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Abstract

This thesis is written on the subject of Mathematical Didactics. The intention

of this thesis is to examine how conditional probability and independence should

be taught such that students acquire solid knowledge about the subject that is

conceptualized in a non-misleading way. This thesis contains a presentation of the

place of conditional probability and independence in curricula and textbooks today

and within the past 15 years. This is followed by a review of preliminary theory

on how misconception can be avoided in conditional probability and independence.

This review is used to design a teaching course of five lessons of 55 minutes, that aims

to prevent students from forming misconceptions and to increase students’ linguistic

and formalistic abilities. This didactic design is made within the framework of the

Theory of Didactic Situations, which is also explained. The developed design has

been tested on a second-year class in a Danish upper secondary school. The thesis

contains an a priori analysis, which was made before this design was tested, and an

a posteriori analysis of the collected data and observations. Based on this, it can

be concluded that it takes more than five lessons to deconceptualize the students’

misconceptions. It can also be concluded that it is possible to increase the students’

linguistic abilities, but it requires changes in the teaching design and a new study

to be able to conclude that the students’ formalistic abilities can be improved.
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1 Introduction

Probability theory (especially conditional probability and independence) and the

abilities and skills the students acquire to work with the subject are not only rele-

vant for the students’ general participation in society, but also within many different

educations and future jobs (everything from political science, biology, history, eco-

nomics to mason, banker, police officer, etc.). It is clear that academic work matters

more in some professions than in others, where it is the mindset and skills that are

relevant. But the central thing is that students’ knowledge of conditional probability

and independence is useful in their future, even to a greater extent than many other

subjects in upper secondary school mathematics education. Unfortunately, prob-

ability theory is one of the subjects in mathematics teaching in upper secondary

school that presents the greatest challenges. There is a large amount of research

that shows that probability theory is the subject that upper secondary students find

the most difficult and, furthermore, the most boring, (Batanero, Contreras, et al.

2014; Shaughnessy 1992; Carles and Huerta 2007, among others). For this reason,

it is interesting, for the sake of society and the students, to investigate whether it is

possible to improve teaching so that students have a better opportunity to acquire

solid knowledge about probability theory (especially about conditional probability

and independence). There are many possible reasons for the students’ difficulty with

probability theory, but one of the main reasons is, according to Batanero, Contreras,

et al. 2014, that the teachers also think the subject is difficult. For me personally,

this thesis is the culmination of my education as a mathematics teacher for up-

per secondary schools. I myself have considered how little the probability theory

and statistics constitute of the education. When you educates to be a mathematics

teacher in Denmark (for upper secondary school), it is most common that you only

have one or two courses on probability and statistics, which corresponds to 7.5-15

ECTS points (that is 2.5-5% of the education), which is little compared to most

other branches of mathematics.

In addition to not having received much education in probability theory and

statistics, I have always found the subject either difficult and uninteresting or easy

and boring. I often thought we wasted time in pre-university teaching when we had

to roll 100 times with a die or perform 100 coin tosses, only to find that the die

or coin behaved as we expected. After enduring this monotonous, exhausting and

repetitive exercise, one often had to rely on strange problems that were incompre-
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hensible. These problems seemed set up and it was often difficult to find out what

the problem actually was and what to do to solve it. These difficulties in understand-

ing the problems are related to the fact that probability theory and statistics have

different terminology and thus language is used much more than in other branches

of mathematics. Not only is the terminology different, it is also ”clumsy”, as it

was called by Feller 1968, and this is especially true of conditional probability and

independence.

According to Borovcnik and Peard 1996, there are particularly many counterin-

tuitive problems within probability theory, which probably has a contributing force

in the fact that the subject seems difficult and inaccessible to many students and

teachers. Borovcnik and Peard 1996 wrote that in addition to having several coun-

terintuitive problems, these problems spread over all levels. In other branches of

mathematics, it is more normal that counterintuitive problems first arise at a higher

level of abstraction, but this is not the case with probability theory. Several re-

searchers, Shaughnessy 1992; Batanero and Sanchez 2005; Dı́az and Batanero 2009,

have shown that there are a large amount of misconceptions within probability the-

ory, but especially within conditional probability and independence. These miscon-

ceptions often lead to a false reasoning for answers to problems within the subject,

especially in the case of one of the many counterintuitive problems.

For all these reasons, it is of particular interest to explore the possibilities of

optimizing the teaching of conditional probability and independence, so that fewer

students are left with misconceptions that are not conducive to their future career

and social participation. To frame my research, I have created the following main

research questions:

How should conditional probability and independence be taught so that

students acquire solid knowledge about the subject that is conceptualized

in a non-misleading way?
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To clarify this question, there are three smaller research questions below, all of

which aim to answer parts of the main question

• What misconceptions about conditional probability and independence are wide-

spread among upper secondary school students and is it possible to avoid them?

• How can counterintuitive problems be used in the teaching of conditional prob-

ability and independence and what effect does this have on students’ mathe-

matical output and conceptualisation?

• How are students’ linguistic and formalization abilities strengthened within

the terminology of probability theory through a course of around 4 hours?

In order to investigate these questions, I will explain how conditional probability

and independence are taught to students in upper secondary school today and within

the last 15-20 years. The study of this will be based on curricula and teaching

materials, and a comparison will be made with how the subject is taught in other

countries with comparable conditions. The didactic research in the area will then be

explained, where the focus will be on which misconceptions occur most often and how

to avoid them. There will be a brief explanation of the Theory of Didactic Situations,

which has been used as a framework for the teaching design I have developed. The

teaching design has been developed based on a didactical a priori analysis, made

on the basis of the research that has been explained. The teaching design has been

tested by an upper secondary school class, which will be kept anonymous. A great

thanks shall go to the school management for allowing me to try out my teaching

design in their school, but the greatest thanks goes to the students of the class who

all participated eagerly in the teaching situations and approached the challenges

with an open mind, and to the class teacher, who with great effort took on the

difficult task of teaching based on a design he did not make himself, and who also

was willing to share his thoughts on the process. The trial led to the collection of a

large amount of data which has been analysed. The results of this analysis will be

presented at the end of the thesis.
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2 Curricula

In the history of Danish mathematics curriculum, there have been three curricula

since 2005, when there was a major reform on the upper secondary school area.

The current curriculum for mathematics at the highest level in the Danish upper

secondary school (called A-level) is from 2017, and is referred to as Læreplan Matem-

atik A - STX 2017, and before that a curriculum in 2013 (Læreplan Matematik A

- STX 2013) and in 2005 (Læreplan Matematik A - STX 2005). In the current

curriculum, there is nothing about conditional probability. In the section ”Kernestof

og mindstekrav”, which can be translated to ”Core materials and minimum require-

ments”, Læreplan Matematik A - STX 2017 says the following about probability

theory

The core materials are combinatorics, basic probability calculus, proba-

bility field and random variable, binomial distribution and normal dis-

tribution, confidence intervals, hypothesis testing in the binomial distri-

bution. [Translated into English by the author] Læreplan Matematik A

- STX 2017, p. 2.

It is clear that basic probability calculus is not firmly defined, which means that

conditional probability and independence could well be part of it. Especially when

the binomial distribution is actually on the list of core materials, since indepen-

dence is a prerequisite for the binomial distribution. This curriculum has a guide

attached, which elaborates and explains the syllabus in greater detail. In this guide

the following is stated in contrast to the above rationale

Independent events are mentioned in connection with problem solving

that requires multiplication of probabilities, but are not given a stand-

alone treatment. [Translated into English by the author] Vejledning

Matematik A - STX 2017 2021, p. 8.

Since the guide is also defining for the syllabus, this means that independence is

not a part of the syllabus. The same applies to random variables, since in the

guide (Vejledning Matematik A - STX 2017 2021) there is a sentence that is almost

identical to the quote above, only with random variables instead of independence.

This is noticeable, as the following is stated later in the guide.
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Students must know the conditions for when an empirical data set can

be considered as actual values of a binomially distributed random vari-

able; including a discussion of experiments with and without replace-

ment. [Translated into English by the author] Vejledning Matematik A

- STX 2017 2021, p. 9

This is noticeable, since random variables and independence is fundamental for bi-

nomial distribution. It is very hard to see, in which way students can know the

conditions of a binomially distributed random variable without knowing anything

about random variables and independence.

The two previous curricula are both slightly different on this point, but in their

own ways. Back in 2005, the curriculum was characterized by not including prob-

ability theory in the core material, despite statistics being included. Probability

theory was included only in the optional extension material. This was criticized by

many, including EVA, which is the Danish evaluation institute, in EVA 2009. Some-

one may notice that the criticism from EVA only came in 2009, i.e. a full four years

after the reform in 2005, which introduced the curriculum Læreplan Matematik A -

STX 2005. This is because it takes three years for students to study an A-level, so

EVA waited to make their evaluation of the curriculum until after there has been

a whole year of students through the A-level in the upper secondary school. The

criticism is that EVA’s experts find probability theory important for the student’s

understanding of the society they live in. So the experts focus more on the cultural

and social aspects of the theory than on the actual application. The curriculum’s

argument for moving probability theory from the core material to the extension

material was that it became easier for the teachers to select and put together the

teaching plan based on what made the most sense for the class and the study package

of the class. EVA’s experts recognize that statistics and probability theory are areas

of mathematical teaching that interacts well with other subjects, for instance social

studies and biology are two subjects that really could benefit from an interaction

with statistics and probability. However, Eva’s experts believe that probability the-

ory is fundamental for teaching statistics, and they strongly wonder why statistics

is in the core material when probability theory is left out.

After the criticism of the curriculum from 2005, a new curriculum was created

in 2013 (Læreplan Matematik A - STX 2013), but despite the criticism, probability

theory was still not part of the core material. In return, independence was included
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in this curriculum since test of independence were now a part of the syllabus, in

the form of chi-square test. The reason the chi-squared test was included in the

curriculum was that this test of independence was used in the subjects of biology and

social studies as a statistical tool. In today’s curriculum, the chi-squared test is no

longer included, but it is still included in both biology and social studies curriculum,

as a statistical tool, meaning that students are taught chi-squared test by either

their biology teacher or their social studies teacher. Since these teachers are most

often not mathematics teachers, too, and thus not trained to teach mathematics,

this construction hardly helps the students to better conceptualize probability or

statistics.

If we look outside the borders of Denmark, to countries that are in many ways

comparable to Denmark in the school and teaching areas on the basis of culture,

economy and quality of life, we see a slightly different content in curricula. Let

us start with the US. There is no set curriculum for the entire United States, as

each state determines the curriculum by themselves. However, in 2010 there was

a common standard, called Common Core State Standards, which was developed

by two non-profit associations, which has formed a foundation for curricula in the

United States. As many as 40 states chose to use Common Core as their curriculum

or at least as the basis of their curriculum, which makes it relatively representative

of curricula in the United States (Molnar 2015). So if we look in Common Core State

Standards for Mathematics 2022, we first of all see that conditional probability and

independence are both part of the curriculum. The Common Core has nine points

that describes what must be reviewed in the teaching of conditional probability and

independence. The nine points are very reminiscent of how the mathematical theory

was reviewed in this thesis in section 2. This means that the American curriculum

is far more comprehensive within conditional probability and independence than the

Danish one.

In England, conditional probability and independence are already part of the

curriculum for what they call key stage 4, which corresponds to the 14-16 age groups

(The National Curriculum of England 2014). The approach is different from the

American one, as the English introduce conditional probability through the more

illustrative representation using expected frequencies with contingency tables, tree

diagrams and Venn diagrams.

In Denmark, it is quite normal to compare ourselves with our Scandinavian neigh-

bours, and even countries that are so close to Denmark stand out from the Danish
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curriculum. In Sweden, all upper secondary students learn about independence,

no matter what level of mathematics they study (Curriculum of Sweden 2022).

This priority says something about how important independence is assessed by the

Swedish Board of Education (Skolverket). In addition, correlation and causality are

also both in the curriculum. It will be explained later in this thesis that correlation

and causality is a good support for independence and conditional probability, and

strengthens the connection between statistics and probability.

In Norway, they have a bit more complicated school system for the upper sec-

ondary level. Students can choose for themselves whether they want to take math-

ematics courses that are either theoretical or practical at the first year. After that,

they can (very simplistically) choose between continuing a theoretical path (if they

had chosen this path in their first year), or a social studies path. What is interest-

ing, however, is that students who choose the theoretical path will never encounter

probability theory nor statistics. Those students who choose the social science path

will encounter little statistics and no probability theory. Conditional probability and

independence are not a part of the curriculum in Norway (Curriculum of Norway

2022).

3 Textbooks

As has just been explained in the previous section, conditional probability and in-

dependence are not part of the curriculum in Denmark and have not been since

2017. Therefore, conditional probability and independence are included only to a

very limited extend. Typically, independence is only included as a form of minor

notice in connection with the binomial distribution, and conditional probability is

not mentioned in any of the textbooks reviewed in connection with this thesis. For

this reason, it is more interesting to look at the textbooks that were made for the

period where Læreplan Matematik A - STX 2013 was applicable.

From 2005 until 2013, neither conditional probability nor independence were

part of the syllabus, as previously mentioned. However, it is extremely interesting

that both parts were included in several textbooks from this period. If we start by

looking at the textbook system from the publisher Gyldendal, which consists of a

basic book with the basic theory, Clausen et al. 2006b, and an exercise book with

exercises and a bit of extra theory, Clausen et al. 2006a. Conditional probability

and independence are only included in the exercise book, except that it is mentioned
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that the experiments in a binomial distribution must be independent, which is very

similar to contemporary textbooks. This is probably because it was possible to bring

up the subject as an additional subject. The exercise book goes through conditional

probability and independence in quite a lot of detail. The exercise book contains

a section with an experimental approach to binomial distribution. As a basis for

this section, Clausen et al. 2006a have created an introductory section called ”Rules

for calculating probabilities” (translated by the author), which, with the help of e.g.

Venn diagrams, the notation from set theory and examples, define both conditional

probability, Bayes’ theorem for two events and in the general form, independence for

two events and the multiplication principle for two events and then in the general

form.

One of the largest school book publishers in Denmark is the publisher Systime,

which published the mathematics book Carstensen et al. 2006 in connection with

the new curriculum from 2005. In this textbook there is also a section on condi-

tional probability and independence, the section is simple labeled ”Independence”

(translated by the author), which, just like in the other book, is a precursor to bi-

nomial probabilities. However, unlike Clausen et al. 2006a, Carstensen et al. 2006

use contingency tables to form a basis for the definition of conditional probability,

then define independence using conditional probability (as in definition 2.6), and

end with the multiplication principle as a theorem without proof.

Systime has produced several textbooks for upper secondary mathematical teach-

ing, e.g. they published Brydensholt and Ebbesen 2011, where they had gained a

lot of experience with the curriculum and its possible challenges. Unlike Carstensen

et al. 2006, which is also a book from the publisher Systime, this book starts with

independence and waits with conditional probability for the section after. For this

reason, Brydensholt and Ebbesen 2011 also had to define independence. This defi-

nition is different from the definition in the other textbooks, as this book uses the

multiplication principle as the definition, unlike the other books that make the defi-

nition based on conditional probability. This textbook differs even more as it defines

independence for three events. The textbook goes through conditional probability

with the same procedure as the other textbooks, however this textbook uses tree

diagrams and a lot of examples to elaborate the theory.

As stated in the previous section about curricula, the chi-squared test was in

extension material in Læreplan Matematik A - STX 2005, but was moved into the

core material, which is the syllabus, in Læreplan Matematik A - STX 2013, when
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students had to use the test in other subjects, such as social studies and biology.

In Læreplan Matematik A - STX 2017 the chi-squared test disappeared completely

from the curriculum, so it does not appear in new textbooks, but it was in the

vast majority of textbooks from 2005 to 2017. The chi-squared test can be both a

hypothesis test and a test for independence. In the textbooks, it is most often used

in connection with contingency tables. You can read more about contingency tables

in section 4.5.

4 Didactical Preliminaries on Probability Theory

As previously mentioned, it is widely described in the literature that conditional

probability and independence is an area that has certain challenges in terms of

being taught by teachers and conceptualized by students. Historically speaking,

probability theory and statistics first appeared relatively late (Batanero, Henry, et

al. 2005). According to Székely 1986, there are many indications that the Arabs

invented the dice, and thereby started to work a little with simple probabilities.

Gerolamo Cardano (1501-1576), Galileo Galilei (1564-1642) and other Renaissance

mathematicians did the same, but without the further abstraction. In 1654 Cherva-

lier de Méré (1607-1684) contacted Blaise Pascal (1623-1662) to seek help in solving

a problem of how to fairly divide the stakes in an interrupted game. Pascal and

Pierre de Fermat (1607-1665) solved this problem, which today is called the prob-

lem of points, independently. Precisely the incident is described by many as the

start of the theory of probability, as Pascal used methods that are today used in

probability theory. The reason this is interesting is that this historical hesitation

suggests a requirement for a relatively high level of abstraction in order to work with

probability theory.

Through this chapter, it will be reviewed which misconceptions and beliefs are

contributing to giving probability theory this high level of abstraction. This is

important in relation to the later work of developing a design for teaching conditional

probability and independence, as it provides prior knowledge of the students’ lack

of understanding of the subject.
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4.1 Objectivist vs. Subjectivist

In science, there is usually a requirement for objectivity. This requirement leads

to certain problems within probability theory and statistics. Therefore, there are

two different approaches to the requirement for objectivity within these subjects.

There is the objectivist and the subjectivist approach. There are those who believe

that objectivity must of course be maintained no matter what. They are called

objectivists. One of the central objectivists is Andrey N. Kolmogorov. He begins

his work Foundations of the Theory of Probability with a sentence that describes an

objectivist’s approach to probability.

”The theory of probability, as a mathematical discipline, can and should

be developed from axioms in exactly the same way as Geometry and Al-

gebra.” Kolmogorov 1933/1956, pp. 1

Therefore, the objectivist believes that probability must be separated from personal

judgments. Borovcnik 2012 explains how, for an objectivist, probability is a property

inherent to an object. Kolmogorov created an axiomatic theory of probability that

can be used to indirectly determine probabilities, where probabilities are considered

a property of an object. The following are Kolmogorov’s axioms for probability

theory, but with a slight difference in notation, as a uniform notation is desired

throughout this thesis.

Let S be a collection of elements ε, η, ζ, ..., which we shall call elementary

events, and T a set of subsets of S; the elements of the set T will be called

random events.

I T is a field of sets.

II T contains the set S.

III To each set A in T is assigned a non-negative real number P (A).

This number P (A) is called the probability of the event A.

IV P (S) equals 1

V If A and B have no element in common, then

P (A ∪B) = P (A) + P (B)

Kolmogorov 1933/1956, p. 2
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From these axioms, a number of properties of probabilities can be determined. Here

are three key properties, theorem and proof inspired by Blitzstein and Hwang 2014

Theorem 4.1. Probability has the following properties, for any events A and B.

a P (Ac) = 1− P (A).

b If A ⊆ B, then P (A) ≤ P (B).

c P (A ∪B) = P (A) + P (B)− P (A ∩B).

Proof. a By the construction of the complement, it follows that A∪Ac = S, and

that A and Ac are disjoint. According to Kolmogorov’s axiom IV, this implies

1 = P (S) = P (A ∪Ac) = P (A) + P (Ac)

If P (Ac) is subtracted on both sides, we have

P (A) = 1− P (Ac)

b Suppose that A ⊆ B, then B = A ∪ (B ∩ Ac). It is clear, by the construction

of the complement, that A and (B ∩ Ac) are disjoint, and then Kolmogorov’s

axiom V is useful

P (B) = P (A ∪ (B ∩Ac)) = P (A) + P (B ∩Ac)

Since P (B∩Ac) is a probability, and a probability is non-negative (axiom III),

the following is true

P (B) ≥ P (A)

c With the same argument as above, it holds that A ∪ B = A ∪ (B ∩ Ac) and

that A and B∩Ac are disjoint. By Kolmogorov’s axiom V, the following holds

P (A ∪B) = P (A ∪ (B ∩Ac)) = P (A) + P (B ∩Ac)

Likewise, B = (A ∩ B) ∪ (B ∩ Ac) where A ∩ B and B ∩ Ac are disjoint, and

the following holds

P (B) = P ((A ∩B) ∪ (B ∩Ac)) = P (A ∩B) + P (B ∩Ac)

Isolating P (B ∩Ac) and substitute into the previous equation:

P (A ∪B) = P (A) + P (B)− P (A ∩B)
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For an objectivist, it is important to be able to conceptualize the repetition of a

random experiment, which is done using the concept of independence. In order to

define independence, conditional probability have to be defined. This definition is

inspired by Sørensen 2013, p. 22:

Definition 4.1. The conditional probability of the event A given another event B

(with non-zero probability, P (B) > 0), written P (A|B), is defined by

P (A|B) =
P (A ∩B)

P (B)

This concept is justified by fulfilling Kolmogorov’s axioms, which is proven here:

Theorem 4.2. Conditional probabilities are probabilities

Proof. To check whether conditional probabilities are probabilities, it is enough to

check whether the last two of Kolmogorov’s axioms are satisfied.

IV It is trivial that P (S|E) = 1 holds, where S is the sample space and E is an

event in the sample space, since the probability that the entire sample space

happens is unaffected (or unconditional) by the event E.

V If it is supposed that A1, A2, ... are disjoint, and we look at P (
⋃∞

j=1Aj |E) using

definition 4.1:

P

( ∞⋃
j=1

Aj |E

)
=

P

((⋃∞
j=1Aj

)
∩ E

)
P (E)

=

P

(⋃∞
j=1

(
Aj ∩ E

))
P (E)

The last equality is true according to normal set theory. Since the numerator

of the fraction is a probability axiom V holds, and the following must hold

P

( ∞⋃
j=1

Aj |E

)
=

P

(⋃∞
j=1

(
Aj ∩ E

))
P (E)

=

∑∞
j=1 P (Aj ∩ E)

P (E)

=
∞∑
j=1

P (Aj ∩ E)

P (E)
=

∞∑
j=1

P (Aj |E)

The final step is once again by using definition 5.1.

With the definition of conditional probabilities, it is now possible to define inde-

pendence.
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Definition 4.2. Two events with positive probabilities, A and B, are said to be

independent if

P (A|B) = P (A)

or equivalently

P (B|A) = P (B)

Independence is a central concept for the objectivist, as it is the key assumption

in several central theorems, as the law of large numbers and the central limit theorem.

It is so central that Borovcnik writes the following:

For an objectivist conception of probability, independence is key and crux.

Borovcnik 2012, pp.8

Besides the main point that all science must be objective, including probability

theory, one of the rationales behind the objectivist approach is that it can help escape

the trap of intuition. There are numerous examples of counterintuitive problems and

paradoxes within probability theory, e.g. The Monty Hall problem, the best-known

counterintuitive problem from probability theory. Therefore, to a much greater

extent than in other mathematical fields, one must be aware that one’s intuition can

be misleading. The easiest and best tool to avoid this intuitive delusion trap is to

be objective, and thus not relate to one’s intuition.

The objectivist approach has several points of criticism. The first and most

central is the critique that the concept of independence is central to the structure of

probability theory. A critic will say that independence is an idealization, and thus

the theory is largely impossible to use in practice. Another point of criticism is that

the objectivist does not include statistical inference. To include this it would require

additional terms and criteria that are not acceptable to an objectivist, as it would

require an acceptance of irreparable gaps in the logical basis or admit of a subjectivist

nature of probability theory. Last but not least, the key concept, independence,

according to Borovcnik 2012, lacks a link to mental images and reference situations.

This means that probability, conditional probability and independence become ”a

permanent source of confusion (Borovcnik 2012, pp. 8).

19



In contrast to the objectivist, there are also those who believe that it is not

possible to be objective in probability theory and statistics. They are called subjec-

tivists. This approach is closer to what is called provability, which involves finding

more arguments for a statement than arguments against it, than the objectivist

approach. Thus, objectivity is replaced by an judgment of credibility. There are dif-

ferent types of credibility, e.g. expert knowledge or personal expectations. There is

one and only one credibility that is also accepted by the objectivist, namely relative

frequencies from relevant experiments in the past. This is accepted by the objec-

tivist, as these relative frequencies can be assessed without subjective judgments.

The subjectivist approach is, like the objectivist, justified axiomatically. The axioms

that can be found in Finetti 1974, unlike in the objectivist position, are based on

rational behavior and describe criteria for our preferences. Or as Borovcnik puts it,

”the paradigmatic situation is betting on uncertain statements” (Borovcnik 2012, pp.

9). According to a subjectivist, their approach is as valid as the objective one, since

the axiomatic foundations (Kolmogorov 1933/1956 and Finetti 1974) have the same

scientific status. Furthermore, it is fundamental to a subjectivist’s argument that

if the amount of empirical data becomes sufficiently large, their conclusions will be

the same as the objectivist’s conclusion. Subjectivists believe that as the amount of

information increases, the judgment will also become more qualified, and thus the

probability will become more authorized. The largest critique of the subjectivist

is of course the lack of objectivity, but especially the lack of empirical control of

random experiments is criticised. It is usually a crucial requirement for empirically

based science that there is a control on the empirical evidence. As central as inde-

pendence is to the objectivist, so is conditional probability to the subjectivist. A

subjectivist believes that all probabilities are conditional, and should be updated as

new evidence comes in, in order to get a more and more accurate result. To do this

kind of updates of probabilities, Bayes’ theorem is useful. This means that Bayes’

theorem plays a key role in the subjectivist position. For the objectivist, Bayes’

theorem is not nearly as interesting, as it is a consequence of Kolmogorov’s axioms.

Theorem 4.3 (Bayes’ theorem). For any event A and B with positive probabilities,

the following holds

P (A|B) =
P (B|A)P (A)

P (B)

Proof. From definition 4.1 it is known that

P (A|B) =
P (A ∩B)

P (B)
and P (B|A) =

P (B ∩A)

P (A)
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Since A ∩B = B ∩A the following holds

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A)

Dividing by P (B) on both sides of the last equality gives

P (A|B) =
P (B|A)P (A)

P (B)

As a remark to this theorem, the multiplication principle can be proved:

Theorem 4.4 (The Multiplication Principle). For two independent events, with non-

zero probability, the following holds

P (A ∩B) = P (A)P (B)

Proof. From definition 4.1 it is known that

P (A|B) =
P (A ∩B)

P (B)
⇒ P (A ∩B) = P (A|B) · P (B)

P (A ∩ B) = P (B|A) · P (A) could be used in parallel with this proof. Since A and

B are independent it holds that P (A|B) = P (A), according to definition 4.2, which

means that

P (A ∩B) = P (A)P (B)

This theorem is equivalent to definition 5.2, and is therefore often used as the

definition for independence.

4.2 Misconceptions and Biases

It has just been established that there are more examples of counterintuitive prob-

lems in probability theory than in other mathematical fields (spread out at all levels).

This large amount of counterintuitive problems originates from the fact that there is

a wide spread of misconceptions and biases among both students and teachers (Dı́az

and Batanero 2009, Batanero, Contreras, et al. 2014). Below, a brief description of

selected misconceptions and biases will be given, which will be elaborated with ex-

amples of problems where the relevant misconception or bias could mislead a person

who tries to solve the problem. We start with one of the significant misconceptions

that have several branches of misconception.
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4.2.1 Causal Reasoning and the Fallacy of the Time Axis

Gras and Totohasina 1995 identified three different misconceptions about conditional

probability via their empirical data from questionnaires of 17-18 year old secondary

school students. The three misconceptions were; the chronological conception, the

causal conception and the cardinal conception. The chronological conception is that

students believe that an event cannot condition another event that happens before it

(Falk 1989). Which means that students think that P (A|B) is meaningless if event

B occurs after event A, since these students see conditional probability (P (A|B)) as

a temporal relationship where event B always precedes event A. This is also called

the time axis fallacy. The causal conception is that students believe that P (A|B)

means that event B is the cause and event A is the consequence. Thus, it is the

causality and not the timeline that is the conceptual obstacle for the student. These

two concepts are clearly closely related, since a causal event will naturally precede a

consequential event. So the chronological conception can be considered as a special

case of the causal conception. The reason why the time axis fallacy and the causal

fallacy are not considered as a single misconception is because people who make

these fallacies can be divided into those who justify it with a time axis argument

and those who justify it with a causality argument. The cardinal conception is an

offshoot of a general misconception in probability theory, namely that there is equal

probability in every probability space. That is that students who have this fallacy

will think that P (A|B) = |A∩B|
|B| , where |A ∩ B| is the cardinality of the set A ∩ B,

and |B| is the cardinality of the set B. Precisely this misconception is not related

to causal reasoning, and will not take up more space in this thesis.

A classic problem that illustrates the problem of causal reasoning or the time

axis fallacy is this problem:

An urn contains two white balls and two red balls. We pick up two balls

at random, one after the other without replacement. (a) What is the

probability that the second ball is red, given that the first ball is also

red? (b). What is the probability that the first ball is red, given that

the second ball is also red?

(Batanero and Sanchez 2005, p. 251)

In this problem, part a will not cause much difficulty, according to Batanero and

Sanchez 2005 and Falk 1989. Since the condition that a red ball was drawn in the

first draw will narrow the sample space so that there are only two white balls and one
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red ball, all with equal probability, the conditioned probability is P (B|A) = 1
3 , where

A is the event to get a red ball in the first draw and B is the event to get a red ball

in the second draw. People affected by the above mentioned misconceptions will not

see the problem differently than people that are not affected by the misconceptions,

since the condition does not work against the direction of time, or since the first

move clearly causes a narrowing of the sample space. For part b of the problem,

according to Batanero and Sanchez 2005 and Falk 1989, there will be many who will

give a wrong answer by false reasoning, namely 1
2 . The solution is parallel to the

solution to part a, since the information that a red ball has been drawn in the second

move narrows down the sample space for the event A in exactly the same way as

before, so that the probability again becomes P (A|B) = 1
3 . People with one of the

misconceptions will, as mentioned, give the answer 1
2 . Due to one of the fallacies

they consider the conditional probability P (A|B) to be meaningless, instead they

determine the unconditional probability P (A) = 1
2 .

In general, there is a tendency for people to overestimate causality and its impor-

tance when working with probability, where a diagnostic approach would be more

accurate. This is probably because the impact of causal data on a judgment is

usually greater than the impact of diagnostic data. In addition, it is quite normal

for human beings to relate to causes, while diagnostics are more advanced for us.

Human beings are, so to speak, more used to causes than to diagnostics.

4.2.2 The Base Rate Fallacy

The base rate fallacy was identified by Tversky and Kahneman 1982 and is best

illustrated with an example:

Why is more grass consumed by white sheep than by black sheep?

(Bar-Hillel 1983, p. 39)

The fallacy is that people think that more of the grass is consumed by white sheep

because white sheep consumes more grass than black sheep and thus forget the base

rate, namely that there are far more white sheep than there are black sheep. There

are unimaginable amounts of this type of example, many originate from everyday

life, where e.g. news media may come up with stories based on this fallacy. In

connection with schoolwork, it is often desired that the problems posed lead to some

form of calculation. These types of problems are often Bayesian, but the fallacy

remains that people forget to include the base rate (or prior probability). Bayesian
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problems are problems that can be solved using Bayes’ theorem (Theorem 4.3).

Normally, there is two types of information, which are needed to solve a Bayesian

problem. A generic information, which is about the frequencies of the hypothesis,

this information is called the base rate. In addition, specific information have to be

used to deal with the case in the Bayesian problem. Some people tend to base their

answer to a Bayesian problem solely on the specific information, which is a base rate

fallacy.

A classic example illustrating how this fallacy can play into a Bayesian problem

could be

A witness sees a crime involving a taxi in a city. The witness says that the

taxi is blue. It is known from previous research that witnesses are correct

80% of the time when making such statements. The police also know

that 15% of the taxis in the city are blue, the other 85% being green.

What is the probability that a blue taxi was involved in the crime?

(Dı́az and Batanero 2009, p. 157)

A person could be led to believe that the probability that there was a blue taxi

involved in the crime must be 80% since the witness is telling the truth 80% of the

time when they make such statements. It would then be a base rate fallacy, as the

person forgets that there are only 15% blue taxis in the city. In order to solve this

problem, Bayes’ theorem is useful as mentioned.

P (A|B) =
P (B|A)P (A)

P (B)

Let A be the event that the taxi involved in the crime was blue, and B be the event

that the witness says that the taxi was blue. Thus, the following information is

given in the problem: P (B|A) = 80% and P (A) = 15%. Unfortunately, P (B), i.e.

the probability that the witness says that the taxi was blue (when it is unknown

whether the taxi was blue or green), is not stated. Therefore, it is necessary to use

Bayes’ theorem in an alternative form:

Theorem 4.5 (Bayes’ Theorem [Alternative Form]). For any events A and B with

positive probabilities, the following holds:

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

Proof. The normal form of Bayes’ theorem looks like this

P (A|B) =
P (B|A)P (A)

P (B)
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Thus, it is enough to show that P (B) = P (B|A)P (A) + P (B|Ac)P (Ac). Classical

set theory says that B = (B∩A)∪ (B∩Ac). Since (B∩A) and (B∩Ac) are disjoint,

it must hold that

P (B) = P
(
(B ∩A) ∪ (B ∩Ac)

)
= P (B ∩A) + P (B ∩Ac)

From the definition of conditional probability (definition 4.1) it is seen that P (B ∩
A) = P (B|A)P (A) and P (B ∩Ac) = P (B|Ac)P (Ac), which thus means

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

It is clear that P (Ac) = 85% as it is the probability that the taxi is not blue (ie.

green in this case). P (B|Ac) is the probability that the witness says that the taxi

was blue, when it was actually green. Since it is known that there is 80% chance

that the witness is telling the truth when she says that the taxi was blue, it holds

that P (B|Ac) = 1− 0.80 = 20%, and only the calculation is left.

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
=

0.80 · 0.15
0.80 · 0.15 + 0.20 · 0.85

≈ 0.41 = 41%

4.2.3 Fallacy of the Transposed Conditional

Bar-Hillel 1983 believes that in the taxi problem (from the previous section) and

in problems of the same type, there is a possibility that another fallacy can arise,

namely the fallacy of the transposed conditional. This fallacy occurs when people

cannot tell the difference between P (A|B) and P (B|A). In the taxi problem, it is

essential to distinguish between P (A|B), which is the probability that the taxi was

blue, given that a witness says that the taxi was blue, and P (B|A), which is the

probability for the witness to say that the taxi was blue, given that the taxi actually

was blue. In the taxi problem, it can be difficult to distinguish between this fallacy

and the base rate fallacy, since the fallacies are very close to each other, and since

they both will lead to the same incorrect conclusion. The fallacy of the transposed

conditional can arise in problems where the base rate fallacy is not relevant, as it

is possible to exchange the conditioned and the conditioning event in most types of

problems within conditional probability, while the base rate fallacy of course requires

a problem with a base rate.
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4.2.4 The Conjunction Fallacy

This fallacy is about how people misestimate the probability of a conjunction. Often

it can be seen by a person assessing the probability of A and B to be greater than

the probability of A (or B), i.e. P (A∩B) > P (A). This is not true, since it is always

true that A ∩ B is a subset of A (and B), which is known from normal set theory.

Therefore, it holds that P (A ∩ B) ≤ P (A). An example of a situation where this

fallacy could occur is

(a) What is the probability that a random employee in the public sector

has problems with pain in the back? (b) What is the probability that a

random employee in the public sector is 55 years old and has problems

with pain in the back?

Here the conjunction fallacy will be that there is a greater probability that the

random person is 55 years old and has problems with back pain than that the

random person simply has problems with pain in the back. The fallacy is due to

an exchange of conditional probability and a conjunctional probability. So instead

of determining the probability that the random person is 55 years old and has back

pain problems, they determine the probability that a random 55 year old has back

pain problems, so P (A|B) instead of P (A ∩ B), where A is the event of having

problems with back pain and B is the event of being 55 years old. The fallacy can

also be an underestimation instead of an overestimation as here.

4.3 Intuition and Counter-Intuitive Problems

All human beings have used the same intuitive method, since we were very young.

We encounter problems that we have not been exposed to before, and we therefore

do not know how to tackle. We try what we believe in most, and if it does not work,

we adjust and try again. Someone will recognize this Deweyian method as ”trial and

error. Within mathematics, it is also a widespread and quite successful method, no

matter whether it is for academic research or for school students’ method of solving

exercise problems. Unfortunately, it is the case that trial and error does not work

nearly as well within probability theory as within other mathematical fields. If a

person tries to predict an event, the person can easily be right, even if the person

predicted something that was less likely than something else. It could, for example,

be a child who has to roll two dice and try to predict the sum of the outcomes of
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the two dice. The child knows nothing about probability and naively guesses that

the sum will be four. Then the child rolls and the sum of the two dice happens to

be four. Thus, the child incorrectly thinks that four was the best choice. However,

it is not only children who, with their naive approach to probability theory, come to

make fallacies based on trial and error. It can also happen to adults, of which the

whole idea of astrology is an excellent example.

In probability theory, concrete operations are missing, according to Borovcnik

and Peard 1996, which leads to an immediate lack of solution tools, which makes it

more attractive to approach the problem with intuition. Furthermore, it is the case

that in probability theory, according to Borovcnik and Peard 1996, counterintuitive

results occur at all levels of abstraction, in contrast to how it is in most other

mathematical areas, where the counterintuitive results only occur at a higher level

of abstraction. The combination of the desire to go to problems with intuition and

the amount of counterintuitive results already at relatively low levels of abstraction

often leads to learning difficulties and to some people having difficulty accepting the

conceptions of probability theory. However, this does not mean that counterintuitive

problems should be avoided, as students should train their abilities to deal with this

type of problem, as they are so widespread as they are. In addition, it is particularly

satisfying and enlightening, when it is possible to defy intuition with reflected and

theoretical arguments. Working with counterintuitive problems often forces the

person that is trying to solve the problem, to bring theory into play, as opposed

to non-counterintuitive problems, where the person could give a non-theoretical but

subjective and intuitive explanation.

The most important thing for learning probability theory is concept formation.

In teaching, the discipline; that students must form concepts, is unfortunately diffi-

cult, as it cannot be provoked by a hierarchical sequence of actions and reflections.

The way to concept formation is through the students’ intuition, although it has just

been described as being a cause of learning difficulties. But, according to Borovcnik

and Peard 1996, theoretical inputs help students to revise their intuitions, which

are basically raw and primitive, but which with each theoretical input will develop

into a more and more complex and strong conception about probability theory. The

theoretical inputs are important in this process, as the students will otherwise rely

on a subjective approach that will be dominated by idiosyncratic and uncontrollable

intuitive thinking, as there is no direct feedback and control of their subjective ex-

periences. The theoretical input helps students towards a more objective approach
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(which will not be fully objective, however). This learning process or concept forma-

tion can be compared to how one generally develops new theoretical mathematics

at an academic level.

4.4 Linguistics and Context

In all areas of mathematics, linguistics is important, but precisely within probability

theory the importance is at its peak. When a teacher has to create a problem for

her students, it requires great care in the formulation of the problem, just to make

the problem comprehensible and without ambiguous wording. When the students

have to work with the problem, it requires at least as much care for the students

when they have to understand the problem and often requires several readings of

the wording of the problem. This means that many problems within probability

theory have two very different challenges that must be overcome, namely the purely

mathematical challenge and the purely linguistic challenge. Often (especially at

the level students are in upper secondary school) the linguistic challenge is almost

the hardest part of the problem, which becomes even more prevalent when talking

about conditional probability. Already in 1968, the probability theorist William

Feller expressed the following quote, which describes exactly how the linguistics or

terminology is challenging when working with probability theory, especially with

conditional probability.

”The notion of conditional probability is a basic tool of probability theory,

and it is unfortunate that its great simplicity is somewhat obscured by a

singularly clumsy terminology.” (Feller 1968, p. 114)

As mentioned, this means that there is a lot of focus on the language when working

with probability, especially in teaching. For this reason, Shaughnessy 1992 suggested

that the problems students had to work on in connection with teaching should be

”context free”. It is debatable whether it is possible to make a context free problem

or whether there always will be a sort of context. In any case, it is clear that there

are problems where the context is as basic and sterilized as possible (e.g. problems

with rolling dice, tossing coins, urns with colored balls, draw a card from a deck

etc.). The opposite of that is problems where the context looks like (or at least tries

to look like) an everyday setting. Obviously, a sterilized problem makes it easier for

students to focus on the specific problem. On the other hand, the everyday problems

are more relevant for the students’ future use of probability theory, at least how they
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should approach probability problems. Thus, a mixture of problems of the two types

of context can be an advantage. Students find it easier to understand the nature of

the problem in the sterilized version, and can use these problems as a reference point

when solving problems in an everyday context. In conditional probability problems,

students often have difficulty defining what there is a conditional probability. Espe-

cially in problems that are not sterilized, students can almost drown in what they

feel is information, causing them to have difficulty analyzing the problem. Therefore,

it ends up with the students determining a different object than the intended one.

The difficulty of defining conditional probabilities is also seen with sterilized prob-

lems. Therefore, it requires a lot of training and practice in the use of the clumsy

terminology before the students are able to analyze the problem correctly.

It was mentioned earlier that there are two equivalent definitions of independence;

one that uses conditional probability (P (A|B) = P (A)), and one that is often used as

a property of independent events and which is sometimes called for the multiplication

principle (P (A∩B) = P (A)P (B)). It turns out that it is advantageous to introduce

independence using the conditional probability definition rather than the definition

also called the multiplication principle. According to Kelly and Zwiers 1988, it is

easier for students to understand the conditional probability definition, as it is close

to how most people define the word ”independence” linguistically. A frequently used

definition of the word is indeed ”something that is not affected by anything else”,

which is aligned with the mathematical definition. Kelly and Zwiers 1988 argue that

language matters a lot in probability theory (which has just been explained), and

therefore, it is important that the definition is close to how the language is used,

because then the students’ intuition will help to conceptualize independence.

4.5 Contingency Tables

The use of contingency tables can be fruitful in helping upper secondary school stu-

dents conceptualize conditional probability and independence, Batanero, Estepa, et

al. 1996. It may seem a little strange, since contingency tables are a representation of

data, and therefore, it is not an object that belongs to probability theory. However,

this statistical tool can be used as an opportunity for students to put their proba-

bility theory knowledge and conceptualizations into play in a scenario with concrete

values and in a way that is descriptive of something that has occurred. In this way,

there is a distance to the comparison with divination, which students can sometimes

find themselves making. This means that the students have the opportunity, us-
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ing contingency tables, to work with probability theory without a large amount of

preconceptions. Even if they work with frequencies and relative frequencies rather

than probabilities and conditional probabilities. In contingency tables, it is easy to

determine relative frequencies. Relative frequencies are easier to conceptualize, as

it is easier to understand how the quantity of a relative frequency is determined,

whereas, on the contrary, it is often difficult to see how the quantity of a probability

is determined. Interestingly, probabilities can be determined on the basis of relative

frequencies, as mentioned in section 4.1. Furthermore, it is interesting that in these

situations the students’ intuition will often help them rather than mislead them.

Working with relative frequencies can, in this way, help students to conceptual-

ize conditional probability. However, contingency tables can also be used as a tool

to increase students’ understanding and strengthen their conceptualization of the

concept of independence. As mentioned in section 2, the chi-squared test for inde-

pendence was once part of the mathematics curriculum in Danish upper secondary

school. Chi-squared test can be both a test of independence or a hypothesis test.

The two types of tests are following the same procedure, but in this thesis the fo-

cus will be on the chi-squared test as a test for independence. The test, which is

a product of Karl Pearson’s work with χ2 distributions, can be used if there is a

contingency table that describes the relationship between two events, which could

have more than two possible outcomes. One can prove Pearson’s chi-squared test,

but since the chi-squared test does not play a major role in the rest of this work, the

content of such a proof does not outweigh the complexity of the proof. If someone

wants to read a proof of the test (or several), refer to Benhamou and Melot 2018.

Instead of proving the test, the test procedure will now be reviewed using an exam-

ple. The following contingency table describes the distribution of men and women

in the Danish parliament from the three largest parties.

Socialdemokraterne Venstre Moderaterne

Mænd 33 18 10 61

Kvinder 17 5 6 28

Sum 50 23 16 89

The first thing that must be done, in order to determine whether the gender dis-

tribution in the three parties is independent of the party, is to determine expected

frequencies. That is what the gender distribution should look like if it were equally

distributed in the parties, in relation to how many men and women are elected to

the parliament.
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Socialdemokraterne Venstre Moderaterne

Mænd 34.27 15.76 10.97 61

Kvinder 15.73 7.24 5.03 28

Sum 50 23 16 89

Now the following formula is used to determine the test size, Q, where k is the

number of cells in the contingency table, fi is the observed frequency in the i ’th cell

and xi is the expected frequency in the i ’th cell:

Q =
k∑

i=1

(fi − xi)
2

xi

Which means that the test size, Q, from the example can be determined to:

Q =
(33− 34.27)2

34.27
+

(17− 15.73)2

15.73
+

(18− 15.76)2

15.76
+

(5− 7.24)2

7.24

+
(10− 10.97)2

10.97
+

(6− 5.03)2

5.03
= 1.4282

Then this is where the chi-squared distribution comes into play. The chi-squared

distribution is different according to the number of degrees of freedom, which is

the multiple of the number of rows in the contingency table (without the sum row)

minus one and the number of columns (also without the sum column) minus one.

In the example, the degree of freedom is therefore (3− 1) · (2− 1) = 2.

It is now desired to determine the probability that the random variable that has

the chi-squared distribution with k− 1 degrees of freedom, X, is greater than Q, i.e.

P (X ≥ Q). This process contains a definite integral with an infinite upper limit

(and Q as the lower limit), which means that the students would have to know the

concept of limit, which they do not have in Denmark. Therefore, this part of the

calculation is left to a CAS tool, in upper secondary school and in this thesis.

P (X ≥ 1.4282) = 0.4896

The meaning of this is that there is a 48.96% chance that the gender distribution

in the three parties would turn out like this by random. To make an assessment

of this probability, what is called a significance level is usually chosen in advance

before doing the test. Normally, one works with a significance level of 1%, 5% or

10%. The calculated probability must be below the significance level before it can

be concluded that the parameters are dependent on each other.
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4.6 Simulations

In section 4.2 the large number of misconceptions in probability theory were ex-

plained, especially within conditional probability and independence. A tool that

can be used to help people finding out where they have made fallacies is simula-

tions. A simulation can clarify misconceptions, as it will point towards a different

result than the misconception does. Hopefully, it leads to a reconsideration of the

conclusion, and may lead to the person with a misconception finding out that the

person has made a fallacy, perhaps even that it is due to a misconception.

Simulations can be performed in several different ways. The most basic is by

manually repeating the experiment. It could be sitting down rolling a die or flipping

a coin 100 times, but it could also be more complicated experiments. An example

that is relevant for the rest of this thesis is the Monty Hall problem, which can be

formulated as follows:

Suppose you are on a game show and are given the choice to select one

of three doors. Behind one door there is a car and behind each of the

other two doors there is a goat. Once you select a door, say No 1 (which

is closed), the host, who knows what is behind each door, opens another

door (say No. 3), which contains a goat. You are now given the option

of changing your selection to door No. 2 or sticking with door No. 1.

What would you do? (Batanero, Contreras, et al. 2014, pp. 366)

For this example, manual simulations could be performed, using an equal area spin-

ner with three areas. By spinning the area spinner, a person can select a door com-

pletely at random, after which the person can test the strategy of switching doors

and the strategy of sticking with the door. It is possible to spice up the experiment

by letting a coin toss decide which strategy should be used for each playthrough.

If the person does enough simulations of each of the three strategies, the person

will be able to see that it is the smartest to change doors every time, and unwise

to stick with the door. The coin toss gives an equal distribution between winning

or loosing the prize. Such a manual simulation will give people a certainty in the

execution of the experiment, providing a strong ballast for the journey towards a

correct conception. Compared to the other simulation methods, this method is the

only one that provides this increased understanding of the execution of the experi-

ment. According to several researchers, including Shaughnessy 1992, simulations of

this form are a rewarding technique for confronting and overcoming misconceptions.
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On the other hand, this type of manual simulations is extremely time-consuming.

The consequence of this in a time-pressed teaching setting will be that the students

would not achieve many repetitions of the experiment without spending an entire

lesson on simulation. Furthermore, the simulation process will quickly become bor-

ing for the students, as it by its nature will be a monotonous process. Thus, manual

simulations will be a time-consuming and patience-demanding investment.

A much faster and less monotonous simulation method is computer simulations.

Computers are obviously a useful device for simulations, as they are extremely much

faster to perform an experiment than a human being. For classic and well-known

problems, such as The Monty Hall problem, there are pre-produced simulation ap-

plets on various websites. These applets often work flawlessly and for most people

will be plug and play, and thus a shortcut for students in a class to be able to

simulate the same amount of repetitions of the experiment as they would be able

to achieve in several lessons of manual simulation in a few minutes. By using this

type of simulation, students do not gain an increased understanding of the execu-

tion of the experiment, but only an idea of the winning chances of the strategies.

This means that pre-produced simulations only have the effect of pointing out false

conclusions. Some applets have tried to get a little closer to manual simulations by

compromising on simulation speed, and presenting small illustrations that perform

the experiment in something that gives the illusion of a manual routine. When a

person uses these applets, they will see the experiment being performed very quickly

one after the other before they get the output numbers, and thus not just a series

of output numbers. This is far faster than what a person would be able to simu-

late manually with an area spinner, but at the same time much slower than a pure

computer simulation. Several applets also allow the user to perform the experiment

manually by individual repetitions. A problem with using pre-produced simulation

applets for teaching is that students do not understand how the simulation works or

whether it is trustworthy.

To avoid this problem, students could also produce their own simulation pro-

grams. There are several free coding programs that are suitable for coding simu-

lations, e.g. the program R. The code itself is relatively simple if you are used to

coding. In Denmark, and many other countries, it is rarely the case that upper

secondary school students have experience with coding, and therefore this approach

would often be slow and challenging for many students. However, it is worth noting

that the process of coding a simulation of a problem such as The Monty Hall problem
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can be a learning process for students, as it will require a clear understanding of the

execution of the experiment and an initial formalization of the problem so that the

computer will be able to understand the problem. This could lead to the students

being able to make a real formal proof for the solution of the Monty Hall problem.

Such a solution could look like the following.

To solve the problem formally, the following three events are defined:

C : The player selects the door containing the car.

G : The player selects a door containing a goat.

W : The player wins the car.

Since C ∩G = ∅ and W = (W ∩C)∪ (W ∩G), C and G is a partition of the sample

space, and we can apply the addition rule

P (W ) = P ((W ∩ C) ∪ (W ∩G)) = P (W ∩ C) + P (W ∩G)

Using the definition of conditional probability in this form:

P (A ∩B) = P (A|B) · P (B)

we get

P (W ) = P (W ∩ C) + P (W ∩G) = P (W |C) · P (C) + P (W |G) · P (G)

It is known that P (C) = 1
3 and P (G) = 2

3 . P (W |C) and P (W |G) depends on the

choice of strategy. If you choose to stick at the door you chose first, it is clear that

P (W |C) = 1 and P (W |G) = 0, which mean

P (W ) = P (W |C) · P (C) + P (W |G) · P (G) = 1 · 1
3
+ 0 · 2

3
=

1

3

If you choose to switch, it is clear that P (W |C) = 0 and P (W |G) = 1, which mean

P (W ) = P (W |C) · P (C) + P (W |G) · P (G) = 0 · 1
3
+ 1 · 2

3
=

2

3

In this way, it is formally shown that there is the greatest chance of winning if you

switch.

A general problem with using simulations for teaching purposes is that students

use the simulation as an argument for a new conclusion, without considering what

justifications and which reasoning that are plausible for their new conclusion using

simulation. These are important considerations, as it is through these that students

can let go of their misconceptions and develop new, more correct conceptions.

34



5 The Theory of Didatical Situations

The Theory of Didactic Situations is used as a framework for the teaching design

that is to illuminate the thesis’ research questions. This theory is one of the classic

theories within didactics. Therefore, only a short review of the theory will be given

in this thesis, while it is encouraged to read Brousseau 1997 if you want the full

review of the theory. Guy Brousseau is the main man behind the Theory of Didactic

Situations (from now on called TDS).

In TDS it is important to distinguish between personal knowledge and official

knowledge. Personal knowledge is the knowledge that lies in each of our minds of

thoughts, i.e. the way we understand things, while official knowledge is the way

knowledge is represented when knowledge is to be shared or communicated, e.g. in

textbooks, scientific articles or when a teacher explains theorems and definitions

etc. and writes it on the board. The epistemological basis of TDS is to expand

students’ personal knowledge and then to formalize it into official knowledge. To do

this, TDS proposes that teaching is structured in five different phases, devolution

(or instruction), action, formulation, validation and institutionalization. Often there

will be overlaps of the phases and the phases do not have to appear in the order

in which they are presented. The devolution phase (sometimes called instruction

phase) is where the teacher formulates the problem for the students. The teacher

use the devolution phase to set up a didactic milieu. The teacher have to explain

to the students which problem they have to work on, how long the students have

to work on it and which materials and devices the students are allowed to use. The

devolution phase is always a didactic phase, which means that it is controlled by the

teacher. The action phase is the phase where students work with the problem set in

the devolution phase. The teacher have to back off and let the students work on their

own. Therefore, the teacher can not give any guidance or instructions. This phase

will always be adidactic, which means that the teacher has no control over the course

of the lesson. In the formulation phase, students have to formulate hypotheses and

conclusions. They can be both tentative or more complete, depending on how far

the students are in their work process or how the teaching is structured (for exam-

ple, it may be intended that the students have to make a preliminary hypothesis

before the teacher devolves a modified didactic milieu) . The students’ hypotheses

and conclusions can be imprecise to begin with. If so, the teacher can encourage

students to try to be more precise. The formulation phase often is adidactic. The
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validation phase is a central phase in TDS, as it is in this phase where the students

get their hypotheses and conclusions validated, and thus the first step towards for-

malizing their personal knowledge into official knowledge. The validation can take

place in several ways. It could, for example, be; that the students can validate each

other through joint validation (usually controlled by the teacher) or through direct

validation from the teacher. The validation phase is often didactic. The institu-

tionalization phase is the phase where the teacher reviews the formal part of the

problem (theorems, proofs, definitions, laws, etc.). Here, official knowledge is the

focal point. Therefore, this phase will typically be after the students have had the

opportunity to expand their personal knowledge in some of the other phases, before

this knowledge is formalized into official knowledge. The institutionalization phase

is central, as it is not normally possible or necessary for the students to be able to

acquire the entire desired amount of knowledge through action phases. In a normal

teaching situation, it will always be the teacher who is responsible for this review,

and thus the phase is didactic.

The didactic contract is an important concept in TDS, as its effects have a great

influence on teaching structured using TDS. The didactic contract is a metaphorical

concept (there is usually no physical contract) that describes a special mechanism in

the interaction between the teacher and the students. Both students and the teacher

have an expectation that the other party will comply with this informal contract.

The students expect the teacher to set up a didactic milieu that is suitable for the

students in relation to the students’ academic ability, and which will at the same

time make them smarter and more skilled. The students are expecting that there are

correct solutions to the tasks the teacher gives to the students. At the same time,

the teacher expects the students to participate actively in the lesson and that they

will try to the best of their ability to arrive at the correct solution. This means that

the students must accept the didactic milieu. What is particularly interesting about

the didactic contract is that a fundamental paradox is built into the contract. The

paradox is that the teacher always knows the answers and solutions to all the techni-

cal problems and tasks she asks. The teacher therefore does not ask questions to the

students because she does not know the answer (as is usually the case in most other

social contexts), but with a didactic purpose, namely that the students should find

the answer by themselves. The fundamental paradox is thus a consequence of the

didactic contract, which makes the interaction between the teacher and the students

unnatural and artificial at certain points. The essential problem with the fundamen-
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tal paradox is that it hinders learning, as it in its way obstructs the didactic milieu

a bit. Therefore, it is central to TDS that the fundamental paradox disappears (or

at least disappears as much as possible). Since the paradox comes from the didactic

contract, the didactic contract must disappear or, probably more realistically, step

into the background. The less the didactic contract fills in teaching, the more freely

the students can work in the didactic milieu.

There are some effects that derive from the fundamental paradox that typically

occurs when the teacher tries to convince himself and the students that the didactic

contract is being respected. This means that the teacher more or less unconsciously

tries to help the students arrive at the correct answer to the teacher’s question.

The effects thus only manage to elude the students arriving at the correct answer,

while the reality is that it is the teacher who in various ways makes the students

say/repeat the correct answer. One of the effects is called the Topaze effect, named

after a famous play by Marcel Pagnol, which you can read more about in Brousseau

1997 on page 25. The Topaze effect is that the teacher, in the desire to allow the

students to answer her question correctly, lowers the difficulty of the question so far

that the target knowledge is no longer reachable. Often this happens in a process

where the teacher first asks a question that is too difficult for the student to answer.

After that, the teacher lowers the level of difficulty a little bit, but the question is

still beyond the student’s level of knowledge. Then the teacher lowers the difficulty

even more, but not enough for the student to answer yet and so on. This leads to the

student eventually just having to answer a trivial question. Another effect derived

from the didactic contract is the Jourdain effect, named after the main character

in another French piece of stage art, namely le Bourgeois Gentilhomme by Molière,

which is described in further detail in Brousseau 1997 pages 25-26. The Jourdain

effect is about the teacher convincing herself and the students that the students

have acquired knowledge, without the students having necessarily done anything

other than saying a correct result or doing exactly what the teacher had told the

students to do. The classic example is from Brousseau’s own book:

The student asked to perform rather strange manipulations with jars of

yoghurt or coloured pictures is told, ”You have just discovered a Klein

group”.

(Brousseau 1997, p. 26)

In this way, the teacher and the students think that the students have learned

37



something about Klein groups, which is hardly the case, since the students have

simply followed the teacher’s instructions without necessarily thinking further about

what they have looked at. The last effect that will be presented here in the thesis is

metacognitive shifts. This effect is about downscaling the formal, official knowledge

so that it becomes more informal. This will most often happen when the students

do not get to expand their personal knowledge, as is desired and expected by the

teacher in advance. As a result, the students do not have the prerequisites to be able

to follow the teacher’s prepared formalization of the personal knowledge into official

knowledge. The teacher therefore chooses to present a more informal version of the

official knowledge that does not meet the target knowledge. When TDS is used as

an evaluation tool, it is interesting to look for what are called didactic variables and

fundamental situations. A didactic variable is variations in the didactic milieu or in

the devolution and institutionalization phases. It is especially interesting to look at

variations that preserve target knowledge. There will always be didactic variables

when examining how a teaching design works in practice. It can be both interesting

to investigate why the variation occurred and what it entailed. A fundamental

situation is an adidactic situation where the student acquires personal knowledge

that enables a formalization into official knowledge shared with the other students

in the class. It is interesting to find fundamental situations, as these situations

are the culmination of a didactic milieu, and thus possibly can be used to restate a

similar teaching process, so that a didactic milieu can be set up that enables students

to arrive at the same fundamental situation.

6 Design and A Priori Analysis

In this section, the design process will be presented. It does not make any sense

to separate the a priori analysis and the design process into two separate sections,

since the a priori analysis is one of the most important tools in the design process.

Therefore, the a priori analysis will be presented alongside the design in this section.

If you wish to see the designed tasks, they can be found in appendices A.2 to A.7 in

the original danish version. The lesson plans that were given to the teacher will be

included in an English version in this section, and the original Danish version can be

found in appendix A.1. The teaching design extends over one week with five lessons

of 55 minutes each however, about 15-20 minutes should be spent introducing the

students to the project and giving the students an initial data collection test at the
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start of the first lesson of the week, and also about 10-15 minutes should be spent

giving the students a final data collection test at the end of the last lesson of the

week. These lessons are scheduled so that the first two lessons are on Monday and

the last three lessons are on Thursday. The lessons are roughly one after the other.

Therefore, I have chosen to structure the teaching so that there are a total of six

exercises, where three of the exercises have to be completed on Monday and the last

three exercises have to be completed on Thursday. These exercises will be presented

below one after the other, and are structured in such a way that there are some

general information, followed by the actual plan for carrying out the exercise in a

TDS-schedule inspired by the MERIA project Jessen and Winsløw 2018 and finally

an a priori analysis and argumentation for the design. But before we start on that,

here is the general information about the entire course.

6.0.1 General Information

Target knowledge A strengthening of students’ conceptual and intu-

itive use of independence in probability theory, as

well as making students familiar with the formal

definition of independence.

Broader goals Students have to be able to use definitions for both

conditional probability and independence. They

have to be able to analyze a probability problem

that deals with conditional probabilities. They have

to know how to read and analyze a contingency ta-

ble. They have to be able to avoid making the time

axis fallacy. They have to know the difference be-

tween pairwise independence and mutual indepen-

dence.

Necessary mathematical

prerequisites

There are no specific necessary prerequisites, but

knowledge of general probability theory will be a

great advantage, but the course can be carried out

without this student competence.
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Level The highest mathematical level in the Danish up-

per secondary school, which is called A-level. The

amount of mathematical maturity can be decisive,

therefore it is recommended that students have

passed their first year of upper secondary school be-

fore the course is taught. This means that the stu-

dents are 17-19 years old.

Time consumption 5 lessons of 55 minutes. Incl. the time spent on in-

troduction and the comprehension tests, which cor-

responds to 25-40 minutes in total.

6.1 First Exercise - A Contingency Table

Target knowledge How a contingency table is structured. A initial con-

ceptualization of the meaning of conditional proba-

bility. The difference between P (A∩B) and P (A|B).

Necessary mathematical

prerequisites

There are no specific necessary prerequisites, but

knowledge of general probability theory will be a

great advantage, but the course can be carried out

without this student competence.

Time consumption 30-40 minutes. (Together with the introduction and

the initial data collection test, it will last around the

entire first lesson, i.e. 55 minutes.)

Materials available All students receive a printed version of the prob-

lem. Other than that just a pencil and a calculator.
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Problem: The table shows fabricated data from a random sample, which have

to help clarify the effect of mass testing a population for a certain fabricated

disease (could be called ”Divoc”). The columns ”Ill” and ”Healthy” refer to

whether the persons were infected with Divoc or not at the time of the test-

ing, respectively. While the rows ”Tested positive” and ”Tested negative” refer

to whether the persons tested positive or negative, respectively.

Ill Healthy Sum

Positive test 22 248 270

Negative test 3 2,227 2,230

Sum 25 2,475 2,500

a What is the probability that a random person from this random sample

has a positive test?

b What is the probability that a random person from this random sample

both has a positive test and is infected with Divoc?

c What is the probability that a random person from this random sample

has a positive test if the person is infected with Divoc?

d What is the probability that a random person from this random sample

has a positive test if the person is not infected with Divoc? Compare this

with question c, what does it mean?

e What is the probability that a random person from this random sample is

infected with Divoc if the person tests positive? What is the probability

that the person is healthy if the person’s test is positive? Compare this.

What does it mean?
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6.1.1 TDS-Schedule

Phase The teacher’s actions incl. in-

structions

The students’ actions incl.

reactions

Devolution

(Didactical)

3-5 minutes

Present the contingency table for

the students and ensure that the

students understand the contents

of the table. Show the work ques-

tions to the students. To find

the contingency table and task

questions see above, where it is

reviewed. Tells the students to

work with their side mate. Each

pair should have a piece of pa-

per with the contingency table

and work questions, which can be

found in the original Danish ver-

sion in appendix A.1.1.

Listens and asks follow-up

questions. Receives the

paper and prepares for the

mateship.

Action and

formulation

(Adidactical)

10-15 minutes

Observes students without inter-

acting with them. However, it is

alright to interact with students

who cannot get started or have

stopped completely and cannot

get started again.

Working on the work

questions with their side

mate. Write their solu-

tions down their papers.

Formulation

and Validation

(Adidactical)

7-10 minutes

Through the teacher’s observa-

tions in the action and formu-

lation phase, the teacher has

gained an overview of which so-

lutions the different pairs have.

Therefore, the teacher can select

different pairs of partners to ex-

plain their solutions.

Listens when the teacher

or classmates speak. Ex-

plain their solutions when

asked by the teacher. Ac-

tively participates in the

plenary session.
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Institutionali-

zation

(Didictical)

10 minutes

Reviews conditional probability

theoretically based on the tasks

just completed. Uses Venn dia-

grams to illustrate probabilities

and the restriction of the sample

space when conditioning.

Listens and takes notes.

6.1.2 Analysis

In the first lesson, part of the time is spent introducing the students to the project

and conducting an initial empirical test of the students’ conceptualization of in-

dependence and thereby also conditional probability. In the exercise it has been a

focal point that it is fairly straightforward. For this reason, the exercise is structured

with sub-questions of increasing difficulty. The first two sub-questions do not deal

with conditional probability or independence, but are questions that should help

the students to be able to understand and orientate themselves in the universe of

the exercise. The rest of the sub-questions deal with conditional probability, with a

focus on how the conditional leads to a narrowing of the sample space. In this way,

the sub-questions act like a guide to conditional probability.

The actual exercise the students have to work on deals with a contingency table.

In section 4.5, it is explained how research has described how contingency tables

can be useful for conceptualizing conditional probability, and more specifically how

conditional probabilities are a narrowing of the sample space. The theme of the

exercise is testing for a disease called ”Divoc”. With the Covid-19 epidemic still

in the immediate memory, the whole concept of disease testing will be familiar to

the students, so they understand the concepts of testing positive or negative. The

students have to work on the exercise that they are given on a piece of paper. The

students are supposed to work in pairs. Space has been made on the paper for the

students’ answers. If you want to see the exact problem formulation, you will find

the problem formulation in Danish in appendix A.2

The students are first asked what the probability is that a random person from

the sample, which forms the basis of this contingency table, has a positive test. This

question does not deal with conditional probability, but aims to give the students
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an overview of the contingency table and the meaning of the numbers in the table.

The students’ task is quite simple. They just have to find the two correct numbers

and divide on by the other to get a frequency. A student who has understood the

structure of the table will easily be able to say that the probability have to be the

number of positive tests that they find in the sum row on the right side of the table,

divided by the total number of people. However, there could be a few students

who choose all sorts of numbers from the table with all sorts of arguments for why

they chose those particular numbers. Students with a very poor understanding of

probability theory may simply be able to find the number 270 as the number of

positive tests and think that this number is the probability they search for. Others

will find it difficult to understand the contingency table, and thus understand the

meaning of the individual numbers. These students could come up with answers to

all conceivable combinations of numbers from the table, e.g. 22
25 ,

22
270 ,

248
2,475 ,

22
25+

248
2,475 ,

ect. Students who lack understanding of both probability theory and contingency

tables could find themselves answering 22, as it is the number closest to the cell

where positive tests are written. However, the expectation is that almost every

student are able to determine the correct probability (which actually is a frequency)

or at least arrive at this correct conclusion in a discussion with their partner.

The next question for the students is to determine the probability that a random

person from the sample is both sick and tested positive. As in the first question,

this does not deal with conditional probability, but have to create an overview of

the contingency table. The question is somewhat informal way of asking students

to determine P (Ill ∩ Positive test), which is not a difficult task if the student un-

derstands the structure of the contingency table, unless there should be some kind

of conjunction fallacy described in section 4.2.4. As before, students with a lack of

understanding of probability theory and/or contingency tables can come up with

all sorts of solutions, which can be a number from the table or a number from the

table divided by another number from the table. In this question, some students

can incorrectly narrow down the sample space and divide by either 25 or 270 instead

of dividing by the entire sample space, 2,500, as they consciously or unconsciously

work with it as it was a conditional probability.

In the third question, students’ work with conditional probability starts. They

have to determine the probability that a random person from the sample will test

positive if the person is actually ill, which is called the sensitivity. This time the

students have to narrow down the sample space, which of course again requires an
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understanding of the contingency table, but also an understanding of the linguistic

design of the question, which, according to section 4.4, is often really difficult. For

students who are not used to working with conditional probabilities, it takes a lot

of concentration to understand the nature of the question. Therefore, it is likely

that some of the students will misunderstand the question and determine a different

conditional probability, most likely the opposite probability (fallacy of the transposed

conditional, see section 4.2.3), namely the probability that a random person from

the sample is ill if the person has tested positive (the positive predictive value). The

students’ results are relative frequencies more than they are conditional probabilities,

but as was described in section 4.5 it still gives students a basic conceptualization

of conditional probabilities.

The fourth question should give the students the opportunity to assess the quality

of the test. Therefore, they have to determine the probability that a random person

from the sample has a positive test if the person is healthy. The calculation itself is

parallel to the one in the previous question, so students may have the same problems.

The interesting thing about this task is that the students are asked to compare their

result from this task with the result from the previous task. Those students with

the correct results will see that the probability of testing positive is much higher for

those persons who are ill than those who are healthy. The students are then asked

what this means. It is clear to the students that these results imply that the test

works and it seems to be good. Students with incorrect results will be able to draw

other conclusions, and from this they may see that they have done something that

does not hold, and thus reconsider their solution..

In the last question, students have to first determine the probability that a

random person from the sample is ill if the person has a positive test, which is

called the positive predictive value. Then they have to determine the probability

that a random person from the sample is healthy if the person has a positive test

and compare these results. Again, the calculations are parallel to the previous

conditional probability calculations, but this time the students will get a result that

may surprise them. Students will see that the probability that a person from the

sample is ill if the person has a positive test is relatively low, namely 22
270 ≈ 8.15%,

while the probability that a person from the sample is healthy if the person has a

positive test is relatively high, namely 248
270 ≈ 91.85%. This fact can be difficult for

some students to understand as they think it seems strange. They believe that this

contradicts their conclusion from the previous question, where they concluded that
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the test is good. Some students will think the test is no longer good, since you are

most likely healthy even if you have a positive test. Other students will consider

what makes a good test. Obviously, a test that almost always turn out positive

when a person is sick and almost never turns out positive when a person is healthy

is the most favorable test, but what has most importance; that the test turns out

positive for all person with the disease or that it does not turn out positive for all

the healthy ones? Some students may conclude that the high probability that a

person with a positive test is healthy follows from the fact that it is generally much

more likely to be healthy than to be ill, and thus avoid the base rate fallacy. As

in the other questions, students may come to different conclusions if they have not

conceptualized the structure of the contingency table. The students’ work will thus

be able to open up a discussion about the quality of the test, which could further

open up an initial discussion about independence.

Students who have difficulty with the concept of contingency tables will have

continuous challenges in solving all the tasks in this exercise. Therefore, the initial

devolution of the teacher is extremely important in order not to leave a small group

of students without a chance to work with the exercise. The teacher have to explain

to the students how a contingency table is structured and how to understand the

meaning of the individual numbers. Furthermore, students work in pairs, which

means that a student who has not understood the structure of the contingency table

has a partner who can help provide an understanding of this structure. At the end

of the exercise, the teacher have to institutionalize the most important points of

the exercise. Here, the teacher have to focus on the concept of narrowing down the

sample space when working with conditional probabilities. This have to be done

visually and illustratively with the help of Venn diagrams, since the students only

know a little about the notation of set theory.
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6.2 Second Exercise - Another Contingency Table

Target knowledge A strengthened conceptualization of the meaning of

conditional probability. A beginning conceptualiza-

tion of the meaning of independence.

Necessary mathematical

prerequisites

There are no specific necessary prerequisites, but

knowledge of general probability theory will be a

great advantage, but the course can be carried out

without this student competence.

Time consumption 25-30 minutes.

Materials available All students receive a printed version of the prob-

lem. Other than that, just a pencil and a calculator.

Problem: The table shows fabricated data from a random sample, which have

to help clarify the effect of mass testing a population for a certain fabricated

disease (could be called ”Divoc”). The columns ”Ill” and ”Healthy” refer to

whether the persons were infected with Divoc or not at the time of the test-

ing, respectively. While the rows ”Tested positive” and ”Tested negative” refer

to whether the persons tested positive or negative, respectively.

Ill Healthy Sum

Positive test 15 922 937

Negative test 25 1,538 1,563

Sum 40 2,460 2,500

Is this test good or bad and why?
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6.2.1 TDS-Schedule

Phase The teacher’s actions incl. in-

structions

The students’ actions incl.

reactions

Devolution

(Didactical)

2-3 minutes

Presents the contingency table,

which is seen above this sched-

ule or in appendix A.1.2, where

it is in its original form. Explains

that the contingency table de-

scribes another test for the dis-

ease ”Divoc” that they worked

on in the last exercise. Gives

students the associated working

question; ”Is this test for Divoc a

good test? Why/why not?”. Di-

vide the students into groups of

4-5.

Listen and then join their

groups.

Action

(Adidactical)

7-9 minutes

Observing the students. Don’t

interact with them unless it is

necessary to get a group working.

Working on the work

question.

Formulation

(Adidactical)

3-4 minutes

Divide the board so that there is

an area for each group and tell

the students that each group

should write their solution on

the board. After this, the teacher

continues the observation of the

students.

Students write their solu-

tion on the board.
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Formulation

and Validation

(Adidactical)

6-7 minutes

Select a group that can be the

first to present their proposed

solution. The group is chosen

on the basis of the observations

the teacher has made in the pre-

vious phases. This solution can

then be discussed in plenary or

a new group can be chosen who

can present their solution, if this

is considered better for the stu-

dents.

Some students present

to the others who listen

attentively. Actively par-

ticipates in plenary dis-

cussions.

Institutionali-

zation

(Didictical)

5-6 minutes

Reviews independence theoreti-

cally based on the problem. Ex-

plains definitions for indepen-

dence, both the definition with

and without the use of condi-

tional probability.

Listen and ask follow-up

question if necessary.

6.2.2 Analysis

The second exercise is very similar to the first exercise and can therefore be completed

significantly faster. Therefore, it is expected to last only about half of the second

lesson. If you want to see the original Danish exercise design you can find it in

appendix A.3. The difference between this exercise and the previous one is that this

time the students themselves have to assess whether a test is good or bad based on

a contingency table similar to the table in the first exercise, but with new numbers.

If the chi-square test was still part of the curriculum (which it is not, see section

2) it would be a smart method of assessing the quality of the disease test. The

students do not get the guiding sub-questions, as in the previous exercise, to guide

them towards a conclusion. Another difference between the design of this exercise

and the previous exercise is that this time the students have to work on the task in

groups instead of in pairs. This is to increase the chance that more students will

have interesting and concept-strengthening discussions, since in any group there will
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be more opinions to the exercise than if the students had to work in pairs.

The expectation is that the students will determine the relative frequencies of

testing positive given one is ill and testing positive given one is healthy. If they do

this they will notice that the probabilities are close to each other,

P (Positive|Ill) = 15

40
≈ 37.5% and P (Positive|Healthy) = 922

2, 460
≈ 37.5%.

From this, students will be able to conclude that the test is not good, as there is

approximately the same percentage that tests positive regardless of whether you

test a sick or healthy person. The hope of this exercise is to get the students to

use expressions and concepts related to independence, as a linguistic argument. It

could, for example, be that they said ”whether you are ill or healthy does not affect

the outcome of the test”, ”whether you are ill or healthy has no influence on the

outcome of the test” or something similar. There may also be students who focus on

the opposite conditional probabilities, i.e. P (Ill|Positive) and P (Healthy|Positive),
which in this case are

P (Ill|Positive) = 15

937
≈ 1.6% and P (Healthy|Positive) = 922

937
≈ 98.4%.

If the students try to conclude the quality of the test based on these results, their

conclusion will probably be that the test is bad, since there is a very high probability

that you are healthy even if you have a positive test. However, in the validation

phase of the previous exercise, the students discussed how this high percentage of

false positives is due to the fact that the percentage of person with the disease

of the entire sample space is very low, which may help students avoid the base

rate fallacy. For this reason, some may have stopped themselves from drawing this

conclusion based on this result. Students who still have not understood the structure

of contingency tables will have as much difficulty with this exercise as the previous

one. However, there should not be many of these students left, as they have already

had a whole exercise to familiarize themselves with it, and that they now also have

a group to support them in their conceptualisation.

In the institutionalization phase of this exercise, it is important that the teacher

links the students’ work to independence. Students do not know much about in-

dependence beforehand. Therefore, the teacher have to define independence, in the

way that definition 4.2 does it, which is possible since he defined conditional proba-

bility in the institutionalization in the first exercise. However, the teacher should still

repeat the definition of conditional probability before the definition of independence

so that it is fresh in the students’ memory.
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6.3 Third Exercise - The Urn Problem

Target knowledge A strengthened conceptualization of the meaning of

conditional probability. A strengthened conceptual-

ization of the meaning of independence. Knowledge

of the time axis fallacy, and thus the skills to avoid

it.

Necessary mathematical

prerequisites

There are no specific necessary prerequisites, but

knowledge of general probability theory will be a

great advantage, but the course can be carried out

without this student competence.

Time consumption 25-35 minutes.

Materials available Just a pencil and a piece of paper.

Problem: There are four marbles in an urn. Two of them are white and two of

them are black.

a You draw a marble from the urn and see that the marble is white, you

put the marble in your pocket. What is the probability that the next

marble you draw is white, too?

b This time you draw a marble, but do not look at the marble before pock-

eting it. You draw a new marble, which you see is white. What is the

probability that the marble in your pocket is white, too?

c Are the events first marble is white and second marble is white dependent

or independent?

Additional task: You have the same urn with the same four marbles in it. This

time you draw a marble and you see it is white. Then you put the marble back

in the urn. Now you draw again, what is the probability that this marble is

white? Repeat the experiment where you draw a marble, which you show to

your friend without you seeing it, after that you just put the marble back in

the urn. Now you draw a new marble that shows to be white. What is the

probability that your friend saw a white marble? Are the events first marble

is white and second marble is white this time dependent or independent?

51



6.3.1 TDS-Schedule

Phase The teacher’s actions incl. in-

structions

The students’ actions incl.

reactions

Devolution

(Didactical)

4-5 minutes

Explains the urn problem to the

students. The experiment is car-

ried out in front of the students

while the task is explained. Ex-

plain to the students that they

have to continue in their groups.

Listen and ask follow-up

questions if necessary.

Action

(Adidactical)

8-10 minutes

Observes students and interacts

only if it is necessary to get stu-

dents to start working.

Work on the problem in

their groups.

Formulation

(Adidactical)

3-4 minutes

Tells students to write their an-

swers on the board. Then the

students are observed again.

Write solutions on the

board.

Formulation

and Validation

(Adidactical)

8-10 minutes

Select a group to present their

solutions. Then another group

can be chosen to present their

solution if they have a different

explanation or a discussion can

take place in plenary. This de-

pends on the teacher’s observa-

tions.

Present their solution if

they are selected by the

teacher, otherwise listen.

Actively participates in

plenary discussions.

Institutionali-

zation

(Didictical)

3-4 minutes

Explain to students how condi-

tional probability and causality

are not the same, and explains

how conditional probability can

be used opposite the passage of

time. If there is time, the teacher

can present Bayes’ theorem.

Listen and ask follow-up

questions if necessary.
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6.3.2 Analysis

The third exercise, called ”the urn problem”, is a well-known problem which are

included in both Batanero and Sanchez 2005 and Falk 1989, and more, where they

formulate the problem as follows

An urn contains two white balls and two red balls. We pick up two balls

at random, one after the other without replacement. (a) What is the

probability that the second ball is red, given that the first ball is also

red? (b) What is the probability that the first ball is red, given that the

second ball is also red? (Batanero and Sanchez 2005, pp. 251)

In this thesis, it has been chosen to reformulate the problem, for the sake of the

students’ understanding of the problem. These are not major changes that do not

change the basic idea of the problem, but a question has been added to the problem

about whether the events are independent, and furthermore a few additional tasks

that are relatively simple. In these additional tasks, the students have to do exactly

the same thing, but the experiment is carried out with replacement. If you wish

to read the problem in Danish as it was given to the students, it can be found in

Appendix A.4. To ensure that all students understand the problem, it is presented

to the students by the teacher using an urn (or something similar, such as a box)

and four marbles (two white and two black, or whatever can be found). With the

help of these remedies, the teacher can perform the experiment with its variations a

few times, and thus performs a simulation of the experiment, which, as described in

section 4.6, helps the students to understand the execution of the experiment and

thus make it easier for them to analyze the problem. The students are then ready to

work on the problem. The first part will not cause many students trouble, since the

task will seem very straightforward to the students whose intuition will be correct

in the first place, since they are used to work with problems parallel to this one.

The interesting part of the problem is part (b), where the students’ intuition may

not be correct in the first place, due to the time-axis fallacy. Presumably, on the

basis of this intuition, the majority of students will think that the probability have

to be 1
2 , since there were two white and two black marbles in the urn when the first

marble was drawn. This assumption was tested in Falk 1989 and Falk showed that

this fallacy, called the fallacy of the time axis, occurs frequently among students at

this level, and is described in further detail in section 4.2.1. It may be that there are

a few students who will be able to see this problem in the right context, and thus
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create a solution equivalent to the solution to the first part of the problem. These

students will probably argue for their solution by saying something like if a white

marble is drawn in the second draw, then we know that the particular white marble

was not drawn in the first draw, therefore the possibilities are only one white marble

and two black marbles, which means the probability have to be 1
3 (which is a correct

linguistic argument). After this, the students have to deal with whether the events

are independent. Students who have the previous part of the exercise correct will

not have much difficulty in concluding that the events are dependent, since their

correct analysis of the problem makes the dependence quite explicit. Students who

do not have the previous part correct will probably be very uncertain, as they will

clearly think that the first draw will be independent of what is drawn in the second

draw, but can also see that the second draw is dependent of what was drawn in the

first draw. Some students may want to reconsider their probabilities. It is certainly

a reason for great uncertainty about the concept of independence, and therefore

it is important that the teacher rehearses the definition of independence with the

students in the subsequent institutionalization phase and makes the students develop

their personal knowledge through the validation phase before that.

Students have to work in groups in this exercise, which brings with it the pos-

sibility that there will be groups where students have divergent intuitions. When

students with different intuitions have to collaborate, it can lead to interesting dis-

cussions between the students, as they will try to convince each other that their

intuition is the correct one. The reason these discussions are so interesting is that

the students participating in the discussion are highly motivated to provide the

strongest and most accurate arguments for their particular intuition. This makes

it possible to hear and see students’ arguments in a relatively clean form, which is

quite worthy for a thesis like this. In addition, this argumentation process will also

be very rewarding for the students, as they will experience a more realistic way of

working with mathematics, and probably the correct intuition will end up standing

as the true one for the students after the discussion. At the end of the exercise, the

teacher have to institutionalize the difference between causality and condition. In

addition, the teacher also have to institutionalize both Bayes’ theorem and repeat

the definition of independence. It makes sense to institutionalize Bayes’ theorem

at this point, since students have just worked on their intuitive understanding of

conditional probabilities and this will allow students to subsequently determine con-

ditional probabilities.
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6.4 Fourth Exercise - The Monty Hall Problem

Target knowledge A strengthened conceptualization of the meaning of

conditional probability. The power of simulations.

Necessary mathematical

prerequisites

There are no specific necessary prerequisites, but

knowledge of general probability theory will be a

great advantage, but the course can be carried out

without this student competence.

Time consumption 55-75 minutes.

Materials available Laptop, a pencil and a piece of paper.

Problem: Suppose you are on a game show and are given the choice to select

one of three doors. Behind one door there is a car and behind each of the other

two doors there is a goat. Once you select a door, say No 1 (which is closed),

the host, who knows what is behind each door, opens another door (say No. 3),

which contains a goat. You are now given the option of changing your selection

to door No. 2 or sticking with door No. 1. What would you do? (Batanero,

Contreras, et al. 2014, pp. 366)

6.4.1 TDS-Schedule

Phase The teacher’s actions incl. in-

structions

The students’ actions incl.

reactions

Devolution

(Didactical)

8-10 minutes

Gives students an ultra-brief

sketch of the story behind the

Monty Hall problem. Explain the

rules of the game to the students.

Play through a few examples

where students can help develop

strategies (e.g. always start with

a specific door, switch doors,

or stay at the door). If the stu-

dents themselves do not mention

strategies about the choice of the

first door, this part is omitted for

efficiency.

Listen, participate in the

plenary session and pose

any follow-up questions.
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If they mention these strate-

gies, it is necessary to exclude

them. Tells the students to de-

cide whether they think a strat-

egy would be beneficial and if

they think so; which one. Share

link to website. Explains to the

students that they will now have

5 minutes to play the Monty Hall

game on their own. (There is a

part of the shared website where

you can be the ”quiz partici-

pant”.) Tells the students that

they have to choose for them-

selves whether they play with a

strategy or on pure intuition. If

they play with a strategy, they

must of course also choose which

strategy they use. The website

does its own statistics.

Action

(Adidactical)

6-7 minutes

Observes the students. Does not

interact with them unless it is

necessary to get a student started

on the work.

Plays the game indepen-

dently.

Formulation

(Adidactical)

6-7 minutes

Divides the students into groups

of 4-5 students. Asks students

to compare their data, then for-

mulate a preliminary conclusion

about how to play the game to

have the best chance of winning,

and write it on the board. Then

the teacher observes the students.

Compare their data with

each other, to get the best

background to formulate

a preliminary conclusion

on how to play the game

to have the best chance

of winning. Write their

preliminary conclusion on

the board.
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Formulation

and Validation

(Adidactical)

8-10 minutes

Gets a few of the groups to

present their preliminary con-

clusion and why they have come

to that conclusion.

Present conclusions and

arguments or listen if they

do not present.

Devolution

(Didactical)

2 minutes

Explains to the students that on

the website they can also simu-

late many repetitions of the game

in a short time. Asks the stu-

dents, just like before, to first

work independently with the

simulation and then join their

groups and discuss their (per-

haps) new conclusion, write it

on the board, and consider how

it could be like this. They must

also write their arguments on the

board.

Listen and ask follow-up

questions if necessary.

Action

(Adidactical)

3-5 minutes

Observes the students. Does not

interact with them unless it is

necessary to get a student started

on the work.

Works with the simulation

independently.

Formulation

(Adidactical)

10-12 minutes

Observing the students. Do not

interact with them unless neces-

sary to get a group working.

Working in groups to for-

mulate their conclusion on

which strategy gives the

greatest chance of win-

ning, write it on the board

below their previous con-

clusion (it doesn’t matter

if it’s the same conclu-

sion).
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Discuss internally in the

group how it might be

that their conclusion is

true. Write their argu-

ments on the board below

their conclusions.

Formulation

and Validation

(Adidactical)

7-10 minutes

Have a group or two explain their

conclusion and their arguments

to the rest of the class. Opens

up the discussion in plenary for

other arguments.

Explain conclusions and

arguments, listen and par-

ticipate in the class dis-

cussion

Institutionali-

zation

(Didictical)

7-10 minutes

Reviews the formal solution and

possibly a less formal solution

where counting trees are used.

Listen and ask follow-up

questions if necessary.

6.4.2 Analysis

In this problem, students have to work with a classic in paradoxical probability

theory problems, the Monty Hall problem, and they have to use a precoded simula-

tion applet, whose advantages and disadvantages are described in section 4.6. The

problem has been described countless times in previous research, e.g. Batanero,

Contreras, et al. 2014. To help students understand the problem, the teacher have

to explain in the devolution phase to the students how to play the game. This is

done by using the website MathWarehouse 2014, that allowed the user to play the

Monty Hall game manually. Here, the teacher have to get the students to come up

with strategies which can be used when playing this game. This is done in a plenary

session, where the students come up with different strategies. It is expected that

the students can come up with the two important strategies to be able to solve this

problem, namely ”to change the door” or ”to stay at the door”. However, it is also a

possibility that students will mention that it could be a strategy to choose a specific

door in the first choice, e.g. door nr. 1. This could be tested by the students, since

there could also be learning in this, but since the students should use the simulation

applet from the website, MathWarehouse 2014, and since this simulation function is
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made so that it counts the number of wins and losses for each of the strategies ”to

change the door” and ”to stay at the door”, it can be confusing for students if they

have to test a strategy that is not part of the program’s data collection function.

Therefore, already in the devolution, the teacher have to discuss with the students

whether it makes a difference to the chances of winning, which door is chosen at

the beginning. Here the teacher can help the students on their way by explaining to

them that a game show host (e.g. Monty Hall (who funnily enough never included

this game in his game show)) does not have a preference for how cars and goats

are distributed, this means that there is exactly the same probability that the car is

behind one of the doors as it is behind one of the others.

Students should start by playing the game for a few minutes. MathWarehouse

2014 has a feature where you can manually play the game by clicking on doors,

that feature the teacher used in the devolution phase. This is so that the students

first and foremost try out the game so that they understand the rules of the game.

In addition, the students also have the opportunity to test their intuition about

which strategy is the best (if any). They will not be able to get a huge amount

of data, which means that they will be able to get data pointing in all possible

directions. After students have looked at the Monty Hall game individually, they

have to discuss in groups which strategy is best (if any). Because the students

have worked on the problem individually first, all the students have an opinion on

which strategy is best, before they are influenced by each other’s views. It can

lead to several fruitful discussions, especially since students may have very different

conclusions. It is possible that there are students who know about the problem in

advance, as it is a very well-known problem that e.g. can pop up on various media

the students use (YouTube, Facebook, Instagram, etc.). This does not do much for

these students’ learning, as they have hardly gone into the depth of the problem, and

probably rather have a slightly superficial way of thinking, which, however, means

that these students know the right answer. To prevent the students who know the

answer in advance from revealing the final point of the problem, the teacher have to

ask these students not to reveal anything to the other students and just play along.

In the first group work, the students have to discuss the problem. There will

probably be students with different ideas about which strategy gives the best chance

of winning. Some (and properly many) students will think that it does not matter if

you change doors or not, since when the choice has to be made, there are only two

possible doors to choose from, one with a car behind it and one with a goat behind
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it, therefore there have to be equal probability to win whether you switch doors or

not. It is also possible that there are students who can see that the probability have

to be conditioned by the first choice, especially because they will pay extra attention

to conditional probabilities, as they know it is one of the main subjects within the

course. They will hardly be able to give a formal explanation, but say something

like that the probability of hitting a goat in the first choice have to be the greatest

(2/3), this means that it have to be smartest to change doors when you get the

possibility of it. Instead of using intuition, a student could also think of looking at

the data the participant has just produced. This will probably come quite naturally

to many of the students. The students’ conclusions here will of course depend on

their data, and their argument for strategy will therefore be ”because my data says

that is how it is”.

The students have to write their preliminary conclusion on the whiteboard and

then there is a validation phase, where some of the students are allowed to explain

the arguments for their conclusion to the rest of the class. Here it is important that

the teacher does not lead the students in the direction of the correct solution by not

giving comments on whether groups are right or wrong. This is important as the

students have to continue to work on the problem. Now the students have to use

the simulation function of MathWarehouse 2014, where they can play through 1000

games in almost no time with one of the strategies. As before, students have to first

work with the simulations independently so that they have time to think about their

data before returning to their group and discussing whether their now larger amount

of data can help them better to conclude something, and if so, what the arguments

for their conclusion could be. After such a simulation, the students will end up with a

large amount of data that will consistently and unambiguously point to an advantage

of changing the door for everyone. As a result, there will probably be quite a few

students who thought it did not matter whether you changed doors or not, who are

now forced to reconsider this early conclusion. There may be some of the students

who think that they have just been ”unlucky” with their data and that it have to

be a matter of statistical uncertainty. But when the students come back to their

groups, they will see that everyone got the same result from the simulation. Here

it will dawn on these students that there can be no question of ”accident”, but that

their early conclusion appears to be incorrect. All the students who had an incorrect

conclusion after the previous phases (which is expected to be the majority) have to

now try to convince themselves and their group why they were wrong and how it can
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be that it is an advantage to change doors. This is not an easy task, as they have

to put their original intuition on the shelf in order to think freely, if they believe

that simumations always is right. At this point it gets really interesting as students

know the correct answer but not the reasoning behind it. Therefore, students have

to think creatively and try to see the problem in a new light without the filter their

intuition put on them before. Quite a few students will probably be able to arrive

at the informal argument described above by simply going through the game slowly

and remembering the structure of the previous exercises on conditional probability.

It will be interesting to find out how many that are able to convince themselves of

this argument. Since their argument is informal to a greater or lesser extent, there

will certainly be some students who find it easier to convince themselves and others

in their group, but there will also be students who will not be as convinced. It may

be that there are students who throw themselves into making a formal argument,

since they have seen the teacher perform such in the institutionalization phases of

the previous exercises. However, the expectation is that the students are not yet at

a mathematical level where they will be able to carry out such an argument.

After the groups have discussed their arguments, they again have to write their

conclusion and arguments on the board. The teacher has not deleted their previ-

ous conclusions, so it will become quite clear that most groups have changed their

conclusion. Then some of the groups have to present their conclusion and more

importantly their arguments. In the institutionalization, the teacher have to pro-

vide a formal argument so that the majority of the students hopefully end up being

convinced of the correct conclusion. This argument can be seen in section 4.6. The

teacher also have to show the students, which is a more extreme edition of the same

game. Instead of three doors, there is 100 doors in this example, one with a car

behind and 99 with a goat behind. One have to choose a door, after which the game

host opens 98 doors with goats behind, such that there is only two closed doors left,

the chosen one and another. This example makes the conclusion much more visible.
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6.5 Fifth Exercise - The Drawer Problem

Target knowledge A strengthened conceptualization of the meaning of

conditional probability. A strengthened conceptual-

ization of the meaning of independence. Knowledge

of the base rate fallacy, and thus the skills to avoid

it. Better abilities of analysing problems with condi-

tional probabilities.

Necessary mathematical

prerequisites

There are no specific necessary prerequisites, but

knowledge of general probability theory will be a

great advantage, but the course can be carried out

without this student competence.

Time consumption 50-60 minutes.

Materials available Just a pencil and a piece of paper.

Problem: You have three drawers with exactly two sections in each. In one

of the drawers, there is a silver coin in each of the sections. In another of the

drawers, there is a gold coin in each of the sections. In the last drawer there is

a silver coin in one section and a gold coin in the other.

a You choose a random section in a random drawer. What is the proba-

bility that there is a gold coin in the section you have chosen? Now you

open the section and see that there is actually a gold coin in the section.

What is the probability that there is a gold coin in the second section of

the drawer, too?

b In the example from the first part, are the probabilities that there is a

gold coin in the section you choose first and that there is a gold coin in

the second section of the drawer you chose a section independent?
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6.5.1 TDS-Schedule

Phase The teacher’s actions incl. in-

structions

The students’ actions incl.

reactions

Devolution

(Didactical)

2-3 minutes

Explains the first part of the

drawer problem. Tell the stu-

dents that they first have to find

a solution by themselves for 2

minutes and then discuss their

solutions in groups.

Listen and ask follow-up

questions if necessary.

Action

(Adidactical)

2-3 minutes

Observes and prepares for the

division of groups of 2-3 students.

Works independently.

Action and

Formulation

(Adidactical)

10-12 minutes

Divides the students into groups

of 2-3. Informs students that

they must be ready to write

their solution on the board with

any calculations. Tells them

they have 10 minutes. Then the

teacher observes the students

without interacting

Work in their groups to

come up with a solution

they agree on. They then

write their solution on the

board with arguments.

Formulation

and Validation

(Adidactical)

7-9 minutes

Based on the answers on the

board and previous observations,

1-3 groups are chosen to present

their proposed solutions. After

that and/or between the presen-

tations, the teacher can ask ques-

tions to the presenting group or

to the plenary.

Present, listen and/or

answer questions. Ask if

they have a probing ques-

tions.

Devolution

(Didactical)

2 minutes

Gives students the second part

of the drawer problem. Tells the

students that the process will be

the same as before; first 2 min

individually and then 10 min in

groups.

Listen and ask follow-up

questions if necessary.
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Action

(Adidactical)

2-3 minutes

Observes the students. Work on the task sepa-

rately.

Action and

Formulation

(Adidactical)

10-12 minutes

Observes the students. Work in their groups to

come up with a solution

they agree on. Then they

write their solution on the

board with arguments.

Formulation

and Validation

(Adidactical)

6-7 minutes

Based on the answers on the

board and previous observations,

1-3 groups are chosen to present

their proposed solutions. After

that and/or between the presen-

tations, the teacher can ask ques-

tions to the presenting group or

to the plenary.

Present, listen and/or

answer questions. Ask if

they have a probing ques-

tions.

Institutionali-

zation

(Didictical)

7-8 minutes

Explains the formal solutions to

both parts of the drawer prob-

lem.

Listen and ask follow-up

questions if necessary.

6.5.2 Analysis

In this exercise, students have to work on a problem that will be called ”the drawer

problem” in this thesis. The problem is described in Freudenthal 1973, where it is

called the drawers problem of Bertrand. The formulation of the problem is basically

the same, but a bit has been added to the problem for didactic and understanding

reasons in this thesis. The reason students first have to determine the probability

of choosing a section with a gold coin is to guide them a little towards a formal

solution using the definition of conditional probability and to help them analyse

the problem, but also so that students may find it easier to argue for or against

independence later. This task should not cause problems for the students, as it

is completely general probability calculus, which they have worked on and made a
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routine in the past. When the students have to work on the main question of the

problem, the majority will probably make the same fallacy. They will analyze the

problem incorrectly and forget that you are more likely to have chosen a section in

the drawer with two gold coins than a section with the gold coin in the drawer with

one gold and one silver coin. The students will think of it as equally likely, and thus

the probability that there is a gold coin in the second drawer have to be 1/2, that

one has either chosen the drawer with two gold coins or the drawer with one of each.

In addition to the fact that there could be a student who had enough mathematical

overview to be able to give a correct argument for why the solution is 2/3 and not 1/2.

Once again, the students have to start by thinking about the problem individually,

so that everyone has the opportunity to think through the problem before they have

to discuss it in groups. This is to remedy a possible tendency for a talented student

to explain the person’s thoughts before the rest of the group members have time to

think the problem through. This is important, as all students get the opportunity

to form their own thoughts about the problem, and not least because the talented

student can easily be wrong, while a less talented student could have some fruitful

ideas. As always, the validation phase depends on the students’ work, but in this

exercise it is not certain that any of the groups will have ended up with the correct

solution. If this is the case, the validation should be carried out as usual, but it may

be necessary for the teacher to ask critical questions about the students’ solutions,

which may help the students realize that their solutions do not hold water. If some

students manage to realize the fallacy, the teacher (possibly in collaboration with

the students) can argue for the correct solution. This may develop into a small

institutionalization phase, even if it is not indicated in the exercise schedule. If

there are groups with the correct solution and argument, the validation phase can

be carried out as usual.

After this, students have to work on the added task on independence. Students

who are fully convinced of the solution and the arguments for the drawer problem will

not have great challenges in seeing that the events are dependent. Students who are

not yet fully convinced, on the other hand, will probably have a greater tendency to

stick to their intuition from the first part of the problem. These students could have

a ”feeling” that the events have to be independent. It is not certain that they can

explain why they think so, and since at the same time, due to the didactic contract,

they will think that the teacher’s solution and arguments have to be correct, this

may force these students to think carefully about the problem. On the one hand,
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their intuition tells them one thing, and on the other hand, the students may have

doubts about their own intuition, based on the teacher’s (or possibly other students’)

arguments in the first part of the problem. This doubt about their own intuition

will perhaps cause some students to view the task in a more formal way, since in

previous exercises the students have seen how a formal approach to problems can

help them to the correct solution despite an incorrect intuition. The students have

all the necessary tools to be able to show that the events are independent, as they

know several definitions of independence, e.g. definition 4.2 and theorem 4.4 from

section 4.1, which can be used in this exercise. They have just become more or less

convinced that the probability that there is a gold coin in the other section in the

drawer where you have chosen a section, given that there is a gold coin in the section

you have chosen, is 2/3. As one of the very first things in this exercise, the students

determined the probability of selecting a gold coin in a random section selection to

be 1/2. The students have to convince themselves that the probability that there is

a gold coin in the section they choose is equal to the probability that there is a gold

coin in the other section in the drawer where they have chosen a section. When this

argument is in place for the students, they will be able to see that the events are

dependent, since they do not satisfy P (A|B) = P (A). Of course, there is still the

possibility that some students are unable to implement this more formal approach,

and therefore may end up with a frustrating feeling that their intuition is probably

incorrect, but they cannot come up with a better argument. Since the students have

to work in groups (after they have worked individually on the task first, with the

same reasoning as above), students with this frustrating feeling will quickly begin a

group collaboration, where there will be other students who can help them on the

right path. The validation phase is carried out in the usual way and is followed

by an institutionalization phase, where the teacher have to institutionalize both the

solution to the central problem in this exercise, but also the independence part of

the problem together with the other definition of independence (theorem 4.4), which

is also called the multiplication rule.
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6.6 Sixth Exercise - The Three-Event Problem

Target knowledge A beginning conceptualization of the meaning of

mutual independence and pairwise independence.

The students have to know the difference between

these concepts.

Necessary mathematical

prerequisites

There are no specific necessary prerequisites, but

knowledge of general probability theory will be a

great advantage, but the course can be carried out

without this student competence.

Time consumption 30-45 minutes.

Materials available Just a pencil and a piece of paper.

Problem: You have two fair coins, one 1 krone and one 2 krone. You want to

play heads or tails with both coins at the same time, but before that you have

to consider the probabilities of the following three events: the 1 krone becomes

a head, the 2 krone becomes a head and exactly one of the coins becomes a

head. That is, neither more nor less than one. After these initial considera-

tions, you have to decide whether all three events are independent or depen-

dent.

6.6.1 TDS-Schedule

Phase The teacher’s actions incl. in-

structions

The students’ actions incl.

reactions

Devolution

(Didactical)

3-4 minutes

Explains to students about the

3-event problem. Explains that

they have to work on this prob-

lem just like the previous two

times, first seperately and then in

groups.

Listen and ask follow-up

questions if necessary.

Action

(Adidactical)

2-3 minutes

Observes the students. Work on the question sep-

arately.
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Action and

Formulation

(Adidactical)

10-15 minutes

Observes the students. Work in their groups to

come up with a solution

they agree on. Then they

write their solution on the

board with arguments.

Formulation

and Validation

(Adidactical)

8-10 minutes

Based on the solutions on the

board and previous observations,

1-3 groups are chosen to present

their proposed solutions. After

that and/or between the presen-

tations, the teacher can ask ques-

tions to the presenting group or

to the plenary.

Listen and ask follow-up

questions if necessary.

Institutionali-

zation

(Didictical)

7-10 minutes

Reviews the formal explanation

of why the 3 events are not inde-

pendent when they are pairwise

independent. Relates to the bino-

mial distribution.

Listen and ask follow-up

questions if necessary.

6.6.2 Analysis

This exercise is the last part of the teaching designs and involves the students working

with what is called the ”Three-Event Problem” in the thesis. The exercise is heavily

inspired by Székely 1986, pp. 12–13. Once again, a little has been added to the

problem, so that the students both find it easier to understand the content of the

problem and, in addition, are helped to get started in a specific way that has a

didactic purpose. The first two considerations will not cause students any problems.

They are used to working with coin tosses in probability theory and knowing that

the probability of heads is 1/2 regardless of which coin is played with (not to mention

if the coin is fair). The third consideration is almost as easy for the students, but

there is a possibility that very few of the students do not remember that there is a

difference between whether the outcome is (H,T) or (T,H), where H stands for head

and T stands for tail, and the first position in the parenthesis indicates the outcome

68



of the 1 krone, while the second position in the parenthesis indicates the outcome of

the 2 krone. This means that students will believe the sample space is (H,H), (H,T)

and (T,T) and the only successful outcome is (H,T), which entails a probability of

1/3 instead of 1/2. But as I said, almost all students at this level should be able

to determine this probability to 1/2. The reason why the students have to start

with these considerations is so that they understand the three different events of the

problem.

In this exercise, the students will deal with something that is not clearly defined

for them yet, namely the independence of several events. Different from the other

tasks, the students’ intuition in this problem will probably lead some students to the

correct solution, while other students probably will end up with an incorrect solution

based on their intuition. Some students want to try formal calculations, but these

are not very demanding if you have analyzed the problem correctly. However, the

problem analysis is more challenging. There will be some students who, at first

glance, will think that if you know the outcome of two of the events, you will be able

to determine the outcome of the last event. Thus, the events have to be dependent,

since the last event depends on the outcome of the other two. Other students may

want to try something similar, where they simply compare two events at a time,

instead of all three at once. Eg. could they say that the two events; the 1 krone

ends up head and 2 krone ends up head, is independent, as they clearly do not

depend on each other. They could say the same about the events the 1 krone ends

up head and exactly one 1 krone among the coins and about the events the 2 krone

ends up head and exactly one 1 krone among the coins. In doing so, these students

will think that they have shown that the events are independent, which they have in

an informal way. Once again, students first have to work on the problem individually

and then work on the problem in groups. The reason for this is the same as the

previous times. In the teacher’s institutionalization, students will learn about the

difference between pairwise independent and mutual independent.
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7 Methodology

When creating a teaching design (such as the one just described in section 6) with

the aim of testing its effects in relation to some specific learning objectives, and to

test the students’ knowledge of independence in probability theory, it is important

to think about how you can and will collect data. In addition, it is also important

to consider how the entire teaching situation can seem as normal as possible for

the students, so that they do not change their behavior too much. How these focal

points have been taken into account and what thoughts have been behind them are

interesting in a scientific context. Therefore, these considerations will be explained

in this section.

To keep the students from feeling that they are taking part in an experiment,

their usual teacher will teach them, while the author of the thesis acts as an observer.

This has the advantage that students know the teacher beforehand and therefore are

used to his personality and their teacher-student interactions. In addition, it also

frees the thesis author to focus all efforts on observing, as there is no need to think

about teaching. One of the disadvantages of doing it this way is that the teaching

process depends on the teacher’s adaptation of the teaching materials, i.e. how

the teacher understands the lesson plans and how the teacher combines it with the

teacher’s personal style. To ensure that the teacher understands the lesson plan

as intended, a meeting is held between the author of this thesis and the teacher

a week before the course is scheduled, where they can talk their way through the

lesson plans, so that the teacher is as far as possible aligned with the author of this

thesis before the teaching has to be carried out. To prepare the students for the

course, it starts with a short introduction given by the author of this thesis, where

the students are told that they will participate in a study that will be used as the

basis for an academic work that will lead to a final Master’s thesis. The students

are informed that they must work with independence within probability theory and

that they are not expected to know anything about this area in advance. They

are also prepared for the fact that the teaching is organized a little differently than

they are used to, but that it will still be their teacher who teaches them. They are

informed that the author of the thesis will observe them and audio record them, but

that everything will be performed completely anonymously, so that neither school,

class, student names nor the teachers name will appear in the thesis. In addition,

the students are informed that the author of the thesis will ask everyone involved
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for permission before starting an audio recording, and if someone do not want to be

audio recorded, they simply have to decline.

A very central part of the data collection is the tests the students are exposed

to before and after the course. Both can be seen in appendix A.8 to A.11. The

two tests are not identical, but almost, since there is only a difference in the last

tasks, where the students have to decide whether two events are independent or not

in three different situations. The situations and the probabilities the students get

are different, but the task type is the same. In order to ensure that the students

answer the tasks of the test as freely as possible, the test answers are not given to the

students’ teacher, which the students are told, and that the test will therefore have

no influence on their grades. To make it possible to compare a student’s first test

with the student’s second test, all students are asked to write a name on the test.

They are told that it does not matter whether it is their own name or a made-up

name, as long as they remember to write the same name on both the first test and

the second test. So if a student wants to hand in a completely anonymous test,

they can e.g. write Mickey Mouse or HC Andersen instead of their own name. The

purpose of the test is to test whether the students develop their use of language

about independence, whether they achieve certain of the learning objectives of the

course and whether they become better at using and become more familiar with

the area’s notation and formulas. The advantages of making such a test is that it

enables the collection of data from all of the students in the class at once. One

of the disadvantages of using such a test is that students do not write down all

their thoughts. The test is formulated so that it should encourage students to write

reasons and arguments for their answers, but this does not mean that students will

write all the thoughts that precede their arguments or the arguments they choose

not to use if they convince themselves that they are incorrect.

Exactly these thoughts of the students are very interesting, as they tell about

the students’ process and not only about the end of their process. It has been a

clear desire to collect data that can help describe this process, too. In order to

collect this kind of data, observations will be made of the students when they are

working on the problems. These observations will take place through a combination

of classic observations, where the author of this thesis will listen to the students’

work and note when something interesting happens, and audio recordings of the

students. Since it is not possible to observe all the students at once, a group is

selected for each problem on which the observations are focused. It will be the same
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group that is observed and audio recorded at the same time, so that these two data

collection methods can complement each other. The audio recordings will both help

the observer, as he do not have to write everything down, but can focus on the most

interesting and, as it becomes possible, to use quotes from the teaching verbatim.

Another important source of data is the students’ solutions to the various problems.

Therefore, as far as possible, the students’ answers are collected when they write

them on paper and pictures are taken of the board when the students have to write

their solutions on it. This data form will show how students will present their final

solutions and arguments. This shows something about what the students at the

end are most convinced of. The teacher’s opinions on the teaching design can also

be interesting. Therefore, in connection with the previously mentioned clarifying

meeting between the teacher and the author of this thesis, the week before the

teaching is to be tested, an interview will be conducted with the teacher, where the

focus will be on the teacher’s expectations for the teaching. In the same way, the

teacher will also be interviewed after all the teaching has ended, in order to get the

teacher’s reactions to the teaching, as well as the teacher’s views on how it all went.

8 Results and A Posteriori Analysis

This section is organized in such a way that there will be a general review of the

entire teaching process at first. Here, the adaptation of the lesson plan to real teach-

ing will be analysed, as well as the participation of the teacher and the students on

the premises of the lesson plan. After this, each individual exercise will be analyzed

independently one at a time. Here, the analysis will be based on data collected

during the students’ group work in action, formulation and validation phases, as

well as their solutions and arguments written on the board or paper for the various

exercises. After that, the overall results from the students’ comprehension tests will

be presented. Here, the general results and trends of the class will be looked at, and

these observations will be supplemented by quotes and results from individual spe-

cific students. At last, the teacher’s and the students opinion on the implementation

of the teaching and the structure of the lesson plans will be analysed.

But before starting on this, the prerequisites for the teaching will be reviewed.

The class that took part in the project were in their second out of three years of upper

secondary school, which means they were around 17-19 years old. The class has a

field of study with Mathematics and Social Studies at the highest upper secondary
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school level (A-level). In their first year of upper secondary school, the class had

taken a course on probability theory, including work with frequencies, which they

had been given a recap of before they had to participate in this project. The class

has not been taught statistics or binomial distributions yet.

8.1 General observations

If a teacher’s teaching varies from the lesson plan, e.g. by helping the students when

not intended or not complying with the phases, it becomes difficult to examine what

the purpose was from the beginning. The reason for any deviation from the lesson

plan might be of interest, and therefore it can be giving to have the teacher explain

the reasoning behind the deviations.

It is challenging to estimate how long each phase will take. There can be many

small episodes that are difficult to foresee, which can delay the entire plan. Each

phase had a relatively lenghty amount of time in the lesson plan, especially the phases

where the students had to participate actively (typically the action, formulation and

validation phases). As previously mentioned, there was five lessons of 55 minutes

available for the course, which means 275 minutes in total. However, some of the

time must be spent on introducing the students to the project and on doing the tests

at the beginning and at the end of the course, which means that only about 250

minutes is left for the teaching. The teaching process took less time than expected,

when it was tested. About 35 minutes less.

If we look at the individual exercises, only two out of the six exercises were

finished faster than expected. The exercises carried out Monday (the first three

exercises) were well timed as they could be carried out in the two scheduled lessions.

In the third exercise (the one with the urn problem), the teacher spent little time

on the devolution. In return, the institutionalization phase took a bit longer than

expected. In the exercises carried out on Thursday, namely the last three exercises,

there were deviations from the time estimates. The fourth exercise (the one with

the Monty Hall problem) was about 15 minutes shorter than expected. The main

reason for this deviation was primarily that there was a much larger proportion of

the students who already knew about the Monty Hall problem beforehand. The

students who were familiar with the problem had dealt with it in primary school

or knew it from YouTube-videos. In a break between the first and second exercise,

a conversation between a larger group of the class’s students was overheard. This

group discussed independence and conditional probability based on their experiences
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from the first lesson. In this discussion, a student explained the Monty Hall prob-

lem with associated solutions and arguments. This was an unprompted discussion

between the students, and not a discussion that could be predicted. However, it is

clear that this discussion must have had an impact on how long the students were

going to spend on the problem, as they knew solutions and arguments in advance.

In addition, several students were quick to find the website’s simulation function in

the first action phase. As such, the teacher decided that it did not make sense to go

through a long action, formulation or validation phase in the second round, as the

students would not be able to come up with anything new when they had already

done the simulations. Therefore, these phases largely merged into the first round of

phases. The fifth exercise (the one with the drawer problem) showed the largest de-

viation from the estimated time, as it was about 20 minutes shorter than expected.

The exercise was divided into two parts, as the students first had to go through an

action, formulation and validation phase, where they worked to determine the prob-

abilities of the drawer problem. This part was well estimated. After this, they had

to go through another action, formulation and validation phase, where they worked

on part (b) of the drawer problem. It was in this part the estimation was wrong.

The different time consumption was due to the fact that most students agreed on

independence right away, which meant that they barely discussed their arguments.

The validation and institutionalization phases merged and lasted a shorter amount

of time than expected, as no time had to be spent discussing different solutions. In

the last exercise (the one called the three-event problem), the students spent very

short time on the action and formulation phases combined. Later (in section 8.7) it

will be explained that the students had great problems with this exercise, and these

problems led to the students formulating answers that they themselves were not con-

vinced of. Based on this, the teacher decided it made more sense to continue to the

next phases. The validation phase was also a bit shorter than expected, which was

because the students were nowhere near the intended solutions or arguments. How-

ever, the institutionalization phase was twice as long as intended, a full 20 minutes.

The teacher assessed (correctly) that the students found the exercise very difficult

and therefore chose to spend a little longer going through this exercise.

The teaching method was new to both the teacher and students. The teacher

had encountered the Theory of Didactic Situations a few times during his education,

but had not used it as a design tool for his teaching himself. Both the teacher and

the students were generally very good at complying with the phases of the teaching
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method and the associated rules. The teacher was good at refraining from helping

the students when they were in the adidactic phases and the students were also

good at trying to solve the tasks without seeking confirmation from the teacher.

That is that the didactic contract was put in the background, except in some special

situations that will be explained and analyzed later. The phases were respected by

the teacher, but quite generally throughout the course the validation phase and the

institutionalization phase merged together. This is by no means a bad thing, but the

teacher tended to start the institutionalization early in the validation phase, after

which the arguments became much more directed by the teacher rather than the

students themselves.

8.2 First Exercise - The First Contingency Table Problem

In this exercise, the students had to work on the following problem: The table shows

fabricated data from a random sample, which have to help clarify the effect of mass

testing a population for a certain fabricated disease (could be called ”Divoc”). The

columns ”Ill” and ”Healthy” refer to whether the persons were infected with Divoc

or not at the time of the testing, respectively. While the rows ”Tested positive” and

”Tested negative” refer to whether the persons tested positive or negative, respec-

tively.

Ill Healthy Sum

Positive test 22 248 270

Negative test 3 2,227 2,230

Sum 25 2,475 2,500

a What is the probability that a random person from this random sample has a

positive test?

b What is the probability that a random person from this random sample both

has a positive test and is infected with Divoc?

c What is the probability that a random person from this random sample has a

positive test if the person is infected with Divoc?

d What is the probability that a random person from this random sample has

a positive test if the person is not infected with Divoc? Compare this with

question c, what does it mean?

75



e What is the probability that a random person from this random sample is

infected with Divoc if the person tests positive? What is the probability that

the person is healthy if the person’s test is positive? Compare this. What does

it mean?

The observed pair had an interesting process of answering the problem. They

started by answering the tasks incorrectly because of imprecise reading of the sub-

questions. Which means that they have difficulties with the linguistics. According

to the a priori analysis (section 6.1.2), it would be the structure of the contingency

table more than the linguistics, that would be a challenge for the students. At some

point, the students realized that something was wrong, after which they came to

a standstill. They asked the teacher for help. The teacher helped the students by

asking them to read the questions again. The students read the questions again,

this time more accurately, and then the linguistic difficulties were smaller, and they

could answer the tasks correctly.

Part (a) was easy to solve for the observed pair, and the subsequent valida-

tion showed that all pairs found part (a) to be easy. This was to be expected, as

mentioned in the a priori analysis (section 6.1.2), because the students have old

knowledge about frequencies from an previous course about probability, as men-

tioned in the methodology section (section 7). Already in part (b), the observed

pair shows that they have difficulty with the linguistic, and with the structure of

the contingency table, too. They do not pay enough attention to reading the task

question thoroughly. The following is a quote from the pair’s discussion about the

answer to part (b)

Student 1: If you are sick, do you have to look at the column where it

says ill?

Student 2: Yes, and tested positive... Well, no, because you can test

negative and be ill. That’s 25 out of 2500.

(Translated by the author.)

They end up determining the frequency of being ill, which does not take positive

(or negative) tests into account. This fallacy is a bit familiar with the conjunction

fallacy, which is described in section 4.2.4, since the students mix up P (Ill∩Positive)

and P (Ill). The students do not return to this question, and they do not find out that

they have not found the correct answer until the validation phase, where the majority

of the other groups have answered correctly, which still is predictable because of the
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students old knowledge about probability and frequencies. The pair continued with

part (c), where they once again misread the question, and they think they have

to answer the same thing as they had to answer in part (b). They come to the

conclusion that it must be 22
2500 , which actually is P (Ill ∩ Positive), and had been

correct in part (b). This fallacy is like the conjunction fallacy (see section 4.2.4),

but reverse, since the students determine P (Ill∩Positive) instead of P (Positive|Ill),
and not the opposite. If they had not forgotten what they were asked about in part

(b), they might have wondered that they understood part (b) and (c) as the same

question.

They make exactly the same mistake in part (d), where they answer 248
2500 , which

is P (Positive ∩ Healthy) instead of answering P (Positive|Healthy), which had been

correct. This is the same fallacy as above. In part (d) they are asked to compare

their answers from part (c) and (d), too. With the mistakes the pair have made,

their results from these tasks are 22
2500 = 0.88% and 248

2500 = 9.92%, respectively, in

contrast to the correct results, which is 22
25 = 88.00% and 248

2475 = 10.02%, respectively.

A consequence of this is, that the pair’s comparison is completely different from the

intended one. The pair are not surprised by their results, as seen here:

Student 2: Okay, there is at least a much greater chance of having a

positive test... but actually being healthy than having a positive test and

being ill... But what that means. I don’t know what to say.

Student 1: It’s probably not that accurate.

Student 2: So people are probably a little more relaxed if they test positive.

(Translated by the author.)

What the students see here is basically just the base rate, i.e. that there are far

more healthy people than sick people. In principle, the students have the knowledge

needed to be able to determine the correct frequencies, but they have problems

linking the problem’s sub-questions to that old knowledge.

In part (e), they misread the task in the same way once again, which means

that they think they are being asked the same thing as in part (c). It causes quite

a bit of surprise for the pair, who from their normal teaching (in all subjects) are

used to the fact, that no two questions are the same. The students suspected that

they had misunderstood something in the previous parts, as it would be a breach

of the didactic contract if they were given the same task twice in a row by the

teacher. The students return to part (c) to check the differences in the wording
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of the questions. However, they still believe that they are being asked the same

question, although the wording is different in the two questions. Therefore, they

try to bring up several different method proposals instead, which mostly have the

character of guesswork. Eg. the pair consider whether to add any of the numbers

together, but they cannot figure out which ones should be added or why. In the end,

the pair gives up completely and just sits with a look of hopelessness and sometimes

outbursts some thing like ”It makes no sense”.

The pair ends up asking if the teacher can help them, which is a violation of the

rules of TDS. The teacher explains to them that he must only help them clarify the

task questions and not help them with what they have to do, in trying to comply

with the rules.

Student 2: I just don’t think it makes any sense. Or it is so... because it

sounds as if (c) or (d) are the same as (e), other than it is worded the

other way around.

Teacher: The wording actually means something.

Student 2: Yes,

Teacher: Slowly and thoroughly.

(Translated by the author.)

This is an example of indirect negative validation from the teacher. Which also

shows that the didactic contract has not completely faded into the background yet,

as the teacher indirectly tells the students that their solution is not correct, and that

in order to solve the tasks correctly, they will have to read the task formulations

again, focusing of the the formulations.

After these comments from the teacher, the pair starts over with part (c). After

repeating their initial result and argumentation, student 2 realizes the actual mean-

ing of the question. Then student 2 calculates problem (d) and compares (c) and

(d) completely as intended. Student 2 tries to continue with part (e), but once again

misreads the task, so she understands it just like part (c), which is the fallacy of

the transposed conditional probability. Again she realizes that something is wrong.

This time, however, she reads the questions thoroughly again, and finds out that

they are worded the other way around.
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Student 2: There are 22 tests that are positive... and how many... there

are 25 infected... No, because the order is reversed... It can’t be 25 out

of 22.

(Translated by the author.)

From her old knowledge, she knows that a probability cannot have a value greater

than one, which causes her to reject the conclusion. After a short period of time

in deep concentration, student 2 gathers the threads and determines the correct

frequency, which means she got rid of some of the linguistic problems.

Student 2 realizes that student 1 does not understand what she is doing. There-

fore, student 2 tries to explain it to student 1. The explanation becomes very inco-

herent, as student 2 tries to reformulate the questions in the way she understands

them.

Student 2: That’s because it is asked the other way around here. Before

it asked; if the person is infected... it’s because you should almost have

reformulated it... or so... I think... because then it makes more sense.

If the person is infected with Divoc. . . okay how many are infected with

Divoc? There are 25 of them. What is the chance that that person tests

positive out of the 25 who are sick... What is the chance... How many

of them test positive. And there were 22 of them. Now it asks the other

way around. If the person’s test was positive... okay... how many tests

were positive of those that were taken, there were 270... Then you have

to go over and look in the other one... over there. How many of them

were really sick... There were 22 of them.

(Translated by the author.)

It is clear that student 2 reformulates the questions in her head in order to better

translate them into what she has to do. For student 2, it is more of a linguistic

exercise than a calculation exercise. Student 2 has expanded her personal knowledge

and wants to help student 1 expand her personal knowledge, too, in the same way,

as she did it. It is clear that it is difficult for student 2 to transfer her personal

knowledge to official knowledge, such that it becomes shareable. After this, the

students were interrupted by the teacher so that they could start the validation

phase, which is a shame, since the sharing of knowledge from student 2 til student

1 was interesting.
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In the validation phase, nothing particularly interesting happened, as virtually

all students agreed on the correct results. Based on the observation of students 1

and 2, it was the linguistic process from the students’ first imprecise reading of the

questions to them placing more emphasis on reading them accurately that was the

interesting part of this exercise.

In the institutionalization phase, the teacher started by reviewing the definition

of conditional probability based on the solutions from the problem. The teacher

told the students that from their solutions it appeared that a conditional probabil-

ity could be determined by P (A|B) = |A∩B|
|B| , explaining the notation continuously,

as the students did not know the notation for conditional probability in advance.

The teacher explained that they had worked with a symmetric probability space,

and since the students knew that their frequency approach only worked for symmet-

ric probability spaces, he wanted to see if he could transform the frequencies into

probabilities. Therefore, the teacher shortened the fraction by |S|, i.e. the size of

the entire sample space. Since P (A∩B) = |A∩B|
|S| and P (B) = |B|

|S| , it must hold that

P (A|B) = P (A∩B)
P (B) . The teacher informed the students that this definition could be

extended to apply in all probability spaces. After that, the teacher illustrated how

a conditional probability is a probability in a narrowed outcome space, using Venn

diagrams. The teacher drew a set ball he called S, which should illustrate the entire

sample space in a symmetric probability space, then he drew two set balls of differ-

ent sizes, A and B, illustrating the successful outcomes for two different events. The

two set balls overlapped each other. Then the teacher showed how all the results

from the problem could be illustrated using these set balls. The teacher focused on

how conditional probability was a narrowing of the sample space.

8.3 Second Exercise - The Second Contingency Table

In this exercise, the students had to work on the following problem: The table shows

fabricated data from a random sample, which have to help clarify the effect of mass

testing a population for a certain fabricated disease (could be called ”Divoc”). The

columns ”Ill” and ”Healthy” refer to whether the persons were infected with Divoc

or not at the time of the testing, respectively. While the rows ”Tested positive” and

”Tested negative” refer to whether the persons tested positive or negative, respec-

tively.
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Ill Healthy Sum

Positive test 15 922 937

Negative test 25 1,538 1,563

Sum 40 2,460 2,500

Is this test good or bad and why?

This exercise is somewhat similar to the first exercise, which should enhance the

students’ abilities of the exercise, though this exercise is more open than the previous

one. However, the students approached the task differently than expected. In the

validation phase, it could be seen that the groups had focused on a single relative

frequency (e.g. the sensitivity or specificity), and not compared several frequencies,

as in the first exercise. There were five groups in total, and they all argued that it was

a bad test. Two of the groups used the sensitivity, there were only 15
40 = 37.5%, to

argue, that the test was not good. One of the groups pointed out that 922
937 = 98.4%

of the positive tests were false positives, which is the compliment to the positive

predictive value. Another group expanded on this argument when they argued that

the test was bad by explaining that there were many false tests (meaning both

false positives and negatives). The last group wrote this on the board: ”The test

is not good because the number of ill and healthy is very different from the number

of positive and negative” (Translated by the author). This argument is quite close

to the previous one. None of the groups followed the same series of calculations

as in the first exercise, which was otherwise what was expected in the a priori

analysis. If the students had followed parts (c), (d) and (e) from the first exercise,

they would have found that the frequency of the event that a person is ill and the

frequency that a person tests positive are equal. One of the goals of this exercise

was to get the students to compare the two relative frequencies, P (Positive|Ill) and
P (Positive|Healthy), such that they could see, that the test was equally likely to

give a positive result regardless of whether one was sick or healthy.

In the observed group, there were several misunderstandings of the problem.

First of all, the group believed that the sample study consisted of the same people

as in the sample study of the first exercise, even though the number of ill/healthy was

not the same as in that exercise. This indicates a lack of clarity in the formulation of

the problem, and caused the group to spent a lot of time discussing (based on covid-

19) how the tests in the two exercises could be different. This led to a discussion

about how different tests work, and then whether it is possible to be more or less

infected with covid-19. Of cause, none of this was intended for the exercise. The
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observed group was the group that ended up writing about a high probability of

false tests on the board. Two of the group members quickly started suggesting ways

in which they could better assess the quality of the test.

Student 3: I don’t know if it makes a difference, but should we try writing

it up as a percentage? Just to get a little idea about it... So out of them...

Student 4: We can again look at how many of the positive test that are

actually sick. Then we can get an assessment of how good... how much

it actually works when it gives a positive test.

(Translated by the author.)

Student 3’s request is a little unclear in intention. Does he want to write all the

numbers in the contingency table into percentages or does he want to calculate

conditional probabilities just like in the first exercise? It is clear that student 4

will look at the positive predictive value, which would also be more useful than

rewriting all the numbers as percentages of the entire sample study. Before the

group determines some of the conditional probabilities, student 4 begins to explain

what seems like a relatively immediate assessment of the contingency table.

Student 4: There are far more healthy people than sick people. Because

then it explains both. This explains both that there are many healthy

people with a positive test and that there are many healthy people with a

negative test.

(Translated by the author.)

Here student 4 avoids making a base rate fallacy. The base rate fallacy is described

in section 4.2.2. Student 3 reports that he does not understand what student 4

means. Before student 4 can answer, student 5 breaks in.

Student 5: There are also many more who are positive in this sample...

There were only 270 who had tested positive before. (In the first exercise.)

Student 4: Yes, more people have tested positive... And they have less ill

people.

(Translated by the author.)

Here, the group realizes that there are many more positive tests (937) than in the

first exercise (270), and that there are fewer people who had a true positive test (15)

than in the first exercise (22). The group then comes to the conclusion that there

82



have to be many more false positive tests. The group concludes in exactly the same

way that there are also many false negative tests. From this they conclude that

the test is bad and their discussion switches to the previously mentioned irrelevant

discussion.

The validation phase developed into a discussion about sensitivity, specificity

and positive/negative predictive values, although without the technical terms. In

the institutionalization phase, the teacher explained that if you looked at e.g. the

probability of being ill, given a positive test, P (Ill|positive) = 15
937 = 1.6%, and then

on the probability of being ill, P (Ill) = 40
2,500 = 1.6% then you can see that they

are the same. The teacher explained that this meant that the event of being ill and

the event of being tested positive are independent. He explained that the definition

was actually that P (A ∩ B) = P (A)P (B) should hold. He showed students how to

derive the second definition, with conditional probabilities, using this definition and

the definition of conditional probability, which the students had seen at the end of

the first exercise P (A|B) = P (A∩B)
P (B) = P (A)P (B)

P (B) = P (A).

8.4 Third Exercise - The Urn Problem

In this exercise, the students had to work on the following problem: There are four

marbles in an urn. Two of them are white and two of them are black.

a You draw a marble from the urn and see that the marble is white, you put

the marble in your pocket. What is the probability that the next marble you

draw is white, too?

b This time you draw a marble, but do not look at the marble before pocketing

it. You draw a new marble, which you see is white. What is the probability

that the marble in your pocket is white, too?

c Are the events first marble is white and second marble is white dependent or

independent?

Additional task: You have the same urn with the same four marbles in it. This time

you draw a marble and you see it is white. Then you put the marble back in the

urn. Now you draw again, what is the probability that this marble is white? Repeat

the experiment where you draw a marble, which you show to your friend without

you seeing it, after that you just put the marble back in the urn. Now you draw a

new marble that shows to be white. What is the probability that your friend saw a
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white marble? Are the events first marble is white and second marble is white this

time dependent or independent? As expected and described in the a priori analysis

(section 6.3.2), none of the students found it difficult to solve part (a) of the problem.

In part (b), there was a large division in the students’ solution methods. There were

groups where all students were sure that the result have to be 1
3 , which is of course

the correct answer. Then there were groups where all the students were sure that

the probability was 1
2 , with the expected arguments described in the a priori analysis

(section 6.3.2). And then there were groups where there were both students who

believed the result was 1
3 and 1

2 . The observed group was one of the groups where

everyone agreed on the correct answer from the start. One of the group’s students

summarized their answers as follows:

Student 6: That’s 1 out of 3. I guess the marble in his pocket can only

be one of the 3 different marbles left when we know it’s not the one he

drew... and only one of them can be white.

(Translated by the author.)

However, the group disagrees a bit about whether the events are independent or

not. One of the group members believes that the events must be independent, as

the probabilities are equal, which is an unexpected fallacy. Presumably it derives

from the definition of independence that the students saw at the end of the previous

exercise. This student may remember that there was to probabilities in the definition

there were supposed to be equal if the independence should hold, and then she had

mistakenly swap P (A|B) = P (A) by P (A|B) = P (B|A), which is not true. However,

she becomes convinced that it is not correct when one of the other students in the

group argues the following:

Student 7: No, they will depend, because if the first marble is white, then

the probability that the second marble is white is of course smaller. So

they are probably dependent. In my opinion. I’m not really sure what

dependence is either.

(Translated by the author.)

It is interesting that student 7 here shows that he have acquired some knowledge

about the concept of independence, but still do not feel familiar with this knowledge.

This causes that Student 7 clearly is unsure of his own knowledge. This may be be-

cause the students have only just (at the end of the second exercise) been introduced
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to independence. The students has personalized the knowledge of the concept, but

since they have not actively worked with it yet, he lacks the confidence to use his

new knowledge actively.

There was one of the other groups in particular where the members of the group

strongly disagreed about the solution. The group was not observed, so there is no

concrete data on their discussions and arguments, but the teacher overheard most

of their discussion, which he passed on to the author of this thesis afterwards. The

discussion was mainly between student 3 and 4, where student 3 was sure that

the answer have to be 1
2 , since there were two white and two black marbles when

the first marble was drawn. Student 4 was sure that the answer was 1
3 , and then

tried to convince student 3 that it was the correct answer. Student 4 had first

tried explanations similar to those used by the observed group. However, it did

not have the convincing effect student 4 had hoped for. After several trials with

different formulations, student 4 had changed strategy. He had written down the

entire sample space, after which he could cross out all the outcomes where the second

marble was black. The teacher said that it is an ability the student has previously

learned and practiced in mathematics lessons. This means that the student used

old knowledge to personalize the new knowledge by connecting the old knowledge

to the new. Student 4 then showed it to student 3 while explaining what he had

done. He then counted how many outcomes were left (6) and how many of those

were two white marbles (2). In this way, student 3 ended up being convinced that

the probability must be 1
3 . That a student should come up with this solution was

surprising, and probably a result of the desire to convince the other student, since the

student started with a more informal argument. If the students had not disagreed

(e.g. like in the observed group) it would most likely have focused on their result

and perhaps a more or less informal argument. In terms of the students discussion,

they have felt compelled to make as much of their personal knowledge as official

as possible, in order to come up with the strongest argument and thus convince

the other person that they were right. This process has expanded both students’

personal knowledge.

In the validation phase of part (b), it could be seen that there was a fifty-fifty

division of the groups into whether they thought it was 1
3 or 1

2 . The teacher first

let a group that had answered 1
3 present their argumentation (here the observed

group was chosen). Then a group with the solution 1
2 was allowed to present. Both

groups came up with explanations similar to those given in the a priori analysis

85



(section 6.3.2). Finally, student 4 was allowed to present his argument to the whole

class. In the institutionalization phase, the teacher took student 4’s argument as a

point of departure, and explained how this brute force method is always safe with

symmetric probability spaces, but that they could be a bit slow, especially if you

had to do it by hand. The teacher then calculated the conditional probability using

the definition. P (A|B) = P (A∩B)
P (B) =

2
12
1
2

= 1
3 , where A is the event that the first

marble is white, and B is the event that the second marble is white. P (A ∩B) was

determined by the teacher using student 4’s sample space written on the board. It

was also intended that the teacher should have reviewed Bayes’ theorem during this

institutionalization phase, but he did not manage to do so due to lack of time.

8.5 Fourth Exercise - The Monty Hall Problem

In this exercise, the students had to work on the following problem: Suppose you

are on a game show and are given the choice to select one of three doors. Behind

one door there is a car and behind each of the other two doors there is a goat. Once

you select a door, say No 1 (which is closed), the host, who knows what is behind

each door, opens another door (say No. 3), which contains a goat. You are now

given the option of changing your selection to door No. 2 or sticking with door No.

1. What would you do? (Batanero, Contreras, et al. 2014, pp. 366).

As previously mentioned, this exercise turned out quite differently than expected,

as there was a very large part of the class who knew about the Monty Hall problem

in advance. The teacher was well aware of this, and therefore asked the students

who knew about the problem in advance not to reveal anything to the others, and

to play along, which easily can be challenging, especially if students only knew the

answer in advance and not the reasoning. Since there was at least one student who

knew about the problem in advance in most of the groups, there was a convergence

in the groups’ solutions. It did not seem like the students who knew the problem

revealed anything to the others, but when the other students quickly sought out the

students who knew the argument and the solution for confirmation every time they

made a claim. In this way, the incorrect solutions were screened out. This could be

an effect of the didactic contract (although the hope was that it would fade into the

background), as the students want to answer the question correctly to such an extent

that they need confirmation of their answer before they make their conclusion.

There was one of the groups where none of the students knew about the Monty

Hall problem beforehand. This group was coincidentally the group that were ob-
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served. In this group there was one of the students who very quickly found the

simulation function on the website, MathWarehouse 2014, in the first part of their

work with the problem, where they have to do manual simulations, and he started

to simulate the game 1500 times. He then told the others in his group what the

simulation showed and where they could find it. This convinced the other students

from the group that there had to be a 2
3 chance of winning if you switch doors, and

1
3 if you stick. They do this solely on the basis of the simulation’s output. When the

students have sat and looked at the simulation for a while, one of them asks how it

can be true, to which the student, who quickly found the simulation function, replies

as follows:

Student 8: I do not know why? But it is easy to see that if you change

your choice, there must be a 2/6 chance of getting the car. And if you

keep your choice, then there is only 1/3 to get the car... No sorry, 2/3

not 2/6 before.

(Translated by the author.)

The students was surprised by this result. It seemed strange to them (as it was

against their intuition), but they held on to the belief from the simulation, which

is consistent with the theory (see section 4.6). This may be due to the didactic

contract. It was the teacher who had handed them the simulation tool, and through

the teacher’s scientific authority, the website, and thus the simulation tool, have to

be blueprinted as being true.

In the validation phase, it turned out that several of the groups had found the

simulation function on the website, but most other groups (than the one observed)

had tried different arguments than ”it is true because the simulation told us”. All

these groups tried to argue in favor of changing the door. However, it was not easy

to make a precise argument for all groups. One group wrote the following on the

board:

We will switch.

1st attempt: There is a 1
3 chance of choosing a car.

Then a door is opened with a goat. Which means that you can either

choose a car or a goat.

2nd attempt: There is therefore a 50% chance of choosing the car, and

therefore you should switch doors.
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The teacher let this group explain themselves in the validation phase. The group

explained that since there is only a 1
3 chance of getting the car on the first choice,

and that after a door has been opened, there must be a greater chance of getting

the car if one made a new choice than if you refrained from making a new choice.

Therefore, the group’s argumentation focused more on the act of making a choice

than on changing the door or not, and they forgot that not making a choice is also

a choice. This means that this group basically makes the classic fallacy, described

in the a priori analysis (see section 6.4.2update). The rest of the groups all had

explanations close to the following reel example from, what one of the groups wrote

on the board

If you choose the strategy of switching doors and hit a goat in your first

choice, you will always win a car. There is a 2
3 chance of getting a goat

in the first pick. There is therefore a 2
3 chance of winning a car if you

always switch doors.

The fact that there are so many of the groups that come up with a correct, but

informal answer, is a sign that the students have expanded their personal knowledge

of conditional probability. It must be remembered that there was a part of the

students who knew the problem and the rationale for its results in advance. These

students had expanded their personal knowledge before the lesson, and it is not

certain that the lesson has made their personal knowledge greater, but perhaps

more solid or easier to transform into official knowledge.

In the institutionalization phase, the teacher showed the students a table he had

made beforehand that illustrated the informal explanation several of the groups had

given. The table looked like this:

Door 1 Door 2 Door 2 Stick Switch

Car Goat - Opening Goat Car Goat

Car Goat Goat - Opening Car Goat

Goat Car Goat - Opening Goat Car

Goat Goat - Opening Car Goat Car

Goat Goat - Opening Car Goat Car

Goat Car Goat - Opening Goat Car

(Translated by the author)
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The teacher tells the students that he assumes that door 1 is always chosen,

then all the rows will be equally likely, and thus there is a 2
3 chance of winning if the

door is switched. After this, the teacher presented a theorem to the students While

the teacher wrote the theorem on the board, he explained to the students what a

partition is. This is what the teacher wrote on the board:

If the events, H1, H2,..., Hn is a partition of the sample space, S, and

P (Hi) ̸= 0 for all i, then the following holds for every event A in S:

P (A) = P (A|H1) · P (H1) + · · ·+ P (A|Hn) · P (Hn)

The teacher then formulated the Monty Hall problem by letting Di be the event

that the car is behind door i and W be the event of winning the car. The teacher

then explained to the students that by using the theorem the following holds:

P (W ) = P (W |D1) · P (D1) + P (W |D2, D3) · P (D2, D3)

The teacher assumed that door 1 is always chosen. Thus, the probability of winning

if you stick had to be:

P (W ) = 1 · 1
3
+ 0 · 2

3
=

1

3

and the probability of winning if you switch:

P (W ) = 0 · 1
3
+ 1 · 2

3
=

2

3

8.6 Fifth Exercise - The Drawer Problem

In this exercise, the students had to work on the following problem: You have three

drawers with exactly two sections in each. In one of the drawers, there is a silver

coin in each of the sections. In another of the drawers, there is a gold coin in each of

the sections. In the last drawer there is a silver coin in one section and a gold coin

in the other.

a You choose a random section in a random drawer. What is the probability

that there is a gold coin in the section you have chosen? Now you open the

section and see that there is actually a gold coin in the section. What is the

probability that there is a gold coin in the second section of the drawer, too?

b In the example from the first part, are the probabilities that there is a gold

coin in the section you choose first and that there is a gold coin in the second

section of the drawer you chose a section independent?
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In order to solve this problem formally, Bayes’ theorem must be used. As previ-

ously mentioned, the teacher did not manage to show the students Bayes’ theorem

at the end of the third exercise, as was otherwise intended. Therefore, the teacher

included an introduction to Bayes’ theorem in the devolution. He did it this way:

Bayes’ Theorem:

For events, A and B, where P (A) ̸= 0 and P (B) ̸= 0, it holds

P (A|B) =
P (B|A) · P (A)

P (B)

The problem is a counter-intuitive problem dealing with conditional probability,

where the method to solve the problem lies in analyzing the problem correctly.

However, this problem is not nearly as well known as the problem in the previous

exercise. Therefore, none of the students knew the solution to this problem in

advance. In the validation phase, it became clear that all the students had difficulties

solving this problem. All groups believed that the probability that there was a gold

coin in the second section of the drawer where there had been a gold coin in the first

section must be 1
2 , since the sample space had been reduced to the possibilities of the

drawer with one silver coin and one gold coin and the drawer with two gold coins,

and since it would only be a success if you had hit the drawer with two gold coins.

Since all the groups came to roughly the same incorrect conclusion with roughly the

same arguments, the observed group probably represents how most groups work in

this exercise reasonably well. This group was focused on narrowing down the sample

space (like the teacher had explained to them in the institutionalization in the first

exercise) by excluding the drawer with two silver coins. The group articulated it

with a reference to what they have previously learned in connection with previous

exercises.

Student 9: Because that’s that with the sample space is being reduced to...

Now there can only be two of the drawers left.

(Translated by the author.)

It can be seen that the student is trying to approach a form of formalization. It

is the first time it has been observed in class, and it suggests that the importance

of formalization is beginning to sink in with the students. Unfortunately for the

student, he sees the sample space as the three drawers, which are then reduced to

two drawers, instead of thinking of the sections as the sample space.
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Although you can tell from the students in the group that they think they must

have the correct conclusion, they all have doubts about it. They have doubts about

it because they think it was far too easy to solve the task and even to argue for

it. This is again a sign that the didactic contract has not completely faded into

the background, as students do not expect the teacher to set them problems that

do not match their level or the time they have been given to work on the problem.

Therefore, students continue to be critical of their arguments and conclusions.

Student 9: So there are two left. But it won’t. . . Is it. . . 50%?

Student 10: It sounds too simple.

(Translated by the author.)

The students become so doubtful that they end up asking a student from another

group, probably because they were not allowed to ask their teacher for help, due to

the framework of the teaching. This student explains to the group that in their group

they disagree whether the conclusion is 1
3 or 1

2 . He himself leans towards 1
2 and he

had not understood the arguments of 1
3 , because when he tries to explain it, he gets

stuck and ends up saying ”So I don’t know... I don’t understand.” (Translated by the

author). This other group’s discussion could have been interesting, but unfortunately

it was not observed. When the group had to write their conclusion on the board,

they wrote, as mentioned, like all the other groups 1
2 , so something suggests that no

one in the group has been able to fully argue for the correct conclusion.

In the institutionalization phase, the teacher explains to the students that he

will solve the problem formally using Bayes’ theorem (which is still on the board).

The teacher starts with the first part of the problem, where he lets A be the event

that there is a gold coin in the chosen section. Here the teacher says that there are

six sections in total and there is a gold coin in three of the sections, P (A) = 3
6 = 1

2 .

After this he moves on to the second part. He tells the students that what they have

to determine is P (H1|A) , where H1 is the event that the chosen section is in the

drawer with two gold coins. In addition, he tells the students that P (H1) =
2
6 = 1

3

since there are two sections in the drawer with two gold coins in them, and there are

still six sections in total. After this, the teacher asks if all the students agree with

these statements. All the students agreed. Then the teacher wrote the problem into

Bayes’ theorem.

P (H1|A) =
P (A|H1) · P (H1)

P (A)

The teacher asks the students what was missing before the task could be solved.
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One of the students answered that P (H1) =
1
3 and P (A) = 1

2 so they only needed

P (A|H1). The teacher asked if any of the students knew what this probability

might be. No one answered that. The teacher explained what the notation meant

by saying ”(...) so we have to find the probability that the section we have chosen

contains a gold coin, when we know that the section is in the drawer that contains

two gold coins”. After this, many of the students could answer that the probability

must be P (A|H1) = 1 This is indubitably an example of the Topaze effect (which

is described in section 5), as the teacher does not give the students time to think

about their answers, but instead lowers the difficulty of the question so much that

it is almost trivial for the students. After that, a student was allowed to calculate

the probability on the board

P (H1|A) =
P (A|H1) · P (H1)

P (A)
=

1 · 1
3

1
2

=
2

3

This was expectedly surprising for most students. The teacher explained the result

informally by explaining that there was both the possibility of choosing one and the

other section in the drawer with two gold coins.

8.7 Sixth Exercise - The Three-Event Problem

In this exercise, the students had to work on the following problem: You have two

fair coins, one 1 krone and one 2 krone. You want to play heads or tails with both

coins at the same time, but before that you have to consider the probabilities of the

following three events: the 1 krone becomes a head, the 2 krone becomes a head

and exactly one of the coins becomes a head. That is, neither more nor less than

one. After these initial considerations, you have to decide whether all three events

are independent or dependent.

In the a priori analysis (section 6.6.2), it was described how the assumption would

be that some students would try to use the formulas they have been shown through

the institutionalizations in the course. However, this was not the case. There was

not a single student who tried to solve the problem in a formal way, as the linguistic

way was still dominant for the students. This is a clear sign that the students have

not become familiar with the formulas, and that they are not a regular part of their

toolbox for solving probability problems. In addition, all groups showed a poor

understanding of independence, which is a sign that the students have not had their

personal knowledge of independence expanded, even though it was one of the general

knowledge goals of the course.
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In this exercise, it became clear that the students did not have one of the most

essential parts of the concept of independence conceptualized yet, namely that inde-

pendence is a property that describes the relationship between two events. Indepen-

dence is not a property that a single event can have independently of other events.

Four out of five groups wrote something like this on the board:

The 1 krone turns head: Probability: 1
2 . Independent.

The 2 krone turns head: Probability: 1
2 . Independent.

Exactly one of the coins turns head: Probability: 1
2 . Dependent.

(Translated by the author.)

In several of the previous exercises, the students worked with independence, where

they both heard the teacher use the concept of independence as a characteristic

of the relationship between two events (including the definition of independence in

more than one version), but the students themselves also used the concept correctly

several times during the course. This emphasizes that students have not become

familiarized with the knowledge about independence, as students change the use of

the term depending on the task. In the previous problems, where the students have

used the concept correctly, they only dealt with two events. This time they have

to deal with three events, which could be one of the causes for this sudden lack of

knowledge. In other words, the context is different, which according to section 4.4

often causes that students to have difficulties with analyzing probability problems.

It always applies that if you know two of the events, then the unknown can be

determined. There were many students who could see this for the situation where

they know the first two events (i.e. the outcome of the two tossed coins), but not

for the other two situations where they knew the outcome of the event, that there

was precisely one of the coins that had become a heads, as well as one of the other

two events. The students mixed the two expected solution methods from the a

priori analysis (section 6.6.2), by concluding on one hand that the first two events

are pairwise independent, as it is old knowledge for students that two coin tosses

are independent, on the other hand they conclude that the third event is mutually

dependent of the other two events, which is in a way correct, so it may just be the

terminology that is flawed.
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This is backed up by the last group’s more detailed conclusion. The last group

wrote the following on the board:

The 1 krone turns head: Probability 1
2 .

The 2 krone turns head: Probability 1
2 .

These are independent of each other, since one coin do not dependent of

another coin.

Exactly one of the coins turns head: is dependent of the 1 krone, since

if the 1 krone turns head, then the 2 krone have to be tail or the other

way around.

(Translated by the author.)

Although the groups’ argumentation appears to be completely wrong and ex-

amples of false reasoning, it is not certain that it is so bad. The students clearly

have linguistic and terminological challenges, but hidden behind this, there may be

a correct conceptualisation.

Two of the students in the observed group have at the end of the action and

formulation phase a discussion, that could have led them to the right final conclusion,

namely that the events were mutually dependent. One student tried to convince the

other that the outcome of the last event could be determined from the outcomes of

the first two, which he succeed. But as it can be seen below, he came close to being

able to convince himself and the other student that this also applied to the other

situations.

Student 11: But if we think about it. If there is to be one tail and one

head. And the 1 krone is a tail. Then the other will have to be a head.

Then it cannot become a tail. It have to mean something... They have

to dependent of each other.

(Translated by the author.)

The group, with these two students, was one of the four groups that answered a bit

undetailed, and thus student 11 did not succeed in completing his argument.

All the groups were uncertain about their conclusions, which could also be seen

in one of the groups writing on the board. Here, that group had written ”definitely

wrong”under their conclusion. This could of course be because the students thought

it was a difficult exercise (which would be understandable since they do not have old

knowledge of independence of three or more events) and they had no good argument
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that their conclusion was correct, but it could also be due to, that students no longer

trusted their intuition, and that this led to an uncertainty about their own abilities.

In the observed group, the uncertainty was also clear. There was often one of

the members who exclaimed ”I don’t know”. The students did not trust even their

most trivial argumentation, which e.g. can be seen here:

Student 12: You can say that the first two events must have a probability

of 1/2. It’s straightforward.

Student 13: We say that now, but in a little while... Then it’s just

completely wrong.

(Translated by the author.)

The students have simply become accustomed to the fact that the exercises are

counter-intuitive, and that their first impulse therefore is incorrect. This means

that the didactic contract has conformed to the use of counter-intuitive problems,

so that students now have an expectation that the teacher will give them problems

where their first guess always will be wrong. This was in no way intended for the use

of these problems. Unfortunately, this can lead students to think that the teacher

has simply constructed some unnatural problems that are in no way relevant to

their further contact with probability theory, as the problems may feel like special

problems under special circumstances.

Below is a comment from a student to the teacher.

Student 14 to the teacher: You have nevertheless managed to turn some-

thing that should seem incredibly simple into something that requires an

incredible amount of thought.

(Translated by the author.)

Student 14 is one of the students in the class who are confident in their own mathe-

matical abilities, which meant that the least self-confident students properly did not

dare to answer the counter-intuitive problems because they felt, that their intuition

was suddenly useless, while the more confident students, as a minimum, spent much

longer on even the simplest tasks, as they wanted to be completely on the safe side.

In the institutionalization phase, the teacher first reviewed the definitions of

independence again to remind the students of the terminology. He then asked the

students whether they were most inclined to believe that the events were dependent

or independent. The students did not have to justify their answers, but simply give
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their answers by show of hands. There was a majority of students who believed that

the events must be independent.

The teacher then made an argument for each of the claims by formally showing

that the events are (pairwise) independent.

A: The 1-krone becomes heads; B: The 2-krone becomes heads; C: Exactly one of

the coins becomes heads.

P (A) =
1

2
, P (B) =

1

2
, P (C) =

2

4
=

1

2

P (A ∩B) =
1

4
, P (A ∩ C) =

1

4
, P (B ∩ C) =

1

4

Which means that

P (A) ·P (B) = P (A∩B) , P (A) ·P (C) = P (A∩C) , P (B) ·P (C) = P (B∩C)

The teacher then argued that the events were dependent by explaining to the stu-

dents that you could always determine the outcome of one of the events if you

knew the outcome of the other two. He did this by going over how to do it for all

three situations. The teacher once again had the students vote on which conclusion

they believed the most. This time the students were evenly distributed. Finally, the

teacher explained to the students that it was the last conclusion that was the correct

one, and then wrote the definition for mutually independence on the board, after

which he showed the students the formal argument that the events were mutually

independent.

8.8 Comprehension Tests

As mentioned in section 7, two short tests of approximately 10 minutes duration

were carried out. The first before the teaching started and the second after the

teaching had finished. If you wish to read more about the tests, please go to section

7 or if you want to see the tests go to appendix A.8 to A.11, where the tests can be

found in both the original version and a version translated into English. Normally

there are 27 students in the class. At the first test, there were a total of 19 students

present, all of whom took part in the test. At the second test, a total of 16 students

were present, all of whom took part in the test. There were 13 of the students who

took part in both the first and the second test.

In the first part of the tests, students had to answer two general comprehension

questions. They were asked the same questions on both tests. In the first question in
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the first test, there were 4 out of the 19 students, who did not answer anything that

was conceptually incorrect, but their answers were not very profound either. All 4

of them answered something close to ”Something that does not depend on anything

else”, which is a quote from one of them. This is a linguistic approach, and an

expected approach, since the students did not know the concept of independence

beforehand. It is surprising that there were not more of the students who gave an

answer of this type, since it was expected that the linguistic approach would be the

most immediate for these students. What is special about these four students is

that none of them did particularly well in the second part of the test. In this part,

students are given three tasks where they have to decide whether two events are

independent or not. The four students had only one of these tasks correct in total.

This means that three out of four of the students did not answer any of the tasks in

the second part correctly. In comparison, there was only one other student out of the

remaining 15 students who did not answer any of the tasks in the second part of the

test correctly. This means that this faint and inexact explanation of independence

is a marker of students without a clear and fruitful intuitive conceptualization.

Over half of the students (10) at the first test explain how independence is when

a variable is not dependent and therefore not affected by another variable. This

suggests that the students draw on old knowledge from another field of mathematics,

namely functional theory. In the second part of the test, these students had an

average of 1.8 out of 3 correct answers. This suggests that even if these students

answer something that is conceptually wrong, their intuitive conceptualization is still

more useful than the four who had given a more correct answer in the first question.

However, one must be cautious in concluding something based on these tests, as it

is a small amount of data. Of the 10 students with the functional theory approach,

there were 6 of them who took part in both tests. Two of the six students largely

did not change explanations of independence in the second test. However, it was

only one of the others who changed the description of independence to something

more correct. That student wrote in the second test:

That events are independent means that they do not affect each other.

Eg. if I roll with a die, the independence will consist in the fact that the

first roll has no effect on what I roll in the next roll. Conversely, if events

are dependent, this means that one event has an impact on another event.

(Translated by the author.)
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It is clear that this student has made progress, not only in language use, but also in

mathematical understanding of independence. In the following question, this student

also explains how two events are independent if the formula P (A∩B) = P (A)P (B)

is true. Unfortunately, this is not the case for the other three students. They all

try to explain why something must be equal to each other (just like in the definition

the student from before could remember). However, none of them can remember

the formula. All three explain themselves pretty much like this example (there is a

quote from one of them):

When you have two events, you can calculate whether they are indepen-

dent by seeing if there is the same probability on both sides of the equals

sign, and if there is, they are independent.

(Translated by the author.)

It is quite normal that students are not used to memorizing formulas, as they are

used to having their collection of formulas with them. It is not necessarily a success

criterion that the students can remember formulas, but since one of the goals of

the teaching design has been that the students should train the use of formalization

in probability-theoretic problem solving, it is important to investigate whether the

students have become better at using formulas. It is clear that these three students

have the definition of independence in mind, which is a sign of an increased focus on

formalization. In addition, the students are used to doing many type tasks where

they have to use the formulas they have to learn to use. In this course, students have

not done nearly as many tasks as they are used to or tasks with the same degree of

uniformity.

In the second part of the tests, a general analysis of the students’ skills on

independence was made easily, by simply looking at the amount of correct answers

to each of the three tasks. The first task in the second part of the test requires

the students to decide whether two events (they are different in the two tests) are

independent or not, when they know that P (A) = 10% and P (A|B) = 10% in the

first test, and that P (A) = 14% and P (A|B) = 14% in the second test, respectively.

In this task, 42.1% of the students answered that they are independent (which is

of course correct), while the rest answered that they are dependent. In the second

test, 62.5% answered ”independent” (which is still correct), while the rest answered

”dependent”. Unfortunately, not many gave reasons for their answers, but there

were a few who did. Here they explained that, in the first of the tests, they judged
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the events to be either independent or dependent, as they either believed or did not

believe that the gender of a car’s driver would have a correlation with the color of

the car, which is an approach of a subjectivist (see section 4.1). In the last of the

tests, there were only two who wrote their reasons. One still made the same kind

of subjective judgment, but the other wrote; ”From the probabilities, you can see

that nothing happens. Therefore, they have to be independent.” This approaches an

objectivist way of thinking as it has elements of formalization. The increase in the

percentage of correct answers is probably due to the fact that there are more of the

students who have trained their abilities of formalization and thereby conceptualized

a correct knowledge of independence.

In the second task in the second part of the tests, the students had to decide

whether two events were independent or not, where they were given the probabilities

of P (A ∩ B), P (A) and P (B). In this task, there were 68.4% of the students who

answered correctly on the first test, while there were 81.3% who answered correctly

on the second test. It is assumed (as there are no arguments for many of the

students’ answers), that many of the students made a subjective judgment in the

first of the tests. The reason that there is a larger percentage who answer correctly

in the second of the tests is difficult to deduce. It could be because the students had

trained their formalization and could remember the definition of independence, but

it could just as well be because the task was worded differently or purely coincidental.

The reason why the percentage of correct answers on both tests is so high is probably

that students tend to judge (subjectivist) that the events are dependent (which is

the correct answer) when making their personal, not mathematical, judgment.

In the last of the three tasks in the last part of the tests, only 21.1% of the

students answered correctly in the first test, while 31.3% of the students answered

correctly in the second test. These two tasks were designed so that students who

made subjectivist judgments would not answer correctly. The task in both the first

and the second test’s version is done in the same way as the first of the tasks, so

one could decide whether the events are independent or not by using the definition

of independence that uses conditional probability. This time the events are just

dependent instead of independent. However, the events are selected so that most

people will think that they are independent, if they use a subjectivist approach.

This could indicate that there are few students in both the first and second test

who do not use subjectivist judgment. This must be taken with a slight caveat

that there may be students who do not exclusively use this form of judgment, but
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approches the problem in a way that is a mixture of subjectivist and objectivist.

Since a personal judgment will clearly state that the events are independent, the

students’ subjectivist intuition will therefore be clear about the independence. This

may mean that even if they are able to use the correct definition of independence,

their belief in this definition that they have just learned is not necessarily strong

enough to overcome the students’ intuition.

8.9 The Teachers and the Students’ opinion

In the methodology section (section 7) it was described how an interview with the

teacher after the course should be part of the data collection. This was carried out

as planned. Since the course took a bit less time than expected, there was a little

time to spare. The author of the thesis chose to use this to create a plenary discus-

sion, where the students could talk about their experiences with and opinions on the

teaching. It must be said that the teacher was in the classroom while this discussion

was taking place, and it was before the interview with the teacher. Therefore, there

is a possibility that the teacher may have been influenced by the students’ input.

The students and the teacher had especially one opinion on the teaching. They

felt that a more repetitive part was missing, where students could work with several

more or less monotonous tasks, where they could use the relevant formulas several

times and thus become more experienced and familiar with the formulas and working

methods. The students found it frustrating to work with what they thought were

isolated exercises where they had to do something new each time. The students also

said that it had been exciting to try to work in a different way than they were used

to in their mathematics lessons. They particularly liked the times when they had

disagreed about solutions and through discussions were able to conclude what was

correct and what was incorrect. On the other hand, they found it very frustrating

that they could not rely on their intuition in the exercises. One of the students even

said:

It was honestly maddening that everything we thought was right was

wrong. It has really annoyed me. But then I also have to say that I

can remember the exercises we did. This is not always the case in math-

ematics.

(Translated by the author.)

100



Then the question is whether it was only on the basis of irritation that the exercises

had stuck in the student’s memory or whether the surprise that his intuition was

not correct had perhaps also made the exercises memorable.

In addition to the lack of routine-creating tasks, the teacher also had the frustra-

tion that he did not think that the learning outcome was worth the time spent. The

teacher himself said that he knew that if the students and himself became more ac-

customed to teaching in this way it would perhaps become more effective, but he was

not convinced that it could become effective enough in respect to the relationship

between the amount of subjects in the curriculum and the number of teaching hours.

The teacher was pleasantly surprised by the formulation phases, where the students

had to write conclusions on the board. He had had the experience that through

these phases the students were forced to sharpen their mathematical language and

thus become more precise in their formulations. In addition, he thinks it helped the

students to finish their work properly, and not just think a solution halfway through

and then stick to it. The teacher thought the validation phases had been difficult.

He could sense that they were merging with the institutionalization phases. He be-

lieved that this was because he was very used to teaching in a way that resembled a

mixture of validation and institutionalization. However, he had the feeling that the

institutionalization filled more than the validation, and that it was because he had

felt that there was a lot he had to go through in the institutionalization phases.

9 Discussion

The first and biggest critique of this study is that it is difficult to conclude anything

from such a narrow data base. Only one single class took part in the study, and

since there may be special circumstances with this class, developments or lack of the

same could be due to the class’ special circumstances as to the effects of the pre-

pared teaching design. A larger study with several participating classes from many

different places in Denmark and with different fields of study could have contributed

to a much stronger conclusion, where the special circumstances of the classes would

fade away. This could not be done in this thesis, as there is extremely limited time

(only four months) to prepare the thesis.

One of the teacher’s comments on the teaching design (see section 8.9) was a

concern about the relationship between time consumption and relevance in relation
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to the curriculum. Is it worth spending a minimum of five lessons working with

conditional probability and independence, now that it is not directly part of the

curriculum? One of the arguments for spending time on a course, which is described

in this thesis, is that it should give the students a good and well-founded foundation,

on which they can build solid knowledge in relation to other subjects that are in the

syllabus. Therefore, it could have been interesting to investigate how the students’

conceptualization of conditional probability and independence might have been a

strong foundation for other topics. The best example in upper secondary school

is binomial distributions, where the students, as mentioned in section 2, must use

independence as a basic condition for their theory. More specifically, it would have

been interesting to investigate whether students with a more complete conceptu-

alization of independence had better opportunities to conceptualize the theory of

binomial distributions than students who have not worked in the same way with

independence. This was again not an option due to the limited time in which the

thesis had to be done, which meant that there was no time to return to the class

and investigate the relationships with binomial distributions later in the process,

but also because the investigation itself was scheduled for five lessons, and thus also

limited.

In section 8.9, it was explained how both the teacher and the students think

routine-creating type tasks were missing in the teaching design. It was a conscious

choice not to include type tasks, as one of the main ideas behind the design was that

the students should train their analytical skills on probability problems, i.e. the

part of problem solving where you find out what the problem is about and thus how

to solve it. Type tasks are tasks where you get the students used to working with

problems where exactly the same analysis must be done each time. This means that

the analysis part takes a back seat, as it is the same for all tasks, and the students

can therefore focus on working with their calculation skills and thus turn them into

routines. Thus, routine teaching will reduce students’ training in analyzing prob-

lems. The reason why including routine type tasks can be justified is that they can

strengthen students’ use of formalism. In this project, it was seen several times that

students did not reach a phase of problem solving where they could use formaliza-

tion because they could not analyze the problem correctly. In addition, students

can train their formalization skills much more effectively with type tasks, as they

are not as time-consuming as these larger problems used in this thesis. In order to
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accommodate both the students’ analytical abilities and their formalistic abilities,

it could be fruitful that the design was a mixture of the more time-consuming prob-

lems, where the students can work on their analytical abilities, and of the routine

type tasks, where the students could develop their formalistic abilities. If it were to

be introduced in the teaching design of this thesis, it would require either one or two

of the exercises to be taken out in favor of routine tasks or that the teaching course

be extended. This applies despite the fact that the course ended up being around

20-25 minutes shorter than expected.

Another focal point in the teaching design was to strengthen the students’ linguis-

tic abilities within probability theory. When looking at the comprehension tests, it is

clear that the students use a more probability-theoretic language after the teaching

course than before. There were many students who started by talking about inde-

pendence of variables, and a few who wrote about independence of outcomes and/or

information. By the end of the course, it had mostly been replaced by independence

of events. This suggests that the students have strengthened their conceptualization

of independence. During the action phases of the exercises, it could be observed

that the students’ use of language also became more probabilistic, or in other words

the students moved into a probabilistic terminology. Once again, this may be due to

students developing their conceptual understanding of independence and conditional

probability, but it may also be an example of the Jourdain effect. It may be that

the students have simply adopted the linguistics from the teacher’s use of language,

without having gained an increased understanding of the meaning of the words. In

the first exercise, it could be seen how one student developed her linguistic precision

and thus suddenly understood connections in the task that she had not been able

to before (see section 8.2 for a deeper review). This suggests that the student has

not simply adopted a language she does not understand, as she actively brings the

concepts into play.

In the second part of the comprehension tests, where the students had to decide

whether two events were independent or not, were not so successful, as most of the

students did not write reasons for their answers. This had been far more useful

than just the students’ conclusions. Thus, this part was largely narrowed down to a

comparison between the amount of correct answers the students could give in each

of the tests. Here, a small improvement could be seen, which in principle indicates
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that the students have become better at using both their analytical and formalistic

abilities. However, the progress is not very great, and since the tasks are slightly

different from the first test to the second test, the progress could also be due to

several of the students accidentally concluding correctly, but with a false reasoning.

However, the fact that there is progress in all three tasks does not indicate this,

as the students could just as well have had a decline in a single one of the tasks.

However, since there are only three tasks, this is difficult to conclude, since there

would be a 12.5% chance that there was a progress in all three tasks, assuming

that it is equally likely to have a progress or a decline in the question based on the

wording of the questions.

10 Conclusion

The overall research questions of this thesis were as follows

How should conditional probability and independence be taught so that

students acquire solid knowledge about the subject that is conceptualized

in a non-misleading way?

In an attempt to answer this question, this thesis has investigated the way in which

conditional probability and independence are included in curricula and textbooks.

It can be concluded that the subject is no longer part of upper secondary educa-

tion, since conditional probability is not part of curricula or textbooks anymore, and

since independence is only appearing as an assumption. In the course of the thesis,

several misconceptions within conditional probability and independence have been

reviewed, including the fallacy of the time axis, the base rate fallacy, the fallacy

of the transposed conditional and the conjunction fallacy. In addition, it has been

reviewed how i.a. contraintuitive problems, simulations, contingency tables, and

linguistic training can help the students offset these fallacies.

Based on this, a teaching design has been made, which was unfolded over five

lessons of 55 minutes. From observations and data from this teaching course, it

can be concluded that the students have developed their linguistic abilities within

probability theory, which leads to an increased possibility of being able to carry out

correct analyzes of probabilistic problems. This was one of the goals of the teaching

design. Another goal was for the students to develop their formalistic skills. This
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was only successful to a very low degree, and therefore it can be concluded that

more lessons must be used to give the students the opportunity to do this, or that

the five lessons must be reprioritized so that there is time for routine tasks on behalf

of one or more of the counterintuitive unique problems. It is not possible, based on

the collected data and observations, to be able to conclude that the teaching design

reject misleading conceptions, and that would thus require a more comprehensive

teaching design both in quality and quantity. In addition, it would also require a

larger study with more participating subjects.

105



References

Bar-Hillel, Maya (1983). “The base rate fallacy controversy”. In: Decision making

under uncertainty. Ed. by Roland W. Scholz. Amsterdam, The Netherlands: El-

sevier, pp. 39–61.

Batanero, Carmen, J. Miguel Contreras, Carmen Dı́az, and Gustavo R. Cañadas
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Selena Praprotnik, Sonja Rajh, Mateja Sirnik, Mojca Suban, Eva Špalj, Carl
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A Appendix

A.1 Lesson Plans - Danish Version

A.1.1 First Exercise

Fase Lærerens rolle Elevernes rolle

Introduktion

til miniforløb

2-3 min

Lytter.

Test for ind-

samling af data

10-15 min

Besvarer testen.

Devolution

(didaktisk)

3-5 min

Fremviser kontingenstabel og

sikre sig, at eleverne forst̊ar

tabellens indhold. Fremviser ar-

bejdsspørgsm̊al. Se under skema

for at finde kontingenstabel og

arbejdsspørgsm̊al. Fortæller elev-

erne at de skal arbejde med deres

sidemakker. Hvert par skal have

et papir med kontingenstabellen

og arbejdsspørgsm̊al, der kan

findes under dette skema.

Lytter og stiller opføl-

gende spørgsm̊al. Mod-

tager papiret og gør klar

til makkerskabet.

Handling og

formulering

(adidaktisk)

10-15 min

Observerer eleverne uden at in-

teragere med dem. Der kan dog

interageres med elevpar, der

ikke kan komme i gang eller er

stoppet helt op og ikke selv kan

komme i gang igen.

Arbejder med arbe-

jdsspørgsm̊alene. Skriver

deres løsninger ned p̊a pa-

piret.
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Validering

(didaktisk)

7-10 min

Gennem lærerens observationer i

handlings- og formuleringsfasen

har læreren f̊aet et overblik over,

hvilke løsninger de forskellige

makkerpar har. Derfor kan lær-

eren udvælge forskellige makker-

par til at forklare deres løsnings-

forslag.

Lytter n̊ar læreren eller

klassekammerater taler.

Forklarer deres løsninger,

n̊ar de bliver spurgt af

læreren. Deltager aktivt

ved spørgsm̊al i plenum.

Institutional-

isering

(didaktisk)

10 min

Gennemg̊ar betinget

sandsynlighed teoretisk med

udgangspunkt i de netop af-

sluttede opgaver. Benytter

Venn-diagrammer til at illus-

trere sandsynligheder og ind-

skrænkningen af udfaldsrummet

ved betingelse.

Lytter og tager evt. no-

tater.

A.1.2 Second Exercise

Fase Lærerens rolle Elevernes rolle

Devolution

(Didaktisk)

2-3 min

Fremviser kontingenstabel, som

ses under dette skema. Forklarer

at kontingenstabellen beskriver

en anden test for sygdommen

Divoc, som de arbejdede med i

sidste lektion. Giver eleverne det

tilhørende arbejdsspørgsm̊al; ”Er

denne test for Divoc en god test?

Hvorfor/hvorfor ikke?”. Inddel

eleverne i grupper af 4-5.

Lytter og sætter sig

derefter i deres grupper.

Handling

(Adidaktisk)

7-9 min

Observerer eleverne. Interagerer

ikke med dem, med mindre, det

er nødvendigt for at f̊a en gruppe

i gang med arbejdet.

Arbejder med arbe-

jdsspørgsm̊alet.
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Formulering

(Adidaktisk)

3-4 min

Inddeler tavlen, s̊a der er et om-

r̊ade til hver gruppe, og fortæller

eleverne, at hver gruppe skal

skrive deres løsning p̊a tavlen.

Derefter observeres eleverne.

Eleverne skriver deres løs-

ning op p̊a tavlen.

Validering

(Didaktisk)

6-7 min

Vælger en gruppe, der starter

med at fremlægge deres løsning.

Gruppen vælges p̊a baggrund

af de observationer læreren har

gjort i de tidligere faser. Derefter

kan denne løsning diskuteres i

plenum eller der kan vælges en

ny gruppe, der kan fremlægge

deres løsning, hvis dette er vur-

deres bedre for eleverne udbytte.

Nogle eleverne fremlægger

for de andre, der lytter

opmærksomt. Deltager

aktivt i plenumdiskus-

sioner.

Institutional-

isering

(Didaktisk)

5-6 min

Gennemg̊ar uafhængighed teo-

retisk med udgangspunkt i op-

gaven. Kommer ind p̊a defini-

tioner for uafhængighed, b̊ade

definitionen med og den uden

brug af betinget sandsynlighed.

Lytter og stiller evt.

opfølgende spørgsm̊al.

A.1.3 Third Exercise

Fase Lærerens rolle Elevernes rolle

Devolution

(Didaktisk)

4-5 min

Forklarer eleverne om urneprob-

lemet. Eksperimentet udføres

foran eleverne imens opgaven

forklares. Forklarer eleverne at

de skal forsætte I deres grupper.

Lytter og stiller evt.

opfølgende spørgsm̊al.

Handling

(Adidaktisk)

8-10 min

Observerer eleverne og inter-

agerer kun, hvis det er nød-

vendigt for at f̊a eleverne i gang

med at arbejde.

Arbejder med opgaven i

deres grupper.
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Formulering

(Adidaktisk)

2-3 min

Giver eleverne besked om, at de

skal skrive deres svar p̊a tavlen

igen. Derefter observeres eleverne

igen.

Skriver løsninger p̊a

tavlen.

Validering

(Didaktisk)

8-10 min

Udvælger en gruppe til at re-

degøre for deres svar. Derefter

kan en anden gruppe vælges til

at fremlægge deres svar, hvis

de har en anden forklaring eller

diskussionen kan foreg̊a i plenum.

Dette kommer an p̊a lærerens ob-

servationer.

Redegør for deres løs-

ning, hvis de bliver ud-

valgt af læreren, ellers

lytter. Deltager aktivt i

plenumdiskussioner.

Institutional-

isering

(Didaktisk)

3-4 min

Forklarer eleverne om hvor-

dan betinget sandsynlighed og

kausalitet ikke er det samme.

Hvordan betinget sandsynlighed

kan benyttes modsat tidsfor-

løb. Hvis der er tid kan læreren

komme ind p̊a Bayes sætning.

Lytter og stiller evt.

opfølgende spørgsm̊al.

A.1.4 Fourth Exercise

Fase Lærerens rolle Elevernes rolle

Devolution

(Didaktisk)

8-10 min

Giver eleverne et ultrakort rids

af historien bag Monty Hall-

problemet. Forklarer eleverne

spillereglerne til Monty Hall. Spil

et par eksempler igennem, hvor

eleverne kan være med til at ud-

vikle strategier (f.eks. start al-

tid med en specifik dør, skift dør

eller bliv ved dør).

Lytter, deltager i plenu-

mundervisningen og

stiller evt. opfølgende

spørgsm̊al.
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Hvis eleverne ikke selv nævner

strategier om valget af den første

dør, undlades denne del for effek-

tivisering. Hvis de nævner disse

strategier, er der nødvendigt at

udelukke disse, hvilket gøres

ved i plenum at komme frem

til hvorfor valget af dørnummer

ved første valg ikke har indfly-

delse p̊a vinderchancen. Bed

evt. eleverne om at tage stilling

til, om de mener at en strategi

ville være fordelagtig, og hvis de

mener det; hvilken. Del link til

hjemmeside. Forklar eleverne, at

de nu hver for sig f̊ar 5 min til at

spille Monty Hall-spillet. (Alts̊a

den del af den delte hjemme-

side, hvor man skal være ”quiz-

deltageren”.) Fortæl eleverne, at

de selv m̊a vælge om de spiller

med en strategi eller p̊a ren in-

tuition. Hvis de spiller med en

strategi, m̊a de selvfølgelig ogs̊a

selv vælge, hvilken strategi de

benytter. Hjemmesiden laver selv

statistik. Link til hjemmesiden

kan findes under dette skema,

hvor der ogs̊a er en forklaring af,

hvor man finder statistikken.

Handling

(Adidaktisk)

6-7 min

Observerer eleverne. Interagerer

ikke med dem, med mindre, det

er nødvendigt for at f̊a en elev i

gang med arbejdet.

Spiller spillet selvstændig.
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Formulering

(Adidaktisk)

6-7 min

Inddeler eleverne i grupper p̊a 4-

5 elever pr. gruppe. Beder elev-

erne sammenligne deres statis-

tik, og derefter at formulere en

foreløbig konklusion p̊a, hvor-

dan man bør spille spillet for at

have størst chance for at vinde,

og skrive den p̊a tavlen. Derefter

observerer læreren eleverne.

Sammenligner deres

statistik med hinanden,

for at f̊a den bedste bag-

grund for at formulere

en foreløbig konklusion

p̊a, hvordan man bør

spille spillet for at have

størst chance for at vinde.

Skriver deres foreløbige

konklusion p̊a tavlen.

Validering

(Didaktisk)

8-10 min

F̊ar et par af grupperne til at

fremlægge deres foreløbige kon-

klusion, og hvorfor de er kommet

til denne konklusion.

Fremlægger konklusioner

og argumenter eller lytter,

hvis de ikke fremlægger.

Devolution

(Didaktisk)

2 min

Forklarer eleverne, at de p̊a

hjemmesiden ogs̊a kan simulere

rigtig mange gentagelser af spillet

p̊a kort tid. Beder eleverne om

ligesom før først selvstændig at

arbejde med simulationen og

derefter sætte sig sammen med

deres grupper og diskutere deres

(m̊aske) nye konklusion, skrive

den p̊a tavlen, samt overveje,

hvordan det kan forholde sig s̊a-

dan. De skal ogs̊a skrive deres

argumenter p̊a tavlen.

Lytter og stiller evt.

opfølgende spørgsm̊al.

Handling

(Adidaktisk)

3-5 min

Observerer eleverne. Interagerer

ikke med dem, med mindre, det

er nødvendigt for at f̊a en elev i

gang med arbejdet.

Arbejder med simulatio-

nen selvstændigt.
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Formulering

(Adidaktisk)

10-12 min

Observerer eleverne. Interagerer

ikke med dem, med mindre, det

er nødvendigt for at f̊a en gruppe

i gang med arbejdet.

Arbejder i grupper med

at formulere deres konklu-

sion p̊a hvilken strategi,

der giver den største vin-

derchance, skriver den

p̊a tavlen under deres

tidligere konklusion (det

gør ikke noget, hvis det

er den samme konklu-

sion). Diskutere internt

i gruppen, hvordan det

kan være, at deres konklu-

sion passer. Skriver deres

argumenter p̊a tavlen un-

der deres konklusioner.

Validering

(Didaktisk)

7-10 min

Lader en gruppe eller to fork-

larer deres konklusion og deres

argumenter for resten af klassens

elever. Åbner diskussionen op i

plenum for andre argumenter.

Forklarer konklusioner og

argumenter, lytter og delt-

ager i klassediskussionen.

Institionalisering

(Didaktisk)

7-10 min

Gennemg̊ar den formelle løsning

og evt. en mindre formel løsning,

hvor der benyttes tælletræer.

Lytter og stiller evt.

opfølgende spørgsm̊al.

A.1.5 Fifth Exercise

Fase Lærerens rolle Elevernes rolle

Devolution

(Didaktisk)

2-3 min

Forklarer kommodeproblemets

første del (som kan ses under

skema). Fortæller eleverne, at

de først selv skal finde en løsning

i 2 minutter og derefter i grupper

diskuterer deres løsninger.

Lytter og stiller evt.

opfølgende spørgsm̊al.
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Handling

(Adidaktisk)

2-3 min

Observerer og klargør til ind-

delingen af grupper p̊a 2-3 elever.

Arbejder selvstændigt

med en løsning.

Handling og

formulering

(Adidaktisk)

10-12 min

Inddeler eleverne i grupper af 2-

3. Informerer eleverne om, at de

skal være klar til at skrive deres

løsning op p̊a tavlen med udreg-

ninger. Fortæl dem at de har 10

min Derfra observerer læreren

eleverne uden at interagerer.

Arbejder i deres grupper

med at komme frem til

en løsning, de er enige

om. Derefter skriver de

deres løsning p̊a tavlen

med argumenter.

Validering

(Didaktisk)

7-9 min

Ud fra svarene p̊a tavlen og

tidligere observationer vælges 1-

3 grupper til at fremlægge deres

løsningsforslag. Derefter og/eller

imellem fremlæggelserne kan lær-

eren stille spørgsm̊al til grup-

pen, der fremlægger, eller ud i

plenum.

Fremlægger, lytter

og/eller svarer p̊a

spørgsm̊al. Stiller evt. ud-

dybende spørgsm̊al.

Devolution

(Didaktisk)

2 min

Giver eleverne anden del af kom-

modeproblemet. Problemet kan

ligesom før findes under dette

skema. Fortæller eleverne at pro-

cessen bliver ens med før; først

2 min hver for sig og derefter 10

min i grupperne.

Lytter og stiller evt.

opfølgende spørgsm̊al.

Handling

(Adidaktisk)

2-3 min

Observerer eleverne. Arbejder med spørgsm̊alet

hver for sig.

Handling og

Formulering

(Adidaktisk)

10-12 min

Observerer eleverne. Arbejder i deres grupper

med at komme frem til

en løsning de er enige om.

Derefter skriver de deres

løsning p̊a tavlen med ar-

gumenter.
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Validering

(Didaktisk)

6-7 min

Ud fra svarene p̊a tavlen og

tidligere observationer vælges 1-

3 grupper til at fremlægge deres

løsningsforslag. Derefter og/eller

imellem fremlæggelserne kan lær-

eren stille spørgsm̊al til grup-

pen, der fremlægger, eller ud i

plenum.

Fremlægger, lytter

og/eller svarer p̊a

spørgsm̊al. Stiller evt. ud-

dybende spørgsm̊al.

Institutional-

isering

(Didaktisk)

7-8 min

Forklarer de formelle løsninger

til begge dele af kommode-

problemet.

Lytter og stiller evt. ud-

dybende spørgsm̊al.

A.1.6 Sixth Exercise

Fase Lærerens rolle Elevernes rolle

Devolution

(Didaktisk)

3-4 min

Forklarer eleverne om 3-

hændelsesproblemet, der kan

findes under dette skema. Fork-

larer ydermere, at de skal løse

opgaven ligesom de to andre

gange i denne lektion.

Lytter og stiller evt. op-

klarende spørgsm̊al.

Handling

(Adidaktisk)

2-3 min

Observerer eleverne. Arbejder med spørgsm̊alet

hver for sig.

Handling og

Formulering

(Adidaktisk)

10-15 min

Observerer eleverne. Arbejder i deres grupper

med at komme frem til

en løsning de er enige om.

Derefter skriver de deres

løsning p̊a tavlen med ar-

gumenter.
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Validering

(Didaktisk)

8-10 min

Ud fra svarene p̊a tavlen og

tidligere observationer vælges 1-

3 grupper til at fremlægge deres

løsningsforslag. Derefter og/eller

imellem fremlæggelserne kan lær-

eren stille spørgsm̊al til grup-

pen, der fremlægger, eller ud i

plenum.

Fremlægger, lytter

og/eller svarer p̊a

spørgsm̊al. Stiller evt. ud-

dybende spørgsm̊al.

Institutional-

isering

(Didaktisk)

7-10 min

Gennemg̊ar den formelle forklar-

ing p̊a, hvorfor de 3 hændelser

ikke er uafhængige, n̊ar de nu er

parvist uafhængige. Trækker evt.

linjer til binomialfordelinger.

Lytter og stiller evt.

opfølgende spørgsm̊al.

Test for ind-

samling af data

10-15 min

Besvarer testen.
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A.2 First Exercise - The First Contingency Table (Danish Version)

Tabellen viser opdigtet data fra en stikprøve der skal hjælpe med at afklare effekten

af at masseteste en befolkning for en bestem opdigtet sygdom (kunne hedde Divoc).

Søjlerne ”Syg” og ”Rask” henviser henholdsvis til om personerne var smittede med

Divoc eller ikke ej ved testningssituationen. Mens rækkerne ”Testet positiv” og

”Testet negativ” henviser til om personerne testede positiv eller negativ.

Syg Rask Sum

Testet positiv 22 248 270

Testet negativ 3 2,227 2,230

Sum 25 2,475 2,500

a Hvad er sandsynligheden for at en tilfældig person fra denne stikprøveunder-

søgelse har en positiv test?

b Hvad er sandsynligheden for at en tilfældig person fra denne stikprøveunder-

søgelse b̊ade har en positiv test og er smittet med Divoc?

c Hvad er sandsynligheden for at en tilfældig person fra denne stikprøveunder-

søgelse har en positiv test, hvis personen er smittet med Divoc?

d Hvad er sandsynligheden for at en tilfældig person fra denne stikprøveunder-

søgelse har en positiv test, hvis personen ikke er smittet med Divoc? Sammen-

lign dette med spørgsm̊al c), hvad betyder det?

e Hvad er sandsynligheden for at en tilfældig person fra denne stikprøveunder-

søgelse er smittet med Divoc, hvis personens test er positiv? Hvad er sandsyn-

ligheden for at personen er rask, hvis personens test er positiv? Sammenlign

dette. Hvad betyder det?
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A.3 Second Exercise - The Second Contingency Table (Danish Version)

Tabellen viser opdigtet data fra en stikprøve der skal hjælpe med at afklare effekten

af at masseteste en befolkning for en bestem opdigtet sygdom (kunne hedde Divoc).

Søjlerne ”Syg” og ”Rask” henviser henholdsvis til om personerne var smittede med

Divoc eller ikke ej ved testningssituationen. Mens rækkerne ”Testet positiv” og

”Testet negativ” henviser til om personerne testede positiv eller negativ.

Syg Rask Sum

Testet positiv 15 922 937

Testet negativ 25 1,538 1,563

Sum 40 2,460 2,500

Er denne test for Divoc en god test? Hvorfor/hvorfor ikke?
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A.4 Third Exercise - The Urn Problem (Danish Version)

I en urne ligger der fire kugler. To af dem er hvide og to af dem er sorte. Du trækker

en kugle fra urnen og ser at kuglen er hvid, du putter kuglen i lommen.

a) Hvad er sandsynligheden for, at den næste kugle, du trækker, ogs̊a er hvid?

Du putter alle kuglerne tilbage i urnen og starter eksperimentet forfra. Denne gang

trækker du en kugle, men kigger ikke p̊a kuglen inden du putter den i lommen. Du

trækker en ny kugle, som du ser, er hvid.

b) Hvad er sandsynligheden for, at den kugle, der ligger i din lomme, ogs̊a er hvid?

c) Er hændelserne, første kugle er hvid og anden kugle er hvid, afhængige eller

uafhængige?

Tillægsopgave:

Du har den samme urne med de samme fire kugler i. Denne gang trækker du

en kugle, og du ser den er hvid. Derefter putter du kuglen tilbage i urnen.

d) Hvad er sandsynligheden for, at den næste kugle, du trækker, ogs̊a er hvid?

Gentag eksperimentet, hvor du trækker en kugle, som du viser til din ven, uden

at du ser den, hvorefter du putter kuglen til bare i urnen. Nu trækker du en ny

kugle, der viser dig at være hvid.

e) Hvad er sandsynligheden for, at din ven s̊a en hvid kugle?

f) Er hændelserne, første kugle er hvid og anden kugle er hvid, denne gang

afhængige eller uafhængige?
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A.5 Fourth Exercise - The Monty Hall Problem (Danish Version)

Antag, at du deltager i et gameshow og f̊ar valget mellem at vælge en af tre døre.

Bag den ene dør er der en bil og bag hver af de to andre døre er der en ged. N̊ar

du har valgt en dør, lad os sige nr. 1 (som er lukket), åbner værten, som ved, hvad

der er bag hver dør, en anden dør (f.eks. nr. 3), som indeholder en ged. Du f̊ar nu

mulighed for at ændre dit valg til dør nr. 2 eller holde dig til dør nr. 1. Hvad vil du

gøre?
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A.6 Fifth Exercise - The Drawer Problem (Danish Version)

Du har tre kommoder med netop to skuffer i hver. I en af kommoderne ligger der

en sølvmønt i hver af skufferne. I en anden af kommoderne ligger der en guldmønt

i hver af skufferne. I den sidste kommode ligger der en sølvmønt i den ene skuffe

og en guldmønt i den anden. Nu vælger du en tilfældig skuffe i en tilfældig kommode.

a) Hvad er sandsynligheden for, at der er en guldmønt i den skuffe du har valgt?

Nu åbner du skuffen og ser, at der rent faktisk er en guldmønt i skuffen.

b) Hvad er sandsynligheden for, at der ogs̊a er en guldmønt i den anden skuffe i

kommoden?

I eksemplet fra første del, er sandsynligheden for, at der er en guldmønt i den skuffe

du vælger først, og for, at der er en guldmønt i den anden skuffe i kommoden, du

har valgt en skuffe i, uafhængige?
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A.7 Sixth Exercise - The Three-Event Problem (Danish Version)

Du har to mønter, én 1-krone og én 2-krone. Du vil sl̊a ”plat eller krone”med begge

mønter samtidig, men vil først overveje sandsynlighederne for følgende tre hændelser:

• 1-kronen bliver krone.

• 2-kronen bliver krone.

• Netop 1 af mønterne bliver krone. Det vil sige hverken flere eller færre.

Efter disse indledende overvejelser, skal du overveje om alle tre hændelser er uafhængige

af hinanden
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A.8 The Initial Comprehension Test

You must now answer a few questions, which will be used as part of an empirical

basis for the study you will participate in this week. This means that this test will

not be handed over to your teacher or other employees at Stenhus Gymnasium and

HF. If extracts from your answers are used in the thesis, these extracts will appear

completely anonymous, where neither school, class nor names will be identifiable.

All questions are about probability theory.

1. Describe in your own words what independence means in probability theory.

2. How do you find out whether two events (e.g. if a random person from your

class is born in March and a random person from your class has an iPhone)

are independent or not?

3. Determine whether the following events are independent:

a. The events that a random car is black and the event that the driver of

a random car is a woman, when you know that 10% of cars in Denmark

are black and that 10 of cars driven by women are also black.

b. The events that a random 18-year-old lives in Holbæk and that a random

18-year-old has a driving license, when you know that the probability that

an 18-year-old lives in Holbæk is 5%, the probability that an 18-year-old

has a driving license is 60 % and the probability that an 18-year-old both

lives in Holbæk and has a driving license is 4%.

c. The events that it rains on a random day and the event that a random

day is a Monday, when you know that the probability that it rains is 20%

and the probability that it rains on a Monday is 25%.
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A.9 The Final Comprehension Test

You must now answer a few questions, which will be used as part of an empirical

basis for the study you will participate in this week. This means that this test will

not be handed over to your teacher or other employees at Stenhus Gymnasium and

HF. If extracts from your answers are used in the thesis, these extracts will appear

completely anonymous, where neither school, class nor names will be identifiable.

All questions are about probability theory.

1. Describe in your own words what independence means in probability theory.

2. How do you find out whether two events (e.g. if a random person from your

class is born in March and a random person from your class has an iPhone)

are independent or not?

3. Determine whether the following events are independent:

a. The events that a random 10-year-old swim as a hobby and that a random

10-year-old is a boy when you know that 14% of 10-year-olds swim as a

hobby and that 14% of 10-year-old boys swim as a hobby.

b. The events that a random person has passed mathematics at A-level and

that a random person is among the richest half of Denmark’s population,

when you know that the probability that a random person has passed

mathematics at A-level is 12%, the probability that a random person is

among the richest half in Denmark is 50% and the probability that a

random person has both passed mathematics at A-level and is among the

richest half of the Danish population is 8%.

c. The events that a random person has blue eyes and the event that a

random person is born on a Monday, when you know that the probability

of being born on a Monday is 1
7 and the probability that a random person

was born on a Monday if the person has blue eyes is 3
14
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A.10 The Initial Comprehension Test (Danish Version)

Du skal nu svare p̊a et par spørgsm̊al, som skal bruges som en del af et empirisk

grundlag for den undersøgelse I skal medvirke til i denne uge. Dermed bliver denne

undersøgelse ikke udleveret til jeres lærer eller andre ansatte p̊a Stenhus Gymnasium

og HF. Hvis der bliver brugt uddrag fra jeres besvarelser i den færdige opgave, vil

disse uddrag forekomme fuldstændigt anonymt, hvor hverken skole, klasse eller navne

vil kunne identificeres. Alle spørgsm̊al handler om sandsynlighedsregning.

1. Beskriv med dine egne ord, hvad uafhængighed betyder indenfor sandsyn-

lighedsregning.

2. Hvordan finder man ud af om to hændelser (f.eks. om en tilfældig fra jeres

klasse er født i marts og en tilfældig fra jeres klasse har en iPhone) er uafhængige

eller ej?

3. Afgør om følgende hændelser er uafhængige:

a. Hændelserne at en tilfældig bil er sort og hændelsen at en tilfældig bils

chauffør er en kvinde, n̊ar du ved at 10% af biler i Danmark er sorte og

at 10% af biler kørt af kvinder ogs̊a er sorte.

b. Hændelserne at en tilfældig 18-̊arig bor i Holbæk og at en tilfældig 18-

årige har kørekort, n̊ar du ved at sandsynligheden for at en 18-̊arig bor i

Holbæk er 5%, sandsynligheden for at en 18-̊arig har kørekort er 60% og

sandsynligheden for at en 18-̊arig b̊ade bor i Holbæk og har kørekort er

4%.

c. Hændelserne at det regner p̊a en tilfældig dag og hændelsen at en tilfældig

dag er en mandag, n̊ar du ved at sandsynligheden for at det regner er 20%

og sandsynligheden for at det regner p̊a en mandag er 25%.
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A.11 The Final Comprehension Test (Danish Version)

Du skal nu svare p̊a et par spørgsm̊al, som skal bruges som en del af et empirisk

grundlag for den undersøgelse I skal medvirke til i denne uge. Dermed bliver denne

undersøgelse ikke udleveret til jeres lærer eller andre ansatte p̊a Stenhus Gymnasium

og HF. Hvis der bliver brugt uddrag fra jeres besvarelser i den færdige opgave, vil

disse uddrag forekomme fuldstændigt anonymt, hvor hverken skole, klasse eller navne

vil kunne identificeres. Alle spørgsm̊al handler om sandsynlighedsregning.

1. Beskriv med dine egne ord, hvad uafhængighed betyder indenfor sandsyn-

lighedsregning.

2. Hvordan finder man ud af om to hændelser (f.eks. om en tilfældig fra jeres

klasse er født i marts og en tilfældig fra jeres klasse har en iPhone) er uafhængige

eller ej?

3. Afgør om følgende hændelser er uafhængige:

a. Hændelserne at en tilfældig 10-̊arig g̊ar til svømning og at en tilfældig

10-̊arig er en dreng, n̊ar du ved at 14% af 10-̊arige g̊ar til svømning og at

14% af 10-̊arige drenge g̊ar til svømning.

b. Hændelserne at en tilfældig har best̊aet matematik p̊a A-niveau og at en

tilfældig er blandt den rigeste halvdel af Danmarks befolkning, n̊ar du ved

at sandsynligheden for at en tilfældig person har best̊aet matematik p̊a

A-niveau er 12%, sandsynligheden for at en tilfældig person er blandt den

rigeste halvdel i Danmark er 50% og sandsynligheden for at en tilfældig

b̊ade har best̊aet matematik p̊a A-niveau og er blandt den rigeste halvdel

af den danske befolkning er 8%.

c. Hændelserne at en tilfældig person har bl̊a øjne og hændelsen at en til-

fældig person er født p̊a en mandag, n̊ar du ved at sandsynligheden for

at være født p̊a en mandag er 1
7 og sandsynligheden for at en tilfældig

person er født p̊a en mandag, hvis personen har bl̊a øjne, er 3
14
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