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POPULAR ABSTRACT 

Computer algebra systems (CAS) are an integrated part of teaching and learning 

mathematics in upper secondary school, which has resulted in more and more teachers 

in lower secondary school considering implementing CAS. However, in lower 

secondary school pupils are introduced to elementary algebra, and CAS-use therefor 

does not seem as obvious. Indeed, some questions remain, including the following: 1) 

How is CAS compatible with the current approach to teaching school algebra, when 

the dominant tasks are solving equations? 2) How can teacher education support 

preservice teachers in implementing CAS when little well-established knowledge 

exists about CAS-based teaching?  

This thesis comprises of a literature review and three papers. The first paper  considers 

the epistemic value of the current paper-and-pencil approach to teaching algebra and 

how this is influenced by a naïve implementation of CAS. The second paper, on the 

other hand, studies how CAS can lever the pupils’ knowledge and practice for 

manipulating and solving equations. The third study examines formats for supporting 

preservice teachers in developing and formulating knowledge and practice for 

implementing CAS in the teaching and learning of school algebra.   
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SUMMARY IN DANISH 

Denne afhandling består af en gennemgang af litteraturen og tre artikler. En af 

artiklerne er allerede publiceret, mens de to andre er indsendt til publikation. Dette 

afsnit beskriver de tre forskningsaspekter som afhandlingen adresserer, et resumé af 

de tre artikler samt strukturen for afhandlingen.  

Denne afhandling behandler det større spørgsmål: ”(hvordan) kan computer-algebra-

systemer (CAS) anvendes til at styrke den tidlige undervisning i algebra?” For at 

tackle dette store forskningsspørgsmål, adresserer denne afhandling tre aspekter. 

Først, kompatibiliteten af den nuværende tilgang til undervisning af algebra i skolen 

med implementeringen af CAS. For det andet, ”lever” potentialet for CAS samt 

designværktøjer til udformning af CAS-baserede aktiviteter. Til sidst, formater for 

læreruddannelse til støtte for lærerstuderendes implementering af CAS, og hvad det 

er muligt for lærerstuderende at lære om undervisning og læring af tidlig algebra med 

CAS. Desuden undersøger afhandlingen også, hvordan forskningsprogrammet den 

Antropologiske Teori om Didaktik (ATD) kan bruges til at studere didaktiske 

situationer, der involverer et digitalt værktøj så som CAS.  

Den først artikel, What algebraic knowledge may not be learned with CAS -a 

praxeological analysis of Faroese exam exercises, undersøger foreneligheden af den 

nuværende tilgang til undervisning i algebra i folkeskolen med implementeringen af 

CAS. Artiklen identificerer og situerer ved brug af begrebet praxeologi fra ATD de 

fundamentale algebraiske (papir-og-blyant) teknikker i mellemskolen og deres 

tilhørende læringsmål, samt beskriver de anvendte teknikker der er til stede, når CAS 

anvendes konsekvent. Analysen sammenligner de to tilgange med hensyn til 

mangfoldighed af teknikker, ”effektiviteten” af teknikker og antallet af nødvendige 

teknikker. Derudover undersøger artiklen også om og hvordan de fundamentale 

algebraiske (blyant-og-papir) teknikker er til stedet i et CAS-miljø.  

Den anden artikel, Designing activities for CAS-based student work realising the lever 

potential, undersøger hvordan CAS kan kapitaliseres til at udvikle og formulere 

studerendes matematiske diskurs af teori, og hvordan begrebet praxeologi kan bruges 

til at designe CAS-baserede aktiviteter, der realisere ”lever” potentialet for CAS. 

Artiklen præsenterer to design af aktiviteter, der fokuserer på at udvikler og eksplicit 

formulere elevernes koncept af ligninger, og teknikkerne og diskursen for at 
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manipulere ligninger med teorien om at løsningen forbliver den samme. I analysen 

bruges begrebet praxeologi til at analysere teknikker og viden der er udviklet, 

formuleret og sat spørgsmålstegn ved af de studerende. Analysen viser et rigt 

didaktisk miljø, hvor CAS udnyttes til at inkludere eksempler på ligninger der ellers 

ikke er til stede i mellemskolen, og hvorved elevernes forståelse af ligninger udvikles. 

Derudover viser analysen af den anden aktivitet at CAS kan bruges til at udvikle og 

formulere eksplicitte teknikker og diskurs til manipulation af ligninger, og relaterer 

dette med teorien om at løsningen forbliver den samme.  

Den tredje artikel, A study of a preservice teacher course on the use of CAS in school 

algebra, undersøger hvordan formater i læreruddannelsen kan understøtte 

lærerstuderendes udvikling og formulering af praksis og viden relateret til 

implementering af CAS i undervisningen af skolealgebra. Artiklen undersøger et 

lektionsstudieinspireret kursus, hvor grupper af lærerstuderende deltager i 

planlægning, forskningstimer i 7. og 8. klasse, reflektionsmøder og omskrivning af 

lektionsplaner. Analysen koncentrerer sig om to grupper af lærerstuderende og deres 

sidste cyklus med planlægning - undervisning/observationer - reflektionsmøder - 

revidering af lektions plan. Til at identificere den didaktiske praksis og viden der er 

udviklet og formuleret af de lærerstuderende, kombineres begreberne praxeologi og 

didaktiske momenter fra ATD med instrumental genesis og orkestrering. Analysen 

viser et kursusformat, hvor observationer i klasseværelset fungerer som en katalysator 

for refleksioner, hvorved der udvikles og formuleres didaktisk viden og praksis.  

For at situere forskningen udført i de tre artikler med den eksisterende litteratur, 

begynder afhandlingen med en baggrundsgennemgang. Gennemgangen begynder 

med didaktikken for skolealgebra, dvs. betydningen af skolealgebra og problemet med 

skolealgebra. Derefter i afsnittet the ATD perspective, præsenteres de 

forskningsværktøjer, der er anvendt i afhandlingen, samt ATD-perspektivet på 

skolealgebra. Det næste afsnit af afhandlingen, Literature review, består af tre 

litterære gennemgange. Den første gennemgang opridser hvordan ATD har udviklet 

sig og været anvendt til at formulere forskningsspørgsmål og analysere didaktiske 

situationer inkluderende digitale værktøjer. Den anden gennemgang overvejer 

mulighederne og hindringerne for implementering af CAS, derudover er 

gennemgangen struktureret ved hjælp af niveauerne for didaktisk medbestemmelse 

(levels of didactical co-determination) fra ATD. Den sidste gennemgang studerer 
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formater for læreruddannelsen, der har til hensigt at understøtte lærerstuderendes 

udvikling af viden og praksis til implementering af CAS i undervisningen af 

skolealgebra. I det efterfølgende afsnit, Presentation of research questions, 

præsenteres forskningsspørgsmålene til de tre artikler i relation til 

litteraturgennemgangen. Dernæst gives et kort resumé af de tre artikler. Det sidste 

afsnit før selve artiklerne, Conclusion and reflections, opsummerer konklusionerne 

fra artiklerne for der ud over at reflektere over fremtidig forskning.     
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SUMMARY IN ENGLISH 

The present thesis is comprised of a literature background and three papers. One of 

the papers has been published and the other two have been submitted for publication. 

This section will present the research aspects, a summary of the three papers and the 

structure of the thesis. 

The present thesis considers the broad research question of whether (and how) 

computer algebra systems (CAS) can be used to strengthen the early teaching of 

algebra. To address this larger research question, the thesis addresses three aspects. 

First, the compatibility of the current approach to teaching school algebra with the 

implementation of CAS; second, the lever potential of CAS and design tools for 

crafting CAS-based activities that realise the lever potential of CAS; and third, 

formats for teacher education to support preservice teachers’ implementation of CAS 

and what is possible for preservice teachers to learn about teaching and learning early 

algebra with CAS. In addition, the thesis explores how the research programme of the 

Anthropological Theory of Didactic (ATD) can be used to study didactical situations 

which involve a digital tool such as CAS.  

The first paper, What algebraic knowledge may not be learned with CAS -a 

praxeological analysis of Faroese exam exercises, studies the compatibility of the 

current approach to teaching school algebra with the implementation of CAS. The 

paper identifies and situates, with the use of the notion of praxeology from the ATD, 

the fundamental algebraic (paper-and-pencil) techniques of lower secondary school 

and their related epistemic value, as well as describing the techniques used when 

consistently employing CAS. The analysis compares the two approaches in terms of 

the diversity of techniques, the “effectiveness” of techniques, and the number of 

techniques necessary. In addition, the analysis also examines how the fundamental 

algebraic (paper-and-pencil) techniques are present in a CAS environment.  

The second paper, Designing activities for CAS-based student work realising the lever 

potential, studies how CAS can be capitalised upon to develop and formulate students’ 

mathematical discourse and theory, and how the notion of praxeology from the ATD 

can be used to design CAS-based activities that realise the lever potential of CAS. The 

paper presents two designs of activities focusing on developing and explicitly 

formulating the students’ concept of equations and the techniques and discourse for 
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manipulating equations with the theory of the solution staying the same. For the 

analysis, the notion of praxeology is utilised to analyse the techniques and knowledge 

developed, formulated, and questioned by the students. The analysis shows a rich 

didactical environment where CAS is capitalised upon to include examples of 

equations otherwise not present in school algebra, which furthers the students’ 

concept of equations. In addition, the analysis of the second activity shows that CAS 

can be used to develop and make explicit techniques and discourse for manipulating 

equations, as well as relating the techniques and discourse for manipulating equations 

with the theory of the solution staying the same.  

The third paper, A study of a preservice teacher course on the use of CAS in school 

algebra, studies how formats in teacher education can support preservice teachers’ 

developing and formulating practice and knowledge related to implementing CAS in 

the teaching of school algebra. The paper examines a lesson-study-inspired course 

where groups of preservice teachers participate in planning and presenting research 

lessons in grade 7 and 8, followed by reflection meetings and rewriting the lesson 

plan. The analysis concentrates on two groups of preservice teachers and their last 

cycle of planning-teaching/observing-reflecting-replanning. To identify the didactical 

practice and knowledge developed and explicitly formulated, the paper combines the 

notion of praxeology and didactical moments from the ATD with instrumental genesis 

and orchestrations. The analysis shows a course format where the observations in the 

classroom act as a catalyst for reflections on developing and formulating didactical 

knowledge.   

To situate the research done in the three papers, the thesis begins with a background 

review. The background review commences with the didactics of school algebra, that 

is, the importance of school algebra as well as the problem of school algebra. Then, 

in the section “The ATD perspective,” the research tools employed in the present 

thesis from the ATD are presented in addition to the perspective of the ATD on school 

algebra. The next section of the present thesis, “Literature review,” consists of three 

reviews. The first review considers how the ATD has evolved and been utilised to 

formulate research questions and analyse didactical situations. The second review 

considers the potential and obstacles for the implementation of CAS; in addition, the 

section has been structured using the levels of didactical co-determination from the 

ATD. The last review considers formats in teacher education which are intended to 
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support preservice teachers’ development of knowledge and practice for 

implementing CAS in the teaching of school algebra. Following, the section 

“Presentation of research questions,” presents the research questions of the three 

papers based upon the literature reviews. Before short summaries of the papers are 

given, the last section, “Conclusion and reflections,” summarises the conclusions of 

the papers in addition to reflections for future research.     
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 MOTIVATION 

The embedding of a computer algebra system (CAS) in teaching school algebra in 

upper secondary schools is rapidly growing around the world, and becoming an 

integrated necessity in textbooks, as well as in exams. In Denmark, CAS has been an 

important part of high school mathematics for decades, and since 2005, the use of 

CAS has been allowed during the main part of the “baccalaureate” written exams in 

mathematics. However, problematic effects on teaching have increasingly been 

reported, and in 2017, a general reform of the Danish high school system included a 

modest reduction of CAS use in most high-stakes exams in mathematics.  

The extensive use of CAS in upper secondary schools in Denmark has led some 

teachers in lower secondary schools to also consider implementing CAS in their 

teaching (and even doing so). Beyond local and individual initiatives in this direction, 

there has been a coordinated national effort. In 2016, the Danish mathematics teacher 

association, together with other organisations, launched a national project for the 

integration of CAS in lower secondary schools; the project included the publication 

and distribution of a book on the implementation of CAS, national conferences for all 

mathematics teachers, workshops around the country and so forth.  

Because my research is about the implementation of CAS, I was invited to the kick-

off conference in 2016 and the final conference in 2017. On both occasions, I had the 

opportunity to observe and talk with many of the teachers and other interested parties. 

I met a teacher presenting an activity where the students animated dance moves with 

functions in GeoGebra, which involved relatively advanced algebra. I observed a 

discussion about the dialectic between techniques and thinking and how to develop 

and make the thinking explicit when using the app Dragon Box (a dynamic algebra 

programme). On the other hand, I also came across a teacher who presented uncritical 

use of a triangle-solver on traditional (paper-and-pencil) problems, leaving me with 

the following question: “Where is the mathematics in that?” I also met (the largest 

group of) teachers, who were merely considering how to implement CAS in their 

teaching; they were looking for inspiration and guidance on how to do so. 

This is where the current project comes in: to develop research-based knowledge that 

can eventually be used to support and monitor the implementation of CAS in the 

teaching and learning of school algebra. The current study analyses what happens to 
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mathematics if a CAS is used consistently in the traditional approach towards school 

algebra. We will develop and examine “good” examples of CAS-use that develop and 

explicit formulate elements of theoretical school algebra. Finally, we will consider 

teacher education, exploring what is possible for preservice teachers to learn about the 

implementation of CAS in school algebra from teaching and observing a class.  



16 
 

INTRODUCTION 

From the perspective of the teacher, the present thesis explores the use of computer 

algebra systems (CAS) in the teaching of algebra in lower secondary school (grades 

7–9). The thesis is based on three papers that each present valuable results for the 

successful implementation of CAS for researchers, teacher educators, task designers, 

teachers and the research programme of the Anthropological Theory of the Didactic 

(ATD). The papers are not presented chronologically (as they were developed) but in 

an order that hopefully will enlighten the reader about the complexity of implementing 

CAS, the didactical potential of CAS to further the learning of school algebra, along 

with showing how teacher education can support preservice teachers in CAS-based 

teaching.  

To elucidate the complexity of the implementation of CAS in lower secondary school, 

in addition to situating the current research, we consider the importance and the 

problem of school algebra, the development and application of the ATD for studying 

the implementation of CAS, the potential and obstacles for integrating CAS into 

school systems and efforts in teacher education to support preservice teachers in 

implementing CAS. For this purpose, we introduce a Venn diagram that consists of 

the sets CAS, the ATD and teacher education (TE). As shown in Figure 1, we 

primarily consider the three areas within (i.e., restricted to) didactical research on 

algebra.  

 

CAS

ATDTE

ALGEBRA 
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Figure 1. Venn diagram with the sets CAS, teacher education and ATD in the didactics of algebra. 

The current thesis will begin by considering the general subject of school algebra, in 

particular the importance of algebra in an educational context, as well as the classical 

struggles of students with algebraic work. In the next section, “the ATD perspective”, 

a tenant of the ATD on posing research questions, the notions from the ATD that will 

be employed throughout the current thesis and the proposal of the ATD regarding how 

to consider school algebra, will be presented. The following section presents three 

literature studies. The first concentrates on the intersection of the sets ATD and CAS, 

specifically the development of the ATD to include studies involving digital tools, 

such as CAS, -as well as the research employing the ATD- to examine CAS-based 

teaching and learning. The second study considers the whole of the set CAS, more 

specifically studies on the potentials and obstacles related to pupils’ learning with 

CAS. The review considers the last 20 years of research and is structured based on the 

levels of didactical co-determination (see later for explanation). The last section, the 

intersection of CAS and TE, examines the literature on teacher education, which 

focuses on the development of preservice teachers’ didactical knowledge and practice 

on teaching school algebra with CAS.  

What is CAS? 

To start, we present some examples and descriptions of what a CAS is. According to 

Wikipedia (2020b) “A computer algebra system (CAS) is any mathematical software 

with the ability to manipulate mathematical expressions in a way similar to the 

traditional manual computations of mathematicians and scientists”. However, the 

description on Wikipedia does not include all types of CAS, and at the same time 

includes apps that are not a CAS. A CAS, such as Maple, which was developed for 

professionals, can perform mathematical work that cannot be imitated manually, such 

as solving a large system of equations. In addition, it is not the similarity to manual 

computation that is the strength of a CAS; rather, it is the feature of outsourcing 

laborious mathematical work to CAS, and the ability to efficiently obtain an output 

using CAS (see Figure 2). 
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Figure 2. Illustration of Maple  

In, what is now considered to be, one of the key contributions to studying the 

implementation of a CAS in school algebra (Drijvers, 2003b), the following definition 

is given: “Computer algebra is software that performs algebraic calculations and 

formula manipulations” (p. 82). This definition of CAS is far closer to our own 

perception because it includes the word “perform”, indicating that a CAS can be used 

as an agent to which mathematical work is outsourced. This feature is, from an 

educational perspective, volatile for the students’ learning and, thus, must be included 

in the description.  

An example of an app that we consider an example of software that can simulate 

algebraic manipulations is Dragon Box (see Figure 3). It is not a CAS; rather, it is a 

type of dynamic algebra software.  
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Figure 3. Screenshot of the app Dragon Box. 

In this specific app, the user can insert tiles that represent numbers or parameters. A 

bubble around a group of tiles represents parenthesis; the tiles, which have the same 

motive, but different colour schemes, represent additive inverses; and the vortex is the 

unknown. The aim is to isolate the vortex in as few steps as possible. Although the 

app, in particular during the final levels, simulates algebraic manipulations and the 

user solves equations, such as !
"
+ 𝑑 + #$

"
= 0, the app does not perform algebraic 

manipulations; it only simulates.  

Another type of algebraic software that can be integrated in teaching and learning of 

school algebra but is not a CAS, is algebraic microworlds. According to J. F. Nicaud, 

Pavard, and Bouhineau (2001), this type of software can be characterised by the 

feature of ”direct manipulation”, that is, with the microworld, the user can perform 

elementary manipulations, such as adding a number to both sides of an equation (see 

Figure 4). 

  

Figure 4. Screenshot of Aplusix (Chaachoua, 2010). 

However, with this type of software, the algebraic manipulations are not outsourced 

to the programme. The user performs the step-by-step algebraic manipulations, and 

the programme validates the equivalence between expressions.  

The last characteristic of a CAS to consider is the variety of algebraic work that is a 

necessary feature for software to be a CAS. For example, the CAS part of GeoGebra 

can, at least, factorise or expand an expression, solve an equation or a system of 

equations, differentiate a function and perform substitutions. However, based on 
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programmes such as GeoGebra, it is possible to create applets, which only allow the 

user specific, often dynamic, manipulations or input. For instance, there is an applet 

where sliders are employed to determine the value of the roots in a second-degree 

polynomial and the value of the coefficient of 𝑥%. Then, the applet displays the graph 

of the polynomial, the factorisation of the polynomial and the expansion of the 

polynomial in the form 𝑎𝑥% + 𝑏𝑥 + 𝑐 (see Figure 5).  

 

Figure 5. Screenshot of an applet. 

However, the applet does not allow the user to substitute, or work with third degree 

polynomials, or change the roots of the polynomial to rational number or numbers 

higher than 5.  

Based on our three examples, we consider a CAS as having three main features. 

Concurring with the first two descriptions, a CAS can perform algebraic work such as 

manipulations. Second, the user can outsource algebraic work, such as factorisation, 

to the software. And last, the software offers a variety of algebraic work.  
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PREVIOUS RESEARCH 

Didactics of algebra  

Before we go into detail about the importance of school algebra and the related 

struggles of students, we shortly clarify what school algebra is in secondary schools 

as there exists different approaches to the teaching and learning of school algebra. 

Kieran (2007) state that there are three main approaches and contents of courses on 

school algebra. The traditional algebra courses, which have a strong focus on symbols 

and the manipulation of symbols, involve tasks such as reducing expressions and 

solving equations. The reformist algebra courses, where functions are at the heart of 

the curriculum involving “real-world” problems. And then, there are the types of 

algebra courses that are in between the two prior ones, emphasising equally 

equations/algebraic expressions and functions. In this section, where we consider the 

importance of school algebra and the problem of school algebra, we include all three 

of the approaches.  

The importance of school algebra 

To begin describing the importance of school algebra, I would like to cite from the 

first page of a textbook on abstract algebra (Pinter, 2010) that sums up the importance 

of school algebra in five lines: 

In elementary algebra we learned the basic symbolism and methodology 

of algebra; we came to see how problems of the real world can be 

reduced to sets of equations and how these equations can be solved to 

yield numerical answers. This technique for translating complicated 

problems into symbols is the basis for all further work in mathematics 

and the exact sciences, and is one of the triumphs of the human mind. 

(p. 1) 

In the following, we elaborate and clarify in more detail on the imperative role that 

certain elements of school algebra play in students’ educational advances within 

mathematics, as well as other disciplines. 

The domain of algebra is characterised by the use of symbols, in particular the use of 

letters, which enables studies involving variables, parameters, equations, functions, 

inequalities and so forth. The utilisation of letters and symbols allows for the 
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formulation of general formulas across mathematical domains, such as geometry, 

where the general formula for the area of a circle can be written as 𝐴 = 	𝑟% · 𝜋. In 

addition, the use of letters to generalise arithmetic calculations and relations allow 

students to describe, consider and study an entire family of problems, such as the sum 

of angles in an 𝑛-polygon. In addition, many problems can be formalised using letters 

and symbols to express variables and parameters, allowing students to study problems, 

such as the relation of cost and demand, to find the price of a product that yields the 

highest profit. Another type of object that is fundamental in mathematics is algebraic 

expressions; these can be utilised to describe and study patterns or generalities. A 

classic example is the problem where students are tasked to find the expression that 

describes the number of people who can be seated around a row of n tables. 

Another characteristic associated with algebra is equations. Equations are pivotal in 

mathematics because they can be utilised to model a problem with an unknown that 

can then be solved with algebraic manipulations or CAS. For example, consider the 

following problem: If your parents start a savings account for you and they want the 

account to hold 50,000 DKKR by your eighteenth birthday, what should the initial 

deposit be? Equations can also be used to describe equal relations. For example, 

students can analyse the number of squares used to build a pyramid, where the base 

consists of an odd number of squares, where for each row above, two squares are 

subtracted ((2𝑛 − 1) + (2𝑛 − 3) +··· +3 + 1), and the number of squares used to 

build a n x n-square (𝑛%). Generally, most domains of mathematics in secondary 

school, whether statistics or geometry, employ algebra in some form or other. In 

mathematics education at higher education levels, letters, symbols, equations and so 

forth are used, from the first course to the last across all fields of mathematics. The 

English Wikipedia page for algebra states, “It is a unifying thread of almost all of 

mathematics” (Wikipedia, 2020a).  

In secondary school, disciplines apart from mathematics also make frequent use of 

more or less advanced algebra, including physics, biology, chemistry, geography, 

astronomy and others. The fields sometimes use mathematics as a way of describing 

an equal relation such as 𝐸 = 𝑚 · 𝑐%, and at other times to model, such as modelling 

of the race of a formula 1 car. Now and again, the dialectic between algebra and other 

disciplines becomes pivotal in developing knowledge. For example, for 

recommending the amount and frequency of taking a specific medicine, algebra can 
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be used to model the absorption and decomposition of the medicine, which enables 

students to estimate and make recommendations. At higher education levels, any 

science contains courses on mathematics and statistics, which make use of algebra 

extensively whether it is a course on differential equations, linear algebra, or an 

introduction to statistics. In recent years, a “de-mathematisation” of calculus courses 

in science education has appeared, and many formal mathematical proofs have had to 

give way for less formal argumentation. However, algebraic knowledge -such as 

which grows faster when n increases, 99& or 𝑛''- is still necessary knowledge. 

Furthermore, equations are fundamental building blocks in many courses, such as 

linear algebra and stochastic processes, where equations are used to model mappings 

and time series, such as digital animations or the price of a stock. With the increase in 

science-related jobs to solve the many problems of our society and the growth of jobs 

requiring a science education, school algebra becomes even more important.  

The problem of school algebra 

Although algebra is pivotal as a domain in mathematics and as a tool in many science 

disciplines, learning algebra is often associated with many difficulties. Research has 

examined the elements of students’ difficulties with algebraic work, such as the minus 

sign in equations and algebraic expressions (Vlassis, 2004). In this section, we will 

allude to some of the struggles of learning school algebra.  

When working with equations, one of the greatest difficulties for students is the shift 

in meaning of the equal sign. Prior to the introduction of algebraic work, the equal 

sign is most often used as a “do-something” sign. However, when working with 

equations, students have to extend the meaning of the equal sign to include 

equivalence between two algebraic expressions and as a symbol that signals a study 

for which the conditions of two algebraic expression are equal (Kieran, 1981). In an 

abstract task such as 8 + 4 = [		] + 5, students who have not yet developed the 

multiple meanings of the equal sign will most likely answer 12, 17 or 17 and 12 

(Falkner, Levi, & Carpenter, 1999).  

Algebraic work most often includes the use of letters to symbolise unknowns, 

variables and parameters. In prior work, letters are used as labels or place holders in 

formulas; thus, when doing algebraic work, students have to develop the use and 

meaning of letters to include unknowns, variables and later parameters. This process 
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of transition of the students’ concept of the use of letters is also connected with 

struggles (Bills, 1997, 2001; Clement, 1982; Fujii, 1993; Stacey & MacGregor, 1997; 

Trigueros & Ursini, 1999; Ursini & Trigueros, 1997; Wagner, 1981) as cited in 

(Kieran, 2006). 

In addition, work with equations often includes the students solving them with paper 

and pencil. This type of work is also associated with great difficulties, such as 

“ignoring the minus sign preceding a pair of numbers to be combined (Herscovics & 

Linchevski, 1994); reduction errors (Carry & Bernard, 1979); and erroneous checking 

behaviour (Pawley, 1999; Perrenet & Wolters, 1994)” (Kieran, 2006. p 14). Solving 

equations also requires knowledge of algebraic structure and syntax, which is 

associated with many struggles. Kieran (2006) begins a section on students’ 

difficulties with the theme of algebraic structures and the following three examples: 

Wagner, Rachlin, and Jensen (1984) found that algebra students have 

difficulty dealing with multiterm expressions as a single unit and do not 

perceive that the structure of, for examples, 4(2𝑟 + 1)7 = 35 is the 

same as 4𝑥 + 7 + 35. According to Kieran (1984), students also find it 

demanding to judge, without actually solving, whether equations such 

as 𝑥 + 37 = 150 and 𝑥 + 37 − 10 = 150 + 10 are equivalent, that is, 

whether they have the same solution. More recently, Linchevski and 

Livneh (1999) found that 12-year-old students’ difficulties with 

interpreting equations containing several numerical terms and an 

unknown were a reflection of the same difficulties that they experienced 

in purely numerical contexts. (p. 16)  

Although we only presented some of the difficulties for students’ algebraic work, 

these problems are varied and a serious hindrance for algebraic work. The literature 

on the subject documents the extensive “problem of algebra”. Therefore, the allure to 

implement CAS is attractive to many researchers as well as teachers and students. 

With the use of CAS, students can skip the troublesome and time-consuming algebraic 

manipulations of expressions and equations and are freed to focus on more theoretical 

and conceptual mathematical knowledge.  
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The ATD perspective 

The current thesis will employ and develop the 

programme of research known as the Anthropological 

Theory of the Didactic (ATD) when formulating and 

answering our research questions. The ATD is an 

extensive framework, and in this section, we present the 

general perspectives of the ATD that help us question how we can implement CAS in 

the teaching and learning of school algebra. We first describe the positioning of an 

ATD researcher relative to the school institution and the tools from the ATD that we 

employ in our studies before presenting the subject of school algebra through the lens 

of the ATD.  

Posing research questions within the programme of ATD 

A main tenet in ATD-based research is the detachment principle, posing that 

researchers must distance themselves from the institutions whose practices they are 

studying, in the sense of explicitly model those practices, rather than simply adopting 

implicit assumptions which can reside, for instance, in the institutional terminology. 

If we consider questioning school algebra in grades 7 to 9, we must model the school’s 

dominant point of view on algebra to describe, analyse and suggest alternatives for 

the current practice (Bosch, 2015).  

Using praxeology, the ATD suggests a tool for researchers to detach themselves from 

the dominant points of view in institutions, particularly in the institution that is being 

studied. The tool can be used to identify a main outline of the algebra taught and 

learned in lower secondary school by analysing textbooks, exam questions, syllabi 

and other relevant documents. In school algebra, for example, rewriting an expression 

of the type (𝑛𝑥 + 𝑚)𝑙	into 𝑛𝑙𝑥 + 𝑚𝑙 can be related to terminology mainly used in 

other institutions working with algebra, such as the distributive axiom (𝑎 + 𝑏)𝑐 =

𝑎𝑐 + 𝑏𝑐, reflecting the fundamental connection between multiplication and addition 

represented by the distributive axiom.  

To analyse human activity, the ATD suggests considering it as an amalgam of practice 

and theory. When we do something such as cooking soup in a more or less automatic 

fashion, there is a practice that can, at will, be made explicit: the practice can be 

explained and validated, for example, in relation to alternative techniques. In turn, this 
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explanatory discourse forms new knowledge that can be used to develop new 

practices.  

For denoting the dialectic of practice and theory, the ATD proposes the notion of 

praxeology, which is a composition of the two words praxis and logos. Logos comes 

from Greek meaning discourse and thinking. The praxis of the praxeology can be 

described by two components. The first component is the type of task that the praxis 

is intended to solve. The type of task, in some sense, characterises the entire 

praxeology, such as “cooking vegetable soup”. The second component of the praxis 

is the techniques employed to solve the type of task. The techniques are the gestures 

performed, such as dicing and frying some vegetables, transferring them into a pot, 

adding stock and cream and so forth. In a teaching situation, the types of task are often 

clearly stated, and the techniques can be described by the teacher or by the researcher 

who is observing the students, not knowing the students’ justification of the 

techniques. The logos of the praxeology consists of two components. The first 

component is denoted as technology and is defined as the description and discourse 

of the techniques. The technology used in the technique of rewriting an expression of 

the type (𝑛𝑥 + 𝑚)𝑙	into 𝑛𝑙𝑥 + 𝑚𝑙 could be that the sum 𝑛𝑥 +𝑚	multiplied with the 

number 𝑙 is the same as multiplying each term of the sum with 𝑙. The second 

component of the logos is denoted theory. The theory of the praxeology exists to 

justify and unify a collection of technologies. For the technology just described, the 

theory could be that there is a hidden multiplication sign between the parentheses and 

the number “outside” of the parentheses, and that the parentheses modify the order of 

operations because the operations inside the parenthesis must be carried out first.  

The notion of praxeology can be used to analyse human activity by explicitly and 

objectively describing the abovementioned four elements. In a classroom, we can 

consider the students’ mathematical praxeologies along with the teacher’s praxeology, 

which is aimed at guiding the students’ mathematical praxeology. This is called the 

didactical praxeology.  

The notion of praxeology can also be used to study lessons involving the use of digital 

mathematics tools. In such cases, we can see the appearance of instrumented 

techniques within mathematical praxeologies. For example, when solving an equation 

with CAS, the techniques that are employed involve entering an equation, employing 
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a “solve” type command and interpreting the output. These techniques are referred to 

as instrumented techniques because they involve the use of an “instrument” (Guin & 

Trouche, 1998). The notion instrument is sometimes used to indicate the amalgam of 

a tool and the technical knowledge involved in using it.  

To identify and analyse the conditions and constrains that influence the didactical 

organisation of activities -which is a series of related didactical praxeologies- in 

teaching and learning situations, the ATD suggests considering the levels of didactical 

co-determination (Chevallard, 2002). We consider six levels. The first level is the 

level of pedagogy, which is determined by the teaching principles. The second level 

is the school disciplines, such as mathematics or physics in their entirety. The third 

level is the domain, such as school algebra. Then, there is the sector level, such as 

equations, theme level, such as first-degree equations, and the subject level, such as 

solving a “simple” first-degree equation (see Figure 6).  

 

 

Figure 6. Levels of didactical co-determination (figure adapted from Artigue and Winsløw (2010)). 
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In our review of the background literature, we employ the levels of didactical co-

determination to structure and differentiate between different types of potential and 

hindrances for the use of CAS.  

School algebra 

Algebra has been at the heart of many studies within the ATD, including some early 

and foundational ones (Bolea, Bosch, & Gascón, 1998, 2001, 2010; Bosch, 1994; 

Chevallard, 1989; Gascon, 1994; Munzón, 2010). However, in this section, we do not 

give an exhaustive account of the research done on algebra utilising tools from the 

ATD instead merely explaining how school algebra is viewed by the research 

programme ATD. A more throughout account can be read in the paper by Bosch 

(2015), based on her regular lecture at the 12th International Congress on Mathematics 

Education. At the same time, we also relate the societal context in which our study 

takes place to the basic assumptions of the ATD. 

Studying school algebra within the research programme of ATD, we should detach 

ourselves from the dominant points of view of algebra in different institutions, such 

as the school institution in which it lives, but we also need to think of the scholarly 

institutions where algebraic knowledge is or was produced to avoid the impression 

that there exists only one form of school algebra. Time should also be considered 

because the views of school algebra have changed over time and will continue to do 

so.  

The tools and principles of the ATD, especially the notion of praxeology, let us state 

and analyse the following series of aspects:  

“What is being taught” and show also its undefined features. What is 

this thing called “school algebra”? What kind of praxeologies is it made 

of? What could it be made of under other institutional constraints? How 

does it vary from one school institution to another, both in time (from 

one historical period to another) and in the institutional space (from one 

country or educational system to another)? Where does it come from? 

What legitimates its learning? (Bosch, 2015, p. 55). 

Studying the curriculum of elementary algebra in France and Spain, with the new 

mathematics reform, the traditional triad of algebra, geometry and arithmetic, which 
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takes on a formal approach towards algebra, has changed into other content categories, 

including the strand “change and relations” (Catalan, 2007). In Denmark and the Faroe 

Islands (2020), the traditional triad still stands. However, in Denmark, a large section 

of the curriculum now is formulated in terms of “competencies” that include ideas 

such as “communication about mathematics”, “posing and solving problems” and 

“symbols and formalism competence”, here alluding to a shift in the approach towards 

teaching school algebra, at least at the political level. In studying the types of task 

present in secondary schools, “Elementary algebra is largely identified with solving 

equation, mainly first and second degree equations, with some subsequent 

“applications” to a set of “word problems” coming out of nowhere” (Bosch, 2012, p. 

56).  

In our studies of school algebra in the Faroe Islands (Carlsen, 2019), where school 

algebra is present starting from grade 7, the above description of school algebra 

primarily consisting of solving equations and “applications” holds true, yet here with 

the addition of solving systems of two linear equations with two unknowns, 

inequalities and algebraic manipulations such as reducing an expression or factoring 

an expression. In addition, we can affirm what Bosch (2015) states about the current 

school algebra: “ [It] is unable to recreate the big variety of manipulations that are 

needed to use algebra in a functional way, which will be required when students arrive 

at higher secondary education and find “completely algebraized” mathematics” (p. 

56).  

In questioning what legitimates its learning, school algebra was prior to the new 

mathematics reform considered as a mere generalisation of arithmetic, allowing to 

systematically perform arithmetic calculations, and preparing for further education 

including formulas and functions (Bosch, 2015). Following the new mathematics 

period, reformed school algebra has been reduced to a tool for modelling problems of 

a different type. 

In considering society and culture, we can further identify the reasons for this 

reduction of school algebra. In Western society, orality seems to be privileged, while 

algebra depends crucially on writing and cannot be “spoken” in its essence. At the 

level of culture, Bosch (2015) exhibits and illustrates the disdain of algebra by 

presenting several examples of how formulas and other algebraic work is frowned 
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upon by scholars and in textbooks of other school disciplines. As a future direction 

for school algebra, Bosch (2015) writes the following: 

Our proposal is to interpret it as a process of algebraization of already existing 

mathematical praxeologies, considering it as a tool to carry out modelling 

activities that ends up affecting all sectors of mathematics. Therefore, algebra 

does not appear as ”one more content” of compulsory mathematics, at the 

same level as the other mathematical praxeologies learned at school (like 

arithmetic, statistic or geometry) but as a general modelling tool of any school 

mathematical praxeology, that is, as a tool to model previously mathematised 

systems (Bolea et al., 2001; Bolea, Bosch, & Gascón, 2004; Gascón, Bosch, 

& Bolea, 2001; Munzón, 2010; Ruiz-Munzón, Bosch, & Gascón, 2011; Ruiz, 

Bosch, & Gascón, 2007). In this interpretation, algebra appears as a practical 

and theoretical tool, enhancing our power to solve problems, but also of 

questioning, explaining and rearranging already existing bodies of knowledge. 

(p. 61) 

An example of implementing algebra work to generalise other mathematical themes 

is the generalisation of geometric patterns, such as how many blocks are required to 

build a (2D) pyramid where the foundation is built from an odd number of squares 

and for each new layer, the outer squares (two) are subtracted (Måsøval, 2011). A 

different type of problem for realising algebraic work is the problems that question 

the world and generate a series of studies where algebra can be developed and used 

as a tool, such as how to finance a student’s trip by selling t-shirts (Munzón, 2010).  

When considering culture, our studies were carried out in the Faroe Islands (an 

autonomous part of Denmark) and in Denmark. Although the countries have different 

curricula and exams, the triad of geometry, arithmetic and algebra continue to be 

explicit domains in both the curricula for lower secondary school, coming with the 

more recent addition of stochastics. Furthermore, both on the Faroe Islands and in 

Denmark, school algebra is comparable to school algebra in Spain and France before 

the new mathematics reform, where algebra appeared as an abstraction of arithmetic 

calculations and as a tool for describing and solving simple “word problems”. 

Differences can also be detected, though, such as a larger part of the written exam 

being devoted to evaluating the students’ proficiency in school algebra on the Faroe 
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Islands than in Denmark. However, compared with other European countries, 

Denmark and the Faroe Islands still examine school algebra rather extensively and 

broadly. Because our studies took place on the Faroe Islands and in Denmark, they 

involved schools that considered algebra as a domain to be studied in and of itself.  
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Literature review 

In this section, we give a systematic review of the literature that our research builds 

upon. Going back to the Venn diagram from earlier, it illustrates the themes of the 

thesis (see Figure 1). Because our research falls into the smaller sets of the Venn 

diagram, our review will concentrate on these three sets. The first set is the intersection 

of the ATD and CAS, where we focus on the development of the ATD to include 

research about the implementation of CAS and the tools employed from the ATD; this 

includes which types of research questions can be brought forward to examine the 

topic. The second review considers didactical use of CAS in school algebra. To 

mediate teachers’ weighing of the pros and cons for the implementation of CAS in the 

teaching of school algebra, we focus on studies that describe either the potentials of 

CAS to develop algebraic knowledge and practice or the obstacles for CAS-based 

teaching. In the third and last section of the review, we concentrate on the intersection 

of CAS and teacher education. We describe studies that focus on and identify 

explicitly the development of preservice teachers’ knowledge and practice for 

implementing CAS in the teaching and learning of school algebra. 

To encapsulate the main tendencies of research about the themes mentioned above, 

we selected research devoted specifically to studies involving digital tools. Because 

the ATD originated in France, we have also included one French journal and the 

conference proceedings of CITAD available. The list of reference works consists of 

the following: the journals International Journal of Mathematics Education in Science 

and Technology, International Journal of Computers for Mathematics Learning, 

International Journal for Technology in Mathematics Education, The International 

Journal of Computer Algebra, and Recherches en Didactique des Mathématiques, the 

book series Mathematics Education in the Digital Era and the conference proceedings 

of CITAD (International conferences on the ATD). We also searched the reference 

lists of the papers we found. Because of language issues, we primarily concentrated 

our search to articles in English. For the journals, the search word “algebra” was used 

for a first sorting of the articles. Then, the list of articles was manually sorted by title 

and abstract, excluding any paper not concerned about the teaching and learning of 

algebra at the secondary level using CAS. Therefore, we excluded papers only 

focusing on teachers’ views or any wider issues. The last sorting, which was based on 

skimming the remaining articles, excluded articles that did not study either the 
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obstacles or positive influences of CAS in explicit detail, employed the ATD or 

focused on the development of preservice teachers’ practice and knowledge.  

The ATD on CAS 

The initial development and foundation of the ATD was 

when CAS was not yet employed in the teaching and learning 

of school algebra, and its description of theories, tools for 

analyses and reflections did not include digital tools. 

Researchers have since adopted and developed selected 

notions from the ATD to question and study the implementation of CAS. In particular, 

the term “technique” has gained acceptance and is used outside of the ATD circles to 

examine CAS-based teaching. The current thesis aims at furthering the employment 

of tools from the ATD to study the implementation of CAS. Our review of the 

intersection of the ATD and CAS will hence focus on the development of notions 

from the ATD to analyse and reflect on the use of CAS in the learning and teaching 

of school algebra. In addition, we will describe how tools from the ATD have been 

employed and how research questions have been asked.  

We will begin by reviewing an article by John Monaghan in which he describes the 

development and contributions of the ATD to do research on the implementation of 

CAS. We then consider some of the early key developments and reflections by 

Michèle Artigue, Jean-Baptiste Lagrange and Carolyn Kieran on the didactic use of 

CAS. We end the section by outlining points from articles employing ideas from the 

ATD to study specific questions concerning the implementation and use of CAS.  

Monaghan (2007) outlines the historical development of the ATD approaches for 

studying didactic CAS-use. Monaghan considers the position of France in the growing 

development of innovative activities in secondary school and college mathematics 

classrooms involving CAS. He relays that a research team led by Michèle Artigue, 

which was supported by the French Ministry, questioned the actual use of CAS, its 

constraints and obstacles and its emergent principles. To establish a basis for their 

initial research, the team connected to the work of Verillon and Rabardel (1995) on 

instrumentation and to the notion of praxeology from the ATD. This led to the idea 

that “tool use does not exist in a vacuum, tools are used in a context/ in practice/ in 

activity” (p. 4) and view that new elements of practice or activity could be captured 
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through praxeology. To distinguish different values or functions of a technique (for 

users), Artigue and Lagrange talk about pragmatic and epistemic values (more on this 

later). Monaghan considers the most controversial part of their work to be “their claim 

that the relationship between techniques and conceptual understanding is a highly 

complex one (or to put it bluntly, that using technology to bypass techniques is not a 

quick way to conceptual thinking)” (p. 5). One of the controversies is whether a 

theoretical understanding of a topic may be approached through sequential 

procedures, speaking about and addressing techniques and exploring the limits and 

possibilities of these techniques. In a closing remark, the author comments how “the 

anthropological approach, especially its focus on the technical-conceptual cut and 

epistemic/ pragmatic values, has, I believe, taken us forward in theorizing the 

complexity of supporting learners in technological environments” (p. 10).  

The next series of articles, that we now turn to, focuses upon how to use and develop 

the tools offered by the ATD to include the implementation of CAS. These papers 

include, in particular, a number of works by Artigue, Lagrange and Kieran.  

Lagrange (2005a) deploys the notion of didactical transposition from the ATD to 

reflect on the transposition of computer tools, such as CAS, from being efficient tools 

used in mathematical research to being implemented in the teaching of mathematics. 

These two uses of computer tools seem to substantially differ. The use of computer 

tools in the mathematical sciences is motivated by their effectiveness in carrying out 

technical work, while teaching “is not primarily interested in improving mathematical 

productivity by way of new tools but rather in the transmission of a mathematical 

culture” (p. 70), and the kernel of the mathematical culture was built only when 

traditional tools existed. Lagrange considers two examples of transposition from the 

mathematical sciences to the teaching of mathematics, which have been influenced 

and made possible by the implementation of digital tools. One of them is the 

transposition of the Euclidean algorithm into the school curriculum. He notes how the 

presentation in the textbooks offers neither practical nor theoretical dimensions, and 

the algorithm appears as an isolated object without visible interest or in relation to 

other mathematical results. As another example, he considers the transposition of the 

experimental dimension of mathematical culture. Lagrange points out several 

obstacles for this transposition and concludes with the following:  
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Experimental computer-aided approaches to teaching and learning 

cannot be thought of as simply a matter of using a machine to ease 

problem solving or to enhance inductive activity, but requires reflection 

on what prior knowledge students need both in algebra and about the 

machine, on what questions can serve to provoke inductive thinking, and 

on what form students’ representation of concepts and of the machine 

operation takes. (p. 79)  

Artigue (2002a) has what is now considered to be one of the key articles in research 

on the implementation of CAS in the teaching and learning of mathematics, 

specifically a proposal of theoretical innovation. Building on the dialectic of practice 

and knowledge from the ATD, to study the constraints that institutions impose and 

the potentials for the implementation of CAS, Artigue defines the aforementioned 

values of a technique: a “pragmatic value, that is to say, by focusing on their 

productive potential (efficiency, cost, field of validity)” and “an epistemic value, as 

they contribute to the understanding of the objects they involve” (p. 248). The 

traditional paper-and-pencil techniques for manipulating algebraic expression for 

teachers has a well-established epistemic value in school algebra. However, the use 

of instrumented techniques struggles to gain mathematical status, and the epistemic 

value appears weak to several agents in the school institution and beyond.  

Further advances for studying the implementation of CAS using the ATD have been 

accomplished in several articles (Hitt & Kieran, 2009; Kieran, 2008; Kieran & 

Drijvers, 2006); these studies build on the works of Lagrange and Artigue, with 

additional developments of the idea of the epistemic value of techniques. From the 

ATD, the articles adopt the notions of task, techniques and theory, giving theory a 

wider meaning by including the associated technology. In the first article, the T triad 

(task, techniques and theory) is used as a design tool for developing the activities 

involving CAS. The activities intertwine both paper-and-pencil techniques with 

instrumented techniques, (instrumented and non-instrumented) techniques with 

theory and vice versa. In the reflections on these intertwinings, Kieran and Drijvers 

(2006, p. 256) note the following: 

This interaction proved to be very productive in cases of confrontation, or even 

that of conflict, between the techniques—particular the CAS techniques—and 
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the students’ theoretical thinking… the epistemic value of CAS techniques by 

themselves may depend both on the nature of the task and on the limits of 

students’ existing learning. When students cannot explain, in terms of their 

current theoretical and technical knowledge, that which a CAS technique 

produces, reliance on additional CAS techniques may not suffice. In such 

cases, the epistemic value of paper-and-pencil techniques would seem to play 

a complementary, but essential role.  

The quoted article reinforces the conclusion of the first article (Hitt & Kieran, 2009) 

of using the T triad to design and analyse CAS-based activities that build on 

developing students’ theory by crisscrossing CAS and paper-and-pencil activities. In 

addition, the T triad can be utilised to study the development described in the quote 

above. In particular, the structure of the tasks that the students work on, the techniques 

they develop and employ and the theory they articulate can be mapped out for concrete 

observations.  

The focus of the next series of articles is primarily on what the studies bring to the 

area of research on implementing CAS. We will describe which ATD tools have been 

employed and what results they contribute with.  

Lagrange (2005b) examines the possible impact of CAS on the study of mathematics 

by using task and technique, analysing the pragmatic and epistemic value of 

instrumented and non-instrumented techniques. He considers a task initially studied 

by Chevallard (1999) to reduce an expression !($	√%
+	(,	√%

, where 𝑎, 𝑏, 𝑐 and 𝑑 are integers 

into an expression of the form 𝛼 + 𝛽√2, where 𝛼 and 𝛽 are rational numbers. 

Lagrange argues that the non-routine solving of such a task using a standard technique 

to obtain an integer denominator includes a series of elementary actions requiring an 

algebraic analysis of the expression. The epistemic role of the technique is 

“developing knowledge of algebraic properties of quotients and radicals, developing 

a procedure for obtaining canonical forms, and provides some familiarity with the 

structure of the field ℚ[	√2]”; with the use of CAS “it is possible to do more examples 

and orient the activity towards pattern discovery…and generalization building a 

praxeology for ℚ[	√𝑘] or ℚ[	√2! ]” (p. 5). As he continues to present examples of tasks 

and analysing paper-and-pencil and instrumented techniques, he comments, “We 

cannot envisage students doing mathematics only by using CAS. Rather, we envisage 
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a “CAS assisted” practice intertwining technology and paper-and-pencil. Thus, we 

should think of the use of CAS as calling for an interrelation between new techniques 

and paper-and-pencil techniques” (p. 11). In considering the role of the teacher and 

the introduction of new praxeologies, Lagrange concludes that “s/he has to integrate 

these techniques into his/her own understanding of the domain, into his/her own 

personality and to crate relevant situations, certainly not an easy task” (p. 17). He 

furthermore recounts an example of two teachers who wanted to integrate a CAS in 

the study of logarithmic functions, requiring the teachers to build an entirely new 

approach to the domain.  

The article (Hitt & Kieran, 2009) studies the (epistemic) value of techniques to 

develop a conceptual understanding and the vision of Lagrange to intertwine 

technology and paper-and-pencil knowledge and practice to further the development 

of school algebra. The authors adapt the model of praxeology, reducing it to the T 

triad (task, techniques, and theory). The T triad is used to design a series of eight 

activities that examine, conjecture, verify and explain factorisation patterns of 

polynomials of the form 𝑥& − 1. In the account and analysis of those activities, the 

paper-and-pencil techniques play just as important a role as CAS techniques in 

developing theoretical knowledge. In a closing remark, the authors conjecture ”The 

T-T-T design of tasks, where an equilibrium exists between paper-and-pencil and 

technology activities, as we followed in our experimentation, can fill the gap between 

the practices of the teachers who rejects the use of technology in the classroom and 

those of the enthusiastic teacher who uses technology in a somewhat naïve way” (p. 

151).  

In a study of modelling tasks, where the students use CAS, Zehavi and Mann (1999) 

use the notion of praxeology to identify “a new praxeology of teaching and learning 

mathematics with CAS” (p. 15). The activities are based on modelling tasks such as 

the following: “How long did Diophantus live given that Diophantus spent 1/6 of his 

life as a child, 1/12 as a young man, and then 1/7 of his life as a bachelor. Five years 

after he got married, he left his hometown. He returned to his hometown after 4 years 

before his death. Diophantus stayed away from his hometown ½ of his life” (p. 254). 

In the authors’ analysis, they describe the traditional didactical praxeology and 

identify a new didactical praxeology offered by the implementation of CAS. At the 

task level, the traditional activities of translating a word problem into equations can 
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be supplemented by the new type of task: inventing problems for a given type of 

model. The traditional didactical techniques of demonstration by the teacher were 

replaced with “teachers transferring the control over the process of modelling to the 

pupils who debug their work using CAS commands” (p. 264). 

Braukmüller (2018) studies a discussion between textbook authors on the 

implementation of a digital system (Algebra Tiles) developed specifically for learning 

school algebra. The notion of praxeology is employed in a preliminary analysis to 

identify elements of the didactical praxeologies. The analyses allow the researcher in 

“finding obstacles and constraints that are in the authors’ minds and gives space to a 

process of approaching the integration of Algebra Tiles” (p. 579). One obstacle 

identified in the didactical technology is “the balance model is easier” (p. 579), 

referring to the idea of representing an equation as a scale where the equilibrium must 

be kept when performing manipulations.  

Martínez, Kieran, & Guzmán (2012) use the T triad to “analyze and discuss students’ 

performance in a CAS environment related to the simplification of rational 

expression” (p. 1089), such as %(!($)
%

. The use of the terms types of task, techniques 

and theory allowed the authors to identify the students’ development of mathematical 

discourse and the role of previously obtained paper-and-pen techniques in developing 

of new practice and knowledge. At first, the students “expanded the expression, and 

after that, they cancelled out the repeated elements in both the numerator and 

denominator” (p. 1092). In a second series of activities, CAS was used to explore 

other cases of rational expressions, along with a discourse and description of the 

techniques evolved. With further exploration of examples and the use of the command 

simplify, the students developed the idea of factoring to simplify a rational expression.  

In his habilitation thesis, Chaachoua (2010) uses the notion of praxeology to examine 

school algebra in extensive details, describing the intricate structure of solving 

algebraic problems. For example, for the type of task, such as solve an equation of the 

form 𝑎𝑥/ + 𝑏𝑥% + 𝑐 = 0, the related techniques consist of completing three subtypes 

of task: substitute 𝑢 = 𝑥%, find the solution for an equation of type 𝑎𝑢% + 𝑏𝑢 + 𝑐 =

0, and solve the equation 𝑥% = 𝑠. He further structures the types of task into families 

of locally related types of task, which again are associated regionally with other 
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families of types of task. The structure and web of algebraic praxeologies is used to 

construct and manage the use of the digital tool Aplusix.  

Reflections/ our contribution 
The review shows the development of the ATD to include research on the 

implementation of digital tools. It also describes what the ATD can bring to this 

research area in terms of research questions and tools for a more precise examination 

of the mathematics actually taught and learned. With our research, we hope to develop 

these early endeavours, carried out with the ATD, to study the implementation of 

CAS.  

In our use of the ATD to question CAS-based teaching and learning, we use the 

affordances of the full notion of praxeology to articulate in explicit detail the epistemic 

value of the paper-and-pencil techniques in school algebra and their relation to a CAS 

environment (Paper I) and what values might be lost with the careless use of CAS. In 

Paper II, the full four T structure of praxeology -in particular the distinction between 

technology and theory- is used to design and analyse activities for the exploration of 

the didactic potentials of CAS. The structure of praxeology is used to describe how 

the relation between paper-and-pencil techniques and elements of theory can be 

articulated in CAS-based activities. Additionally, the notion of theory is used to 

design activities that focus on the abstract concept of equations. In Paper III, a course 

for preservice teachers about the implementation of CAS in school algebra is 

described and studied. To analyse the activities utilising CAS in the classroom, 

including the teachers’ didactical organisation and the students’ activities, several 

frameworks, including the ATD, are combined. From the instrumental approach, 

instrumental orchestration and instrumental genesis are used. In favour of explicitly 

describing and relating the instrumental orchestration, the instrumental genesis of the 

pupils, and the development of didactical knowledge of the preservice teachers, 

moments of didactic processes and praxeology are employed. This allows us to 

describe and identify the preservice teachers’ development of didactical practice and 

knowledge based on their experiences and observations in the classroom.  
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CAS and school algebra  

The implementation of CAS in teaching and learning 

school algebra introduces a series of new techniques, 

providing opportunities for new types of mathematical 

and didactical praxeologies, and changing the scenery of 

school algebra as new themes and approaches become 

available. However, the utilisation of CAS also introduces new obstacles for students’ 

learning.  

In this section, we review the literature focusing on the potential of CAS and the 

obstacles associated with their use. The objective is not the frameworks used but rather 

the results of the studies we explore. To structure the review, we employ the levels of 

didactical co-determination from the ATD (see Figure 2). In addition, the levels are 

used to categorise and differentiate between the different types of potentials and 

obstacles. With this categorisation, based on the levels of didactical co-determination, 

we can identify further research potential and situate our own studies in relation to 

research beyond what has been done within the ATD. The review is limited to studies 

published after 2000 and that explicitly describe students’ practices and development 

of knowledge.  

The lever potential 
The most commonly cited raison d’être for implementing CAS in the teaching of 

school algebra is what is sometimes called the lever potential (Dreyfus, 1994; 

Winsløw, 2003) of CAS. For example, in a teaching situation, the focus can be more 

on activities concerned with the study of theoretical elements or about explicitly 

developing and formulating theoretical elements, i.e. technology or parts of the theory. 

In addition, the implementation of CAS makes it possible to include themes from 

other domains of mathematics, even themes that traditionally belong to university 

studies. In one of the first articles systematically addressing the lever potential and 

obstacles for the implementation of CAS in school algebra, the following is stated:  

Computer tools have the potential to contribute to the learning process not only 

as amplifiers (saving time on computations and making graphing easy in the 

above example) but also, and more importantly, as reorganizers: Mathematics 

itself becomes different for the learner; new tools change cognition. 
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Representations can be linked. Diagrammatic and qualitative approaches can 

be taken. (Dreyfus, 1994, p. 210). 

Here, Dreyfus envisions how CAS can influence the teaching of school algebra. At 

the lower levels of didactical co-determination, the didactical use of CAS can shift the 

focus of the teaching of algebra from techniques (the level of subject) to technology 

and theory (the levels of theme and sector). At the upper level of pedagogy, a more 

qualitative and experimental approach can be realised.  

For most of the studies before 2000, concerned about teaching and learning using 

CAS, the main interest was, in fact, on what we now call the lever potential. Going 

through the more recent research on the implementation of CAS, a larger number of 

examples still demonstrates the lever potential of didactical CAS-use. These studies 

indicate commonly held hypotheses and motivations for investigating CAS in the 

learning of school algebra and explain why the majority of studies on CAS and school 

algebra are still, after more than 30 years of research on the subject, concerned with 

the lever potential (in some form). However, detailed and explicit accounts and 

analyses are pivotal in apprehending a more nuanced understanding of the specifics 

of the potentials that CAS can offer.  

We structure our review of the potentials of didactical CAS-use by using the levels of 

didactical co-determination, beginning with the pedagogical level and ending with the 

level of subject. One potential does not exclude another potential, so a given study 

may be included more than once.  

The level of pedagogy 
At the level of pedagogy, which can be described as teaching principles and the 

relation between teacher and pupils, we have identified three potentials. In general, it 

is observed how the use of CAS facilitates diversified work on a problem, and in that 

way allowing for different “types” of pupils. The potentials at this level generally are 

not explicitly described but are an implicit condition for the disclosure of the lever 

potential.  

One type of potential is the possibility of what could be called mathematical 

experimentation, that is, generating a series of examples to study, discover patterns, 

formulate conjectures and validate conjectures. Although the most prominent changes 

occur at the level of pedagogy, it might not change all of the other levels, so the 
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students would still be working with factorisations of polynomials. However, the 

specific praxeologies are new to the pupils and have the potential to strengthen the 

pupils’ knowledge up to the level of theme. Lagrange (2005a) envisions how, with the 

implementation of CAS, it is possible to organise explorative activities that allow the 

inclusion of participation of pupils who have relatively weak algebraic knowledge; he 

describes several examples and starts off with the following:  

In these authors’ view, experimenting with new tools will be a remedy. For 

instance, students, even with weak abilities in arithmetic or algebraic 

procedures, might be able to use symbolic calculators to explore advanced 

mathematical domains or to try several approaches to problems that they could 

not do by hand. Thus, with new tools, mathematical teaching would become 

more interesting and accessible to more students. (Lagrange, 2005a, p. 74) 

Some explicit examples of this can be found in the episodes studied by Hitt and Kieran 

(2009), where students are examining the factorisation of polynomials of the type 

𝑥& − 1, or in Heid and Edwards (2001), where expressions of the type (𝑥 + 𝑛)0 for 

𝑛	 = 	1, 2, 3, …, are examined. Another series of examples is from Ball (2001), where 

she reflects on solving equations and how students can approach solving equations 

more generally with the use of CAS. For example, if students consider the equations 

𝑎 = 	 $
1(")

+ 𝑑 for simple functions 𝑓(𝑥), they could study what the solution would be 

for a series of different functions and values of 𝑎, 𝑏	𝑐 and 𝑑. This type of activity 

attempts to develop more general knowledge about the meaning of equivalent forms 

of equations. In another article, Mok, Johnson, Cheung, and Lee (2000) reflect on how 

the implementation of CAS in teaching school algebra in Hong Kong can influence 

teaching and learning; they envision how using CAS has the potential to transition the 

students’ activities from what they call a procedurally oriented paradigm to offer 

opportunities for inquiry. One of the examples mentioned is an activity about the 

relation between the value of 𝐴 in the expression (𝑥 − 1)(𝑥 + 𝐴) and the graph of the 

parabola	𝑓(𝑥) = 	 (𝑥 − 1)(𝑥 + 𝐴). Another series of examples of mathematical 

experimentation with CAS-based teaching is presented by Aidoo, Manthey, & Ward, 

(2010); they investigate how students, with the aid of CAS, can discover simple 

theorems concerning the roots of quadratic and cubic polynomial equations, such as 

the problem: “Consider the quadratic equation 𝑥% + 𝑏𝑥 + 𝑐 = 0. For what values of 
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𝑏 and 𝑐 do the roots lie in the interval 0 < 𝑥 < 1?”. This can lead to the general result 

of exactly one root in the interval (0,1) if and only if min(0, −𝑏 − 1) < 𝑐 <

max	(0, −𝑏 − 1).  

One type of example of inquiry-based teaching that several papers pursue is the 

students using CAS as a type of black box to discover mathematical notation, axioms 

and definitions, such as 𝑎 · 𝑎 · 𝑎 · 𝑎	⋯𝑎 = 𝑎&. Thomas (2001) describes how 

students can discover the distributive law by first asking them to store the values 2.5 

in A and 0.1 in B and then trying to predict the value of the expression 2(𝐴 + 𝐵).  

Another potential of CAS at the level of pedagogy is the possibility of students getting 

immediate feedback. In an example studied in Zehavi and Mann (1999), the students 

first used algebraic technology for developing a model, and then, a CAS was used to 

rapidly obtain various results. This enabled the students to validate the quality of the 

model by relating a series of inputs and outputs. In another study (Heid & Edwards, 

2001), the immediate feedback is mentioned in relation to the ability of CAS to always 

perform correct algebraic manipulations. The authors note how a student wanted to 

subtract two on both sides of the equation, 2𝑥 + 7 = 3,	to get 𝑥 + 7 on the left-hand 

side of the equation. Because the CAS, TI-89, reduced the equation correctly to 2𝑥	 +

	5	 = 	1, the student got immediate feedback on her technique. The potential of the 

immediate feedback of CAS has also served as a feature in designing specific types 

of CAS (Bokhove & Drijvers, 2010; Bouhineau, Bronner, Chaachoua, Mezerette, & 

Nicaud, 2005; J.-F. Nicaud, Bouhineau, & Chaachoua, 2004; Jean Francois Nicaud, 

Bittar, Chaachoua, Inamdar, & Maffei, 2006). Bouhineau et al., (2005) present how 

one CAS, Aplusix, can provide feedback to students, for example, by validating the 

students’ algebraic manipulations, such as verifying the equivalence of two algebraic 

expression. This feature can be used to identify in which step of solving an equation 

the student has made an error.  

An additional potential of implementing CAS is situated at the level of pedagogy and 

is the prospect of creating a richer activity that involves real-world applications. The 

focus on real-world applications is rarely the object of study in these papers but an 

implicit principle of the activity design, such as activities based on the realistic 

mathematics education framework. Heid, Blume, Hollebrands, and Piez (2002) 

mention this potential in an article directed at teachers. Schneider (2000) describes 
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more specifically how the use of CAS can increase the application of the exponential 

and the logarithmic function to model disease spreading, population growth, 

radioactive decay and financial applications such as investment funds. These studies 

may also relate mathematics to other school disciplines, and we now turn to studies 

pursuing that aim. 

The level of discipline 
At the level of discipline, such as biology or history, CAS can be used to facilitate the 

intertwining of school algebra with other disciplines. In general, certain themes, such 

as linear regressions, are taught not for their importance in mathematics but because 

of their use as a tool in other disciplines. Also, more classical themes could 

presumably be more easily implemented in other disciplines with CAS-based 

techniques. For example, in one paper (Gerny & Alpers, 2004), a group of grade 12 

pupils set up a toy model of a formula 1 track. Intertwining physics and school algebra, 

the pupils modelled a run of the racetrack using concepts such as velocity, 

acceleration, motion, continuity, piecewise function and so forth. Maple was used by 

the students to define and handle the variables, piecewise functions, plotting 

functions, differentiating functions and integrating functions.  

The level of domain 
At the level of domain, such as statistics or geometry, CAS and algebra can be 

integrated as tools. In Schumann and Green (2000), the following task appears: 

“Given a ladder of length 5 m is to be leaned against a wall. This is hindered by a 

plinth of height 1 m and depth 1 m placed next to the wall over which the ladder must 

pass… At what distance from the wall should the base of the ladder be placed to reach 

as high as possible up the wall?” This can be solved both geometrically and 

algebraically, and the authors exemplify how the use of algebra -in particular the use 

of CAS- can be efficiently used to solve a system of equations. The article (Mann, 

Dana-Picard, & Zehavi, 2007) study a series of traditionally geometric tasks such as 

“Find the locus of intersection points of perpendicular tangents to the hyperbola 

whose equation is "
"

'
−	2

"

/
= 1”. To solve the problem, the students set up a general 

model for the tangent. The model is manipulated and conditioned by the hyperbola 

using CAS, and the solution 𝑥% + 𝑦% = 5 can be obtained.  
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The level of sector 
At the level of sector, such as equations or variables, we have identified one potential. 

Indeed, this level is where we find most of the studies considered for our review. 

Traditionally, pupils would not work at the level of sector because it is a general level 

and requires a certain level of abstraction and generalisation. However, by including 

activities that articulate and develop more general knowledge across different themes, 

increased theoretical connectedness of students’ knowledge is the aim. 

In a way, this level of didactical co-determination also concerns the theory of students’ 

praxeologies. For example, when solving an equation, an element of the theory would 

be the students’ perceptions of variables -what we call the students’ personal 

definitions of the mathematical entities involved. Although the plus sign for most 

students at secondary school is a well-established entity based on their experience 

with addition, the equal sign can still be associated purely with having to perform 

calculations, and the students’ definition of the equal sign is restricted to a sign that 

prompts calculations to obtain a result. In such a case, the students’ definition of the 

equal sign can be developed further to include an indication of equality between two 

expressions. In this subsection, we describe the affordance CAS can offer in including 

activities that develop and articulate students’ definitions of mathematical entities. 

A key study for the implementation of CAS comes from Drijvers (2003b); in the 

thesis, the potential of CAS to develop students’ “definition” of parameters is studied. 

The use of CAS enabled the students to work with a series of activities involving 

different parameter uses. The students’ “definition” of parameters started as a 

placeholder (“the students substitute numerical values for the parameter and are 

reluctant to accept that the parameter value is unknown” (p. 193)) but transitioned to 

the view of changing quantity (“concerns systematically changing the parameter 

value, so that the parameter acquires the character of a really changing constant” (p. 

199)). To some extent, the students also developed the view of parameters as 

generalisers (“unified a class of situations, formulas and solutions” (p. 206)) and to a 

limited range of parameters as unknowns (“the parameter as unknown selects cases 

that fulfil a specific condition of this set” (p. 213)). Another paper (Heid et al., 2002) 

accentuates the affordances of CAS to make variables, parameters and their difference 

an object of study. As an example, they propose studying different interest rates and 

initial deposits over time, that is, the function 𝐴(𝑡𝑖𝑚𝑒) = 𝑑𝑒𝑝𝑜𝑠𝑖𝑡(1 + 𝑟𝑎𝑡𝑒)3456. 
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Another sector identified as an entity for study is algebraic syntax. Artigue (2002a) 

recounts how in other papers (Artigue, 2002b; Guin & Delgoulet, 1997), CAS can 

“promote a work on the syntax of algebraic expression”, for example, the use and 

meaning of parenthesis, which often must be entered additionally when using CAS. 

A fourth sector that is not traditionally an object of study or otherwise explicitly stated 

in secondary school is algebraic equivalence. In a study, that considers the CAS Casio 

Class-Pad (www.classpad.org), Gjone (2009) relays how examples, such as the two 

functions 𝑓(𝑥) = 	 "
"#7
"#7

  and 𝑔(𝑥) = 𝑥 + 1, where the command 𝑗𝑢𝑑𝑔𝑒(𝑓(𝑥) 	=

	𝑔(𝑥)) with the output 𝑡𝑟𝑢𝑒, may be used as a catalyst for the study of equivalence of 

algebraic expression. Another set of CAS features that can be used to develop 

students’ concepts of algebraic equivalence are the commands Expand, 

CommonDenominator and Factor because all three commands manipulate algebraic 

expressions (Lagrange, 2005b).  

The level of theme 
At the level of theme, such as first-degree equations or right triangles, we have 

identified several potential. In a way, the level of theme connects to the students’ 

technology. When students solve a first-degree equation, part of the technology is that 

the first-degree equation probably has a unique solution. The lever potential at the 

level of theme is how activities aided by CAS-use can develop and explicitly 

formulate technology, such as first-degree equations having no, exactly one or 

infinitely many solutions. 

One of the potentials of implementing CAS is how CAS can support the relation 

between the different representations of a theme. In turn, this would conjure a 

broadening of the students’ concept of the entity. A prominent intertwining of 

representations is between algebraic expression in two variables and a two-

dimensional graphic representation. The study (Gjone, 2009) presents such examples. 

For the task of solving the system of equations 𝑥% + 𝑦% = 𝑝 and 𝑥 + 𝑦 = 𝑞 for 

different values of the parameters 𝑝 and 𝑞. By first considering the graphical 

representation of the system, the students were able to structure their (algebraic) 

arguments based on the three cases, no intersection, one intersection and two 

intersections. A paper by Kieran & Yerushalmy (2004) also study the opportunity for 

multi representation with CAS-based teaching, including tables, graphical 
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representation and algebraic representation. One of the examples they study is a task 

in which the students are required to describe the equation 𝑥 + 𝑦 = 2𝑥 − 𝑦. The 

students developed three descriptions and strategies for evaluating the equations: a 

comparison between the two functions 𝑓(𝑥, 𝑦) = 𝑥 + 𝑦 and 𝑔(𝑥, 𝑦) = 2𝑥 − 𝑦 in a 

three dimensional space; choosing one of the variables as a parameter and obtaining 

a family of functions; or first rewriting the equation into 𝑦 = "
%
 and then finding the 

intersection of the line with the x-axis. In all three cases, CAS was used to support the 

description and evaluate the equivalence and, afterwards, to shift efficiently between 

representations. 

Another potential of CAS that is well described and documented is the potential of 

using already established algebraic paper-and-pencil technology for justifying a 

pattern generated using CAS. In a series of articles with Kieran and colleagues (Hitt 

& Kieran, 2009; Kieran, 2008; Kieran & Drijvers, 2006; Martínez et al., 2012), one 

of the central themes of the activities is the factorisation of polynomials. The students 

worked on finding and explaining patterns for the factorisation of polynomials of the 

type 𝑥& − 1. The telescoping technique, which traditionally is a paper-and-pencil 

technique, was used for justifying and validating the hypothesis that the term (𝑥 − 1) 

will always be a part of the factorisation and that when n is a prime number, the 

polynomial only has two factors. Here, CAS was used to factorise cases of the 

polynomial 𝑥& − 1, rewriting some of factors, and testing cases for a large n, such as 

𝑥%880 − 1. Another example of intertwining traditional paper-and-pencil technology 

with CAS-use is the study by Zeller and Barzel (2010). A class of 13-year-old students 

worked on comparing different offers for planning an event. The students used already 

known algebraic paper-and-pencil technology for developing and formulating general 

expressions for calculating the expenses dependent on the number of people attending 

the event. As comparing several equations was (still) outside the students’ paper-and-

pencil praxeologies, CAS was used to perform work with the more advanced algebraic 

expression, resulting in the students being able to efficiently compare the equations to 

find the best solution.  

The use of new instrumented techniques changes the technology for the praxeology. 

However, the above studies allude to the view of looking at CAS-use not as an 

opposition to the traditional paper-and-pencil technology, but instead as a potential 
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for developing and formulating traditional paper-and-pencil technology. As Lagrange 

(2005b) writes, “think of the use of CAS as calling for an interrelation between 

[instrumented] techniques and paper-and-pencil techniques” (p. 11).  

The implementation of CAS and the ability of CAS to work with more advanced 

algebraic expressions provide the possibility of approaching themes that would not 

otherwise be considered to be accessible to students in secondary school. In a study 

(Abramovich & Brouwer, 2003), integer partitions are brought forward as a possible 

theme from discrete mathematics to be included in secondary school. An integer 

partition of a positive number 𝑛 is a rewriting of 𝑛 into an ordered sum of positive 

integers, such as 4	 = 	2 + 1 + 1. The number of integer partitions of a positive 

number can be found by considering the generating function. For example, to find the 

number of partitions consisting of one odd and two even parts of 𝑛, one would 

consider the product of the generating functions (𝑥 + 𝑥0 + 𝑥9 +⋯) and (1 + 𝑥% +

𝑥/ +⋯)%. The answer to the question would be the coefficient of the nth term. The 

use of CAS would free the students from time-consuming calculations, permitting 

them to look for patterns of the coefficients (up to higher powers), include more 

complex partitions and establish relations between the number of different types of 

partitions. A series of other advanced mathematical themes that could be accessible 

in similar ways are described by Cuoco and Goldenberg (2003), such as Lagrange 

interpolation, polynomials of the form 𝑆%(𝑛) = 0% + 1% +⋯+ (𝑛 − 1)%, generating 

functions and structural similarities between integers and polynomials. Another theme 

closer to school algebra is presented by Abramovich (2014), who lists a series of tasks 

involving more advanced use of inequalities, such as inequalities and systems of 

inequalities with more than one parameter, for example, 𝑥 − 𝑎 > −1 and 𝑥% − 3𝑥 <

𝑎 − 1. The efficiency of CAS enabled the students to obtain a series of results when 

running through the values of the parameter a. The students could then work with a 

family of inequalities or systems of inequalities. In the paper (Roanes-Lozano, 2011),  

a series of examples of how CAS can be used to work with students on themes 

traditionally not included in secondary school is presented. Roanes-Lozano reflects 

on how many problems that can be modelled as an algebraic system can be approached 

and -with the use of CAS- solved by students in secondary school, for example, 

themes such as graph three-colouring, logical puzzles and decision making in railway 

interlocking systems.  
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Level of subject 
At the level of subject, we are concerned about the techniques and types of task, such 

as solving simple first-degree equations and the techniques used to solve a simple 

equation. A potential identified in several papers is how the mastering of an 

instrumented technique may develop mathematical technology (and theory) in 

students. In the paper (Drijvers & Gravemeijer, 2005), they describe how the 

command Solve, when the variable must explicitly be stated, may develop the 

technology that an equation is solved with respect to a variable. Drijvers (2004) 

recounts how the command 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒, where a variable is substituted with an 

expression, can lead students to develop a discourse reflecting their view of an 

expression as an object, and can develop new explicit (mathematical) knowledge 

about substitution. The article (Artigue, 2002a), recounts how, when choosing 

appropriate plotting options, plotting a function, such as 𝑓(𝑥) = 𝑥(𝑥 + 7) + '
"
, 

requires or can develop technology for analysing the algebraic structure of the 

function.  

Reflections and other potentials 
The list of different types of potentials for implementing CAS in the teaching and 

learning of school algebra includes, at every level, many detailed examples. One level 

of potentials seems to draw more attention and is seen as having more potential to 

influence the students’ algebraic powers: the level of sector, such as parameters. As 

mentioned above, at this level, CAS-based activities can foster a more general study 

of algebraic objects. The students’ development and explicit formulation of algebraic 

theory (the level of sector) will influence entire families of praxeologies. Although 

the above review of possible potentials for the implementation of CAS in school 

algebra is extensive, we can with the notion of praxeologies and levels of didactical 

co-determination envision more types of potentials than what was identified. For 

example, at the level of sector, other sectors of school algebra can be studied, such as 

equations. It is also possible to study how CAS can be used to develop relations 

between different levels. Working to fill this gap, in Paper II, we study two CAS-

based activities. The first activity is the study of the theme of equations. With a series 

of examples of equations, the students developed and explicitly formulated their 

definition of equations. In the second activity, the students developed and made 

explicit the relation between traditional paper-and-pencil techniques for solving 



50 
 

equations and the mathematical theory of the solution staying the same. For the main 

activity, the students were given an equation and had to work on further complicating 

the equation without changing the solution.  

The obstacles 
Although the majority of articles portray a positive influence of CAS in the teaching 

and learning of school algebra, increasing scepticism can be detected. Regarding the 

studies that portray the potential of CAS, many are conducted by a researcher and 

under “artificial” conditions not comparable with regular school settings. When it 

comes to the gap between the exemplary research studies and regular classes 

implementing CAS, Artigue (2009) writes in her article inspired by her closing lecture 

of the ICMI study Conference in Hanoi about research on the use of CAS: 

The contrast between the idealistic discourse of the experts of the group, 

totally coherent with the literature on the educational use of CAS at that time 

and what was revealed by observations made in their classrooms, turned for 

us quickly into a research question: how to understand such a gap? (p.466). 

In this section, we describe some of the types of obstacles that can occur when 

implementing CAS, hence hindering the development of mathematical practice and 

knowledge. As in the previous section, we have tried to differentiate between different 

types of obstacles. In our review, we were not able to locate studies that described 

obstacles for the implementation of CAS at the level of domain, discipline and 

pedagogy, and at the same time also related them to students’ activities with CAS; 

there is research concerned about teachers’ beliefs towards CAS-based teaching, such 

as (Ball, 2014; Pierce, Ball, & Stacey, 2009). However, we hypothesise that a 

perceived hindrance by the teacher at the upper levels of didactical co-determination 

would result in the teachers not or limiting the implementing CAS; thus, these studies 

cannot relate the hindrances at the upper levels with students’ CAS-based activities. 

From our knowledge of Denmark, where extensive CAS-use is part of the curriculum 

and examination, we know that CAS-based teaching, together with standardised 

problems for the final exam, lead to a trivialisation of mathematical knowledge and 

more focus on templates that are produced in class or acquired from outside. Because 

this is undocumented in the research literature, our review begins at the level of sector. 
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The level of sector 
Just as CAS-based teaching can lever the sectors of school algebra with activities that 

are focused on developing and explicitly formulating the elements of mathematical 

theory, such as studying the entity of parameters, it can also hinder the development 

of mathematical theory. In an article, Jankvist and Misfeldt (2015) describe how CAS-

use might blur the differences between equations and differential equations, and 

between variables and functions, for the students. They analyse a Danish high school 

teacher’s examples, which include the commands Solve and deSolve from TI-Nspire. 

The commands can be used to solve an equation and an initial value problem, such as 
,2
,"
=	−16𝑦 + 32 and 𝑦(10) = 1, respectively. The use of the commands Solve and 

deSolve require the input (problem, name of the variable) and (problem, name of the 

function), respectively. The problems belong to different sectors i.e. equations and 

differential equations, so the type of task is different: solving an equation or solving 

an initial value problem. When the teaching takes a pragmatic approach, the similarity 

of the commands was hypothesised to be causing the students to have problems 

distinguishing between equations and differential equations and between variables 

and functions.  

The level of theme 
One of the more obvious obstacles that can hinder the use of CAS is insufficient 

mathematical technology. For some instrumented techniques, the mathematical 

technology required is significantly different from what is used in the context of the 

corresponding non-instrumented technique. For example, when employing a 

command such as Solve or Substitute, the students are required to consider an 

expression as an object in and of itself in order to substitute a variable with an 

expression or to know that when you solve an equation, you solve it with respect to a 

variable that you may have to indicate explicitly. Further, students may be required to 

choose (among several variables) the one variable for which they want to solve the 

equation. In a list of obstacles, Drijvers (2000) mentions that when a solution to an 

equation is an expression containing parameters, it can be a hindrance because the 

students must be able to differentiate between variables and parameters; he also 

observed how students’ insufficient algebraic strategies can be an obstacle during 

CAS work. He recounts how the students were unable to “help” the CAS overcome 

its limitations by performing a relevant rewriting of the expression when the CAS was 
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unable to perform a command due to the input containing square roots. Drijvers & 

Gravemeijer (2005) also present an example of how students use TI-89 to solve a 

system of linear equations, such as 𝑥% + 𝑦% = 25% and 𝑦 = 31 − 𝑥. Several times 

when (trying) to use the nested command 𝑆𝑜𝑙𝑣𝑒(𝑥% + 𝑦% = 25%|𝑦 = 31 − 𝑥, 𝑥), the 

students failed. The first entry of the command requires an equation to be manipulated, 

i.e. 𝑥% + 𝑦% = 25%. The vertical line symbolises a substitution, the equation 𝑦 = 31 −

𝑥 tells the CAS to substitute 𝑦 with 31 − 𝑥, and the last entry of the command tells 

the CAS for which variable the equation should be solved. Using the nested command, 

the students doubted which variable to enter in the last part of the input and several 

times chose the variable y instead of x. However, if the students had had a more 

developed mathematical technology for the instrumented technique, they would not 

have doubted which variable to enter as the last entry of the input.  

Obstacles at the level of theme are extensively documented and can be differentiated 

further based on their specific mathematical theme, such as systems of equations (as 

seen with the last example above). We have also identified insufficient knowledge of 

the theme equivalence of algebraic expressions as a hindrance for implementing CAS. 

In his research (Drijvers, 2000, 2004), Drijvers comments on how students’ 

inadequate technology for algebraic equivalence is a hindrance for their work with 

CAS, as CAS might represent an algebraic expression differently than what the 

students would expect. He relays how the students became confused about the 

difference between the output − (7%#")
:9"((7%#")"

 and the expected numerator 𝑥 − 12. A 

series of other studies (Ball, Pierce, & Stacey, 2003; Heid et al., 2002; Pierce, 2001) 

also report on the same type of hindrance, concluding how the technology is crucial 

in situations where the students have to interpret the output of CAS, particularly in 

handling the automatic simplification feature of some CAS. Heid et al. (2002) write, 

“CAS can produce results in forms that students may not expect, so students must 

interpret new forms of expression and develop an enhanced ability to identify 

equivalent forms of symbolic expressions” (p. 588). Under the same mathematical 

theme falls the technology of identifying and explaining when algebraic expressions 

are not equivalent. Kadijevich (2009) studies how a CAS, the TI-Nspire tool (www.ti-

nspire.com), rewrites algebraic expressions and equations without informing the user 

of the limiting equivalence between the algebraic forms. For example, the CAS 
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rewrites √𝑥% into 𝑥 without warning users of the limited validity of this equivalence. 

Another example is how when the denominator of the form 𝑥 − 𝑛 in a fraction that is 

part of an inequality, the TI-Nspire does not bring attention to the fact that the value 

𝑥 = 𝑛 is invalid when solving the inequality.  

Apart from acquiring new techniques, the use of CAS to some extent necessitates 

knowledge about the general features of the programme, such as how to delete the last 

entry, the execution of commands and how to define variables and so forth. Thus, it 

requires an inclusion of new themes related to CAS in the teaching of school algebra, 

such as viewing options. Drijvers (2000) mentions how when not knowing the syntax 

sufficiently for the TI-92, the students entered the command 𝑦1(𝑠𝑜𝑙𝑣𝑒(𝑑(𝑦1(𝑥), 𝑥) =

0, 𝑥)), asking the CAS to differentiate the function y1, find the solution for 𝑦1′ = 0 

and asking for the value of y1 the vertex all in one command line. The CAS was 

unable to compute the desired request due to the order in which the commands were 

executed. In an article where DERIVE is the CAS, Artigue and Lagrange (1997) 

describe how the students, when factoring polynomials, were required to select a 

”level” of factorisation. This type of requirement, which is a class of possible outputs, 

calls for extra teaching of technology related to the types of factorisation in order for 

the students to master the command.  

Another hindrance for the implementation of CAS in school algebra can be described 

as the discrepancy between conventional (paper-and-pencil) notation and that used by 

CAS in outputs, which, in some cases, are specific to the CAS. For the students to 

successfully be able to interpret the output of the CAS, technology about different 

standards for notation is required. In analysing six different CAS and their ability to 

handle inequalities, Sangwin (2015) compares the outputs of the CAS for solving the 

inequalities 𝑥% >	−1 and 𝑥% <	−1 to that of conventional notation. In all six CAS, 

there are points of concern. One CAS has the output 𝑥 and an empty output, 

respectively, while another CAS has the outputs {−∞ < 𝑥}  and {	}. He concludes that 

the difference between traditionally written mathematics and the CAS representation 

can be a hindrance for the users.  

The level of subject 
The implementation of CAS also influences the differentiation between different 

types of task. For example, the command used for solving a simple equation, such as 
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3(4 − 𝑥) 	+ 	7	𝑥	 = 	 (2 + 𝑥)2	 + 	12, is the same command used for solving 

advanced equations, such as 4−𝑥2 + (𝑥 − 3)7 = 3𝑥
5−𝑥+ 4𝑥. So, unless entering the 

equations or reading the output requires different techniques, the type of task is the 

same when using a CAS. In a sense, a technique can become very powerful due to its 

efficiency. This can lead to the inclusion of further types of task into the technique. 

Lagrange (2005b) describes an example from Monaghan, Sun, and Tall (1994) where 

a student linked the concept of limits of functions too closely with the corresponding 

command, Limit, in a CAS so that even simple tasks such as finding lim
"→B

7
"(7

  were 

solved with the CAS rather than reasoning either algebraically or graphically. Another 

example of this is described by Drijvers (2003a), where a student said that “I don’t 

know how to do it without calculator” when asked to make one equation from the 

following two equations where 𝑦 does not appear: 𝑦 = 𝑎 − 𝑧 and 𝑥% + 𝑦% = 10.  

Reflections and other obstacles 
To round off the list of obstacles, let us emphasise that many of the researchers express 

that obstacles can be turned into opportunities to further the students’ development of 

mathematical knowledge (Drijvers, 2004; Drijvers & Gravemeijer, 2005; Heid et al., 

2002; Tonisson, 2015). A study (Clark-Wilson & Noss, 2015) investigates the 

spontaneous obstacles occurring in the classroom, denoted as “hiccups”. One of the 

activities examined involves the study of a car driving. A coordinate system with the 

axis time and position illustrates how far the car travels. A hiccup for this activity is 

that part of the line segment, i.e. the length the car travels, can “disappear” outside the 

window. In their closing section, they reflect on the spontaneous obstacles that occur 

in the class room and “conjecture that it is both possible and desirable to prepare 

teachers for such occurrences … make sense of it [hiccups] from an epistemological 

perspective” (p. 106). Thus, for the “hiccups” not to be a hindrance in the 

implementation of CAS, a change at the level of pedagogy is required. They further 

envision that the potential of “hiccups” should be part of any teacher development 

course.  

Finally, we would like to draw attention to another type of hindrance for students’ 

learning when implementing CAS, which has been alluded to previously (Ball, 2014). 

It is a type of pedagogy, where CAS is enthusiastically applied to almost any type of 

task. This type of pedagogical approach towards the teaching of school algebra, when 
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the activities have been designed for the use of paper and pencil, can undoubtedly 

decreases their epistemic value. In Paper I, we study exactly what happens to the 

traditional algebraic praxeologies if all problems are solved using CAS. What 

traditional paper-and-pencil techniques are present? What are their epistemic value? 

What happens to the techniques and their epistemic value when a CAS is used?  

Teacher education and CAS 

Implementing CAS in the teaching and learning of 

school algebra requires not only handling the added 

challenges for students using the CAS mentioned 

above. In addition, it necessitates a different approach 

towards teaching school algebra and a restructuring of 

many of the themes, such as variables and exponential functions. To successfully 

manage and prevail the implementation of CAS, teachers cannot rely on their own 

education on school algebra to guide their didactical organisation as most likely, their 

education did not include CAS-use. To support the transition and overcoming the 

challenges of implementing CAS in the teaching of school algebra, teacher education 

is seen as the key (Artigue, 1998). She writes the following: 

We are convinced that these strategies do not enable students to 

overcome such resistant obstacles as those mentioned above and do not 

necessarily provide teachers with the didactical tools they need. 

Efficient teacher training cannot only rely on imitative strategies which 

cannot correctly take into account the differences between experts and 

novices, homology techniques obscure the fact that one’s mathematical 

knowledge strongly shapes the use of computer technologies, and if the 

teachers are not provided with didactical tools for analysis, if 

observations and experiments are not carefully prepared, they only serve 

to reinforce initial representations or perceptions. (p. 127) 

In this section, we present research on efforts in teacher education on supporting the 

implementation of CAS. We focus on studies concerned with and presenting 

developments of preservice teachers’ didactical knowledge and practice. This means 

that papers concerned about the structure or approaches to teaching and learning about 

school algebra with CAS for preservice teachers (Grugeon et al., 2009; Man, 2006) or 
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papers only examining possible mathematical or didactical problems appropriate for 

teacher education (Abramovich & Brouwer, 2003; Gierdien, 2011; Grassl & Mingus, 

2002; Hitt, 2011) were excluded. Out of the more than 20 papers on teacher education 

and the implementation of CAS in school algebra, only three papers examined and 

identified the development of preservice teachers’ didactical praxeologies.  

The paper (Davis, 2015) studies a 12-week element concerned about preservice 

teachers evaluation and hypothetical adaptation of textbook lessons that incorporates 

CAS to varying degrees. An example is an investigation of the predicted income, I, 

for a given price, p, at a bungee jump carnival ride: 𝐼 = 𝑝(50 − 𝑝). The preservice 

teachers worked with 28 lessons, of which 11 included the use of CAS. In the 

hypothetical lesson plans, the CAS-based activities were typically retained. In 

addition, the preservice teachers added supplementary questions to the students about 

explaining their thinking, make predictions about the solutions they would get from 

CAS, and reflect on the strengths and weaknesses of CAS. In addition, they also added 

activities for the students so that they could learn commands such as finding the 

maximum of a function. However, the preservice teacher did not relate different 

representations, such as graph and algebraic expressions. The paper ends by 

commenting that the next important step to investigate is how the preservice teachers 

actually implement the CAS-based activities.   

Gorev & Gurevich-Leibman (2015) studied the effect of integrating digital tools in 

both (pure) mathematics and didactics courses with a group of 17 preservice teacher 

having no prior experience of learning mathematics with digital tools. The study 

presents examples of the development of the preservice teachers’ mathematical 

practice and knowledge, as well as their approach to using CAS for courses concerned 

about (pure) mathematics. For example, a preservice teacher reflected how the use of 

a digital tool could enabled the students to understand the relation between the 

parameter and the graph of the hyperbola. In addition, the preservice teachers shifted 

proficiently between what the study calls graphical, algebraic and written 

representations for the task of finding functions 𝑓(𝑥), such that the functions 𝑓(𝑥) 

and 𝑔(𝑥) = 	f𝑓(𝑥) have 0, 1 or 2 points of intersection. In a course concerned about 

the didactic of mathematics, the preservice teachers were tasked with writing 

(hypothetical) lesson plans and reasoning about their choice of digital tool and its 

value. In the reasoning, one of the preservice teachers argued that the digital tool 
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would allow the students to consider different values of parameters and, in this way, 

study more general cases. In addition, the use of digital tools permits shifting between 

representations and a trial-and-error approach towards solving problems. 

Unfortunately, the majority of the preservice teachers, despite having lesson plans and 

appropriate digital tools, conceded that they were hesitant to implement a digital tool 

in their first year of teaching because they foresaw a variety of difficulties in the 

classroom.  

Niess (2005) studied how mathematics and science teachers’ education can guide 

preservice teachers’ development of didactical knowledge on implementing digital 

tools. In an element of the programme that was focused on practical experiences in 

the classroom, the preservice teachers planned, taught, and reflected on teaching with 

digital tools. One of the five cases studied is a mathematics preservice teacher with a 

minor in computer science. Her sequence of activities focused on relating graphs 

modelling the rates of change, such as distance or time, with the slope of the linear 

function. Some of her reflections on implementing digital tools is relayed in the paper, 

alluding to the possible development of didactical knowledge. Her overarching view 

was “that technology was integral to mathematics and thus to learning mathematics”. 

In addition, the digital tool “allows students to visualize and experience with in 

previous impossible ways”. Based on an experience in the classroom where students 

did not perceive the computer lab as doing mathematics, she proposed that she must 

include explicit questions so that the students could reflect, and develop more general 

mathematical knowledge. As pivotal elements of the course for the development of 

didactical knowledge for implementing digital tools, the study points to the 

requirement to teach a sequence of technology-based lessons because doing so forced 

the preservice teachers to consider the potential for implementing digital tools. In 

addition, the teacher educators challenged the preservice teachers to reflect more 

generally on the effect on the curriculum when implementing digital tools.  

Conclusion and reflections 
Based on our review of the literature, the research on how teacher education can 

support preservice teachers’ development of didactical organisation for the 

implementation of CAS in school algebra is only just beginning. In the search, we 

located a little over 20 papers, of which only three studies relay some of the specific 

details of the preservice teachers’ knowledge and practice of implementing CAS.  
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After having asked the question of “how can” and only alluding to the preservice 

teachers’ development of knowledge and practice, the next question -and the focus of 

Paper III- is “how, can and what”. In the paper, using praxeology, we analyse 

preservice teachers’ development of didactical praxeologies for CAS-based teaching, 

and in addition, we systematically relate the development of the preservice teachers’ 

knowledge and practice to the elements of the course.  
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PRESENTATION OF RESEARCH QUESTIONS 

To present and situate our research questions for Paper I, Paper II and Paper III, we 

will present the overarching research goal of the present thesis and the three aspects 

of the research goal which we consider. For each research aspect, we will relay the 

main points from the review that the research questions are a furtherance of before 

presenting our research questions and giving a short description of our methods for 

pursuing the research questions. 

The thesis has the overarching goal of contributing to answering: whether and (how) 

can CAS be used to strengthen the early teaching of algebra? To shed light upon this 

broad research goal, we consider three aspects: 

• The compatibility of the prevailing approach to school algebra with the 

implementation of CAS. 

• The potential of CAS to introduce pupils to more advanced mathematics 

topics and working modes, as well as design tools for crafting such CAS-

based activities.  

• Formats for teacher education to support preservice teachers in developing 

didactical practice and knowledge about CAS-based teaching of school 

algebra.  

The compatibility of the prevailing approach to school algebra with the 

implementation of CAS 

To consider the aspects of the suitability of implementing CAS 

in the teaching of school algebra, we first reflect upon the 

literature background. We know from the section “Didactics of 

mathematics” that teachers who are considering implementing 

CAS in the teaching of school algebra are submerged in a 

curriculum with a traditional approach to teaching school algebra and surrounded by 

materials that support a traditional approach. The most prominent tasks are solving 

equations and manipulating algebraic expressions (with paper and pencil). 

Introducing CAS in the traditional approach will at least change the techniques 

possible. But according to Artigue (see the section “ATD on CAS”), techniques in an 

educational context have, what she calls, epistemic value. The solutions for the 

specific equations are not of importance, and the students will likely never be asked 
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to solve the specific equations again. It is not the tasks or the solution that are in focus, 

but the techniques that are utilised and the knowledge developed and employed for 

performing the techniques. If CAS is introduced into the traditional approach to school 

algebra, the tasks will still stand, but the techniques utilised will have changed, and so 

will, to a large extent, the knowledge that said techniques would develop or employ. 

We therefore examine what the exact epistemic values are of the procedures for 

solving equations or reducing the algebraic expressions of present school algebra, as 

well as what will happen to those values if CAS is used to solve the same set of 

traditional problems.  

The first paper, Paper I, poses the research questions: 

• What are the algebraic non-instrumented techniques of lower secondary 

school? 

• What will happen to the algebraic non-instrumented techniques in a CAS 

environment? 

• How are the algebraic non-instrumented techniques related to the 

instrumented techniques?  

As a method for answering the three research questions, the notion of techniques is 

given a slightly different definition. The paper categorizes elementary techniques, 

such as the distributive axiom from right to left i.e. rewriting 3𝑥 + 12 into 3(𝑥 + 4), 

to enable the identification of fundamental algebraic practice and knowledge. As a 

representation of the current school algebra, the article examines the last ten years of 

the final written exam of lower secondary school (grade 9) on the Faroe Islands.  

The potential of CAS to introduce pupils to more advanced mathematics topics 

and working modes, as well as design tools for crafting such CAS-based 

activities 

In recognising that the traditional algebraic tasks are not a fit 

for the combination of CAS-use and learning of the 

fundamental structure of school algebra, such as the 

distributive axiom, we then consider what the potential of CAS 

is. From the section “The lever potential” we know that with 

the right tasks the implementation of CAS can support a range of potentials that results 
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in the development of rich algebraic knowledge and practice. An activity that focuses 

on the sector, developing and explicitly formulating elements of mathematical theory, 

affects several technologies, which again relates to families of series of techniques 

(see Figure 7). Thus, an activity that studies mathematical objects at the level of sector 

can perhaps realise the greatest lever potential of CAS.  

 

Figure 7. Illustration of possible structure of praxeologies from Paper II. 

Solving equations is one of the pillars of school algebra (see sections “Didactics of 

algebra” and “Importance of school algebra”) but is also related to great difficulties 

for the students (see section “The problem of school algebra”). However, the sector 

of equations is not a target of any of the studies examined in section “The lever 

potential”. Paper II therefore considers the mathematical sector of equations and at 

the same time poses more general research questions for the lever potential of CAS. 

In addition, the paper considers the notion of praxeology as a design tool for crafting 

CAS-based activities which realise the lever potential:  

• How can CAS be used to engage students to work with elements of the theory 

block for praxeologies in school algebra? 

• How can CAS be used to strengthen students’ technology related to standard 

techniques (such as rewriting equations) in school algebra? 

• How can one design tasks that realise the use of CAS described in the previous 

research questions? 

The paper considers two designed activities. For the first design, the main activity is 

for the pupils to develop and formulate their description of what an equation is based 

Types of task 

Theory 

Technology 

Techniques 
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on a series of equations that are solved with CAS. In the second design, for the main 

activity, the pupils are given a list of equations (all have solution 2) that they have to 

complicate further but keep the solution 2. Concerning the analysis of the data, the 

notion of praxeology is used to identify the pupils’ techniques, technology and theory 

developed and formulated.  

New formats for teacher education to support preservice teachers in developing 

didactical practice and knowledge about CAS-based teaching of school algebra.  

The lever potential of CAS has been studied and 

recognised by many; however, most of the examples 

examined are “artificial,” that is, either the teaching is 

conducted by a researcher, the students are only a smaller 

group and not an entire class, or the CAS-based activities 

do not correlate with regular classroom teaching. However, even with conditions as 

close to regular mathematics classes as possible, that is, regular classes of students 

with their regular mathematics teachers and CAS-based activities that correlate with 

the school curriculum, the activities have been carefully crafted by a researcher. This 

leaves the question of how we can achieve and support implementation of CAS that 

realises the lever potential of CAS in everyday teaching and learning situations, 

unanswered.  

For this, teacher education is seen as one of the keys (see section “Teacher education 

and CAS”). However, our search of the literature resulted in only a bit more than 

twenty articles of which only three studies alluded to the development of the 

preservice teachers’ knowledge and practice in explicit detail. From the first of these 

three papers (Davis, 2015), we have an example of preservice teachers working with 

a textbook which has integrated CAS-use. The study relays how, in hypothetical 

teaching plans based on the textbooks, the preservice teachers realise the lever 

potential of CAS to develop and make explicit elements of the technology and theory 

by adding more theoretical questions. In the second paper (Gorev & Gurevich-

Leibman, 2015), we have an example of teacher education which integrates digital 

tools intensively across all courses. Based on the preservice teachers’ reflections, the 

study describes how the preservice teachers realise the lever potential of CAS on 

several levels. At the level of pedagogy, the preservice teachers recognise the lever 

potential of CAS for teaching experimental-based mathematics. At the level of sector 
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and theme, the preservice teachers voice the potential of CAS to include activities that 

have a more general focus by using CAS to work with functions and equations 

containing parameters. The last article (Niess, 2005) presents reflections of a 

preservice teacher based on her experiences teaching mathematics with digital tools. 

As part of her reflections she points to the lever potential of CAS for multiple 

representations and recommends making more general studies as work with 

parameters using CAS becomes more efficient.  

The three articles show that teacher education is far from redundant in supporting 

preservice teachers’ development of didactical theory for implementing CAS in 

school algebra. However, the didactical theory developed by the preservice teachers 

described in the first two papers has yet to be tried out in the real classroom, and 

therefore rests on uncertain grounds. The third paper, where the preservice teacher’s 

reflections are based on experiences in the classroom, the developed didactical theory 

has more credibility. However, the didactical theory formulated by the preservice 

teacher is very general and meagre. The three papers leave a need for systematic and 

detailed studies of what didactical practice and knowledge it is possible to develop in 

the context of teacher education and what conditions support the development and 

formulation of sustainable didactical practice and knowledge. In the last paper of the 

present thesis, Paper III, we therefore examine a course for preservice teachers on the 

implementation of CAS inspired by lesson study and the protocol for planning-

teaching-reflections. We study based on planning-teaching-reflections-replanning 

what didactical practice and knowledge preservice teachers can develop and formulate 

about CAS-based teaching of school algebra. Secondly, we explore how tools from 

the ATD can be utilized to systematically describe and analyse CAS use in the 

classroom and the development of didactical knowledge and practice related to the 

implementation of CAS in school algebra.  

• What didactical praxeologies can be developed by preservice teachers when 

teaching elementary algebra using CAS? 

• What potential does the implementation of lesson-study-like practice hold for 

preservice teacher education related to the successful development of 

instrumental orchestrations? 
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To examine the research questions, we consider a lesson-study-inspired course which 

is part of the teacher education of the Faroe Islands. Two groups of preservice teachers 

are followed in their last cycle of planning - research lesson - reflection meeting -

rewriting the lesson plan. To identify and describe in explicit detail the variety of 

didactical practice and knowledge developed by the preservice teachers, the notion of 

didactical moments and praxeology from the ATD is combined with instrumental 

genesis and orchestration.   
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PRESENTATION OF PAPERS  

Paper I: What algebraic knowledge may not be learned with CAS -a 

praxeological analysis of Faroese exam exercises 

This paper investigates the possible consequences of a naive 

implementation of CAS into the current approach to teaching 

school algebra. We study the epistemic value of the present 

paper-and-pencil practice and how this is influenced by 

consistent CAS use. The paper has been published in Educação 

Matemática Pesquisa: Revista do Programa de Estudos Pós-Graduados em Educação 

Matemática in 2019. 

To examine the present school algebra and the influence of CAS, the last ten years of 

final written exams were used as data. All problems requiring any form of algebraic 

work were included. All algebra and algebra-related problems were solved with paper 

and pencil, and the step-by-step procedure for solving each problem was written 

down.   

For the analysis, the notion of types of task and elementary techniques were employed. 

The problems were categorised into 11 different types of task, such as solving a first-

degree equation or evaluating an algebraic expression given the value of the unknown. 

The two most dominant types of task, solving first-degree equations and reducing 

algebraic expressions, were further split into sub-types of task. For the analysis of the 

epistemic value of the techniques, techniques were identified on an elementary level, 

such as rewriting the expression −4𝑎 + 2𝑏 + 4𝑎 into 2𝑏. To clarify the epistemic 

value of the elementary techniques, they were described based on their scholarly 

“origin”, such as the additive inverse field axiom, i.e. 𝑎 + (−𝑎) = 0. In addition, 

some of the composite series of elementary techniques were presented to illustrate 

another aspect of algebraic work, the ability to select and combine elementary 

techniques to reduce or expand an algebraic expression.  

Following, the same set of problems were solved using CAS consistently. For each 

problem, the CAS-related techniques (from now on called the “instrumented 

techniques”) employed were identified.  
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To compare and differentiate between paper-and-pencil and CAS-based work, the 

distributions of the elementary techniques and the instrumented techniques are 

presented. In addition, the total number of both elementary and instrumented 

techniques were counted, as well as the number of techniques employed for each type 

of task. The analysis ends with relating the elementary techniques to their 

instrumented counterpart, concluding that the elementary techniques, such as the 

additive inverse axiom, definition of powers, and the distributive axiom from left to 

right can all be represented by the same instrumented technique of evaluating an 

algebraic expression. In addition, compositions of elementary techniques are replaced 

by one instrumented technique, diminishing the algebraic work of having to select and 

combine elementary techniques. Further, it is noted that one instrumented technique 

can solve several different types of task, effectively re-categorizing types of task to 

include a wider range of problems. However, one type of task could be said to be 

neutral to the use of CAS: problems which require modelling a non-abstract problem 

utilising the elementary properties of school algebra.  

Paper II: Designing activities for CAS-based student work realising the lever 

potential 

This paper investigates two aspects of the lever potential of 

CAS. The possibility to develop and explicitly formulate 

mathematical theory, and the relation between techniques and 

technology with theory. In addition, the paper examines the 

notion of praxeology from the ATD as a design tool for CAS-

based activities that realise the lever potential of CAS. The paper has been submitted 

for publication to the International Journal of Mathematics Education in Science and 

Technology. 

The paper presents two activities designed based on the notion of praxeology. Both 

CAS-based activities are concerned about one of the pillars of school algebra: 

equations.  

The first activity is designed to develop and formulate the students’ notion of 

equations. As part of the activity the students have to explicitly describe what an 

equation is, alongside solving types of equations that are not traditionally part of lower 

secondary school. The CAS is used to solve types of equations uncharacteristic for 
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lower secondary school, such as the second-degree equation (𝑥 − 1)(𝑥 − 2) or 

equations with no solution.  

The second activity is designed to develop, formulate, and relate the techniques and 

technology for manipulating equations with the theory that the solution stays the same. 

For the main activity, the students are given equations that have solution 2, the 

students then have to advance and further complicate the equations, but the solution 

must remain 2. The CAS is used to experiment and develop the equations as well as 

check the solution of the equations produced. 

The design of the two lessons is tested in three grade eight classes (13-14-year olds), 

with the classes’ regular teachers. Two of the classes are used to using GeoGebra, 

while the third class have not used GeoGebra or digital tools prior to the lessons. 

Preceding the lessons, the design of activities has been presented to the teachers in the 

form of two lesson plans. To collect data, Dictaphones recorded the students’ 

discussions and the general structure of the lesson. To make the students’ work 

utilising CAS obtainable for study, the students’ recorded their CAS-work with 

screencast. In addition, all of the students’ written work was collected at the end of 

each lesson. 

To identify the students’ development of knowledge and practice, the notion of 

praxeology in particular types of task, techniques, technology, and theory was utilised.  

The analysis of the data from both activities shows prosperous discussions among the 

pupils, where elements of theory are developed, formulated, and clarified. From the 

first activity, for example, the students discuss questions like the following. How do 

you substitute the unknown in an equation when the equation has two solutions? Does 

an equation require an unknown or an equal sign? Can a solution be a parenthesis? 

The second activity generates discussions with questions such as the following. What 

are the strategies for making equations with solution 2? How do you compensate when 

a (simple) equation has solution 4 and you want the solution to be 2? In addition, the 

students explored developing and explicitly formulating techniques and technology 

for manipulating an equation but keeping the solution, such as adding or subtracting 

the same number on both sides, dividing part of the equation with an expression that 

equals zero, and so forth.  



68 
 

The paper concluded that the use of CAS allowed the students to work with examples 

of equations that are not traditionally part of school algebra, which prompted the 

development of the students’ concept (and description) of equations. In the second 

activity, the use of CAS allowed the students to experiment and quickly obtain 

solutions for the equations, establishing and developing the relation between 

manipulating equations and having the solution to the equation stay the same. In 

addition, the activities led to further questioning of the theory and technology than 

what the a priori analysis had foreseen. Furthermore, the paper concludes that the use 

of the notion of praxeology proved pivotal in the design of the CAS-based activities, 

as it allowed for the identification of potentials for the implementation of CAS to 

support and enhance the development of knowledge and practice concerned with 

equations.   

Paper III: A study of a preservice teacher course on the use of CAS in school 

algebra 

The paper studies what knowledge and practice about 

implementing CAS in school algebra is developed by 

preservice teachers and how elements of the course, such 

as sharing observation of classroom practice, support this 

development. Furthermore, it explores how the notions of 

didactical moments and praxeology from the ATD in addition to instrumental genesis 

and orchestration can be utilised to explicit, identify, and analyse instrumented 

didactical organisation and knowledge. The paper has been accepted with revision in 

the journal Recherches en Didactique des Mathématiques. 

The paper examines a course for preservice teachers with the objective of studying 

the implementation of CAS in school algebra. The course is inspired by the Japanese 

lesson study and consists of bi-weekly research lessons implementing CAS in the 

teaching of school algebra for grade seven and eight. As data for the study, all 

reflection meetings are recorded, the lesson plans before and after the research lesson 

are collected, and field notes during research lessons and reflection meetings are 

made. In addition, the last research lessons, of each group of preservice teachers, are 

recorded with a Dictaphone.  
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In the paper, the evolution of two groups of preservice teachers is presented, based on 

one research lesson each.  

The first group of preservice teachers have designed a set of problems for the pupils 

to work on with CAS which rests upon their own CAS-based endeavours. The main 

pedagogical approach is to capitalise upon the implicit assumptions of the traditional 

approach to school algebra and the contradictory examples of equations possible with 

CAS. The lesson consists of first having the pupils work on traditional school algebra 

problems where the pupils solve simple equations with paper and pencil. The second 

activity consists of the students solving equations with CAS. In the series of equations, 

one of the equations has a fraction as the solution and another “equation” has no equal 

sign. This spurs some discussion among the pupils.  

The second group of preservice teachers have adopted an activity that capitalises upon 

the possible multiple representation of CAS and the possibility of approaching 

experimental mathematics. The objective of the lesson is for the students to discover 

the distributive axiom by realising the equivalence between algebraic expressions of 

the types 𝑛(𝑥 + 𝑚) and a𝑥	 + 	𝑏 based on their graphical representation. In the lesson, 

the pupils are handed a picture-booklet as a guide for the technical demonstration. The 

pupils set up, with great difficulties, two sliders 𝑎 and 𝑏 in GeoGebra and draw the 

generic line 𝑦	 = 	𝑎𝑥 + 𝑏. Then the pupils generate and study a series of examples of 

lines 𝑦	 = 	𝑛(𝑥 + 𝑚), where 𝑛 and 𝑚 are given. After this, the pupils slide the generic 

line on top of the generated lines and look for a pattern that relates 𝑎 and 𝑏 with 𝑛 and 

𝑚. Last, the pupils try to explain their findings. As much more time than anticipated 

was used for the set-up of sliders, the preservice teachers cut the end of the lesson 

short and the planned presentations by the pupils are conducted by the preservice 

teacher.    

The analysis shows that elements of the course structure, such as sharing detailed 

observations of the pupils’ practice and knowledge, in addition to having to improve 

the lesson design, were pivotal in the preservice teachers’ development of practice 

and knowledge related to the implementation of CAS. In the two cases presented, the 

shared observations of the pupils’ activities either worked as a catalyst for reflections 

about didactical organisation and thus formation of didactical knowledge or 

contributed to the refining of didactical theory.  
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Based on the structure of planning-teaching-reflecting-replanning, the preservice 

teachers realised the lever potential of CAS to conduct experimental mathematics, to 

shift between multiple representations, and to direct “higher” levels of study, such as 

developing the concept of equations. In addition, the preservice teachers learned that 

the pupils were able to autonomously develop instrumented techniques if the 

instrumented techniques required mathematical knowledge, such as extra parentheses 

or multiplication symbols. But if the instrumented techniques required general 

knowledge about the programme or commands, such as syntax, the pupils failed at 

employing the instrument technique.  
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CONCLUSION AND REFLECTIONS 

In this section we summarize some main conclusions from our work and provide a 

few final reflections to identify possible future research goals. 

Based on Paper I, the implementation of CAS in the traditional approach to school 

algebra, which primarily includes problems of solving equations and manipulating 

algebraic expressions, amounts to replacing a large number of pen-and-paper 

techniques with a small number of instrumented techniques, which, in the setting of 

the traditional tasks, has very limited epistemic value. Most elementary and 

fundamental principles of school algebra, such as the distributive axiom, would no 

longer be required to solve the tasks, and as long as solving tasks of these types 

remains a main criterion for success in school mathematics, it is therefore very likely 

that students would not learn about those principles, even at the basic practical level. 

The problem with integrating CAS into the traditional approach to school algebra is 

that “on paper”, such as in curricula, one could avoid changing the official learning 

objectives, like solving first degree equations, reducing algebraic expressions, and so 

forth. The problems posed and the solutions found could still remain the same. 

However, it is the techniques utilised to solve such tasks, along with the associated 

technology and theory that are the pillars of school algebra and all of its subsequent 

functions in upper secondary and tertiary level mathematics. However, it is typically 

only the types of task (not the techniques) which appear explicitly in the curricula for 

secondary school, in some cases even in rather vague terms. We believe that a shift in 

the view of school algebra, from yet another domain of mathematics to teach, to 

specific methods and types of works that explicitly value what theoretical and 

practical knowledge school algebra encompasses, will be needed to meet the 

challenges for implementing CAS in school algebra. Here, one should not 

underestimate the institutional interests that may be served by dissimulating a drastic 

reduction in students’ learning through unchanged curricula accompanied by massive 

CAS use. 

On the positive side, the review of research literature suggests that the lever potential 

associated with CAS is vast and many-sided. Structuring and relating the studies based 

on the levels of didactical co-determination allow us to identify further possibilities 

for CAS to develop and explicitly formulate students’ practice and knowledge of 
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school algebra. A relatively ambitious attempt in this direction is proposed in Paper 

II, where CAS-based activities are used to help students develop and formulate theory 

about equations and to relate techniques and discourse for solving equations to the 

theory; an example of this would be working with equivalent equations.  

In order to disseminate ideas from the studies exploring the potential of CAS, for 

instance, to teachers, this literature needs to be synthesised in a structured manner. In 

particular, this could contribute to advances related to new design tools for crafting 

CAS-based activities that enhance students’ algebraic work in specific and controlled 

ways.  

The examination in Paper II of the notion of praxeology as a design tool is a 

contribution in that direction. The notion of praxeology explicitly describes and helps 

to identify elements -and relations between elements- of the students’ activity and 

knowledge, which can be capitalised upon to craft CAS-based activities that realise 

some of the potentials identified in the literature.     

Structured and detailed reviews of the literature are also needed to better comprehend 

different aspects of the implementation of CAS and establish conclusive knowledge 

on the results of CAS-based activities.    

Paper III addresses the area where the need for such reviews is imminent: what is 

indispensable knowledge for future teachers’ use of CAS, given that they can typically 

not draw on personal experiences from their own school time (a source of teaching 

which is questionable in general, but may be simply impossible here). How can 

teacher education support the “successful” and sustainable implementation of CAS?  

Teacher education has its own set of challenges, such as the gap between what is 

taught in the courses at university and the professional life of a teacher. When CAS-

based teaching is added to the curriculum of teacher education, then an additional 

challenge is added: identifying established knowledge about implementing CAS, but 

also acting in a situation where such knowledge may still be scarce and continuously 

in need of update, if not for other reasons, then because of the continuous development 

of CAS tools and computer technology. In fact, research to date offers close to nothing 

about how to support preservice teachers in developing practice and knowledge about 

implementing CAS. This calls for studies that document innovative ways to frame 

future teachers’ work with CAS through both personal and classroom-based 
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experience and through being introduced to tools that can help teachers in their first 

experiences: preparing and orchestrating students’ CAS use, observing it, and turning 

observations into didactical theory.   

Paper III starts from the assumption that teacher education is a key to improving future 

implementation of CAS in teaching and learning of school algebra. It proposes to 

employ, in this context, the structure of lesson study (planning and the formulation of 

a lesson plan, research lesson, detailed observations of pupils’ practice and 

knowledge, and the protocol for the reflection meeting) to organize the preservice 

teachers’ first experience with CAS. The preservice teachers in the study realised, 

based on a number of lesson-study cycles, several aspects of the lever potential of 

CAS. In addition, the notions of praxeology and didactical moments from the ATD, 

along with the notions of instrumental genesis and orchestration, were used as tools 

to identify and describe in explicit detail the didactical practice and knowledge 

developed in the lesson-study activity.  

“The devil is in the details” could in retrospect have been the title of this thesis. It is 

intuitively evident to many teachers that when CAS is used in the traditional approach 

to school algebra, “something” essential is lost. But what exactly is this “something” 

and how can it be recovered? Could CAS help students to learn more and better 

algebra, rather than just less algebra? We are convinced that with the right activities, 

CAS can lever the students’ learning of school algebra. We also accept that 

implementing CAS in the classroom comes with its own set of challenges and consider 

that teacher education is an important key to meeting them, at least in the long term. 

However, we do not yet know enough about how to configure or activate this “key.”  

To further comprehend the different aspects of the implementation of CAS in school 

algebra, we are convinced, based on our own studies, that an attentive care about 

details is pivotal in gaining useable knowledge and developing well-established 

results. Based on our own work so far, and on that of other researchers employing 

tools from the ATD, we are convinced that its methods and ideas, such as praxeology, 

didactical moments, and levels of didactical co-determination, really do enable us to 

provide that needed care.  
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What algebraic knowledge may not be learned with CAS -a 
praxeological analysis of Faroese exam exercises 

_____________________________________ 

LOUISE M CARLSEN1 
 
Abstract.  We are interested in the potentials and pitfalls of introducing computer algebra systems in lower 
secondary school, investigating the case of the Faroese Islands. In order to identify what algebraic knowledge is 
tested in the final written exam in mathematics after the ninth grade, and how this would change if computer algebra 
systems were allowed at that exam, we analyse all exam exercises from the past 10 years in terms of the techniques 
required to solve the exercises both with and without symbolic tools. The comparison suggests that fundamental 
algebraic structures may not be learned if students consistently use computer algebra systems for the tasks given in 
the exam. 
 
Résumé. Nous sommes intéressés par les potentiels et les risques liés à l'introduction de logiciels symboliques au 
niveau du collège, dans le cas de l'école publique des îles Féroé. Afin d'identifier quelles sont les connaissances 
algébriques testées à l'examen écrit en mathématiques à la fin de la neuvième année, et comment cela pourrait 
changer si les logiciels symboliques étaient autorisés à cet examen, nous avons analysé tous les exercices de l'examen 
des 10 dernières années en termes de techniques nécessaires pour résoudre les exercices avec et sans logiciels 
V\PbRliTXe. La cRPSaUaiVRQ VXggqUe TXe ceUWaiQeV VWUXcWXUeV VSpcifiTXeV eW fRQdaPeQWaleV de l¶algqbUe Qe VeUaieQW 
peut-être pas apprises si les étudiants utilisent de façon consistante des logiciels symboliques pour les tâches 
rencontrées à l'examen. 
 
Introduction 
The students of lower secondary school (grade 7 - 9) are introduced to the formalism of algebra 
by syntactically-guided manipulation, such as factorization, or simplification of simple algebraic 
expressions, or solving a first order equation (Kaput & Blanton, 2001; Måsøval, 2011). These 
techniques play a crucial role in the students learning of mathematics; through these techniques, 
the students learn the fundament of algebraic structures, work with and manipulations of these. 
The techniques are later used to further study mathematics including formalistic algebra and 
algebra as a tool for generalization, modelling and problem solving. How will the 
implementation of CAS in lower secondary school influence these fundamental techniques?  

To study the potential influence of CAS on traditional algebra exercises we have chosen 
examine how the use of CAS applies to standard exam exercises. In the literature, two studies 
consider this problem: Flynn and McCrae (2001); Kokol-Voljc (1999). The studies conclude 
that for traditional exercises mathematics is devaluated to some extent. However, the studies do 
not give an explicit and exact answer to what mathematical knowledge is no longer present. 
Such answers are sought, in the present studies, through praxeological analysis. 

                                                      
1 Department of Science Education, University of Copenhagen, Denmark, Department of Education - 
University of the Faroe Islands, the Faroe Islands ± LouiseC@setur.fo 
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1. Notes on praxeology 

We assume that the reader is familiar with the concept of praxeologies, a model suggested by 
the Anthropological Theory of the Didactic to study human activity (Bosch & Gascón, 2014; 
Chevallard, 1999).  

We will adopt the notation T IRU W\SHV RI WDVNV DQG Ĳ IRU WHFKQLTXHV. FXUWKHUPRUH ZH ZLOO 
distinguish between techniques in a paper-and-pencil environment and in a CAS environment 
and will refer to them as non-instrumented techniques and instrumented techniques respectively 
(Trouche, 2005). 

Techniques cKDQJH RYHU WLPH DV VWXGHQWV¶ DFWLYLWLHV become more routinized. When 
introduced to the formalism of manipulation of an equation, the technique of solving 3𝑥 − 1 =
2 would be to first add 1 on both sides of the equation: 3𝑥 − 1 = 2 → 3𝑥 − 1 + 1 = 2 + 1. 
Later on, when students are acquainted with solving this type of tasks, the technique of adding 
the same constant to both sides of the equation will change into a technology. Instead the 
technique regrouping the constants on one side will emerge: 3𝑥 − 1 = 2 → 3𝑥 = 2 +1 and 
even later on directly merging the constants on one side: 3𝑥 − 1 = 2 → 3𝑥 = 3. 

For our praxeological model we will consider the techniques on elementary level such as 
adding a constant to both sides of the equation.  We will define these as techniques that are 
described by and based on definitions and axioms. For example, a technique could be to apply 
the distributive field axiom rewriting the expression 3𝑥2 + 21 into 3ሺ𝑥2 + 7ሻ.  

We can now, with the notions of praxeology formulate our research goals and questions: 
x What are the algebraic non-instrumented techniques of lower secondary school? 
x What will happen to the algebraic non-instrumented techniques in a CAS 

environment? 
x How are the algebraic non-instrumented techniques related to the instrumented 

techniques? 

2. Context and rational 

Our data material is the set of exercises from the last ten years of the final written exam of lower 
secondary school on the Faroe Islands. We see the exam exercises as a representation of the 
minimal requirements of lower secondary school students. 

From the set of exams we consider only a subset of exercises. We study the exercises in 
which variables or unknowns are used, either in manipulation of algebraic expressions, solving 
of equations or inequalities, in modelling or problem based exercises. This means that several 
exercises pose a geometric problem but are solved with algebraic techniques. 

First all selected exercises were solved by the author using paper-and-pencil, and all 
solutions have been documented. The solutions for the exercises were made with techniques 
supposedly known by students of lower secondary school, and thus the technique chosen can be 
considered as a minimum level of actions required to solve the exercises. In the cases where 
several different solutions were possible, a ninth grade teacher was consulted or the solution 
requiring the least number of techniques chosen, and if still undecided a minimum set of 
techniques were chosen. 

Following, the same set of exercises were solved using GeoGebra and the input, the 
command and the output documented. GeoGebra was chosen as the CAS, since it is the most 
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frequently used CAS program on the Faroe Islands, based on a questionnaire 2015 
(unpublished). A few of the exercises were more easily solved using the geometric environment 
of GeoGebra. They are therefore not a part of the exercises forming the basis for the 
development of our praxeological model involving the instrumented techniques. 

3. Praxeological reference model 

The praxeological model we developed is not only a tool for our study, but also one of the main 
results for our study in order to answer our research questions. Our praxeological model 
includes both types of tasks and instrumented and non-instrumented techniques. 

3.1. Types of tasks 

The first part of the practice block of a praxeology, and what is observable to us, is the types of 
tasks. The type of tasks is constituted by the form of the tasks. 

Though the students of lower secondary school are supposed to operate in the field of real 
numbers, in our set of selected exercises only the field of the rational numbers was in play. 

The types of tasks and following the elementary techniques identified are not exhaustive for 
9¶TH JUDGH, EXW ZKat are present in the last ten years of written exams. 

 
Example: A simple example of Tsolve.eqn, is exercise 18 from 2014: 𝑥 + 3 = 24, a more advanced 
example of such type of tasks is exercise 6a) from 2013: Solve the equation: 6𝑥 − 30 = 3ሺ𝑥 −
4ሻ. 

 
Example: A standard example of Tsolve.stm is exercise 6d) from 2013: Solve the system of 
equations: 𝑦 = −3𝑥 − 4 𝑎𝑛𝑑 𝑦 = 2𝑥 + 6. 

 
Example: An example of Tsolve.scnd is exercise 7b) from 2012: Solve the equation: 4𝑥2 − 28𝑥 =
0. 

 
Example: An example of Teval.ineql is exercise 45 from 2010: Which of the numbers 2,3,4,5 and 6 
are solutions of the inequality: 3𝑥 − 2 ൑ 10. 

 
Example: An example of Tsolve.ineql is exercise 6c) from 2011: Solve the inequality 8 + 3𝑥 ൐
2ሺ𝑥 − 2ሻ. 

 
Example: An example of Teval.expr is exercise 26 from 2011: 𝑎 = −2 and 𝑏 = 4, 3𝑎 + 3𝑏 =
_______. 

 

Let Tsolve.eqn denote the type of tasks of solving a first order equation. 

Let Tsolve.stm denote the type of tasks of solving a system of two linear first order equations.  

Let Tsolve.scnd denote the type of tasks of solving a second-degree equation of the form 𝑎𝑥2 + 𝑏𝑥 +
𝑐 = 𝑑, where 𝑎, 𝑏, 𝑐 and 𝑑 are in ℕ. 

Let Teval.ineql denote the type of tasks of, given a finite set of given values, evaluating an inequality of 
the form 𝑎𝑥 + 𝑏 ൑ 𝑐 where 𝑎, 𝑏 and 𝑐 are in ℕ. 

Let Tsolve.ineql denote the type of tasks of solving an inequality with one variable and constant and 
coefficients in ℕ. 

Let Teval.expr denote the type of tasks of evaluating an algebraic expression for given values of the 
variables. 

Let Treduce.expr denote the type of tasks of reducing an algebraic expression. 
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An advanced type of tasks Treduce.expr is exercise 5a) from 2011: Reduce the expression: ሺ𝑎 +
 3𝑏ሻ2  – ሺ𝑎 − 2𝑏ሻ2. A simpler example of such is exercise 23 from 2010: 5𝑎 − 2𝑏 − 4𝑎 + 3𝑏 =
_____________. 

 
Example: An example of Tfactor.expr is exercise 6c) from 2008: Put as much as possible outside of 
brackets: 28𝑥2 − 14𝑥 + 21𝑥2. 

 

 
Example: Exercise 4d) from 2013: Are the triangles ABC and DEF similar? 

 
Example: Exercise is 17 from 2014: Mark which of the following expressions have the greatest 
value for 𝑝 = 3: 𝑝 ∙ 4, 𝑝2 + 5, 5𝑝 − 4. 

3.2. Treduce.expr and Tsolve.eqn 

The two most frequent occurring types of tasks are Tsolve.eqn and Treduce.expr. We therefore further 
divide these types of tasks into more fine grained types of tasks. We define the following four 
types of tasks based on Tsolve.eqn, due to notational reasons we have introduced the 
notation T1.1, T1.2, T1.3 and T1.4: 

 
Type of 
tasks 

Description 

T1.1 Solve first order equation of the form 𝑥 + 𝑎 = 𝑏, where 𝑎 and 𝑏 are non-zero numbers in ℕ. 
T1.2 Solve first order equation of the form 𝑐𝑥 +  𝑎 =  𝑏, where 𝑎, 𝑏 and 𝑐 are non-zero numbers 

in ℕ. 
T1.3 Solve first order equation of the form 𝑑ሺ𝑐𝑥 +  𝑎ሻ  =  𝑏, where 𝑎, 𝑏, 𝑐 and 𝑑 are non-zero 

numbers in ℕ, or 𝑑 of the form 1
𝑒
 where 𝑒 is a non-zero number in ℤ. 

T1.4 Solve first order equation of different form with constants in ℚ. 

Table 1. Types of tasks within Tsolve.eqn 

Example: An example of a task of type T1.4 is exercise 5b) from 2011: Solve the equation 𝑥
2

+

3𝑥 = 7.     
For the type of tasks Treduce.expr we get the following five types of tasks, for notational reasons 

we have introduced the notation T7.1, T7.1, T7.3,..., T7.6: 
Type of 
tasks 

Description 

T7.1 Reduce an algebraic expression of the form 𝑎𝑥 +  𝑏𝑦  +  𝑐 +  𝑑𝑥 +  𝑒𝑦 +  𝑓, where 
𝑎, 𝑏, 𝑐, 𝑑, 𝑒 and 𝑓 are numbers in ℕ. 

T7.2 Reduce an algebraic expression of the form 𝑎ሺ𝑏𝑥 +  𝑐𝑦ሻ  + 𝑑𝑦, where 𝑎, 𝑏, 𝑐 and 𝑑 are 
numbers in ℕ. 

T7.3 Reduce an algebraic expression of the form 𝑎𝑥 + 𝑦 + 𝑏ሺ𝑐𝑦 + 𝑠ሻ + 𝑑ሺ𝑒𝑦 + 𝑡 ሻ, where 
𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are numbers in ℕ and 𝑠 and 𝑡 are numbers in ℚ. 

T7.4 Reduce an algebraic expression containing a squared variable with constants in ℕ. 
T7.5 Reduce an algebraic expression of the form 𝑥𝑛𝑥𝑚𝑥𝑙𝑦𝑠𝑦𝑡, where 𝑛, 𝑚, 𝑙 and 𝑡 are numbers in 

ℕ and 𝑛 and 𝑚 are different from zero. 

Let Tfactor.expr denote the type of tasks of factoring an algebraic expression. 

Let Ttext denote the type of tasks that begins with a text description of a real world situation. The 
students are then asked a question in which they should define a variable and relations to information 
given in the text. 

Let Tgeom denote the type of tasks containing geometric problem. 

Let Tother denote all other of the selected exercises, which do not fall into other types of tasks. 
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T7.6 Reduce an algebraic expression of other form. 

Table 2. Type of tasks within Treduce.expr 

Example: An example of an exercise of the type T7.6 is exercise 6a) from 2008: Reduce the 
expression ସାଷ௔

ଷ௔
െ ଶ௔ା௔మ

ଷ௔
൅ ௔

ଷ
. 

3.3. Non-instrumented techniques 

To reduce the expression 3𝑎 ൅ 4𝑏 ൅ 𝑎 െ 2𝑏 we group terms by applying the additive 
commutative axiom and the distributive axiom from right to left: 

3𝑎 ൅ 4𝑏 ൅ 𝑎 െ 2𝑏 →   ሺ3 ൅ 1ሻ𝑎 ൅ ሺ4 െ 2ሻ𝑏 →  2𝑎 ൅ 2𝑏. 
We are only interested in the techniques including letters, thus we do not consider the arithmetic 
techniques such as rewriting 4 െ 2 into 2 using the ring axioms to rewrite ሺሺሺ1 ൅ 1ሻ ൅ 1ሻ ൅
1ሻ െ ሺ1 ൅ 1ሻ into ሺ1 ൅ 1ሻ. 

3.4. Non-instrumented techniques based on the field axioms 

A field is a fundamental algebraic structure consisting of a set of elements, including a neutral 
and zero-element, together with two compatible operations satisfying the field axioms. In our 
study we will be referencing the following axioms: 

x The distributive axiom: 𝑎ሺ𝑏 ൅ 𝑐ሻ ൌ  𝑎𝑏 ൅ 𝑎𝑐,  
x The additive inverse axiom: 𝑎 ൅ ሺെ𝑎ሻ ൌ 0,  
x The multiplicative inverse axiom: 𝑎𝑎ିଵ ൌ 1, whenever a � 0, 

for all 𝑎, 𝑏 and 𝑐 in the field. The students of lower secondary school operate on the field of real 
polynomials in two variables  ℝሾݔ,  .ሿݕ

For the distributive axiom we will not distinguish between the right and the left distributive 
axiom, 𝑎ሺ𝑏 ൅ 𝑐ሻ ൌ  𝑎𝑏 ൅ 𝑎𝑐 and ሺ𝑏 ൅ 𝑐ሻ𝑎 ൌ  𝑏𝑎 ൅ 𝑐𝑎 respectively. Nevertheless we will 
distinguish between applying the axiom from the left to the right or from the right to the left, 
𝑎ሺ𝑏 ൅ 𝑐ሻ  →  𝑎𝑏 ൅ 𝑎𝑐 and  𝑎𝑏 ൅ 𝑎𝑐 → 𝑎ሺ𝑏 ൅ 𝑐ሻ respectively. 

 
Example: The technique, Wright.left, is used such as in exercise 30 from 2013: Reduce the 
expression: 3𝑎 െ 2𝑏 െ 6𝑎 ൅ 5𝑏. As part of the solution the students will have to apply Wright.left in 
order to arrive at ሺ3 െ 6ሻ𝑎 ൅ ሺെ2 ൅ 5ሻ𝑏.  Wright.left is also used such as in exercise 6c) from 2013: 
put outside of brackets: 6ݔଶ ൅ 21. Here the students will have to apply the technique Wright.left to 
arrive at 3ሺ2ݔଶ ൅ 7ሻ. 

 
Example: The technique, Wleft.right, is used in exercises such as exercise 31 from 2013: Reduce the 
expression: 2ሺെ2𝑎 ൅  𝑏ሻ ൅  7𝑎. Here the technique Wleft.right is applied in order to arrive at the 
expression 2ሺെ2ሻ𝑎 ൅ 2𝑏 ൅ 7𝑎. In other types of task the technique, Wleft.right, is used nine times 
such as in 5a) from 2011: Reduce the expression: ሺ𝑎 ൅ 3𝑏ሻଶ െ ሺ𝑎 െ 2𝑏ሻଶ to arrive at the 
expression 𝑎ଶ ൅ 3𝑎𝑏 ൅ 3𝑎𝑏 ൅ 9𝑏ଶ െ 𝑎ଶ ൅ 2𝑎𝑏 ൅ 2𝑎𝑏 െ 4𝑏ଶ. 

Let Wright.left denote the technique of applying the distributive field axiom 
from the right to the left. That is, an expression of the form 𝑎𝑏 ൅ 𝑎𝑐 is 
rewritten into the form 𝑎ሺ𝑏 ൅ 𝑐ሻ. 

Let Wleft.right denote the technique of applying the distributive axiom from 
left to the right. That is, an expression of the form 𝑎ሺ𝑏 ൅ 𝑐ሻ is rewritten 
into the form 𝑎𝑏 ൅ 𝑎𝑐. 
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Example: This technique is used to solve an exercise such as exercise 24 from 2010: 2ሺെ2𝑎 ൅
𝑏ሻ ൅ 4𝑎. The technique computes the following step: െ4𝑎 ൅ 2𝑏 ൅ 4𝑎 →  2𝑏. Thus, Wadd.inv 
substitutes the technique Wright.left in cases where the coefficients are additive inverses of each 
other. 

3.5. Non-instrumented techniques based on the axiom of substitution 

To substitute a variable by a number in any relation is often referred to by the substitution 
property in introductory courses at universities. Further, the following was found at a scholarly 
discussion forum (theage, 2015): 

If ߶ሺݔሻ is a statement and if ߶ሺ𝑎ሻ is true and 𝑎 ൌ 𝑏 is true, then ߶ሺ𝑏ሻ is true. An example of this 
axiom is if we have the statement ߶ሺݔሻ:  𝑖𝑠 𝑟𝑒𝑑 and if for an object 𝑎 the statement 𝑎 is red is ݔ
true and another object 𝑏 is identical to 𝑎 then we can conclude that the object 𝑏 is red. 

By applying the axiom of substitution and introducing functions, we get that if ߶ሺݔሻ is the 
statement and 𝑓ሺݔሻ ൌ 𝑓ሺ𝑎ሻ then ߶ሺ𝑎ሻ is true. Since 𝑎 ൌ 𝑏 it follows from the axiom of 
substitution that  ߶ሺ𝑏ሻ is true and thus 𝑓ሺ𝑎ሻ ൌ 𝑓ሺ𝑏ሻ. 

Thus, the non-instrumented techniques of this section can be deduced from the axiom of 
substitution: 

 
Example: The technique, Wadd, is applied in exercises, where the object of the exercise is to find a 
solution for a first order equation or inequality, such as in exercise 18 from 2014: ݔ ൅ 3 ൌ 24. 
The technique Wadd is applied in the following computation ݔ ൅ 3 െ 3 ൌ 24 െ 3. 

 
Example: The technique, Wmulti.eqn , computes the following step 5ݔ ൌ 30 → ݔ5  ∙ ଵ

ହ
 ൌ  30 ∙ ଵ

ହ
 in 

exercise 29 from 2006: 5ݔ ൌ 30. 

 
Example: The technique, Wsub.num, is applied in exercises such as 35 from 2007: 𝑎 ൌ െ2, 𝑏 ൌ 4, 
െ5𝑎 െ 2𝑏 ൌ _______  and computes the following step െ5𝑎 െ 2𝑏 →  ሺെ5ሻሺെ2ሻ െ 2 ∙ 4. 

 
Example: The technique, Wsub.expr, is applied in exercises of the type where students are asked to 
find the solution of a system of two linear equations such as exercise 6b) from 2008: Solve the 

Let Wadd.inv denote the technique of applying the additive inverse field 
axiom from left to right. That is, an expression of the form 𝑎 ൅ ሺെ𝑎ሻ is 
rewritten into 0. 

Let Wadd.eqn denote the technique of adding a real number or a variable on 
both sides of an equation. That is, an expression 𝑎 ൌ  𝑏 is rewritten into 
𝑎 ൅  𝑐 ൌ  𝑏 ൅  𝑐. 

Let Wmulti.eqn denote the technique of multiplying on both sides of a first 
order equation with a real number.  

Let Wsub.num denote the technique of substituting a variable with a number 
in a first order equation or inequality. That is, given an algebraic 
expression 𝑎ݔ ൅ 𝑏ݕ, where a and b are in R, and values s and t for x and 
y, respectably, then we have the rewriting into 𝑎𝑠 ൅ 𝑏𝑡. 

Let Wsub.expr denote the technique of substituting a variable with an 
algebraic expression. That is, given a system equations ݕ ൌ 𝑎ݔ ൅ 𝑏 and 
ൌ ݕ  𝑐ݔ ൅ 𝑑 then we have the computation 𝑎ݔ ൅ 𝑏 ൌ 𝑐ݔ ൅ 𝑑. 
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system of equations: 𝑦 ൌ 2𝑥 െ 1 and 𝑦 ൌ െ 2
3

𝑥 ൅ 7 and computes the following expression 

2𝑥 െ 1 ൌ  െ 2
3

𝑥 ൅ 7. 

 
Example: The technique, Wadd.ineq, to compute the following step 8 ൅ 3𝑥 ൐ 2ሺ2 െ 𝑥ሻ → 8 ൅
3𝑥 െ 8 ൐ 2ሺ2 െ 𝑥ሻ െ 8 in order to solve the exercise 6c) from 2013: Solve the inequality: 8 ൅
3𝑥 ൐ 2ሺ2 െ 𝑥ሻ. 
Note that the technique, Wadd.ineq, does not extend to include multiplying of variables. 

3.6. Non-instrumented techniques based on the definition of exponents 

Exponentiation of a natural number 𝑏 to the 𝑛¶WK SRZHU LV GHILQHG by 𝑏௡ ൌ 𝑏 ∙ 𝑏 ⋯ 𝑏 (𝑛 times 
multiplication of 𝑏 by itself). The following technique is justified based on this definition. 

 
Example: The technique, Wpower, computes the following step 𝑎2 ∙ 𝑎3 ൌ 𝑎2∙3 in exercise 36 from 
2014: 𝑎2 ∙ 𝑎3 ∙ 𝑎ି1 ൌ _________.  Wpower is also applied when doing the rewriting of 𝑏 ∙ 𝑏 into 𝑏2 
such as in exercise 6 b) from 2005: Reduce the expression: 3ሺ𝑏 െ 1ሻ െ ሺ𝑏 ൅ 1ሻሺ𝑏 െ 2ሻ ൅  𝑏2. 

3.7. Example 

To exemplify the non-instrumented techniques defined earlier we consider again exercise 7a) 
from 2005: Solve the system of equations: 𝑦 ൌ 𝑥 ൅ 4 and 𝑦 ൌ  െ 1

2
𝑥 ൅ 1: 

    
𝑥 ൅ 4 = െ

1
2

𝑥 ൅ 1 (Wsub.expr) 

𝑥 ൅ 4 ൅
1
2

𝑥 = െ
1
2

𝑥 ൅ 1 ൅
1
2

𝑥  (Wadd) 

൬1 ൅
1
2

൰ 𝑥 ൅ 4 = 1  (Wright.left , Wadd.inv) 

3
2

𝑥 ൅ 4 = 1  

3
2

𝑥 ൅ 4 െ 4 = 1 െ 4 (Wadd) 

3
2

𝑥 
= െ3  

2
3

3
2

𝑥 = 2
3

ሺെ3ሻ (Wmulti) 

𝑥 = െ2  
𝑥 = െ2 ൅ 4 (Wsub.num) 
𝑥 = 2  

Table 3. Exercise 7a) from 2005 

Note that the techniques are disjoint and that they do not describe every elementary step in order 
to solve an exercise. Instead, they aim at describing every elementary step involving a letter. 

Let Wadd.ineq denote the technique of adding a real number or a variable on 
both sides of an inequality. That is, an expression of the form 𝑎 ൑  𝑏 is 
rewritten into 𝑎 ൅  𝑐 ൑  𝑏 ൅  𝑐. 

Let Wpower denote the technique of multiplying one variable raised to a 
power with another variable raised to a power, where both variables are 
denoted with the same letter. That is an expression of the form 𝑎௡𝑎௠ is 
rewritten into 𝑎௡ା௠. 
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3.8. Instrumented techniques 

We categorize the instrumented techniques based on the command used, the type of input and 
the type of output. These criteria are based on GeoGebra, thus if one was to use e.g. Maple 
instead, one might use the criteria only of the command used or even a class of commands. 
GeoGebra is a piece of software designed for teaching and learning mathematics and science 
from the level of primary school to university. In the GeoGebra window for conducting CAS 
work there are twelve commands. Relevant for our level of mathematics and the exercises are 
the four commands: Evaluate, Factor, Expand and Solve. We note that we did not need to use 
the command Substitute due to the effectiveness of other commands and that substitution of a 
variable with a number is done, not by a command, but when entering the expression, equation 
or inequality such as in exercise 35 from 2007: 𝑎 ൌ െ2, 𝑏 ൌ 4, െ5𝑎 െ 2𝑏 ൌ _______. 

 
Example: The technique, Wsolve. eqn, is used in exercises such as 18 from 2014: 𝑥 + 3 ൌ 24. The 
input is 𝑥 + 3 ൌ 24, the command Solve giving the output Solve:  ሼ𝑥 ൌ 21ሽ. 

 
Example: The technique, Wsolve. ineqn, is used in exercises such as exercise 6c) from 2013: Solve 
the inequality: 8 + 3𝑥 ൐ 2ሺ2 െ 𝑥ሻ. The input is 8 + 3𝑥 ൐ 2ሺ2 െ 𝑥ሻ, the command Solve 
giving the output ቄ𝑥 ൐ ሺ−4ሻ

5
ቅ. 

 
Example: The technique, Wsolve.system, is used in exercises such as 7a) from 2005: Solve the system 
of equations: 𝑦 ൌ 𝑥 + 4 and 𝑦 ൌ  െ 1

2
𝑥 + 1. The exercise is solved by entering each linear 

equation followed by pressing enter, such that GeoGebra stores each linear equation as an 
HTXaWLRQ. TKHQ bRWK HTXaWLRQV QHHd WR bH KLJKOLJKWHd bHIRUH SUHVVLQJ WKH bXWWRQ ³Solve´ 
resulting in the output: Solve:  ሼ𝑥 ൌ  െ2, 𝑦 ൌ 2ሽ. 

 
Example: This technique, Weval.num, is used in exercises such as 35 from 2007: 𝑎 ൌ െ2, 𝑏 ൌ 4, 
െ5𝑎 െ 2𝑏 ൌ _______, where the substitution of the variables with numbers are completed while 
entering the expression െ5 ∗ ሺെ2ሻ െ  2 ∗ 4.  Note that the technique is not used in exercises 
such as 38 from 2008: Which of the numbers െ2, െ1, 0, 1, 2, 3 𝑎𝑛𝑑 4 are solutions for the 
inequality: 4𝑥 െ 2 ൏ 2 because it would require the technique seven times, and the command 
Solve produces the solution with less effort. 

 
Example: The technique, Weval.expr, is employed in exercises such as 31 from 2013: Reduce the 
expression: 2ሺെ2𝑎 +  𝑏ሻ +  7𝑎. The exercise is solved by entering the expression followed by 
WKH cRPPaQd ³S\PbROLc EYaOXaWLRQ´ ZKLcK UHVXOWV LQ WKH output → 3𝑎 + 2𝑏. 

 

Let  Wsolve. eqn denote the technique of using the command Solve on a first 
order equation. 

Let Wsolve. ineqn denote the technique of the command Solve on a first order 
inequality. 

Let Wsolve.system denote the technique of using the command Solve with an 
input of a system of two linear first order equations.  

Let Weval.num denote the technique of using the command Evaluate with an 
input of only a numerical expression.  

Let Weval.expr denote the technique of employing the command Simplify 
with an input of an algebraic expression. 

Let Wfactor denote the technique of employing the command Factor with 
an input of an algebraic expression. 
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Example: The technique, Wfactor, is used in exercises such as 6b) from 2013: Put outside of 
brackets: 6ݔଶ ൅ 21. The exercise is solved by entering the expression followed by the command 
³FacWRU´, ZKLcK UeVXOWV LQ WKe RXWSXW: ³ Factor:  3ሺ2ݔଶ ൅ 7ሻ´. 

 
E[aPSOe: TKe WecKQLTXe, Ĳbrackets,is used in exercises such as 7a) from 2014: Solve the equation: 
ଶ௫ିସ

ହ
ൌ 6. In order for GeoGebra to correctly read and distinguish between the numerator and 

denominator brackets must be inserted: ሺ2ݔ െ 4ሻ/5 ൌ 6.  

 
Example: The technique, Winterpret, is used in exercises such as 45 from 2012: Which of the 
numbers -2, 0, 2, 6 and 7 are solutions for the inequality:  5ݔ െ 2 ൑ 10 , where GeoGebra 
UeWXUQV WKe RXWSXW ³ Solve:  ቄଵଶ

ହ
൒  ቅ´. TKe VWXdeQW PXVW WKeQ fXUWKeU LQWeUSUeW WKe RXWSXW fURPݔ

GeoGebra in order to reach a solution for the exercise. 
In all of the exercises, a solution can be reached with only one technique as it is necessary to 

employ only one command in order to solve an exercise. 

4. Analysis and results 

In this section we will give a short overview of the quantitative result of our praxeological 
reference model on the selected exercises, followed by establishing relations between non-
instrumented and instrumented techniques. 

4.1. Types of tasks 

For the selected exercises in our study, we get the following distribution of types of tasks: 
Type of tasks Frequency 
Tsolve.eqn 25 
Tsolve.stm 7 
Tsolve.scnd 5 
Teval.ineql 9 
Tsolve.ineql 1 
Teval.expr 8 
Treduce.expr 30 
Tfactor.expr 2 
Ttext 18 
Tgeom 4 
Tother 1 

Table 4. Frequency of types of tasks 

We see that the most frequent occurring types of tasks are Tsolve.eqn, Treduce.expr and Ttext 
constituting more than 66% percent of the exercises. 

By considering types of task within the Tsolve.eqn we get the following distribution: 
Type of tasks Frequency 
T1.1 5 
T1.2 12 
T1.3 5 
T1.4 3 

Table 5. Frequency of types of tasks T1.1, T1.2, T1.3 and T1.4 

Let Wbrackets denote the technique of inserting brackets into an expression 
in order for CAS to correctly read the expression.  

Let Winterpret denote the technique of interpreting the output. 
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By considering types of task within Treduce.expr we get the following distribution: 
Type of tasks Number of occurrences 
T7.1 12 
T7.2 10 
T7.3 2 
T7.4 3 
T7.5 2 
T7.6 2 

Table 6. Frequency of the types of tasks T7.1, T7.2, T7.3, T7.4, T7.5 and T7.6 

4.2. Structure of types of tasks 

When solving the tasks using paper and pencil several of the types of tasks are relational. For 
example, the task Tsolve.stm includes the task Tsolve.eqn and Tsolve.eqn can include the task Treduce.expr, 
thus we can draw the follwoing diagram of relations between types of tasks when solving using 
paper and pencil, see Table 7. 

 
Table 7. Relation between tasks in a non-instrumented environment. 

However, when we solve the same set of exercises using GeoGebra only two types of tasks are 
relational, the Ttext and the Tsolve.eqn. Thus the relation of traditional algebraic exercises is 
considerable weakened when solved using GeoGebra. 

4.3. Techniques 

Applying our praxeological model for non-instrumented techniques we get the following 
distribution of non-instrumented techniques: 

Tsolve.scnd 

 
 

Tgeom 

Ttext 

Tsolve.stm 

 
 Tsolve.eqn 

 
 
 
 
 
 

Treduce.expr 

Tsolve.ineql 
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Non-instrumented technique Number of uses in solutions 
Wright.left 59 

Wleft.right 49 

Wadd.inv 23 

Wadd 47 

Wmulti 46 

Wsub.num 98 

Wsub.expr 7 

Wpower 15 

Wtext 11 

 Table 8. Frequency of non-instrumented techniques 

Furthermore, we get the following distribution of number of non-instrumented techniques used 
per exercise: 

Number of non-
instrumented 
techniques per exercise 

Frequency 

1 17 
2 44 
3 20 
4 7 
5 5 
6 8 
7 4 
8 1 
9 3 
10 3 
12 1 

Table 9. Frequency of number of non-instrumented techniques per exercise 

It follows from the table that most exercises require a composition of non-instrumented 
techniques. If we consider the praxeology, then the technology is the explanation for and 
justification of techniques. Thus in exercises where a composition of two or more elementary 
atomic techniques are required to reach a solution, then a richer technology is present in order to 
successfully choose the non-instrumented techniques. 

Applying our model for the instrumented techniques, we get the following distribution of 
instrumented techniques: 

Wsolve. eqn Wsolve. ineqn Wsolve.system Weval.num Weval.expr Wfactor 
48 10 7 8 30 2 

Table 10. Frequency of instrumented techniques 

Furthermore, in 105 out of 110 exercises only one of the instrumented techniques was necessary 
to obtain the solution. In 4 of the remaining 5 exercises the geometric environment of GeoGebra 
was preferable to obtain the solution for the exercises and has therefor been left out. The last 
exercise we consider an exception, and we are uncertain of what instrumented technique that 
would most effortlessly solve the exercise.  



93 
 

 

  

 

96                                                             Educ. Matem. Pesq., São Paulo, v.21, n.4, pp. 85-99, 2019 

4.4. Relations between non-instrumented and instrumented techniques 

In this section we will present our study of the relations between the non-instrumented 
techniques and the instrumented techniques. We have selected two different approaches to 
investigate this relation. The first investigation is a direct correspondence between the non-
instrumented techniques and the instrumented techniques. The second investigation considers 
the relations between the non-instrumented techniques and the instrumented techniques via 
types of tasks to get a more explicit relation that relies on exercises. 

4.5. Relations between non-instrumented and instrumented techniques through 
definitions 

In our first analysis we begin with the non-instrumented techniques and determine what 
instrumented technique(s) are capable of accomplishing the same action as the non-
instrumented technique. Thus, if considering applying the distributive field axiom, what 
instrumented techniques could return the same result? 

Consider the non-instrumented technique Wright.left, equivalent to the action of applying the 
distributive field axiom from the right to the left: 𝑎𝑏 + 𝑎𝑐 ൌ 𝑎ሺ𝑏 + 𝑐ሻ.  The same result can be 
achieved by applying the instrumented technique Wfactor. However none of the other instrumented 
techniques yields the output  𝑎ሺ𝑏 + 𝑐ሻ. For the non-instrumented technique Wleft.right, we establish 
a relation to the instrumented technique Weval.expr, with similar method. 

For the non-instrumented techniques Wadd.inv and Wpower corresponding respectively to the 
technique of applying the additive inverse axiom from the left to the right and applying the 
definition of exponentiation, we reach the same results with applying the instrumented 
technique Weval.expr. 
For the non-instrumented techniques Wadd, Wmulti, Wsub.num, Wsub.expr Wtext we are not able to obtain 
identical outcome with any of our instrumented techniques from our praxeological reference 
model. However GeoGebra still accommodates methods and commands to carry out these non-
instrumented techniques. Furthermore, other methods and commands not included in our 
praxeological reference model will be able to execute the same actions as the previous 
mentioned non-instrumented techniques. This means that though GeoGebra affords 
instrumented techniques to accomplish non-instrumented techniques, because of the types of 
tasks and the presence of other instrumented techniques, they are not used. 

We get the following visualization based on a direct relation between non-instrumented 
fundamental techniques and instrumented techniques: 
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Table 11. Relations by definition. 

4.6. Relation of non-instrumented and instrumented techniques through types of task 

Due to the relations (or lack of) between instrumented and non-instrumented techniques our 
second analysis relates the non-instrumented and the instrumented techniques through types of 
task.  By looking at exercises within Tsolve.eqn we determine the relation between the instrumented 
and non-instrumented techniques. Since only one instrumented technique is applied per 
exercise, one could also see the relation as the relation between a composition of non-
instrumented techniques to an instrumented technique.  

Consider the type of tasks Tsolve.eqn. All exercises within Tsolve.eqn can be solved applying the 
instrumented technique Wsolve. eqn. Regarding the non-instrumented  techniques, we get the 
following relations between types of task and series of non-instrumented techniques for T1.1, T1.2 
and T1.3: 

T1.1 

 

(Wadd) 

T1.2 

 

(Wadd, Wmulti) 

T1.3 
 

(Wleft.right, Wadd, Wmulti) 
(Wmulti, Wadd, Wmulti) 

Table 12. Relation between types of task and non-instrumented techniques 

For the T1.3 we have two cases of series of non-instrumented techniques. The series is dependent 
on whether the number 𝑑 is written as a fraction or a whole number, in the expression 𝑑ሺ𝑐𝑥 +
 𝑎ሻ  ൌ  𝑏, where 𝑎, 𝑏 and 𝑐 are non-zero numbers in ℕ. 

For T1.4 we have less uniformity of the order and types of the non-instrumented techniques 
applied, nonetheless all exercises in T1.4 can be solved by applying a composition of the non-
instrumented techniques: Wright.left, Wleft.right, Wadd, and Wmulti. 

Thus within Tsolve.eqn we get that a composition of the non-instrumented fundamental 
techniques Wright.left, Wleft.right, Wadd, and Wmulti is replaceable with the instrumented technique Wsolve.eqn. 
We also get that the instrumented technique Tsolve.eqn can replace several different compositions 
of non-instrumented techniques. 

Wright.left 

Wleft.right 

Wadd.inv 

Wadd 

Wmulti 

Wsub.num 

Wsub.expr 

Wpower 

Wtext 

Ĳbrackets  

Ĳinterpret 

Wsolve.eqn 

Wsolve.ineqn 

Wsolve.system 

Weval.num 

Weval.expr 

Wfactor 
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By similar analysis of non-instrumented and instrumented techniques via types of tasks, 
except for Ttext, we get that any composition of non-instrumented techniques is replaceable with 
an instrumented technique. But also that one instrumented technique can replace several 
different compositions of non-instrumented techniques. Furthermore we see that one 
instrumented technique can solve several different types of task, which is not the case with non-
instrumented techniques. 

5. Conclusion and reflection 

In section 5, we observe that direct relations between non-instrumented and instrumented 
techniques via definitions can, for some cases of non-instrumented techniques, not be 
established. Furthermore, we observe that the instrumented technique Weval.expr can replace all of 
the non-instrumented techniques Wleft.right, Wadd.inv and Wpower. This means, that with the current 
exercises within the domain of algebra, it is not possible to distinguish between applying the 
distributive field axiom, the additive inverse field axiom or applying the definition of exponents 
when using GeoGebra. 

Furthermore when considering relations between non-instrumented and instrumented 
techniques through types of task, we saw that the four series of non-instrumented techniques:  
(Wadd),  (Wadd, Wmulti), (Wleft.right, Wadd, Wmulti) and (Wmulti, Wadd, Wmulti) can all be replaced by the 
instrumented technique Wsolve.eqn. Therefore, it is not possible to explicitly distinguish what series 
of non-instrumented techniques the instrumented technique Wsolve.eqn is substituting. 

The conclusion of section 5 being that it is not possible, when using GeoGebra on traditional 
algebra exercises, to distinguish between individual non-instrumented techniques or 
distinguishing between different series of non-instrumented techniques. 

In addition, we consider the relation among the types of tasks. The relation between the types 
of tasks are considerable weaker when solving using GeoGebra, compared to paper and pencil. 

But what occurs? One type of exercise, when solved in the CAS environment, causes a new 
technique to emerge:  having to determine the intersection of two sets of numbers. For example 
exercise 48 from 2006: Which of the numbers -3, -2, -1, 0, 1, 2 and 3 are solutions for the 
inequality: 2𝑥 െ 3 ൐ െ2, where VWXdeQWV aSSO\LQg Whe LQVWUXPeQWed WechQLTXe Ĳ10 to the given 
inequality and get the output: Solve: ቄ𝑥 ൐ 1

2
ቅ. The students then have to find the intersection of 

the set {-3, -2, -1, 0, 1, 2, 3} and the set  ሾ1
2

; ∞ሾ. 

Using CAS does not exclude the presence of non-instrumented techniques as seen in several 
results from the literature (Hitt & Kieran, 2009; Lagrange, 2005; Pierce, 2001).  The non-
instrumented techniques might not be part of the praxis, but they can be part of the logos for 
solving an exercise. Thus it becomes a question of task design. 

We suggest that more work on the transition to and interplay between non-instrumented and 
instrumented environments are necessary such as (Chaachoua, 2010). 

With the current algebraic praxeology one non-instrumented technique was unaffected by the 
instrumented techniques: Wtext present in the task type of Ttext. Thus the future of algebra in lower 
secondary schools might lie as a tool in modelling activities that goes across the sectors of 
mathematics and as a process of algebraization (Bosch, 2012). 
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Paper II: Designing activities for CAS-based student work realising 

the lever potential 

Abstract: This paper explores two types of lever potentials of CAS. In the first 

activity, CAS is used for the students to study the concept of equations. In the 

second activity, CAS is used to strengthen the relation of traditional algebraic 

paper-and-pencil manipulations of equations with the theory that the solution 

of the equation must stay the same. To design CAS-based activities that 

develops and explicitly state algebraic knowledge the notion of praxeology 

from the Anthropological Theory of Didactical is employed.  

Keywords: Computer algebra system; school algebra; task design; lever 

potential  

Introduction 

In the early days of research on implementing CAS in mathematics education, the 

entrance of this digital tool was met by applause by the community of researchers, 

and the focus was on the potential that CAS could offer mathematics education 

(Dreyfus, 1994). The idea is, that, at the level of upper secondary school, ‘low level’ 

work, such as solving an equation, can be outsourced (Bang, Grønbæk, & Larsen, 

2017) to the CAS. This would leave more time to focus on more complex issues such 

as the mathematical discourse. This potential is called the lever potential (Winsløw, 

2003).    

The lever potential has been documented in several articles since the nineteen-nineties 

(which we will further elaborate on in the background section). However, using a CAS 

on any problem in the subject of algebra does not automatically lift the students’ 

learning to a higher level, quite the contrary. When solving a traditional algebraic task, 

such as finding the solution for an equation with paper and pencil, the mathematical 

discourse of the students includes the use of fundamental algebraic structures, such as 

the distributive axiom. When solving the equation with a CAS, the mathematical 

discourse becomes very different, and most fundamental algebraic structures are 

hidden (Carlsen, 2019).  

In our study, we will explore how CAS can be used to make explicit the mathematical 

discourse in the teaching of elementary algebra. Further, we will study how the four 
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categories of task, technique, (technical) discourse and theoretical discourse can be 

used to design appropriate activities in elementary algebra for the implementation of 

CAS.  Paragraph: use this for the first paragraph in a section, or to continue after an 

extract. 

Background 

In this section, we will give an insight into the potential that the use of CAS in the 

teaching of algebra offers from a selection of researchers and their respective results. 

The articles selected have been chosen based on their practical approach to study the 

potential of CAS. Further, we have selected articles that focus on outsourcing the 

time-consuming algebraic manipulations to CAS, i.e. the use of, for instance, 

commands such as solve or reduce expression.  

One type of potential is that CAS can introduce other, perhaps more interesting, and 

more advanced, topics of mathematics into the curriculum. The article by Cuoco and 

Goldenberg (2003) lists a series of example of exercises within the topics Lagrange 

interpolation, polynomials of the form !!	($) = 0! + 1! +⋯+ ($ − 1)!, generating 

functions, and structural similarities between integers and polynomials “to illustrate 

some possibilities of CAS use that supplements rather than supplant, traditional 

algebra curricula”. 

Another opportunity is an increased focus on the application to the real-world context. 

The article by Schneider (2000) documented that the use of CAS, due to the 

outsourcing of the algebraic manipulation, increasingly emphasised the application of 

the exponential and logarithmic functions on models of population growth, disease 

spreading, radioactive decay etc. 

A type of potential that is studied and documented explicitly and extensively, is the 

potential of CAS to free the students from time-consuming manipulations and allow 

them to instead reflect upon the mathematical objects that are used, and thereby 

develop deeper conceptual knowledge. The doctoral thesis by Drijvers (2003) is an 

example of this viewpoint. In his thesis, Drijvers studies how the concept of 

parameters can be taught and shows that a greater understanding can be reached by 

outsourcing time-consuming algebraic manipulations to CAS.  
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The fourth type of potential we will consider, is how students through carefully 

designed activities, despite outsourcing of algebraic manipulations to CAS, can 

investigate a series of examples, conjecture, validate and justify employing algebraic 

discourse (Kieran & Drijvers, 2006; Martínez, Kieran, & Guzmán, 2012). In particular 

the article by Hitt and Kieran (2009) where the factorisation of the polynomial ," −
1 is studied. In this study, the students examine a series of examples, exploring the 

number of factors by using the telescoping technique. 

The last article mentioned, utilizes the dialectic between practice and reasoning 

(Artigue, 2002). This dialectic is structured by a model using the three notions of task 

(the task to be solved), technique (that is applied to solve the task), and theory (the 

reasoning that explains and validates the technique). The idea is taken from the 

Anthropological Theory of Didactic (ATD) that suggests considering the theory part 

of the dialectic as consisting of two parts. One part is technology, the discourse that 

explains and justifies the technique. The second part is theory, that is the discourse 

that justifies and validates the technology. A structural division that we think can 

further benefit the design of CAS-based activities.  

In our study, we want to show how the notion of praxeology can be used to design 

activities that realise the potentials of CAS. In particularly the fourth type of potential 

where traditional algebraic technical discourses such as the telescoping technique are 

in focus; and the third type where theoretical discourses such as the concept of 

parameters are the focus. 

Framework 

In general, the ATD suggests to consider human activity, for example cooking a soup, 

as consisting of an amalgam of practice and reasoning (Bosch & Gascón, 2014; 

Chevallard, 1998). To cook a soup, one could start with frying onions in a pot (the 

practice), the reasoning being that onions give a nice flavour and frying the onions 

sweetens and enhances their flavour, or you might be frying onions because it is 

generally perceived as a good way to start cooking a soup. Our knowledge is based 

on practice, and our practice is shaped by our knowledge.    

The ATD suggest denoting the dialectic of practice and knowledge by praxeology. 

Further to structure the practice as a twofold. One part the type of task, which is the 
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type of task that is aimed at being solved. For example, cook a soup or solve an 

equation of the type -(, − .) = 	$ · - − - · 0 · ,, where -, .,0 and $ are integers. 

The other part, the techniques, which are the gestures that are utilized in order to solve 

the type of task such as frying onions, or in the case of solving the equation above: 

rewriting the equation into , − . = $ −0 · ,, and then another rewriting into the 

equation , = "#$
#% . The knowledge related to the practice, which is called logos from 

Greek meaning theory, can be split into two components. The technology, which is 

the discourse that justifies and explains the techniques, such as we multiply with &' on 

both sides of the equation. The theory, which justifies and explains the technology, 

such as we must keep the balance between the right side and the left side of the 

equation. Notice here that theory, or even technology, does not need to be “formal 

mathematics”  but can, to individuals and even large institutions, also include mere 

convictions and even falsities, such as «we must maintain the balance between the 

right-hand side and the left-hand side of the equation». 

The four components, task, techniques, technology, and theory enable us to consider 

structures and relations between praxeologies across themes such as solving equations 

(of different types) or manipulation of algebraic expressions. A praxeology is 

determined by its type of task (and the institution in which it lives). One technique 

can be applied in several different praxeologies or several times in the same 

praxeology, i.e. we can reduce an expression also when the task is not to solve an 

equation. One technology can unify several techniques, for instance, multiplying both 

sides of the equation by a number does not necessarily reduce the equation. The 

theory, such as we must maintain the balance between the right-hand side and the left-

hand side of the equation, can join several technologies, since it is also the theory for 

adding on both sides of the equation. A possible structure of related praxeologies can 

be seen in Figure 1.  
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Figure 1. A possible structure of related praxeologies.  

Studying the structure of students’ praxeologies can help us identify some of their 

difficulties in learning algebra. If we consider the two tasks of expanding the 

following expressions: 3(, − 2) and (, − 2)3, often students find the second 

expression a lot harder to expand than the first expression (the case of Danish upper 

secondary students (Poulsen, 2015)).  For the students of lower secondary school, the 

two praxeologies generated by the tasks are not related, not even by theory, because 

the students of lower secondary school are not familiar with the distributive axiom 

that links the two praxeologies. This example emphasizes that if the theory block is 

not made explicit in the teaching such as putting it into words, or being the object of 

study in a lesson, then many of the praxeologies are not linked, and thus techniques 

are not related to each other. This makes the more than 90 elementary algebraic 

techniques of lower secondary school (Poulsen, 2015) a wilderness of rules. 

If we consider the praxeologies of the students in lower secondary school for solving 

equations, the use of CAS will change part of the praxeology quite dramatically 

(Carlsen, 2019). Without CAS, it would make sense to distinguish between solving 

the equations 2(, − 3) = 	5 · 2 − 2,, and  12 − 3, + 2 = 	−2, because they require 

different techniques to solve. However, when solving with a CAS, the two equations 

do not require different techniques in order to solve, so the praxeologies would be the 

same. Further, since the technique has changed into entering the equation, entering 

the command solve, and interpret the out-put, the technology has changed 

accordingly. However, a part of the theory block is unchanged, i.e. the solution to the 

Types of task 

Theory 

Technology 

Techniques 
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equation is a number, so that when substituted with x, both sides of the equation yield 

the same number. By assigning technology and theory the same category and notion, 

as in (Hitt & Kieran, 2009; Kieran & Drijvers, 2006; Kieran & Saldanha, 2008) we 

might miss possible information or design opportunities for CAS-based activities.  

 If we consider the potential of CAS through the lens of praxeology and ATD, the 

fourth type of potential can be described as carefully designed tasks that can only 

(reasonably) be approached with CAS-based techniques. The logos for making the 

conjectures and the validations of the conjectures, are technology known from 

traditional algebraic paper and pencil tasks such as reducing or expanding an 

expression. The third type of potential for the use of CAS, reflecting on mathematical 

objects such as parameters, can be considered as making explicit and formulating 

elements of the algebraic theory. As this will strengthen the theory, it will benefit a 

range of algebraic praxeologies that includes the concept of equations as part of the 

theory. In terms of ATD, an object that plays the role of a work tool without 

traditionally being the object of study such as equations, is called a paramathematical 

concept (Chevallard & Johsua, 1985).   

Research questions 

• How can CAS be used to engage students to work with elements of the theory 

block for praxeologies in school algebra? 

• How can CAS be used to strengthen students’ technology related to standard 

techniques (such as rewriting equations) in school algebra? 

• How can one design tasks that realise the use of CAS described in the previous 

research questions? 

Framework 

To explore how the notion of praxeology can guide the design of tasks for the teaching 

of school algebra realising the potential of CAS, two lessons were designed. A series 

of tasks were designed, and two lesson plans were created to describe the different 

didactical situations throughout the lessons. The two lessons were carried out in three 

grade 8 (14 - 15-year-old) classes conducted by their regular mathematics teachers. 

Prior to the lesson plans being carried out, a meeting was held with each teacher to 
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familiarize the teachers with GeoGebra, Screencast-O-Matic, and the learning 

objectives of the lessons. The first two classes participating were already familiar with 

using GeoGebra, though they had never used the CAS application, while the third 

class had never used GeoGebra, CAS tools, or other dynamic geometric 

environments.     

To collect data for the study, seven recording devices were placed in the classroom to 

record the students’ and the teacher’s voices. Further, the students’ work in GeoGebra 

was recorded with Screencast-O-Matic. Everything written on the blackboard was 

photographed, and field notes were written by the researcher during each lesson. 

For each of the three lessons, one recording was chosen for a full transcript. For the 

remaining recordings, only episodes including not yet transcribed work or discussions 

were transcribed. All the transcriptions were analysed with the notion of praxeology. 

The students written materials were also analysed using the notion of praxeology. The 

screencasts and written materials were used to support the transcription and the 

analyses of students praxeologies.  

The lesson plans and the rational of the designs 

In this section, we will give a description of the design of the lessons based on the 

lesson plans written for the teachers, and part of the a priori analysis of the lesson. 

The description will be supplemented by the rational of the design. 

Lesson A: Describe what is an equation 

The first lesson, the learning objective is for the students to further develop their 

praxeology for solving equations, in particularly making explicit and formulating 

what makes an equation such as the possible solutions and whether or not the equal 

sign or a variable can be left out. Thus, the object of the lesson can be categorised as 

paramathematical.  

The first task that the students are given in the lesson, is to write down an equation of 

their own, and following try to describe, what an equation is. A very important point 

of this activity is that the teacher does not give the students an example of an equation 

earlier in the lesson or interfere with the students’ work. The use of CAS is not 
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intended for this activity. The expectation is for the students to give a somewhat vague 

definition, mentioning an unknown, and that the unknown needs to be found.  

The students are then given a series of equations to solve in the CAS window of 

GeoGebra, while recording their screenwork with Screencast-O-Matic. For the series 

of equations containing different types of equations, see Figure 2. For each equation 

solved with CAS, the students are tasked with reconsidering their description of an 

equation. 

 Equation Addition to the description of 

what an equation is 

1) 14	6 + 2 = 72  

2) 14	8 + 4 = 7 + (8 − 11)34  

3) , − 2 = 0  

4) (, − 1)(, − 2) = 0  

5) (, − 1)(, − 2)(, − 3) = 0  

6) 2, + 4 = (, − 2)2 + 8  

7) : − 23 = (3: − 4)2 − 5:  

8) 4(, − 436) − 326 = . − 6434  

9) 2(3 − 4) + 7 = 5 − 3(4 − 2) + 18  

10) 3(23 − 11) = 1
5 +

22(3 − 5)
2  

 

11) 3. + 12 = 3(. + 4)
= 4(. − 2) + 20 − . 

 

12) 12(3 − 7) + 4 + 8  

Figure 2. A minimized version of the students’ worksheet for solving equations with 

CAS. 

The first equation served the purpose of getting the students familiar with entering 

and solving an equation using CAS in GeoGebra. The second equation yields the 
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output {8 = ()&
!* }. This equation was included as we expected most of the students to 

implicit define an equation to have integer solutions. Further, it is thought of as a 

warm-up task where the students meet an “easy” new type of equation. The fourth, 

and the fifth equations have the solution 1 and 2, and 1, 2, and 3 respectively, the 

output from CAS is {, = 1, , = 2} and {, = 1, , = 2, , = 3} respectively. The 

equations have a form so that the students easily can test or find the solutions by trial 

and error by hand in order to relate the output of CAS into the solutions for the 

equations. It is expected that the students will add that it is possible for an equation to 

have several solutions to their description of an equation. Equation six is true for all 

values of x which CAS writes {, = ,}, while equation seven does not have a solution 

which CAS writes {	}. It is expected that the students will spend a considerable time 

on interpreting the output of CAS but will end with adding that equations can have an 

infinite number of solutions or no solution at all. Equation eight has the solution 
&
+ 	. −

1091, which is to show the students a type of equation where the solution contains an 

unknown. It is expected that the students will add that an equation can have an 

unknown as part of the solution. Equation nine and ten are equations without an 

unknown, and CAS gives the output {	} and {, = ,} respectively. We expect that all 

students in their first description of an equation will mention something about an 

unknown, and thus equation nine and ten are included to prompt a discussion of 

whether an unknown is a requirement for an equation. Expression eleven and twelve 

contain two or no equal sign, respectively, and CAS gives the outputs {. = .} and  

{8 = 44}, respectively. The expressions have been included in the hope that the 

students will discuss the role of the equal sign in an equation. It is expected, that due 

to CAS being able to give a solution for both expressions, the students will question 

the role of the equal sign.   

For the next section of the lesson, the teacher conducts the students’ sharing of their 

discoveries of additional description and clarifications, followed by the teacher’s 

reformulation and clarifications of the description. For the last section of the lesson 

the teacher furthers the students’ reflections by challenging the students’ description, 

i.e. asking if an equation can have four and a half solution, if it is fair that you can 

manipulate an equation (with an unknown) into something that is not an equation 

(equation without an unknown).  
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Lesson B: Make an equation where ? = @ 

For the second lesson, the learning objective is for the students to strengthen their 

praxeology for solving equations, in particular the relation between the techniques for 

manipulating an equation, such as adding a number on both sides of the equation, and 

the theory that the solution must stay the same.  

The lesson starts with the teacher telling the students that today they will have a 

competition about making ugly equations. He then proceeds to write his two 

contributions on the board 
,!(./+)1

( − )./!
+ 	= (.	/	!	

! − ((.	#	&3		
&!  and 3, − 4 = 	 +.#!( . 

He further shows how to solve the two equations in CAS, and that both equations have 

the solution 2.  

Then the students are given five minutes to make their own ugly equation, but the 

solution must be 2. The students are asked to use CAS to experiment and to check that 

the solution is 2.  After the five minutes, one student for each group then presents the 

group’s equation to the class, and the ugliest equation is crowned.  

The next section of the lesson is introduced by the teacher. The students will keep on 

working to uglify equations; however, the focus is now, given an equation with 

solution two, to find, develop, and describe techniques that complicates the equation 

further, but the solution is still two. The students are given a series of equations that 

all have solution two but are free to set off with any equation that has solution two, 

see example in Figure 3. The students are asked to use CAS to experiment and check 

that the equations have solution two.  

Old equation with solution 

x=2 

New equation with solution  

x=2 

3, − 4 = 	 (4, − 2)3  
 

Method: 
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Figure 3. An extract of the worksheet for developing methods for complicating 

equations.  

The students get 15 minutes to develop their methods. It is expected that the students 

will develop the techniques of adding a number on both sides of the equation, 

multiplying with a number except from 0 on each side of the equation, adding an 

expression equal to zero on one side of the equation, multiplying with an expression 

equal to one on one side of the equation etc. Following, the teacher orchestrates the 

students’ sharing of different methods while taking notes on the board.  

For the last section of the lesson, a new competition of making the ugliest equation 

with solution 2 is started (the students get five minutes), where the students get to try 

out the collection of shared methods. The students are asked to use CAS to experiment 

and verify that the equations have solution two. Following, a student from each group 

presents the group’s ugliest equation, and the ugliest equation of the class is chosen.  

The teacher ends the lesson with repeating the learning objective of the lesson, in 

particularly relating the traditional algebraic technology for manipulating an equation, 

with the theory that the solution stays the same.  

Empirical findings 

In this section we will present the students’ praxeologies from the data collected. In 

lesson A, we are interested in how and what theory is developed and clarified through 

the lesson. The discussions cited and the replay of the lesson are based on the 

transcripts from the voice recordings, and the students’ work presented are cuttings 

from their worksheets. In lesson B, we are interested in the techniques and the 

technology developed related to making equations that has solution two. We use 

mainly the transcriptions to give a replay of the lesson, and the students’ production 

noted on their worksheets to illustrate the students’ technology related to the 

praxeology of retaining the solution for the equations.  

Lesson A: Describe what is an equation 

Though the lesson was carried out in three different classes, the students’ praxeologies 

related to the learning objective of the lesson were similar. The most noticeable 

difference between the classes was the difference in time spend on introducing the use 
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of CAS and Screencast-O-Matic. In our analysis we will focus on the theory that the 

students developed, related to the praxeologies of solving equations.  

Of interest for our study of the lesson A are the episodes around solving new types of 

equations in CAS and revising the description of an equation. We will go through 

those parts of the lesson chronologically, and relay and present episodes from our 

data. 

In this section of the lesson, the students work in groups. We will now consider the 

students’ work and discussions. Equation two, where the solution is ()&!*  , for the first 

two classes, who regularly solve equations with a non-integer solution doing the 

calculations with a calculator, the output {	, = 	 ()&!* 		} does not generate any discussion 

related to whether or not it is a viable solution. Those groups who do reflect on the 

output come to the conclusion that the fraction is a division that is not yet preformed 

and should be written as a decimal number instead. Many of them go on to perform 

the calculation and writing the first three to four decimals of the number. In the third 

class, the solution ()&!*  was cause for the first discussion in the groups. The students at 

first were not accepting a fraction as a solution for the equation. After either 

confronting the teacher or solving the equation by hand, the groups accept a fraction 

as a possible output for CAS. In the discussions some groups expressed that CAS had 

isolated x on the left-hand side of the equation but had yet to finish the calculations 

on the right-hand side of the equation that would make the fraction a decimal number. 

One group disappointedly remarked that CAS cannot do everything for them. 

Subsequently each group added a statement like “The solution to an equation can be 

a fraction”, see Figure 4.  

 

Figure 4. Addition of a fraction being a possible solution to an equation to the 

description of an equation, cut out from worksheet.  
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The fourth equation with two solutions is the task the groups discuss the most. It is 

generally accepted, after rechecking the input in CAS, that CAS is able to solve the 

equation, and that the (one) solution to the equation can be  read from the output {, =
1, , = 2}. The disconnect between the students’ view of equations having exactly one 

solution, and the solution offered by CAS sparks varied discussions. One group tries 

the hypothesis that you can choose between one or two, another group that one and 

two must be added, and the solution is three. One group has the following discussion 

about substitution and the role of the unknown: 

Aza: But, it is x equal to one, and x equal to two! 

Bab: Well, it [x] is the same [referring to the equation]. 

Aza: What do you mean? It is two different x’s [referring to the output]. [Small 

pause] 

Cala: Are there no multiplication sign in between [the expression (x-1) and (x-

2)]? 

Aza: There is at least a multiplication sign there.  

Cala: I think it makes sense. x minus one is one thing[equation], and x minus 

two is another thing[equation], and then they both must be solved. 

Bab: But, both x’s [in the equation] must be the same.  

Cala: Well, yes, it is like that.  

The larger part of the groups ends up reaching the conclusion that an equation can 

have two solutions by substituting (by hand) , with a value, and then discovering that 

either the term (, − 1) or the term (, − 2) must be zero, realising thus that both 1 

and 2 are solutions. The groups all wrote additions to their description of an equation, 

see Figure 5 for example.  
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Figure 5. Addition of «can have several solutions» to the description of an 

equation, cut out from worksheet. 

We have cited the above part of a discussion as it shows how the students are 

beginning to develop and articulate elements of theory for solving equations, in 

particular what is the syntax for writing equations, and what is the role of the unknown 

if it appears more than one time in the equation and if an equation has more than one 

solution how do you substitute. 

In some groups unforeseen inquiry into the theory continues, in one group a student 

asks how one knows if an equation has two solutions or one solution. Another group 

discusses if the number of solutions for an equation can be two and a half.  

The sixth equation with an infinite number of solutions is not an example that all 

groups reach. The groups that reach the equation is met by the output {, = ,}. In 

general, the students are not confused about the CAS output, but instead on what the 

expression , = , means.  

Xia: x is equal to x. That makes sense [ironic]. 

Yao: Then the solution is x -that is just super [ironic]. [small pause] I do not 

understand x equal to x, how can that [x=x] be? 

Xia: I don’t think we entered everything correctly. 

Zhou: We entered correctly. 

Yao: What does it mean: x is equal to x [directed towards the teacher]? 

Teacher: That is a very good question. 

Yao: We entered correctly. 

Teacher: Yes, you did. But there is something very interesting here.  

… 

Xia: It [CAS] wrote that the x, that the unknown is equal to the unknown.  

Teacher: So, what numbers can you substitute with x in order to solve the 
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equation? 

Xia: All. 

Teacher: That is an interesting observation. 

Yao: So, no matter if we substitute four or seven, then it would be correct. 

Teacher: So, how many solutions does the equation have? 

Zhou: Infinite.  

Teacher: Okay Zhou, that is an interesting observation, which you might want 

to note on your paper.  

Yao: And x is equal to x [writes aloud while she writes] 

Zhou: Does it also apply for negative numbers? 

Xia: I don’t think so. We can ask our teacher. 

Zhou: Teacher, does it also apply for the negative numbers?  

Teacher: Try. What happens if you substitute with a negative number?  

… 

We have chosen this extract from one transcript of the groups, as it illustrates not only 

the formulation of a new type of equation (containing an unknown) with infinite many 

solutions, but also makes the students reflect upon and formulate further elements of 

the theory block.  

Equation seven is an equation with no solution, which GeoGebra prints as the output 

{	}. The groups of students who have reached the equation conclude that a solution 

does not exist since the curly parenthesis that beforehand have encompassed the 

solution(s) are now empty. One group, before making the conclusion of the equation 

not having any solution, first discuss, if the unknown, in this case r, can be substituted 

by a curly parenthesis: 

Sekai: What does it say? 
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Tabia: It just says the wrong [type of] parenthesis. 

Sekai: Okay, we interpret it as if there should be a parenthesis on both. 

Tabia: On both?  

Sekai: Yes, because we must keep the balance [of the equation].  

Tabia: No, that must be wrong, it [the solution] cannot be parentheses. 

Sekai: If this is an equation, then there was a parenthesis here, and it is really 

heavy, then you also need a parenthesis here [on the other side of the equation], 

so it becomes equally heavy. Do you get it? 

Ronja: No!  

It is finally dismissed with the argument that a parenthesis is not a solution for an 

equation.  

This bit of discussion between the students shows that the questioning of part of the 

theory leads to further exposure of the theory, i.e. an equation is a seesaw where the 

equilibrium must be kept, and a clarification of what is possible and not possible to 

substitute with the unknown. Further, the students implicitly ask the question what do 

you substitute the unknown with, if there is no solution to the equation?  

The eighth equation is an equation with two different variables, and the output of CAS 

is {	, = &
+ 	. − 1091}. The groups that reach this equation do not seem perplexed with 

now having a solution for an equation that contains an unknown and relates the 

solution to previous obtained solution type with infinitely many solutions. In one 

group a student remarks: “x is equal to one fourth t [stops mid-sentence]. It is that 

thing where x can have one or several unknown [as a solution]. Next!” later she 

reflects “I had not considered that one could put an equation in relation to, err, an 

unknown in relation to another unknown”.  

 The ninth equation is an equation with no unknowns, and it is true. If each side of the 

equation is reduced by calculations, then it will yield 5 = 5. The output of CAS is 

{, = ,}. The groups of students who reach the equation immediately dismiss the 
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equation as an equation, since it does not contain an unknown: “There is no x -that is 

not an equation!”.  

The next episode of interest is the last episode of the lesson where the students share 

their findings, and the teacher reformulates the students’ findings and write key 

phrases on the board.  Following, the teacher outsets further discussions and 

clarifications. In one of the lessons, the output {, = ,} is further discussed. During 

the students’ presentation of the implications of this type of output, i.e. an equation 

can have an infinite number of solutions, it was implicitly understood that the solution 

type was considered a number. The teacher relates this type of equation with that of 

equation eight, where the solution contains an expression with a second unknown, and 

asks the students if perhaps when , = ,, then the solution can also be an expression 

containing an unknown.   

The curly parentheses are also one of the objects that the teachers consider. After the 

students have had their try at guessing the meaning of the curly parentheses, the 

teacher explains that the curly parentheses are usually used to denote a set. The 

students have not only encountered equations with more than one solution but are also 

taught how to write such solutions.  

Equation nine and ten are also brought to the attention of the students since they do 

not include an unknown. The students all agree that they do not qualify as equations 

even though CAS can solve them either with an output of {, = ,} or {	}. In one of the 

lessons, the teacher then suggests that they can be called statements, then the 

statements can either be true or false, just as the so-called equations can either be a 

true statement or a false statement.  

In the last episode of the lesson, the students formulate elements of their theory. The 

teacher then further questions the theory, and together the students and the teacher 

develop and formulate theory for equations but also on other related subjects. New 

paragraph: use this style when you need to begin a new paragraph 

Lesson B: Make an equation where x=2 

We will now study the empirical findings for lesson B. In our analysis we will focus 

on the technology that the students developed related to the tasks of making and 

further develop equations with solution two. As the tasks are open, there are many 
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possible ways of attacking the task. Though the lesson was carried out three times the 

students’ praxeologies developed in the lesson were similar. We will present our 

findings in chronological order i.e. first the task of making an equation with solution 

two, and then the task of further developing an equation with solution two maintaining 

the same solution.   

The first section of interest is the students’ first try to create an equation with solution 

equal to two, one group of students suggest three main technologies. The first main 

technology:  

Irene: Can’t we just make a random equation and then compensate? 

Leo: What! Oh, you mean like just add minus [a number] at the end. 

… 

Leo: We just copy the one up there [from the board] but we make it longer. 

…  

Irene: I have got the greatest idea ever! Can we just do like last lesson, where 

x is equal to x. Infinitely many answers. 

Joules: How do you get x equal to x?  

Leo: Then you have to make both sides [of the equation] such that when 

reduced they are the same. 

The group of students has formulated the three main technologies for this section of 

the lesson. We will refer to them as θ1, for the main technology of for making a 

“random” equation, checking the solution with CAS, and then compensating until the 

solution is two. θ2, for starting with an equation with solution two, complicating the 

equation further, and checking the solution with CAS. θ3, for making an equation 

where the right-hand side is equal to the left-hand side, thus obtaining an equation 

with infinitely many solutions.    

The group cited above ends up trying out θ1. After entering a “random” equation, they 

get the output from CAS {, = 4}. This prompts the discussion of how to compensate 

such that the solution is two.  
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Leo: What if we divide it [the equation] with two?  

Irene: Then it would be one-half x equal to two, that would still give the result 

x equal to four. If we want two less on the right side perhaps, we should either 

add or subtract two up here.  

The group’s work and discussion show the variety of technologies the students 

hold, their formulation of their technology, and the choice of technology. Even more 

specific technology of how to manipulate a simple equation with solution four such 

that the solution becomes two. 

All the groups work with similar or variations of the above mentioned three main 

technologies.  

Another group, who works with θ3, uses the techniques of making two expressions 

that are equal to five, and then put the expressions on different sides of the equal sign, 

such that the equation has infinitely many solutions. The result is 
+./.#!".
./!".

+ , = 3 +

,.  

Another group employing θ3 uses the technique of adding and subtracting the same 

on both sides of the equation.  

Gerð: We use a lot of difficult numbers, and then we subtract them in the end.  

Fróði: Minus one thousand-seven-hundred-and-sixty-one minus something 

plus x minus seven-hundred-and-eleven. Then x is equal to x! 

Gerð: I think we should use pi.  

… 

The students’ discussion and the results of their work show that the students have the 

theory that equations with infinitely many solutions exist and know how such 

equations can be made with the technology of making an equation where the right-

hand side of the equation is equivalent with the left-hand side.   

Though θ2, further developing an equation with solution two, is discussed by some 

groups, none of the groups choose to work with the strategy.  
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In the next section of the lesson of interest, the classes are tasked with θ2. They are 

given a list of equations, all having solution two, to make more complex. Our main 

interest is not the ugly equations produced, but the techniques and technology that the 

students develop and employ. We will first recount the main techniques and 

technologies developed and formulated by the students, and then recount some of the 

theory that was discussed and clarified.  

We will present two of the techniques developed and formulated by the students. The 

first technique, which we will denote by τ1, is to divide part of the equation with an 

expression that is equal to one when x is equal to two. In the following transcript the 

technology and the technique are developed and the expression 3, − 4 is rewritten 

into  (.#+
(.##	!.)#( .  

Margrethe: Perhaps we can make a fraction here, and then make some weird 

expression [as the denominator] that is just equal to one … Then we say four 

minus two, all we need is for it to equal one. x and we have two, we need 

[pause]. Here we have two x, thus we need four, minus x squared. Here we 

have got. No. x to the power of three, then we have minus four, then we need 

to subtract with three on the other side somehow [(,( − 2,) − 3]…That is a 

very overcomplicated way of writing one. 

As a method the group writes “overcomplicating by dividing with one”.   

The other technique, which we will denote as τ2, developed, and clarified is to add the 

same number on both sides of the equation. A group has the following discussion: 

Emmy: We must make this one ugly. 

Elliot: You can change this to three and then minus thee here [referring to the 

other side of the equation sign in the equation].  

Emmy: Plus six, plus two. 

Elliot: [interrupts] You are doing it wrong. You cannot put plus on each side 

[of the equal sign] because you have to put a minus. [Directed to the teacher] 

Isn’t it true that if you put a plus on one side, then on the other side is has to 

be minus? 
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Teacher: Hmm, you have to keep the balance of the equation. If I have an 

equation and I make one of the sides heavier, then in order of keeping the 

balance, the other sides must also get heavier. I.e. if I add something on one 

side then I need to add the same thing on the other side.  

Elliot: Does this make sense? [shows the teacher her equation] 

Teacher: Test it [with CAS] 

… 

Elliot: Okay, we add plus three and twenty on both sides. And minus nineteen 

on both sides. And plus four on both sides. 

... 

The extracts show the two techniques, τ1 and τ2, developed, formulated, and employed 

by students. τ1, dividing a term of the equation with an expression that is equivalent 

to one, and τ2, adding the same number on both sides of the equation. Though the 

focus of the activity was to develop techniques and technology, discussions, and 

clarification of elements of the theory emerged. The main theory present was that the 

solution must stay the same, as it was the condition for rewriting of the equations. The 

students often referred to another main theory during the lesson, that an equation can 

be seen as a seesaw and that the seesaw must be kept in balance i.e. if you add a 

number on one side of the equation you must add a number or an expression that is 

equally heavy on the other side of the equation.  

We will now present some more of the technology and theory that emerged in this 

section of the lesson. In a group of students that were employing τ1, a student wanted 

to divide by zero, in another group, also employing τ1, a student asked what happens 

if you divided by ,. As time was of the essence the respective groups did not engage 

in theoretical discussion but refocused on the task at hand and developing techniques 

for which the technology and theory were already part of the students’ inventory.  

The activity of handling equations all with solution two, seemed to generate, in several 

groups, a questioning about whether the equations were not the same. After seeing the 

teachers’ two examples of equations with solution equal to two, a student asks  
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Uliuk: How can they all give the same result? Such a long equation can give 

the same result as that one. 

Vaaltimaat: That is the question! 

Teacher: I think that is a very good question! 

Uliuk: Then you can just write that [the first equation] instead of all that [the 

second equation]. That [the second] one takes a lot longer to reduce.  

In the second section of the lesson, other students commented that it did not feel like 

they had made new equations as it was a rewriting of the first equation. This happened 

in particularly if the students had done simpler manipulations such as rewriting 4, 

into 3,	 + 	, or 2, into , + ,.  

The extracts show that elements of theory are discussed and clarified but also inspire 

further questioning of the theory, that could lead to entire new types of praxeologies 

as to when are two equations the same? The students are becoming aware of equations 

as an object of study. 

In the next part of the lesson the students share their methods while the teacher 

reformulates and writes them on the board. The techniques shared are: multiplying a 

term of the equation with an expression that are equal to one when , is equal to two; 

dividing a part of the equation with an expression that are equal to one when x is equal 

to two; adding an expression that is equal to zero when x is equal to two, to one side 

of the equation; adding the same number or equivalent expressions on both sides of 

the equation; and multiplying with the same number or expression on both sides of 

the equation. 

The students’ sharing of their methods developed, shows the variety of the different 

technologies present in the lesson, and the similarity to the technology for solving 

equations. Thus, embedding the theory element that the solution is maintained into 

the praxeology for solving equations.  

In the last attempt at making an ugly equation with solution two, another piece of 

theory concerning the equal sign emerges. In a group the necessity of the equal sign 

in an equation is questioned. However, after wondering how one would solve such an 
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equation, or how one would check if the solution is two, an agreement is reached that 

the equal sign is a requirement for an expression to be an equation.   

The recount of the groups discussion shows that again the students are considering 

equations as an object of study, and though the question of whether or not the equal 

sign is a necessity for an equation was raised in the first lesson, the discussion in this 

account includes technology. 

Conclusion 

In this section we will try an answer our research questions into the potential of CAS 

and the notion of praxeology as a tool for designing tasks.  

The use of CAS in the activities allowed for the students to approach new tasks that 

would otherwise have been buried in time-consuming algebraic work such as solving 

equations. The new tasks involved themes within school algebra that strengthened, 

developed, and clarified both technology and theory. In lesson A, the students worked 

with describing what is an equation. The students developed, formulated, and clarified 

a great range of technology and theory involving equations and related topics. 

Therefore, strengthening an entire series of related praxeologies. In lesson B, the 

students worked with establishing a greater connection between the theory of 

maintaining the solution for an equation with the technology and techniques used for 

manipulating equations. Thus, sustaining a grander logos for school algebra. 

However, lesson B did not solve all problems related to the praxeologies of solving 

equations. During the lesson both students and teachers mentioned the metaphor for 

an equation as a seesaw, where the balance must be kept, and used it as a valid 

argument for justifying techniques. There were instances where this magic trick could 

have been put into question such as when a student wanted to divide by zero, or one 

student wanted to take the square root on both sides of the equation. But it did not 

happen.  

By outsourcing time-consuming algebraic work, CAS can be used to introduce new 

types of equation i.e. equations with more than one solution, making it possible to 

study equations as an object and not just using equations as a tool. This in turn 

developed both elements of the students’ theory and technology such as in lesson A. 

In lesson B, the use of CAS provided the students with a technique for verifying the 
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solution of their equations, allowing the students to experiment with creating and 

developing the equations. This led the students to develop and formulate not only an 

abundance of technology, but also formulate and clarify elements of theory.     

The work of the students with the logos further prompted the students to questioning, 

formulated and discuss elements of theory, such as rules and the role of substitution 

(from lesson A) or what happens if you divide by the unknown, thus further enhancing 

the activity. 

As both lesson A and lesson B contained many questions inquiring further into 

elements of technology and theory, we conjecture that the activities could be further 

enriched by not being bounded by a lesson plan. This would allow the students to 

control the path of inquiry and development of technology and theory. In addition, the 

object of lesson B, to further develop and explicitly state the relation between the 

techniques and technology (of manipulating equations) with the theory (of the 

solution staying the same), the institutionalisation must be  further emphasised.   

The use of the notion praxeology, in particular the four notions of task, technique, 

technology, and theory, allowed us to analyse the prevailing paper-and-pencil 

praxeology for solving an equation, and thus pick the themes “the students’ definition 

of an equation”, and “the relation between algebraic manipulations of an equation, 

and maintaining the same solution”. Both themes within school algebra, thus the 

designed activities would strengthen, by further developing, formulating, and 

clarifying the students’ logos. 

The notion of praxeology lets us study the lever potential of CAS further, and thus 

enabling the design of future activities more easily. In lesson A, the lever potential 

can be described as developing and formulating the students’ concept of equation, 

which is an element of the theory block. This characterisation can also be used to 

describe the potential of CAS studied in the thesis by Drijvers (2003). In lesson B, the 

lever potential is the strengthening of the relation between the theory of maintaining 

the same solution, with the techniques and technology for traditional algebraic 

manipulations). In the article by Hitt and Kieran (2009) the lever potential can be 

described as the (paper-and-pencil) telescoping technique being used not only as a 

technique, but also as technology for developing, justifying, and validating 
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conjectures. The use of the notion praxeology enables us to describe the students’ 

learning explicit and justifies the lever potential of CAS.  
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A STUDY OF A PRESERVICE TEACHER COURSE 
ON THE USE OF CAS IN SCHOOL ALGEBRA  

Louise Meier Carlsen 

A STUDY OF A PRESERVICE TEACHER COURSE ON THE USE OF 

CAS IN SCHOOL ALGEBRA  

Abstract – In this article, a lesson-study-inspired course in mathematics 

teacher education on the Faroe Islands is studied. The preservice teachers 

have to conduct four lessons in grade 8, teaching early algebra using CAS. 

We analyse the preservice teachers’ practice and knowledge gained during 

two lessons, combining the instrumental approach and the notions of 

praxeology and moments from the Anthropological Theory of the Didactic.  

 

Keywords: teacher education, CAS, the instrumental approach, praxeology, 

lesson study. 

ETUDE D'UN COURS D'ENSEIGNANT DE PRESERVICE SUR 

L'UTILISATION DU CAS EN ALGÉBRE SCOLAIRE  

Resumen – Dans cet article, un cours inspiré de la leçon-étude de la formation 

des enseignants de mathématiques aux îles Féroé est étudié. Les enseignants 

préposés à l'entretien doivent dispenser quatre leçons en 8e année et enseigner 

l'algèbre précoce en utilisant la CAS. Nous analysons la pratique et les 

connaissances acquises par les enseignants en formation initiale au cours de 

deux leçons, combinant l'approche instrumentale et les notions de praxéologie 

et les moments de la théorie anthropologique de la didactique. 

 

Palabras-claves: formación docente, CAS, el enfoque instrumental, 

praxeología, étude de cours. 

UN ESTUDIO DE UN CURSO DE PROFESORA DE CONSERVACIÓN 

SOBRE EL USO DE CAS EN LA ESCUELA ÁLGEBRA 

En este artículo, se estudia un curso inspirado en el estudio de lecciones en la 

formación del profesorado de matemáticas en las Islas Feroe. Los maestros 

en servicio tienen que llevar a cabo cuatro lecciones en el octavo grado, 

enseñando álgebra temprana usando CAS. Analizamos la práctica y el 
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conocimiento adquirido por los maestros en formación durante dos lecciones, 
combinando el enfoque instrumental y las nociones de praxeología y 
momentos de la Teoría Antropológica de la Didáctica.  
 
Mots-Clés : formation des enseignants, CAS, approche instrumentale, 
praxéologie, Estudio de la lección. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION  

Computer algebra systems (CAS), such as Maple, were developed 
foremost with a view to efficiency in carrying out cumbersome 
routines, such as symbolic computations for engineers and research 
mathematicians. In an educational context, when applying a program 
such as Maple or GeoGebra for pupils to use in the learning of 
mathematics, the time-saving aspect must take a background position, 
while the epistemic value for supporting and promoting mathematical 
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learning and understanding must stand in the forefront (Artigue, 
2005). 

The use of CAS has been an integrated part of upper secondary 
school in Denmark since 2005 and in many other countries for a 
considerable time. The intensive use of CAS in upper secondary 
school has inspired some teachers in lower secondary school to adopt 
CAS in their teaching as well. Talking with and observing teachers in 
lower secondary school implementing CAS reveals a variety of 
different approaches to the use of CAS. In some cases, CAS is used 
merely to check the results of tasks solved with pen and paper. In a 
few cases, CAS is used for mathematical explorations, and in other 
cases, CAS is used as a substitute for pen-and-paper manipulations. 
With a traditional algebra exercise in lower secondary school, such as 
solving an equation like  

!
" + 3# = 7, the techniques used to solve the 

exercise convey fundamental algebraic structures and principles when 
being solved with pen and paper. With the replacement of pen and 
paper with CAS, the epistemic value of learning about fundamental 
algebraic structures, such as the distributive axiom, is meagre 
(Carlsen, 2019).  

For a successful implementation of CAS in the teaching of school 
algebra, teacher education is seen as a key issue (Artigue, 1998). 
However, it is unclear how courses can be structured and what is 
possible and necessary for preservice teachers to learn when they have 
no prior experiences with CAS. 

In our study, we will explore what is possible for preservice 
teachers to learn about teaching with CAS tools in the following 
context: planning and teaching a grade 8 lesson using CAS and 
subsequently reflecting on observations (as in Japanese lesson study). 
In order to describe and analyse our findings, we also present a 
combination of the Instrumental Approach and of the Anthropological 
Theory of the Didactic (ATD), in part drawing on earlier work by 
Artigue (2002, 2007) and Lagrange (2005). The use of praxeology 
and moments from ATD contribute to a systematic and detailed 
description of instrumental geneses and instrumental orchestrations.  

BACKGROUND 
In this section, we will first take a look at the literature regarding 
preservice teachers’ education that includes the teaching of algebra 
using CAS in the curriculum. We will then connect the pivotal 
elements of the preservice teacher education course to the format of 
lesson study. Next, we will consider selected aspects of using CAS in 
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the teaching of school algebra, and, finally, we will present an 
introduction to the complementation of the instrumental approach 
from the perspective of ATD.  

We will consider the few research articles on preservice teacher 
education where the use of CAS in the teaching of algebra has been 
part of the curriculum. Generally, we know that teaching algebra 
using CAS is part of the curriculum in several preservice teacher 
educations around the world (Grugeon et al., 2009) and that there are 
several methods and perspectives for developing preservice teachers’ 
knowledge on teaching algebra using CAS (Grugeon et al., 2009), 
such as “classroom acting” where the preservice teachers act as the 
pupils and the teacher educator acts as the teacher of the lesson. The 
works of Özgün-Koca (2010) and Özgün-Koca, Meagher, & Edwards 
(2010) describe and analyse a method course in preservice teacher 
education, the latter using the framework of Technological, 
Pedagogical and Content Knowledge (TPACK) (Niess, 2005), where 
the preservice teachers designed and implemented technology-rich 
activities during their practicum. The articles contain extracts of the 
preservice teachers’ reflections, giving us insight into the type of 
knowledge developed by the preservice teachers on teaching algebra 
using CAS, such as how technology can be used to test conjectures 
much more easily than previously with pen and paper. The articles 
stress that the development of TPACK and beliefs related to the use 
of CAS in the teaching of algebra are related to the preservice 
teachers’ experiences as acting teachers in the classroom as well as 
their reflections (in the form of journal writing or interviews).  

The pivotal elements (for developing knowledge on teaching 
algebra using CAS) in the methods course are also to be found in the 
format of lesson study. Lesson study includes both teaching and a 
reflection session based on the teaching experience and is also to be 
found in preservice teacher education (Chen & Zhang, 2019; Elipane, 
2012; Rasmussen, 2015). Lesson study in preservice teacher 
education has shown great potential. From a broad perspective, lesson 
study breaches the gap between theory and practice and lessens the 
gap between preservice teacher education and the teaching profession. 
From an educational perspective, it can contribute to the development 
of practice and knowledge about problem-based teaching or more 
specific practice and knowledge about fostering and anticipating 
pupils’ responses to specific tasks (Chen & Zhang, 2019; Elipane, 
2012; Rasmussen, 2015). In particular, the reflection session is seen 
as a rich environment for the development of didactical knowledge 
(Miyakawa & Winsløw, 2013). Thus, the combination of 
implementing lesson study in preservice teacher education with the 
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aspect of developing non-trivial knowledge and practice about 
teaching algebra using CAS seems promising.  

The implementation of CAS in the teaching of school algebra 
provides both opportunities and obstacles for learning mathematics. 
Among some of the opportunities can be mentioned the prospect of 
the study of mathematical entities such as algebraic equivalence 
(Gjone, 2009; Lagrange, 2005). Gjone exemplifies how two 
functions, such as &(#) = 	 !!#$!#$   and *(#) = # + 1, can be compared 
for equality with CAS (which gives an output of “true”) and thus can 
give rise to discussion of algebraic equivalence. Although the objects 
are part of lower secondary school education, they are traditionally 
used as tools and not as an object of study. However, including 
activities that explore mathematical entities such as algebraic 
equivalence has the possibility, not just to explicitly formulate 
algebraic equivalence, but also to strengthen the students’ abilities to 
solve other types of algebraic tasks. Other potential uses for the 
implementation of CAS are algebraic explorations such as studying 
the factorization of polynomials of the type #% − 1 (Hitt & Kieran, 
2009). The CAS is used to efficiently obtain a series of results from 
which the pupils can detect a pattern. The CAS is used again to test 
their hypothesis and support their arguments for the hypothesis. A 
third potential is how graphical representation of the algebraic 
expression or equation can support students’ development of 
knowledge (Gjone, 2009; Kieran & Yerushalmy, 2004). In Gjone, the 
use of the graphical representation of the two equations  #" + ." = / 
and # + . = 0 supports the pupils in structuring an algebraic 
argument for the solution of the system.  

The obstacles for the implementation of CAS are many and varied. 
We would like to mention the process of teaching and familiarizing 
the pupils with the general use of the program and commands (e.g., 
how to undo the last entry, how to change viewing settings, what data 
type is required for a command etc.) and how the importance of this 
process is often diminished or the process itself entirely neglected. 
(Artigue, 2009). Clark-Wilson and Noss (2015) talk about “smaller” 
types of obstacles, denoted “hiccups”, occurring during activities with 
CAS. For example, pupils’ difficulties in entering #" or inserting extra 
parentheses. Clark-Wilson and Noss stress how such hiccups can be 
capitalized upon to further the pupils’ mathematical knowledge and 
that the potential of hiccups should be an integrated part of teacher 
development courses. 

Against the background of complementing ATD with the 
instrumental approach, Artigue (2002) adopted the dialectic between 
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practice and knowledge to analyse the position of instrumented 
techniques in the development of mathematical knowledge. The 
complementation of the institutional perspective from ATD to the 
instrumental approach has also been studied (Artigue, 2007; Trouche, 
2005). Artigue studied the possible tensions and complements of the 
two theories, while Trouche used ATD to develop a typology that 
describes the didactical configuration of the classroom when a digital 
tool is included. Our vision is to further the combination of the 
instrumental approach and ATD already accomplished in order to 
give a description and analysis of an entire lesson that includes the 
use of CAS, to include the teacher’s didactical configuration of the 
lesson in explicit detail and to describe and analyse the didactical 
knowledge developed based on reflections about the use of CAS in 
the lesson.   

THEORETICAL FRAMEWORKS AND THEIR 
COMPLEMENTATION 

In this section, we first describe the key elements of lesson study, then 
two well-established theoretical frameworks for studying learning and 
teaching situations involving the use of CAS. The first of the 
frameworks, Instrumental Genesis, brings into focus the role a digital 
tool plays in the development of an individual pupil’s knowledge. The 
second, closely related framework, Instrumental Orchestration, 
describes the teachers’ guidance of the pupils’ instrumental genesis. 
We then introduce the notions of praxeology and moments from the 
Anthropological Theory of the Didactic (ATD) to complement 
Instrumental Genesis and Instrumental Orchestration as they envision 
a more collective vision of knowledge (Artigue, 2007) and provide a 
structure for describing in explicit detail. Finally, we will state our 
research questions. 

Lesson study 
Lesson study is a format for professional development that originated 
in Asia but has now spread to a wide range of countries from its origin 
in Japan and China to the United States and from South Africa to 
Norway (Hart, Alston, & Murata, 2011; Huang, 2019). The structure 
of lesson study can be characterised by three phases that are cyclic 
and repeated: the first phase is the preparation, which includes some 
studying of resources by the teacher, planning of a lesson, and writing 
a lesson plan. In the second phase, which we will refer to as the 
research lesson, the lesson plan from the first phase is carried out in a 
class. A group of interested parties is invited to observe the lesson. 
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The third phase, which we will refer to as the reflection meeting, is a 
meeting of the teacher, invited observers and other parties. During the 
reflection meeting, aspects of the lesson are discussed, such as 
specific aspects of the task worked on by the pupils or, more 
generally, the meaning of the notion “clarity through drawing” 
(Miyakawa & Winsløw, 2013). 
 

Instrumental Genesis 
Instrumental Genesis (Artigue, 2002; Guin, Ruthven, & Trouche, 
2006) is a generic theory on human/machine interaction (Verillon & 
Rabardel, 1995) and has its origins in cognitive ergonomics. The 
theory suggests that when a person picks up, appropriates and applies 
a digital tool, the person goes through an evolution, the instrumental 
genesis, that involves the creation of schemes related to the uses of 
the tool and the tool itself. The instrument is defined as a combination 
of the tool, viewed as an object or artefact, and those schemes. 

The theory considers the process of instrumental genesis as having 
two directions. One direction is towards the artefact. This is called 
instrumentalisation, a process during which schemes for use of the 
tool are created, such as creating keyboard shortcuts or specific 
techniques for uses of a command. This process is influenced by the 
person’s knowledge related to the purposes of the tool (e.g., solving 
equations or creating a route between two addresses). For instance, 
one cannot learn about commands available in a CAS for solving an 
equation without prior insight into the subjects of variables, equations, 
and solution sets. In the process of instrumentalization, the focus is on 
the tool and one’s prior knowledge about the tasks; therefore, while it 
can help us to solve problems, it is merely supporting this acquisition 
of schemes about how to use the tool. 

The other direction of the process, which is directed towards the 
user’s knowledge about what the tools may help the subject to do 
(such as equations and solving them), is called instrumentation, and 
we talk in general about instrumented knowledge (techniques, and so 
on). For instance, a specific command has been used to plot a function 
to examine its graph, or an algebraic expression has been factorized 
in order to determine the number of roots of a given polynomial; this 
may provide knowledge about the mathematical object both 
specifically (regarding the function in question) and more generally 
(what may hold true for functions of a given class, etc.). 
Consequently, the digital tool affects the user’s knowledge about the 
subject matter through its commands, display and, not least, outputs 
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(the latter are the tool’s “reaction” to the user’s input and make the 
tool function as a kind of milieu for the user). 

We will use the notions of instrumentalization and instrumentation 
to distinguish, relate and describe actions and knowledge both 
mathematically and didactically.  

Instrumental Orchestration 
Our second theoretical framework is the theory of Instrumental 
Orchestration, (Guin & Trouche, 2002; Trouche, 2004); this 
framework is specific to the study and design of situations where a 
teacher actively supports a user’s instrumental genesis. It has mainly 
been used in the case of teaching mathematics with digital tools, such 
as a dynamic geometry system or CAS. Instrumental orchestration 
complements instrumental genesis by focusing on the teachers’ work 
to frame and direct pupils’ instrumental genesis. It involves 
descriptive models of teachers’ systematic and planned configurations 
of the pupils’ work with the tool, uses of digital tools available and 
the choices related to the different stages in the treatment of the 
mathematical subject. Two dimensions of the instrumental 
orchestration are emphasized, namely, the didactical configurations 
and their exploitation modes. 

The didactical configurations can be described as the layout of the 
classroom with regard to the objects already available in the 
classroom and the objects brought into the classroom, distinguishing 
between different didactical configurations found in each stage of the 
didactical situation (Brousseau, 2006). Having the pupils in turn cast 
the screen of their iPad onto the smartboard is part of a didactical 
configuration. We distinguish between the didactical configurations 
for different stages of the didactical situation, such as the situation of 
introducing a problem to be worked on or the situation of organising 
the pupils’ sharing of findings. 

The exploitation mode of the didactical configuration can be 
described as the way the teacher and the pupils are utilizing the 
didactical configurations. Continuing the example of the situation of 
the pupils sharing their findings, the way in which the teacher 
conducts and organises the sharing and what should be shared as well 
as the emphasis on certain aspects of the pupils’ presentation and not 
on others is part of the exploitation mode.   

The notion of instrumental orchestration will be employed to 
describe and differentiate between the different situations of the 
activities.  
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Praxeology 
The Anthropological Theory of the Didactic considers knowledge 

(such as mathematical or didactical knowledge) as a product of human 

activity (Bosch & Gascón, 2014; Chevallard, 1999). For instance, the 

didactical knowledge of a teacher is shaped by her activities and 

experiences as a teacher and usually also by her past activity as a pupil 

and preservice student. The theory further posits that human activity 

takes place within an institution. Here an institution is determined by 

culture and social context. For instance, a school, a family, and a class 

of pupils may all be viewed as institutions. Including the institutional 

view of ATD enables us to consider the instrumental genesis of the 

institution made of the class of pupils and how the instrumental 

orchestration effects the instrumental genesis of the class. 

In order to study elements of knowledge of an institution, we must 

have precise models of the practices (activities) that produce the 

knowledge and, at the same time, of the knowledge that produces the 

praxis. In order to name this amalgam of knowledge and practice, 

ATD proposes the notion of 

praxeology. A praxeology 

consists of two main 

components: the praxis and the 

logos. The praxis component is, 

furthermore, considered as 

having two closely related parts: 

the constituting types of task that 

the institution aims to complete 

and the techniques that the 

institution employs in order to 

solve the task. We distinguish 

between an instrumented and a 

non-instrumented technique 

based on whether a digital tool 

instrument is employed.  

In our study, we will describe 

and analyse interrelated families 

of praxeologies: the pupils’ and teacher’s mathematical praxeologies 

and the teacher’s didactical praxeologies. The teacher’s didactical 

praxeologies aim at developing the pupils’ mathematical praxeologies 

to include an intended, new element (e.g. a technique, a theoretical 

notion); this new element is called the didactical stake.  

The notion of praxeology will be used to complement instrumental 

genesis and instrumental orchestration by systematically and 
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Figure 1 - Praxeology structure 
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explicitly providing description of both their mathematical and 
didactical character.    

In order to distinguish between different stages of the 
development of pupils’ and teacher’s praxeologies, we adopt the 
notion of didactic moments from ATD. As explained in more detail 
by Chevallard (1999), the theory distinguishes between six different 
moments which may occur in a different order than that given below 
and which (in a given lesson) may not all be present. The six moments 
are as follows (Bosch & Gascón, 2014): 

§ the first encounter with the question or tasks related to a 
new mathematical praxeology to be learned, 
§ the exploration of the corresponding type of tasks and the 
emergence of a technique, 
§ the work on the technique (refining and improving it) and 
the study of its scope, 
§ the elaboration of a theoretical environment, 
§ the institutionalization and 
§ the evaluation of the work done. 
The notion of moment from ATD will complement instrumental 

orchestration by providing a systematic description of the teachers’ 
intention of the activity.  

Research questions 
§ What didactical praxeologies can be developed by 
preservice teachers when teaching elementary algebra using 
CAS? 
§ What potential does the implementation of lesson-study-
like practice hold for preservice teacher education related to the 
successful development of instrumental orchestrations? 

CONTEXT AND METHODOLOGY 

In this section we will describe the context and the methodology for 
our study. 

In order to explore what didactical praxeologies can be developed 
by preservice teachers about teaching elementary algebra using CAS, 
we designed a lesson-study-inspired course. The course was 
incorporated as part of a larger course with the title “Numbers, 
Arithmetic and Algebra” (NAA). The course NAA was the first 
course in a series of courses lasting for a year in order to reach the 
status of teaching competence in mathematics for grades 1 to 10. The 
course was attended by third- and fourth-year preservice teachers at 
the teacher education programme in the Faroe Islands. The course 
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which the students had previous taken concerned pedagogy, 
psychology, and general didactics such as constructivism and 
cooperative learning. Generally, this teacher education programme 
does not include classroom practice until the end of the third and 
fourth years, and thus a larger part of the participants of the course 
had no prior experience in teaching, and none of the participants were 
familiar with the concept of lesson study. The preservice teachers also 
had no prior experiences with the use of CAS in their primary, 
secondary or teacher education. Furthermore, explorative approaches 
to learning and teaching were also unfamiliar.  

Our interest in the NAA course was only the algebra part that 
included the use of CAS. It started with three weeks of classroom 
teaching to prepare the preservice teachers to conduct lesson study 
during the following eight weeks. The three weeks included getting 
familiar with the format of lesson study from Japan and with the CAS 
tools in GeoGebra. For the following eight weeks, the course 
consisted of bi-weekly lesson studies and a half-day of regular class 
per week to plan, discuss and analyse with the teacher educator, if 
necessary. For the preservice teachers to practice lesson study, they 
were divided into groups of 3-4 preservice teachers. Each group 
alternated between observing a lesson and being responsible for the 
enactment of a lesson. Prior to each research lesson, a lesson plan had 
to be written. The lesson plan followed a template that first included 
a description of the didactical stake. In the next section, the preservice 
teachers gave a content analysis of the pupils’ planned activities in the 
lesson. In the following section of the lesson plan, the preservice 
teachers gave a description of the different orchestration planned for 
the lesson. The preservice teachers were asked to describe the 
different orchestrations planned for the lesson to realise the many 
possibilities and reflect on their choices. The last section of the lesson 
plan contained the script for the lesson. The script was structured 
along a vertical timeline and had three horizontal columns: the first 
column was the type of the didactical moment and a time estimate, 
the second column included the teacher’s planned actions and 
reactions to the pupils’ performance and the third column contained a 
description of the pupils’ expected performance. All the lesson plans 
written prior to the research lessons and related worksheets were 
collected as data.  

During the research lessons, field notes were written to note the 
instrumental orchestrations, specific didactical techniques, and 
pupils’ praxeologies. The last research lesson of each group was 
recorded. 
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After the research lesson, a reflection meeting was held the same 
day, following a protocol. The reflection meeting started with the 
teacher’s recollection of the lesson. Then the observers of the lesson 
were asked to recall their observations of the pupils’ performance. 
The teacher educator also shared observations of the pupils’ 
praxeologies. At the first reflection meetings, the teacher educators’ 
observations were pivotal to exemplify for the preservice teachers the 
level of detail in observations that is beneficial for reflections. In the 
latter reflection meetings, the preservice teachers were responsible for 
most of the detailed observations. Reflections on the observations of 
the pupils’ performance were welcomed. The reflection meetings 
ended with suggestions for improving the lesson. For the oral exam, 
the preservice teachers had to rewrite the lesson plans and present one 
of the lesson plans.  

For all the reflection meetings, we recorded what was said by the 
participants. We consider the reflection meetings our main source of 
data on the development of didactical praxeologies, based on the 
article by Miyakawa and Winsløw (2013). In general, all the groups 
of preservice teachers conducted at least one successful lesson 
implementing CAS, that is, a lesson which included mathematical 
explorations using CAS. Some groups started out carefully with using 
CAS to check results of paper-and-pencil tasks, wanting to familiarize 
the pupils with CAS and see how the pupils were able to handle CAS 
and, more generally, an iPad in the classroom. Other and more brave 
groups started out with mathematical explorations using CAS from 
the beginning.  

For our analysis, the choices of lessons to analyse and present in 
this study was based on criteria following to our research questions, 
which emphasise realised possibilities. The first criterion was to 
choose lessons that where mathematically interesting in the sense that 
they gave rise to non-trivial development of praxeologies for the 
teaching of elementary algebra using CAS. The second criterion was 
to choose lessons where the reflection meeting focused on different 
perspectives of teaching using CAS, and to present and analyse two 
different praxeologies. Finally, we chose to analyse some of the last 
research lessons carried out by the preservice students, as their 
designs of these lessons were braver and more inquisitive in terms of 
didactical stake, instrumental orchestration etc., than what we saw in 
their first lesson studies. It is also clear that at later stages, the 
preservice teachers were more comfortable with the format of lesson 
study, and more skilled in observing the pupils’ performances.  

Two reflection meetings were selected for transcription. Then 
detailed practice reports of the research lessons were written, and the 
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types of task were identified. Following, the reflection meetings and 
lesson plans were analysed using the full model of praxeology 
following the categorization of types of tasks from the accounts of the 
research lessons.   

Our detailed findings related to the two chosen lesson studies are 
presented in the next two sections. Each section begins with an 
account of the research lesson around which the preservice teachers’ 
reflections and development of didactical praxeologies were centred. 
Then we will describe the didactical development of the preservice 
teachers based on the lesson plans made prior to the research lesson, 
the reflection meeting, and the revised lesson plan. This gives rise to 
many observed potentials related to instrumental orchestration. We 
summarize the findings from both cases in the conclusion.  

LESSON A: WHAT IS AN EQUATION?  

Description of the research lesson 
The didactical stake of the lesson was for the pupils to develop and 
formulate a tentative definition of an equation, centred around the 
following five types of tasks: 

T1: Describe what an equation is, 
T2: Solve simple first degree equations with pen and paper, 
T3: Solve non-simple first degree equations with CAS, 
T4: Add together two first degree equations and 
T5: Determine if a symbol string is an equation or not. 

The lesson started with a didactical moment of first encounter. The 
didactical task of the teacher was to guide the pupils to a tentative 
definition of an equation. The teacher posed the initial question, 
“What is an equation?” When the pupils seemed lost, she used the 
didactical techniques of reformulating the task: “When do we see that 
it is an equation? What is necessary for it to be an equation? What 
symbols do we need? What does an equation look like?”  

The first encounter was then followed by a moment of exploration 
where the pupils formulated a description of an equation as a tentative 
definition. The teacher orchestrated that the pupils work in pairs and 
then used the didactical technique of having the pupils note their work 
on paper while she walked among the pupils to observe their work. 

After a moment of exploration, the lesson changed into a moment 
of institutionalisation where the teacher orchestrated that the pupils in 
turn share an element of their work (i.e., “equal sign”, “parenthesis”, 
“variable”, etc.). A main didactical technique used by the teacher was 
to write key words on the whiteboard.  
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The pupils were then given a sheet of paper where a number of 

tasks of type T2 were stated, and we entered a moment of work on the 

technique. The mathematical techniques employed related to 

traditional algebraic manipulations established in previous lessons. 

The didactical type of task was intended to reinforce and extend the 

pupils’ praxeology constituted by T2. The didactical techniques 

included a list of equations and the stipulation that they must be solved 

with pen and paper. 

The next moment of the lesson was work on techniques where T3 

and T5 were posed. For examples of equations and symbol strings, see 

Figure 1. For T3 the instrumented technique involved entering the 

expression in CAS then reading the solution of the equation from the 

output. The T5 type of task was not stated in the lesson by the teacher 

but appeared when the pupils were encountering an equation with no 

solution. The pupils then checked what they had entered and what 

they had been asked to enter and realised that the equation did not 

contain any variable.  

The didactical type of task was designed to advance the pupils’ 

definition of an equation. As a didactical technique, the preservice 

teachers used the affordances of the CAS to introduce a new set of 

equations. The new equations differed from the types of equations 

included in previous algebraic praxeologies, which not only 

reinforced elements of the pupils’ definition of an equation, but also 

extended the definition. Another didactical technique was to have the 

pupils write down the solutions for the equations on a sheet of paper 

to push the pupils to read the solution to the equation from the output. 

2" − 12− " = 	−3" + 8		 
2
5" + 5 + 5" + 1 = 2(−" − 3) + 8 + 13 

3 + 12 + 14 − 8 = 3(2 + 1) + 2 
8" + 7 − 27 + 4" = 6 + 5"	 − "(−3 + 2) + 3 

223" + 21 + 2" = 42 − 413" + 15 + " 
4"	 + 	8	– 	14	 + 3"	 = 	17	 + 5"	 − 2 − 2" 

2(" − 2) + 4 + 3" − 5
= 5 + 2(2 − ") + 3 − 4 

3(" − 3) + 5" = 2(−" − 4) + 9	 
2" + 12 + 4(" + 2) −

1
2 + 4 − 2 

4" + 12 + " = 2" + 6 + 12 

Figure 1. Examples of equations for T3 
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The instrumental orchestration was to have the pupils resume their 
work in groups, sharing an iPad. Since the pupils were re-evaluating 
their description of an equation and formulating additions to the 
description, the moment included a theoretical environment.  

The next section of the lesson shifted between moments of 
institutionalisation and moments of evaluation. The instrumental 
orchestration was to project the screen of an iPad onto the smartboard, 
alternating between pupils, while the pupils described what they had 
done, the output of the CAS and how it related to their (previous) 
concept of an equation. For example, the equation  

"
& # + 5 + 5# +

1 = 2(−# − 3) + 8 + 13 was considered with the output {# = '&
()}. 

The pupils recounted that the output made them recheck what they 
had entered because they did not consider a fraction to be a solution 
to an equation. After rechecking, they realised that, in fact, a fraction 
can be a solution to an equation. The teacher then reformulated the 
pupils’ conclusion about fractions as solutions of a first degree 
equation:  

[A solution to an equation can be] not so nice… but still a [correct] 
value for x… A solution can also be [a] very small [number] or 
something with a comma, that does not end [an infinite number of 
decimals] like three point eight two seven and so on [3.827…], but 
sometimes they are easier to write in that way [fraction], it is just a 
way of writing a number.  

The equation 3 + 1/2 + 14 − 8 = 3(2 + 1) + 2 was also considered 
in similar fashion, and it was concluded first by the pupils and then 
by the teacher that an equation must contain at least one variable. The 
symbol string 2# + 1/2 + 4(# + 2) − 1/2 + 4 − 2 gave rise to a 
reflection about whether or not an equation must have an equal sign 
because the CAS was able to find a solution for the equation. Apart 
from concluding that a main requirement for an equation is an equal 
sign, it was also concluded that the pupils’ and the teacher’s 
instrumentalisation process was unfinished since neither could figure 
out why CAS could possibly solve the “equation”. 

The lesson changed to address T4, but we will go no further with 
our description since the remainder of the lesson is not related to the 
didactical stake of making a tentative definition of an equation.  

Development of didactical praxeology 
Although solving T1 did not directly require the use of CAS per 

se, it was because of CAS that such a type of task was being 
formulated, and with the implementation of CAS it gave rise to further 
mathematical investigations.  
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In the lesson plan written prior to the research lesson, we could 
identify T1 and some elements of the related didactical praxeology. 
For the moment of exploration, the preservice teachers described the 
didactical technique of having the pupils discuss together in pairs. For 
the moment of work on the technique, the preservice teachers 
specified the didactical technique of having the pupils write the result 
of their discussion on a piece of paper. As didactical logos for T1, the 
preservice teachers asserted the intention to strengthen the pupils’ 
ability to formulate their mathematical knowledge and to reflect on 
equations as an object of study.  

In the research lesson, two further didactical techniques could be 
identified that were not included in the lesson plan and were pivotal 
for T1. The first was to reformulate the initial question during the first 
encounter, and the second was to write key words on the board during 
the moment of institutionalization.  

In the reflection meeting, the task T1 was reformulated more 
explicitly by a preservice teacher as was the didactical technique of 
reformulating the task:  

[T]he pupils have worked a lot [with equations] and I see it as if you 
wish for the pupils to make a definition of an equation–close to, 
anyway.  

Then a preservice teacher shared her observations of the pupils’ 
responses in relation to the didactical technique of reformulating the 
task:  

The teacher asks, “What is an equation?” Then the pupils are stunned, 
perplexed. But then the teacher asks [the] supplementary [questions]: 
“When do we see that it is an equation? What is necessary?” This is 
actually a great addition; they can answer [the questions]. Then the 
teacher also asks, “What symbols do we need?” And then the ball 
starts rolling for the pupils.   

In the revised lesson plan, we could explicitly find the expression 
“definition of an equation”. It was used as a guide for the reader, but 
not as an expression to be specifically stated during the lesson. In the 
column of the teacher’s activities in the script of the lesson, we could 
identify the didactical technique of reformulating the task and even 
explicit suggestions for the reformulations. In the description of the 
orchestration, where before there was not even a description of an 
orchestration, we could now find the orchestration related to T1 from 
the research lesson and could even identify the didactical technique 
of writing key words on the whiteboard and that the key words must 
remain visible through the lesson. In contrast to the previous lesson 
plan, we could now identify more of the pupils’ praxeology for T1 in 
the column of the expected pupil activities such as the following:  
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[I]t will be difficult to formulate for the pupils, no pupils will come 
up with a definition of an equation, and they will say equal sign and 
the like.   

Although the preservice teachers still did not give the task T1 its 

own content analysis, they were still giving more importance to the 

task. The didactical techniques related to T1 were now explicitly 

identifiable in the lesson plan, and the descriptions contained more 

professional terms. In addition, the pupils’ performance, which before 

was a wild card, was now predicted.   

The preservice teachers, with their posing of T1, realised the 

potential of CAS to study mathematical entities such as the study of 

an equation. To plan a journey on such a study with a class of pupils, 

the preservice teachers realised the importance of the initial question, 

of handing over the question to the pupils and of the pupils being 

unfamiliar with such types of tasks and needing reformulations.   

The task T2, as it was familiar to the preservice teachers and pupils 

from previous lessons, did not warrant a change in the lesson plan nor 

was it subject of further reflections.  

For the task T3 in the lesson plan, we could identify the 

instrumented techniques such as “entering equations”, “placing 

[extra] parenthesis” and logos such as “knowing syntax on how CAS 

reads what has been entered”, “the addition of extra parenthesis and 

their placement” and more general logos such as “definition of 

equations, [definition of] parenthesis, … syntax of CAS”. The content 

analysis did not give the complete praxeology of the pupils; 

nevertheless, it showed us that the preservice teachers had some 

insight into the necessary instrumentalisation process for entering and 

solving equations with CAS.   

In the reflection meeting, the first observation shared by one of the 

preservice teachers in relation to T3 concerned the pupils’ responses 

to the didactical technique of including a type of equation of the form 
%"
%!
# + 8( + 8'# + 8& = 8*(−# + 8)) + 8+ + 8,, where the 8-’s are 

non-zero integers and n1 and n2 are mutually prime. The sharing of 

observations of the pupils’ activities started with the recalling of a 

question asked of fellow pupils about how to enter the expression	"& # 

in CAS. Then an observation followed of the pupils’ reactions to 

including a type of equation that had a non-integer solution:  

It is really good with all the big ugly fractions [as solution for the 
equation] because then the pupils think it is incorrect. But then they 
check [what they have entered] and everybody else have forty-five 
thirty-seventh [!"#$]. They have never had such a solution before. 
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The two shared observations then sparked a reflection by one of the 
preservice teachers:  

This [introducing new types of equations] is among other what we 
can do with CAS … They [the pupils when encountering new types 
of equations] run with it. Usually they would have had a raised a hand 
to ask the teacher for help. But they are experimenting and 
investigating, I think this is great. 

Another preservice teacher shared her reflection about the pupils’ 
willingness to establish new instrumented techniques:  

I think that when CAS is involved then it is as if they [the pupils] dare 
better to experiment than if they were using pen and paper. They feel 
safer with CAS even though they do not know [for sure].   

Another observation of the pupils’ responses propelled further 
development of didactical logos. A preservice teacher shared an 
observation:  

One [an equation] was x parenthesis ["(]. A pupil tried [entering the 
expression] but it did not work. But then he writes x times the 
parenthesis and then it works. He discovered that if x is next to the 
parenthesis then you have to enter an additional multiplication sign. 

Another preservice teacher commented:  
It [the new type of equations] can also enhance the mathematical 
understanding, the theory.   

Then the first preservice teacher replied:  
Yes, you need to understand that x is multiplied into the parentheses. 
We do it implicitly, but now the pupil is forced to write it. That is 
great. 

The preservice teachers’ observations and reflections about the 
instrumented technique of entering expressions of the form #( and %. # 
exemplified how CAS could be capitalized upon to explicitly write 
the otherwise implicit multiplication sign. Such smaller autonomous 
instrumentalisation processes were possible because of the pupils’ 
previous algebraic praxeologies. This also illustrated that the use of 
instrumented techniques requires mathematical logos.  

Another line of observations was related to the didactical 
technique of including symbolic strings that did not include an equal 
sign or variable and the emergence of T5. It was pointed out that the 
pupils, who noticed that there was no variable or no equal sign, 
immediately concluded that the given expression was not an equation, 
due to the key words on the whiteboard from the beginning of the 
class. The teacher confirmed that he intended the key words to remain 
on the whiteboard to guide the pupils during the moment of the work 
on the technique.  
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In the lesson plan written after the research lesson, we could 
explicitly identify several of the didactical techniques that occurred in 
the research lesson, such as including new types of equations and 
symbol strings that did not contain an equal sign or a variable. Further, 
a new type of orchestration was added and another one was modified. 
Inspired by the article on instrumental orchestration by Drijvers, 
Doorman, Boon, Reed, and Gravemeijer (2010), the preservice 
teachers called one orchestration “technical-demo”. However, the 
orchestration did not include any collective element or interference by 
the teacher. Instead, it was expected that the pupils could develop the 
appropriate instrumented techniques through autonomous 
experimentation. The other and new orchestration was called Sherpa-
at-work, which is where each pupil in turn will “present and describe 
her work process”. The mathematical techniques, both instrumented 
and non-instrumented, such as placement of extra parentheses and 
other mathematical symbols, were also more elaborately described in 
the timeline. 

Now that the preservice teachers were able to create a series of 
tasks, T3, they realised the potential of CAS to study mathematical 
entities (mentioned in the background section).  

A moment of institutionalisation that did not occur in the research 
lesson was added to the timeline:  

The teacher orchestrates a recollection of what they have learned 
today, in particular, the conditions and the characteristics of an 
equation. The pupils will answer considerably better ... presenting 
how the definition of an equation has gradually developed.    

Further, the preservice teachers added moments of 
institutionalisation of the theoretical environment conforming to the 
structure of some forms of inquiry-based teaching. 

LESSON B: THE DISTRIBUTIVE LAW !(# + %) =
!# + !% 
Description of the research lesson 
The full lesson was divided into two activities. In the first activity the 
pupils worked in groups and solved simple equations with pen and 
paper, sharing their techniques and technology with the group and 
later with the class. In the second half of the lesson the preservice 
teachers had planned an activity with the didactical stake of having 
the pupils formulate the abstract distributive law 9(# + :) = 9# +
9: for real numbers 9, : and #. As the activities are not closely 
related, we will concentrate on the second activity that involved the 
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use of CAS. The activity revolved around the following mathematical 
tasks: 

T1: Set up two integer sliders named 9 and : in the interval 
from −10 to 10, (see Figure 3), 
T2: Set up the generic line . = 	9#	 + 	:, (see Figure 3),  
T3: Generate an example of the form . = 8(# +<), where 
8 and < are integers, 
T4: Slide the line . = 	9#	 + 	: on top of the generated 
example and note the values for 9 and : (see Figure 4), and 
T5: Answer the question, “What is the relation between the 
equivalent expressions?”  

The second half of the research lesson started with a moment of first 
encounter of T1-T5, with the main didactical technique of giving a 
short oral presentation of the tasks T1-T5. Following, the lesson 
changed to a moment of work on the techniques, where the main 
didactical technique was to hand the pupils a booklet. The booklet 
contained illustrations for the techniques required for T1 and T2, such 
as setting up sliders and lines in GeoGebra (see Figure 3).  
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Whenever the pupils encountered an instance that was not 
described in the booklet, such as slider : being above slider 9 instead 
of below slider a (see Figure 2), they requested assistance from the 
teacher. It also became apparent in the moment that the order in which 
the instrumented techniques were performed was pivotal (i.e., if in 
Figure 3, Illustration 5, the instrumented technique numbered one was 
performed last, then the changed values for the name and the interval 
(the instrumented techniques numbered by two and three) changed to 
a pre-set standard). The moment did not contain any explicitly stated 

Figure 3. Extract of booklet, Illustration 4 and 5 
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logos for any of the instrumented techniques present. The completion 
of the task T2 resulted in the blue line in figure 6.   

The next moment of the lesson was again a work on techniques.  

The moment involved the tasks T3 and T4. The pupils first generated 
an expression of the form 8(# +<), where n and m were integers, 
then they noted the expression in their work sheet, and then the 
expression was entered into the input bar in GeoGebra, which 
generated the coloured line .	 = 	8(# +<) in the coordinate system, 
the red line in Figure 4. The pupils then moved on to the task T4. The 
instrumented technique was to press down on a slider and slide it back 
and forth. When the slider changed value, the parameter in the generic 
line changed value accordingly. By alternating between slider 9 
and	:, the pupils moved the generic red line on top of the other blue 
line (see Figure 6). The pupils then noted the expression for the 
generic line on their worksheet next to the expression from T3. The 
pupils repeated T3 and T4 with different examples.  

For the pupils who managed to complete T3 and T4 with four 
different examples, the lesson changed to a moment of theoretical 
environment. The task of the moment was T5 that was stated on the 
worksheet handed out in the beginning of the activity.  

Shortly afterward, the lesson changed to a moment of 
institutionalisation. A didactical technique of the moment was for the 
pupils to use an online version of GeoGebra on the smartboard and 
institutionalise every instrumented technique of setting up the sliders 
and the generic line. The group of pupils also shared an example of a 
line where they described how they entered the line in GeoGebra and 
how they moved the generic line on top of their example. The group 
of pupils then explained the relation between the two equivalent 

Figure 4. Screen shot of GeoGebra 
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expressions. In the moment, both the didactical stake and the 
instrumented techniques were being institutionalised.  

The moment then changed to evaluation of the work done, and the 
teacher reformulated and expanded the pupils’ conclusion, 
emphasising the geometric illustration of the expressions and the 
parentheses. (The two lines are matching, so the expressions must be 
the same. Since the expressions are the same, then 9 is equal to 8 and 
: is equal to 8 times <, hence when we go from the expression 8(#	 +
	<	) to the expression	9#	 + 	:, the number 8 (outside the 
parentheses) is multiplied with the terms # and < inside the 
parentheses. This is the property of the parentheses.) She then went 
on to illustrate “the property of the parentheses” with another 
example.   

Development of didactical praxeologies 
The techniques related to answering T1 could be identified prior to the 
research lesson as the preservice teachers had compiled a booklet. We 
could determine techniques such as pressing the slider icon, then 
choosing the slider from the fold-out menu, and then pressing an 
empty space on the coordinate system (see Figure 3, Illustration 4). 
Apart from the techniques required to set up sliders, nothing was 
written about the didactical praxeologies.  

In the reflection meeting, the first shared observations and 
reflections were about the orchestration of the instrumentalisation 
process, in particular, the didactical technique of using a booklet to 
guide the pupils’ instrumented techniques. The first observation 
shared by a preservice teacher was the pupils’ reaction when they 
were handed the picture booklet. The joy that the pupils had expressed 
earlier when being asked to take out their iPads was being replaced 
with expressions conveying their demotivation at being handed a 
booklet, and even before opening the booklet a pupil claimed not to 
be able to read it. There was general agreement among the preservice 
teachers that the pupils found it difficult to follow the instructions in 
the booklet. However, the following shared observations of the 
pupils’ interaction with GeoGebra give a more nuanced impression. 
A preservice teacher recalled:  

There were some pupils that did not get the same screen [as depicted 
in the booklet], the slider 2 was below slider 3. So, they were, “Oh, 
no! We did it wrong, we have to re-do it”. 

The observation exemplified that, even though the instrumented 
techniques in the booklet were very carefully and meticulously 
depicted, the booklet did not describe for what and how (part of the 
logos) the sliders were intended to be used, enabling the pupils to 
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draw the conclusion that the positioning of the sliders in relation to 
each other was irrelevant.  

Then followed a series of observations of instrumented techniques 
that were not planned. A preservice teacher shared two of her 
observations:  

They [the pupils] pressed somewhere on the screen, and then a 
message or other pops up. Then one of the pupils says, “What have 
you done!” Another group of pupils had entered a great deal, but then 
suddenly they delete everything, and started over!   

The observations shared showed the preservice teachers that a lengthy 
series of instrumented techniques, such as setting up sliders, required 
more instrumentalisation in order to edit what they had entered and 
not to be so easily shaken by unforeseen actions of GeoGebra.  

Different didactical techniques were suggested, either to avoid the 
lengthy set up of the sliders completely or to further the pupils’ 
instrumented techniques. A didactical technique suggested was to 
send the pupils a GeoGebra file, where the sliders had already been 
set up. However, the didactical technique was dismissed since it 
would create other technical issues, such as the pupils all accessing 
the internet at the same time, logging into a shared folder and 
downloading a file, and it still would not resolve the pupils’ 
insufficient knowledge of instrumented techniques related to the 
general use of GeoGebra. Another instrumental orchestration was 
suggested to integrate the booklet and further the pupils’ 
instrumentalisation process:  

It [the setup of sliders] is a good idea to have on paper [referring to 
the booklet], but perhaps for the next time …, we give the booklet 
anyway in case they do not remember all the techniques, but we go 
through the techniques on the smartboard so that everyone gets the 
understanding.  

The preservice teachers suggested and agreed to a new instrumental 
orchestration, where the teacher would go through the setup of the 
sliders in order to be able to provide some logos along the description 
of the instrumented techniques.  

The preservice teachers experienced that during a lengthy moment 
of work on techniques, when it involves instrumented techniques 
commended upon the inclusion of logos of the instrumented 
techniques, the logos must contain knowledge in relation to the 
mathematical object and more general knowledge about the use of 
GeoGebra, such as how to edit or go back one step of what has just 
been entered.   

In the revised lesson plan, we could identify the orchestration, 
including the booklet, complemented by the teachers going through 
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the setup of the sliders on the smart board. The preservice teachers 
gave more importance to the instrumentalisation process.  

For the task T4, we could not detect any mathematical or didactical 
praxeologies from the lesson plan written prior to the research lesson. 
In the reflection meeting, the preservice teachers shared observations 
and reflections related to the task T4. A preservice teacher recalled a 
group of pupils that were sliding the generic line (.	 = 	9#	 + 	: ) on 

top of their own example of a line (.	 = 	8(# +<)), where n and m 
are fixed integers. She recalled that the pupils slid one line on top of 

the other, but then the visualisation of the line .	 = 	8(# +<) 
disappeared, and only the generic line was visible. This confused the 
pupils, and the preservice teacher recalled that one of the pupils 
exclaimed that she didn’t see it, but that the other pupils in the group 
helped her by clarifying that the “disappeared” line was behind the 
visible line. Another preservice teacher then added her observation of 
a group of pupils using the sliders. She observed that even though the 
pupils could adjust on two sliders, one of the pupils insistently only 
adjusted one of the sliders:  

She starts with changing [the slider] 2, but she doesn’t get the line on 
top of the other, because she is only changing the slope of the line. 
She tries for a very long time, back and forth, back and forth [with the 
slider], all of four times! At the end, another [pupil from the group] 
asks her if she can try. Then she [the other pupil] moves slider	3, and 
then slider 2 again. [I think] This is great!  

This exemplified for the preservice teachers several more 
instrumented techniques for T4 other than pressing down on the slider 
and moving the slider back and forth. There was the instrumented 
technique of interpreting when the lines are on top of each other and 
the instrumented technique of changing between sliders with the logos 
of relating one slider to the slope of the line and the other to the 
vertical move of the line (the intersection with the y-axis).   

The final observation shared related to T4 concerned the didactical 
technique of limiting the sliders to the interval between -10 and 10. A 
preservice teacher recalled that several groups of pupils encountered 

that they were not able to slide the generic line (. = 9# + :) on top 
of all lines and that one group dealt with this phenomenon by deleting 
the line that was outside of reach, while another group started to 
reflect on why the generic line could not reach the other line. A 
preservice teacher suggested including supportive questions from the 
teacher to the groups who had encountered this so that all the pupils 
could benefit from this information.  

The preservice teachers observed a use of the slider that for some 
pupils was a constraint but that others were able to capitalize upon. 
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The preservice teachers suggested that the lesson could benefit from 
the phenomenon to enrich the pupils’ learning.  

In the revised lesson plan, the preservice teachers described the 
case where the multiple of the variables n and m was above 10 or 
below -1 and prepared the teacher to ask the pupils why they could 
not slide the generic line on top of their example, how the slider a 
moved the line and how the slider b moved the line.    

By adding to the lesson plan or turning an obstacle into an 
opportunity, the preservice teachers realised the potential of turning a 
hiccup into an opportunity for further learning (as described in the 
background section).    

CONCLUSIONS 

Based on the detailed findings which were described in the preceding 
sections, we now present our main conclusions related to each 
research question.  

The preservice teachers’ praxeologies developed related to the use 
of CAS 
For the didactical moment of work on the technique, the preservice 
teachers experienced that the use of CAS can enrich the exploration 
of non-instrumented techniques, such as looking for the presence of 
an equal sign in order to decide whether a given symbol string is an 
equation, as new types of expressions can be examined. In order for 
the moment to be enriched, the deliberate construction of new types 
of examples plays a crucial role, as seen in Lesson A.  

The preservice teachers experienced that the pupils were able to 
autonomously develop new instrumented techniques based on their 
previously established mathematical praxeologies, as in Lesson A, but 
that they failed if the logos for the instrumented technique required 
generic knowledge of CAS, such as how to edit what had been entered 
(experienced both in Lesson A and Lesson B).   

As a general didactical hypothesis for the use of CAS in the 
teaching of elementary mathematics, the preservice teachers 
experienced that relative theoretical mathematics could be introduced, 
such as in Lesson A where the didactical stake was “What 
characterises an equation?” or as in Lesson B, where the pupils 
discovered the distributive law. Further, they experienced that hiccups 
could be capitalized upon to enrich the activity (as in Lesson B). The 
preservice teachers experienced the potential of CAS for graphical 
representation (as in Lesson B) and that the instrumentalisation 
process should not be diminished.  
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The preservice teachers’ observations and reflections supported 
them in developing a sharpened sense for details regarding 
instrumental orchestrations including the details of descriptions, the 
repertoire of different instrumental orchestrations and the distinction 
between different types, as is evident in the revised lesson plans of the 
two lessons.   

The potentials for implementing lesson-study-like practice in 
preservice teacher education related to the successful 
development of instrumental orchestrations 
 
The lesson-study-inspired course with lesson plans, research lessons 
and reflection meetings allowed us get insights into the preservice 
teachers’ development of didactical praxeologies related to the use of 
CAS when teaching elementary algebra. We hypothesise that the use 
of lesson-study-type activities as an explorative device for 
professional development has led the preservice teachers to attempt 
more courageous lessons with untraditional tasks, such as Lessons A 
and B, and thus to engage in genuine experimental inquiry about 
teaching elementary algebra with the use of CAS. We have the 
impression that this explorative nature has also enhanced the 
development of didactical praxeologies related to using CAS for 
elementary algebra far beyond what is found in the preservice 
teachers’ teacher education. 

The development of the preservice teachers’ didactical 
praxeologies had its origin in the shared observations of the pupils’ 
praxeologies. In Lesson A, there was a clear pattern of how shared 
observations contribute to general reflections about teaching 
elementary algebra using CAS, while in Lesson B, it was clear that 
the first impression about pupils’ praxeologies, such as that the 
booklet was difficult to read, was being modified and described in 
explicit detail by shared observations.  

The preservice teachers developed instrumental orchestrations 
realising the potentials of CAS described in the literature, such as 
mathematical explorations (both Lessons A and B), studying 
mathematical entities (Lesson A), capitalizing on hiccups to further 
enrich the mathematical activity (Lesson B) and using graphical 
representation to develop algebraic knowledge.      
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