*5=10 5=5 \\ 2*5=25 5=7” 

-“7=3 \\ 7+3=10” 

-“fx 5+2=5+2    7=7 because it gives the same on both sides \\ fx 5 ≠ 7.  10 + 2 ≠ 5 becauuse it is 

not the same on both sides” 

-“2%=0,02 means that 2% is the same as 0,02 \\ one can fx not use = when the result is incorrect 

like 5=7+9” 

-“2+2=4 S \\ 6=50 F” 

“2+4 = 6    5+3 = 9 

       6=6         8= 9 

the values on both sides are equal  the values are not equal, and the sig can  

   therefore not be used” 

 

-“4+2=2+4 = it becomes the same \\ 4+2=6 when it does not become the same instead one could 

write 4+2 > 6” – inconsistent argument 

-“5+2=7 the result \\ x=2=4 cannot be written 2 times” 

 

 

misconception: 

-“5+5=10 because it is the sum of 5+5 // 7=7 it is not the sum of something it just to write the same 

when it is the same number” – same student responded correct in B1: “it gives an equal number on 

both sides” 

-“one can use it by fx. 2+2=4 because there the calculation gives a result \\ and fx one cannot use it 

by 2=2=2=4 because there should be used the correct designations” 

“5+3=8 → shows a result v \\ 8=3 → shows neither a result nor any equality values” 

“I=Sara (I am Sara and therefore one can say that I and Sara is the same) \\ I = Mona (I am not 

Mona, and therefore one cannot use the sign here)”  

“5+3= \\ because my calculation is done and I want [an] answer” 

 

distinguishing mathematical and non-mathematical language 

“2=2 is true \\ 2=banana is incorrect” 

 

alt:  

“a solution to something \\ you cannot use it as a plus sign” 

“one can use = when one finds a result, but one cannot use it eg. when one goes from stop to step in 

an equation where one is to use \Longleftrightarrow” 

“when one finishes an equation e.g. then one writes x= and one cannot use = if one is not sure of the 

result then one can use ~ which means approximately” 

“one can use it when one is going to make something add up \\ impossible to compare something 

unspecific” 

“in equation and algebra, don’t know when one cannot use it” 
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“for result or equation. cannot stand alone” 

“= when one has a calculation \\ = cannot be used by incomprehensible text” > 1 [STX2]  

“in an equation \\ in a fraction” 

 

 

D3: 
 - do have in mind that the task is questioned graphically, and therefore it is highly likely that a. 

geometric argument is to be expected from several participants 

 

arithmetic argument 

-[altså] they have the same length…  

-“yes because they are the same length” > 1 

 

geometric/graphic 

1.“they have the same hældning, but if you extend it they won’t intersect the same place so they are 

not completely equal each other” 

2. “no they are not evenly close there is some difference” 

3. “not equal to each other// from the axis and out x=1,5 on h axis, a x=2 on p” 

4. “no they do not have the same intersection on the y-axis” 

5. “no because they cannot be connected with a straight line” 

6. “no – they have the same slope coefficient but they intersect they y-axis two different places” 

7. “no, since they don’t both have the same slope coefficient and intersection” 

8. “no, because the line is not the same. It is two different lines” 

9. “no because they don’t intersect the second-axis [y-akis, ed.]” 

10. “they have the same slope but not the same intersection \\ therefore they are not equal each 

other” 

11. “no because they are not parallel” – contradictive statement. Does this imply that the student 

would accept soon as (s)he acknowledged that they in fact are parallel? 

12. “no? they seem to have different slope coefficients and the lines lay different places and have to 

different intersection points in the y-axis” 

13. “yes because they cover the same amount of space and they are parallel with each other” 

14.” they are not connected but they are parallel and they take up just as much space so they are 

equal each other” ~ 13. 

15. “they probably are not as they are not parallel and do not stop on the same line” 

16. “they probably have the same length but they are not parallel so therefore I would say they are 

not equal each other” 

17. “of course, they are parallel to each other” 

18. “they are not \\ they don’t have the same intersection but same slope” 

19. “the slope on h and p is the same, but the intersection on the y-axis is not the same. therefore p 

and h are not the same” 

20.”no it is not the same line in the coordinate system they will never hit each other” 

21. “they are not equal each other, as they are parallel, and no intersection have” 

22. “no, although they have the same slope coefficient, but not the same values, so they are not 

equal each other” 

23. “they are immediately [at first sight] equal in length and have the same slope, so I suppose so.” 

24. “they don’t intersect the same place on the y-axis, and does not have the same slope so no” 

25. “no they don’t have the same intersection on the y-axis” 

26. “no since their slope not is the same” – inconsistent argument 
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27 “no, as they don’t start in the same point” 

28. “they are not equal each other. The reason for them not being that is because, that both of them 

will intersect the y-axis through the y-axis in different points” 

29. “no because the coordinates do not give the same”  

30. “no, they lay each their own place” 

31. “no because if one was to finish the line, it would not touch each other in the middle.” 

32. “they are because they are parallel” 

 

algebraic 

1. “they do not have the same b value so they are not equal to each other” 

2. “no, they have the same a (hældning) but not the same b (skæring) and they both have different 

points where they stop” 

3.“yes, the slope coefficient is the same, they just start different places” 

4.“the b-value is not identical and therefore they are no = each other even if the a-value is the same 

\\ so one might say both because one can both argue for and against, but I would say no” – algebraic 

5.” h = 4x + 5 

p = 4x + (6,14) ?? 

both functions have the same slope coefficients don’t know if that means that they are equal each 

other” 

6. “they don’t have the same b-value, only the same a so no they are not equal each other” 

7. “h=ax+b 

         5x+3 

p=ax+b 

     14x+2 

8. “both \\ the x-values are the same but the y-values are different” 

9. “no they don’t have the same rule” 

10. “no because they don’t have the same equation” 

11. “h and p are not equal each other. They don’t have the same slope coefficient” 

12. they are not the same because h has a slope of 3 and p has a slope of 2.”  

13. “no they have different points = different rules” 

14. ”h(x)=ax+5 \\ p(x)=2x+ca.2 \\ they are not because their b is not the same cannot directly read 

hs a-value but it looks like it also has one on ca. 2”  

15. “they have the same slope, but not the same b-value or Dm(f) [definition set] they are not equal 

each other” 

16. “yes because they have the same slope coefficient” 

17. “not the same slope co[efficient]…” 

18. “they have the same slope so they are the same” 

 

 

Uses more than 1 argument: 

1.“no they are not alike because even if they increase by the same they do not intersect the y-axis. 

the same place therefore they are only parallel.” – algebraic/geo 

2. “no they don’t intersect in the same points but they have the same length so in one way one could 

say they were equal each other” – geometric/arithmetic 

3.“the equations themselves for the lines are different since they are to different places in the 

coordinate system. But the slope and length is the same. So if one put them on top of each other 

they would be equal\\in the coordinate system I wouldn’t say they were, but outside they are” -

geometric/arithmetic/algebraic 
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4. “no, because then they would intersect each other. Their value would never be the same” -

algebraic/arithmetic/geometric 

5. “both \\ they are equal each other relative to length and slope \\ but they are not equal each other 

relative to y-value” – arithmetic/algebraic 

6. “I wouldn’t say they are equal each other, because they have different function rules. But one can 

say that they are parallel equal each other” – geometric/algebraic 

7. “same length and Ax – not the same B thus, not the same function, thus \neq” -

algebraic/arithmetic  

8. “they are not. The lines don’t intersect each other. They are not equal in any point. even if they 

have the same slope coefficient” 

9. “they are parallel, but not equal” – geometric/unknown  

10. “the slope coefficients are equal, and the pieces are also the same length. However they do not 

lie on the same place, and “p” does not intersect the y-axis on the picture. Their y-value would also 

be different, if “p” intersected the axis.” algebraic/arithmetic/graphic 

11. “they have the same slope coefficient but not the same position. if position is disregarded they 

are equal, if position is regarded they are not equal \\  

f(x)=a*x+ b 

is the same is not the same” 

12.” No, as they don’t have the same values. However the slope is the same” 

13. “Same slope, same length. Not the same initial value” – geometric/arithmetic 

14. “Yes, equally high only two different places. They have the same slope” – algebraic/graphic  

15. “yes, because they are parallel and have the same slope” 

16. “yes, equally high, only two different places” 
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