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Resume

Fysiske ligninger er essentielle komponenter til at forklare utallige fysiske fænomener i form af
matematiske udtryk. Dog medfører matematikkens tilstedeværelse i fysik mange udfordringer,
både ved differentiering af deres roller og ved sammenlægning af begge områder. Mens mange
undersøgelser undersøger studerendes perspektiver på fysiske ligninger, foreslår få metoder til
at forstå disse ligninger. Denne afhandling sigter mod at udfylde denne mangel ved at un-
dersøge studerendes epistemologiske indramning og læringsvanskeligheder, når de forsøger at
forstå en fysikligning, i dette tilfælde 1-D bølgeligningen, fra flere aspekter. To studier i denne
afhandling anvender en kvalitativ forskningsmetode, der består af tre trin: udforskning, in-
tervention og evaluering. Det første studie udforsker studerendes forståelse af den grafiske
repræsentation af y(x, t) = f(x ± vt), hvor studerende præsenteres for en ikke-periodisk bøl-
geprofil af y(x) og bliver bedt om at finde hastigheden af punkter på profilen. Denne opgave
kræver, at de inddrager tid i deres analyse. Resultaterne viser, at denne problemstilling er ek-
stremt udfordrende for studerende og frembringer flere vanskeligheder. Det andet studie sigter
mod at udforske de studerendes epistemologiske indramning af bølgeligningen fra forskellige
aspekter. Et spørgeskema bestående af fem spørgsmål stilles til de studerende. Resultaterne
viser, at de studerendes svar mangler fysisk betydning, og deres overbevisninger er ikke på
linje med eksperters. Interventioner er derefter designet til at hjælpe studerende med bedre at
forstå de problemer, der er identificeret i disse studier. Selvom nogle studerende forbedrer sig
efter interventionerne, fastholder nogle deres ræsonnement, hvilket indikerer, at de har robuste
overbevisninger om emnet. Endelig søger det tredje studie at afsløre kompleksiteten ved bøl-
geligningen ved at fremhæve konceptuelle finesser, der ofte går ubemærket hen i undervisningen
af bølgeligningen.
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Abstract

Physics equations are essential components for explaining numerous physical phenomena in
the form of mathematical terms. However, the presence of mathematics in physics poses many
challenges, both in differentiating their roles and in combining both fields. While numerous
studies investigate students’ perspectives about physics equations, few propose methods for
understanding these equations. This thesis aims to fill this gap by investigating students’
epistemological framing and learning difficulties when they attempt to make sense of a physics
equation, in this case, the 1-D wave equation (WE), from several aspects. Two studies in this
thesis employ a qualitative research method consisting of three steps: exploration, intervention,
and evaluation. The first study explores students’ understanding of the graphical representation
of y(x, t) = f(x± vt), where students are presented with a non-periodical wave profile of y(x)
and asked to find the velocity of points on the profile. This task requires them to consider the
time dimension in their analysis. The results highlight the significant challenges students face
and reveal the various difficulties encountered. The second study aims to explore students’
epistemological framing of the WE from various aspects through a questionnaire comprising
five questions. The findings indicate that students’ responses lack physical meaning and their
reasoning is not aligned with those of experts. The interventions are then designed to help
students better understand the problems identified in these studies. While some students
improve after the interventions, a few persist with their reasoning, indicating they hold robust
beliefs about the subject matter. Finally, the third study seeks to uncover the complexity of
the WE by highlighting conceptual subtleties that often go unnoticed in teaching the WE.
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1 Introduction

1.1 The overall purpose of the PhD project

The purpose of this study is to investigate students’ main conceptual difficulties in understand-
ing the physical meaning of the WE. The difficulties encountered by students in interpreting
the WE were explored in some detail. This study revealed the reasons for these difficulties.Ad-
ditionally, this study also considered various teaching strategies that may assist students more
effectively to develop a conceptual understanding of the WE. Although focusing on the WE as
a case study, this research shall also provide ways to help students understand equations more
broadly.

1.2 Motivation of this study

Physicists commonly use equations to guide their reasoning, thus an essential part of physics
education is to teach students to do so. However, mathematical symbols that are widely used
in physics equations present a challenge regarding how to understand their physical meaning.
Some studies found that students typically focused on calculating and identifying symbols
rather than gaining a conceptual understanding of the principles underlying the equations [1–4].
For example, these studies found that students’ performance was better in solving numerical
rather than symbolic problems, although the questions shared identical concepts [4, 5], or
students failed to transform symbolic into graphical representation of vectors [1].

The epistemological framing regarding physics questions were also explored. Some studies
indicated that students believed they understood a physics equation if they could use it to solve
problems [6–9]. However, they were confused when asked about the meaning of the equation
and tended to treat the physics equation as a calculation recipe, a strategy called plug and
chug [6, 10, 11].

It is interesting to see that there is not much literature that attempts to help students
understand a physics equation, but exploring students’ views about physics equations [6–8,
12]. To fill this gap, this study not only tried to see the epistemological framing regarding a
physics equation and the difficulties associated with it, but also designed interventions in order
to help students understand deeply a physics equation by exploring different aspects of the
equation. Thus, this study not only explored students’ views and difficulties in making sense
of mathematical representations in physics, but also offered perspectives to connect physics
and mathematics by exploring different aspects that are not commonly presented in a teaching
situation.

1.3 Research Questions

Mathematical representations in physics come in many forms. The main goal of this study is
to investigate students’ epistemological framing and difficulties when trying to make sense of
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physical phenomena represented mathematically. The WE is a case that can be explored in
several aspects.

The mathematical representation of a wave is y(x, t) = f(x ± vt), and can be related to
the WE. In physics, the wave function is mostly represented in graphs, and since y depends
on x and t, the graph of this function can be represented as functions of y(x) and y(t). The
dependence of vertical displacement with two variables provides a challenge in understanding
it. Therefore, the first study tried to explore the situation where students were asked to find
the velocity of the wave profile y(x) which forced them to think about the time dimension in
this problem.

After investigating students’ difficulties, Study 1 also attempted to design an intervention
that addresses the specific difficulties encountered by the students in order to help them better
understand the problem presented. Therefore, Study 1 consisted of two research questions, as
follows:

1. What are students’ reasoning and difficulties related to the conceptual understanding of
the graphical representation of waves?

2. What are appropriate interventions that help students understand the mathematical
description of waves that always involve x and t?

Interpreting how students make sense of the WE is the goal of Study 2. The WE is
represented by a second-order partial differential equation which can often be deceptively simple
at first glance. However, understanding its meaning poses significant challenges. Therefore,
Study 2 explored students’ epistemological framing when they tried to interpret the WE.

Similarly to Study 1, an intervention that helps students better understand the WE was
presented in Study 2. The intervention explored different aspects of the WE as a proposed
strategy in this thesis in order to contribute to helping students view a physics equation dif-
ferently. Therefore, the following two research questions were the core of this study:

3. What are students’ reasoning and difficulties related to the physical meaning of the WE?

4. What are possible teaching strategies that help students acquire a deep understanding
of the physical meaning behind the WE?

Lastly, this study also explored the conceptual subtleties from the perspective of the histor-
ical development of the WE as a potential teaching strategy to deepen students’ understanding
of the WE. Study 3 answered the following question:

5. What are the conceptual subtleties related to the WE that can help students understand
the WE deeply?
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1.4 Structure of thesis

This thesis is structured by three studies that address predetermined research questions. Chap-
ters 2 and 3 are based on the three papers included in this study. Chapter 2 focuses on students’
difficulties with the propagation of a pulse in a string and how they interpret the WE, as high-
lighted in the first and second paper. Meanwhile, Chapter 3 highlights some concepts related to
the WE that might not be commonly presented in textbooks as a proposed strategy to deepen
students’ understanding of the WE. Finally, Chapter 4 is the concluding chapter of the thesis.
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2 Interplay between physics and mathematics: investi-
gating students’ epistemological framing

Physics equations are built from mathematical formalism that explains the nature of the world.
However, there is a clear distinction between the treatment of equations in physics and mathe-
matics. For instance, Heck and van Buuren [13] explained that while mathematical formalism
can be associated with a physical context, the use of variables in these two subjects depends
on how they are treated. In mathematics, variables are commonly used to express unidentified
components, while in physics, variables are used for elements that can be measured, quantified,
and usually have a unit. Redish [14] provided an example to illustrate this point. He posed a
question to both physicists and mathematicians:

If A(k, y) = K(x2 + y2),K is a constant (1)

What is A(r, θ) =? (2)

In physics, the answer is A(r, θ) = Kr2, where there are some factors that physicists
need to consider. The simplest justification is the unit inside the bracket, which must be
equivalent. Unlike physicists, mathematicians believed that the answer to that question is
A(r, θ) = K(r2 + θ2) due to the transformation of two arguments. This example highlights the
crucial need to distinguish between the language of physics and mathematics.

Nevertheless, it is also important to emphasize that physics and mathematics cannot be
separated, but this situation poses a challenge when one treats them in the same manner. A
significant part of this investigation involves exploring the situation where two studies were
conducted, resulting in Papers 1 and 2.

2.1 Students’ epistemological framing about physics equations

Epistemological framing refers students’ perspectives on relevant knowledge in a given situation
[15]. In the context of physics education, students’ attitudes, beliefs, and expectations play
an important role in their success in the subject [16, 17]. Although different studies may use
different terms to describe epistemological framing, they generally refer to beliefs about what
constitutes knowledge in physics [18]. Redish et al. [16] used the term ”cognitive expectation”
to describe students’ understanding of the process of learning physics and the structure of
physics knowledge.

Several studies have investigated students’ understanding of physics equations, and some
findings suggest that students often hold similar beliefs in comprehending these equations. For
example, in a recent study by Airey et al. [6], physics students from three different countries
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Figure 1: How students think if they understood a physics equation [6]

were asked to describe how they know when they understand a physics equation. The re-
searchers then classified the students’ responses in the first attempt from Swedish university
students, which are presented in Figure 1.

From Figure 1, we can see the range of descriptors that students used in their responses.
Although the design of this study is limited since it only asked students for a short answer to the
question, the diagram provides insight into students’ beliefs about understanding physics equa-
tions. The authors highlighted some simple descriptors, such as ”remember it,” ”repetition,”
and ”recognize it,” as indicating the beliefs that the equation has been memorized. However,
the descriptor ”can visualize it” needs further exploration since it requires more elaboration.

Comparing the descriptors used by students in the US and Australia, the authors discovered
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Figure 2: Students’ epistemological framing of understanding physics equations based on lit-
erature

that the beliefs were similar and the categorization overlapped. Ultimately, they identified ten
categories of students’ beliefs about understanding a physics equation across three countries:
significance, origin, description, prediction, parts, relationship, calculation, explanation, repe-
tition, and memorization. These categories, which exclude repetition and memorization, were
utilized to formulate questions that can be employed in teaching situations where students
encounter physics equations. The aim of these questions is to assist students in directing their
attention towards various aspects, thereby enhancing their comprehension of physics equations
on a deeper level.

Other studies have also attempted to explore students’ beliefs about understanding physics
equations and to examine whether they align with experts’ approaches. These studies have
revealed various perspectives commonly observed among students [7–9,12]. Using the findings
of these studies, a diagram illustrating students’ epistemological framing in relation to the
understanding of physics equations has been compiled and is presented in Figure 2.

Karam and Krey [9] proposed four epistemological facets to comprehend equations, which
are principles, definitions, empirical regularities, and derivation. They also stressed the signifi-
cance of taking these categories into account when defining equations. The principles describe
the facts that can be supported by observations and experiments; definitions describe the jus-
tifications to define physical quantities; empirical regularities are scientific phenomena that
can be explained with repetitive experiments; and derivations explain how equations can be
derived from principles or definitions.

The study investigated changes in the epistemological understanding of equations among
pre-service physics teachers between pre-test and post-test, with an intervention conducted in
between. The intervention consisted of a series of activities that targeted both epistemological
and didactical aspects. These activities involved exploring equations from various perspectives,
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Figure 3: Students’ epistemological changes after intervention [9]

including their derivation and historical development. The participants were enrolled in a
specialized course aimed at fostering a deeper comprehension of equations through a curated
set of tasks and prompts. Figure 3 depicts the epistemological changes observed in two students.

Although some students’ responses were still persist, the results shows that the designed
intervention led to more nuanced understanding of equations which also led them to change
their views of physics equations.

2.2 Epistemological framing and learning difficulties

Some studies have shown that students’ views on physics and learning can affect their under-
standing in certain ways. For example, epistemological framing has been linked to students’
conceptual understanding [17,19–21]. Additionally, the way students approach learning physics,
including their level of motivation, can also influence their academic achievement [17,22]. How-
ever, students’ views about physics equations, which may differ from those of experts, can result
in learning challenges.

One particular aspect explored in this thesis is students’ interpretation of graphical repre-
sentations of wave profiles. Within the field of PER, students’ difficulties in utilizing graphs
to solve physics problems have been investigated across various topics [23–27]. In the context
of kinematics, McDermott et al. [27] identified certain challenges when students attempted to
associate graph information with physical concepts. For instance, students often struggled to
use the concept of slope to determine the velocity on a linear graph. Many of them decided
to read the height of the line instead of seeing the line with a steeper slope. When presented
with a curved graph, these difficulties were found to be even more pronounced.

Planinic, et. al [25] investigated students’ interpretation of line graphs by presenting them
with parallel questions in both mathematics and physics. The results discovered that students
approached problem solving questions involving line graphs differently in physics compared to
mathematics. Some students were able to correctly answer questions about slope in mathemat-
ics but struggled when the same concepts were applied in physics. These findings were further
supported by their subsequent study, where students exhibited greater ease in answering ques-
tions related to graphs in the context of mathematics compared to when the same graphs were
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presented in a physics context [28].
In the study of wave phenomena, graphical representations are commonly used as important

tools to visualize the characteristics and behaviors of waves. However, several issues related to
wave graphs have been identified in previous studies [29–31]. Ambrose et al. [29] found that
students faced difficulties in interpreting graphical representations of electromagnetic waves.
One major mistake observed among students was the belief that magnetic fields exist only
within a sine curve. Additionally, some students mistakenly assumed that points located on
the x-axis corresponded to zero magnetic fields. Other studies discovered that students held
misconceptions regarding the periodic nature of waves. For instance, students often prefer to
use the concept of slope to transform a wave graph y(x) into v(x) [30]. Furthermore, students
believed that the graphs of y(x) and y(t) represented the waveform [31].

Other studies have explored students’ beliefs about wave phenomena, revealing certain
conceptual challenges in understanding how waves behave. One such belief is the notion that
waves can be treated as objects [31–33]. For example, Wittmann et al. [32] observed that
university students tended to perceive sound waves as objects that physically push particles
in the direction of wave motion. Other studies have found that students often associate waves
solely with periodicity and struggle to grasp fundamental concepts [30–32,34].

The use of mathematical language in physics is another aspect that was investigated in this
thesis. Prior studies have already explored this issue by identifying students’ epistemological
framing when they believe they understand a physics equation [6–9, 12]. Once again, when
students’ beliefs contradict those of experts, learning difficulties can arise. For example, a
simple equation such as v = λf can not only be treated mathematically without considering
its physical relation. This study identified an epistemological stance where some students
approached this equation purely from a mathematical perspective, disregarding its physical
quantity relationships. They failed to consider that λ can only be manipulated by changing
the source of waves or the characteristics of the medium [35]. Another study employed the term
”plug and chug,” which refers to an instrumental view where students identify an appropriate
physics equation for a given problem and simply plug in the given values to obtain a solution
[11]. While this strategy may yield correct answers, it does not necessarily foster a deep
understanding of the underlying physics concepts involved in the problem.

In the context of problem solving situations, Walsh et al. [36] identified four distinct epis-
temological stances that students adopt in physics. Only a small number of students employed
a scientific approach, aligning their problem-solving strategies with those of experts. The ma-
jority of students relied on a plug-and-chug approach, often in an unstructured manner. Some
students adopted a memory-based approach, while others lacked a clear approach altogether.
These findings indicate that many students tend to rely on memorization and mathematical
procedures rather than cultivating a deeper conceptual understanding when tackling physics
problems.
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2.3 Methodology

The nature of the research in two studies (Study 1 and Study 2) presented in this PhD thesis is
similar, as both involve qualitative research methodologies. These studies followed a common
framework consisting of three main steps, although the design of the intervention differed
between them. Figure 4 illustrates the design of both studies.

Exploration was the first step of data collection, where students’ initial reasoning was
explored to get a picture of their understanding related to the designed questionnaire. Sub-
sequently, the interventions took place in order to help students overcome their learning diffi-
culties. The last step was the evaluation, where the same questions from the exploration were
administered again to the students. This phase aimed to assess the conceptual changes among
the students after they received the interventions.

The two papers differ in terms of their contributions to Physics Education Research. Paper
1 investigated students’ difficulties in understanding the propagation of a pulse in a string,
filling a gap in the research by exploring students’ understanding of non-periodic wave profiles.
While studies in PER have examined students’ difficulties with waves, few have explored this
specific area [10, 35, 37–39]. Meanwhile, Paper 2 aimed to explore students’ understanding of
the 1-D WE, examining their epistemological framing and the difficulties they encountered
with the equation. While previous studies have explored students’ interpretation of physics
equations and their epistemological framing [6–9, 12], Paper 2 aimed to encourage students to
develop a deeper conceptual understanding of the equation by exploring various related aspects.

2.3.1 Interviews

All the data in paper 1 and 2 were collected and documented by performing think-aloud in-
terviews with physics university students. The think-aloud interview protocol originated in
psychology research, particularly in investigations of problem-solving processes [40,41]. Nowa-
days, this approach is widely used across various fields, including PER [42–44]. The nature of
open-ended interviews allows researchers to obtain detailed information from students and to

Figure 4: Three main steps of collecting data in Study 1 and 2
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ask probing questions and dig deeper into the students’ responses [45, 46].
The students were interviewed in pairs due to several reasons. One of the benefits of using

paired interviews is the ability to gather a wider range of data, as students engage in discussions
and exchange ideas with their peers. According to Houssart and Evans [47], paired interviews,
also known as paired depth interviews, involve a researcher interviewing two individuals simul-
taneously. Previous studies that employed this method have identified advantages, particularly
when the pairs have a pre-established relationship [48, 49]. This relationship facilitates open-
ness between the participants, enabling them to complement each other’s responses when one
person encounters difficulties [47–50].

Furthermore, it is worth emphasizing that the data obtained from the paired interviews are
richer when the students encounter the questions for the first time during the interview. This
approach avoids fixed or rehearsed answers from the students, as they have not prepared their
responses in advance. Houssart and Evans [47] refer to this as ”unseen questions,” which pro-
motes collaboration among students and encourages them to consider alternative perspectives
presented by their peers.

Due to the pandemic, the interviews for Study 1 and Study 2 were conducted remotely
using Zoom meetings. Prior to the interviews, all students provided their consent for partici-
pation. The interviews were recorded using the embedded recording feature in Zoom, ensuring
that the data were captured and stored for subsequent analysis. In instances where students
produced drawings or visual representations during interviews, the interviewer requested that
the students take a photo of their drawing and share it with the interviewer. The pictures were
then shared within the Zoom meeting, allowing peers to provide comments and insights on the
drawings.

Taking notes during the data collection process is essential. The interviewer’s notes are a
valuable addition to the captured data, providing insights and documenting key points raised
by the students. By documenting interesting findings and observations during interviews, the
interviewer can focus on specific areas for further analysis and exploration. The combination
of recorded data and interviewer’s notes improves overall data quality and provides a compre-
hensive understanding of student perspectives and experiences [51].

2.3.2 Data Analysis

The qualitative content analysis was applied to analyze the coded data. Content analysis is a
method that enables researchers to analyze data from various sources, such as interviews [52].
While there are three approaches to qualitative content analysis, the conventional content
analysis approach was employed in this study due to the nature of the data. According to
Hsieh and Shannon [53], conventional content analysis with an open coding technique is more
suitable for a study that uses observation as the initial phase, where coding and categorization
are conducted during data analysis.

There are several steps involved in employing conventional content analysis [53]. For both
Study 1 and Study 2, where data was obtained through interviews, the first step involved
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Figure 5: Research design for Study 1 and 2

transcribing the interviews. These transcriptions were then read multiple times to gain an
overview of the data. During this reading process, important words and phrases were identified
and highlighted to capture the key aspects of the students’ reasoning. Additional notes were
made as needed. From this analysis, initial codes were generated to capture the overall ideas
expressed in the students’ reasoning. To ensure the reliability and validity of the coding process,
the data analysis continues with coding, where the students’ responses to the questions are
classified into themes or categories. Experts in the field are recommended to examine and
validate the coding process, as suggested in studies by DiCicco-Bloom and Crabtree [54] and
Fonteyn et al. [51].

After generating a list of initial codes, the next step is to sort those codes into potential
categories/themes. Various techniques can be employed, such as using the tree diagram to aid
in clustering [53]. The themes are then reviewed to ensure that the initial codes are placed
appropriately in the correct categorization. This is an iterative process of reviewing and refining
until a researcher arrives at a satisfactory map.

The themes must then be defined by describing the meaning of each categorization and
the trends that these themes captured from the data. This process ensures a well-structured
data set that helps researchers in reporting their results. The final step is to write the research
report, which was done for both Study 1 and Study 2. Although multiple categorizations may
have been identified in these studies, the reported results focused on the most relevant findings
that aligned with the existing literature and addressed the research questions.

2.4 Research design

Study 1 and 2 were conducted in a similar research design. The difference was in the type
of intervention implemented between the two studies. Figure 5 shows the research design in
Study 1 and Study 2.
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2.4.1 Preliminary Study

Study 1 A preliminary study was performed to identify possible problems and appropriate
methods that will be used during data collection, including refining the research questions.
Initially, the instrument was designed to assess students’ understanding of the 1-D WE. Several
questions were developed and administered to four physics students for a pilot study. During
the interviews, it was discovered that students struggled to differentiate between the graphs
shown in Figure 6.

In this phase, the results show that the graphical representation of the waves is actually
challenging for students to understand because the mathematical description of the waves
depends on two variables: x and t. Consequently, it was necessary to investigate this issue
prior to assessing students’ understanding of the WE, which might present an even greater
level of difficulty.

In study 1, the attention was directed towards examining whether students can make sense
of the horizontal movement of a pulse and the vertical motion of matter on a non-periodic
wave profile. To achieve this, a wave profile y(x) was specifically designed to investigate this
matter. During this stage, an intervention was also developed to address the specific learning
difficulties identified. The intervention was tested with a group of physics students to ensure its
effectiveness before implementing it in the data collection phase. Based on the overall process,
the following findings were observed:

1. The instrument designed in Study 1 proved to be extremely challenging for the students,
even though they had previously completed a course on waves. As a result, for the
purpose of data collection, it is essential that participants have received an advanced
course in waves.

2. To effectively address the diverse range of difficulties experienced by students, the inter-
vention should be designed with multiple levels of scaffolding. This approach enables the
researcher to observe students’ progress and challenges at each level. By doing this, the
intervention can meet individual needs.

Study 2 The steps involved in the preliminary study for Study 2 followed a similar framework
to Study 1. However, the exploration of materials and the development of instruments in

Figure 6: The graphical representation of wave
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Figure 7: The proposal in study 2 regarding how students understand the 1-D WE

Study 2 posed challenges due to the limited number of studies that had previously explored
students’ understanding of the WE. In the initial phase, a questionnaire consisting of six
questions was developed and administered to a group of physics students. Unlike typical
problem-solving physics questions, the questions aimed to explore students’ epistemological
framing and alignment with expert views. The results obtained from the preliminary study in
Study 2 are as follows:

1. The questionnaire were reduced into five, as one question aimed to assess students’ un-
derstanding of the mathematical structure of the WE was complicated. This difficulty
arose because not many students had previously encountered the transport equation.

2. None of the students recognized the mathematical structure of concavity.
3. Students continuously associated their answers with periodic waves, indicating a lack of

understanding of non-periodic wave behavior.
4. In general, the students did not have a deep understanding of the WE and its underlying

concepts.

Based on these results, interventions were designed to help students explore different as-
pects of the WE and eventually make them aware that understanding a physics equation is not
a simple task. The interventions aimed to address students’ difficulties identified in the pilot
study, which included understanding the concavity of waves and the tendency to fixate on peri-
odic waves. Therefore, six aspects were proposed to facilitate understanding of the WE. These
aspects included the mathematical representation of a moving pulse, the connection between
y = f(x ± vt) and the WE, the distinction between the transport and wave equation, identi-
fying when functions represent a physical wave, the relationship between force and concavity,
and differentiating between curvature and concavity. However, two aspects were later removed
from the intervention, as they represented conceptual subtleties that would be presented in
Study 3. Figure 7 illustrates the framework proposed to understand the WE in this study.
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Figure 8: The changes of the wave profile in tutorial IV

Based on the four identified aspects of understanding the WE and the results of the pre-
liminary study, interventions were designed to address different/uncommon aspects of the WE,
with the purpose of helping students develop a deep understanding of the WE. Learning objec-
tives (LO) were determined on the basis of these aspects, and tutorials were created accordingly
to achieve these objectives. These tutorials were then tested and evaluated with some changes.
This modification was designed to ensure that students understood that points located on a
more concave profile experience greater force. Figure 8 illustrates the change in the wave profile
following the second trial.

2.4.2 Data Collection

Exploration (Pre-test) During this stage, students’ prior reasoning was examined by ad-
ministering the designed questions from studies 1 and 2. In study 1, the question consisting of
two items was administered to the students. One part of the question focused on determining
the magnitude of the velocity, while the other part involved the velocity and direction of motion
of specific points.

Question: A pulse is moving horizontally with constant speed to the right. The profile
below represents a given instant, like a picture (Figure 9). As the pulse moves horizontally,
the points move vertically (wave does not transfer matter)

(a) Based on the picture, sort the magnitudes of the (vertical) velocity at each point from
the greatest to the smallest. Explain your reasons.

Figure 9: Problem graph
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Figure 10: The content analysis with open code technique in study 1

(b) For each point, determine whether the velocity is < 0, > 0, or = 0. Explain your reasons.

Figure 10 illustrates how content analysis with an open-coding technique was applied to
analyze students’ reasoning in Study 1, providing a visual representation of the analytical
process. It visually demonstrates that students often relied on inappropriate information from
the graph when attempting to determine distances, highlighting a gap in their understanding.
In this thesis, study 1 expands on previous research that has examined graphical representations
and identified various challenges encountered by students [23–26]. Furthermore, this study
revealed that students tend to fixate on periodicity and assume that waves always exhibit a
periodic nature. This finding is consistent with previous studies that have reported similar
observations [30, 31, 55].

In study 2, a questionnaire consisting of five question items was administered to the students
to assess their understanding of the WE:

Questions: Below you see the 1-D WE consisting of a partial differential equation which
describes a physical process.

∂2y

∂t2
= v2

∂2y

∂x2

1. If you were to explain the meaning of this equation with your own words (to a non-expert),
how would you do that?

2. There are several terms in 1-D WE (x, y, t, v, ∂2y/∂t2, ∂2y/∂x2). Indicate what those
symbols refer to.

3. Based on question 2, indicate the units of those symbols.
4. Describe a physical situation represented by ∂2y/∂x2 ∝ ∂2y/∂t2.
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Figure 11: Students’ epistemological framing and difficulties regarding the WE

5. Given the functions below, which ones satisfy the WE and which can represent a physical
wave? (You can choose more than one). Explain your reason.

(a) y(x, t) = f(x+ vt)

(b) y(x, t) = A sin(kx− ωt)

(c) y(x, t) = e−(x−vt)2

(d) y(x, t) = 2A sin(kx) cos(ωt)

(e) y(x, t) = (x+ vt)2

The results indicated that students’ interpretations of the WE did not align with expert
views, including some conceptual difficulties associated with its fundamental principles. No-
ticeably, based on one result in study 1 where students quickly used the periodic wave functions
as their main reasoning to solve the problem, study 2 further explored these aspects to examine
if students also used this approach to make sense of the WE. Figure 11 illustrates students’
responses to the questionnaire, providing insights into their epistemological framing and the
difficulties they encountered during the study.

The results reveal that students did not have a comprehensive understanding of the WE.
Their epistemological framing suggests that they often perceived the WE as mere calculation
schemes. For example, some students treated the WE as a combination of single variables,
indicating the tendency to plot their magnitudes and obtain results, as the so-called plug-and-
chug approach [11,15]. Other students responded to the question without grasping the physical
meaning involved, simply reading the calculus terms without understanding the relationships
between the variables [10, 37]. Several difficulties identified in Study 2 were also observed in
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Study 1, including the tendency to fixate on periodic waves.

Intervention Intervention in the learning process refers to the support and guidance pro-
vided by educators or experts to enhance students’ understanding and competencies. Effective
interventions are guided by specific teaching goals aimed at improving students’ ideas and
understanding throughout the intervention [56]. This section will provide an overview of the
interventions employed in Study 1 and Study 2, as well as the rationale behind their selection
for each study.

Scaffolding Scaffolding is a term used to describe a process in which students are sup-
ported by teachers to solve problems that are beyond their current competencies [57]. According
to Van de Pol et al. [58], scaffolding is a dynamic process that is highly dependent on the nature
of the task and can be applied in various situations. Therefore, it is crucial to assess students’
prior understanding before designing appropriate scaffolding strategies [59]. However, many
teachers face challenges in designing scaffolding because they often directly provide support
without first assessing students’ understanding [58, 60, 61].

In Study 1, the difficulties faced by students regarding the propagation of a pulse in a
string were explored, as discussed in Sec. 2.4.2. Scaffolding was selected as the intervention
because it offers temporary solutions for students who are unable to solve problems using
expert approaches [57]. Additionally, clear goals were set as important aspects when designing
the scaffolding support [62]. The scaffolding was designed to guide the students in developing
their own understanding at each level of the learning process. The difficulties encountered at
each level were identified and interventions were provided at each level to gradually guide the
students to draw the wave profile after some time has elapsed. This approach also allowed the
researcher to monitor the students’ progress in improving their understanding at each level.

Although there is no consensus, Van de Pol et al. [58] summarized three common char-
acteristics of scaffolding. The first characteristic is contingency, where the supports must be
adjusted at the same or slightly higher level than the students’ existing understanding. The sec-
ond characteristic is fading, which involves gradually reducing the amount of support provided.
This characteristic is related to the third characteristic named responsibility, where students
are expected to take more and more control over their understanding. It is also important to
check students’ understanding after giving them support in scaffolding [63]. Scaffolding sup-
ports are meant not only to help students reduce their learning difficulties, but also to diagnose
how students’ new understanding has developed in the end. One way to do this is by asking
the same questions that were given to see if they changed their prior reasoning.

Tutorials Tutorials were designed based on three stages: elicit, confront, and resolve, as
proposed by the physics education research group at the University of Washington [64,65]. The
elicit stage involves exposing students to problems that explore their learning difficulties. These
difficulties are then addressed by making students aware that their reasoning is not aligned
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Figure 12: The activities of tutorial 4 was designed based on three stages: elicit, confront, and
resolve

with a correct physical situation. Finally, students are guided through necessary interventions
to resolve any inconsistencies.

In general, the tutorials in study two were designed based on the stages in which the
first activity in each tutorial involved students working and exploring their understanding
independently. Subsequently, questions were posed to trigger conceptual conflicts, prompting
students to reflect on their initial answers. Finally, additional interventions were provided to
students who continued to struggle in order to help them reach the learning goals of each
tutorial. Figure 12 provides an example of the activities in Tutorial 4, demonstrating how
these three stages were incorporated.

In addition, the interventions implemented in the tutorials were inspired by the conceptual
blending framework. This approach was chosen due to the complex nature of the WE, which
is presented in second-order PDE and presents challenges in terms of delivering its meaning.
The framework employed aimed to assist students in blending the mathematical representation
within the equation with meaningful physical situations. Graphical representations were also
used extensively throughout the tutorials, as they have been found to facilitate the integration
of physics and mathematics, as demonstrated in this study [66].
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Figure 13: Students’ difficulties and epistemological framing after interventions

Evaluation (Post-test) In both Study 1 and Study 2, the same questionnaires used in the
pre-test were administered again in the post-test to evaluate students’ improvement of the
topics and the effectiveness of the interventions. In Study 1, the post-test was given directly
after students managed to draw the correct wave profile. In Study 2, the same questions were
administered again to the students one month after completing the last tutorials to determine
whether the intervention had a lasting impact on their understanding or if they had quickly
forgotten the physical intuition behind the interventions.

The results from both studies suggest that the designed interventions contributed to im-
proving students’ understanding. While not all students were able to provide comprehensive
responses and a few did not demonstrate improvement in their understanding during the eval-
uation, the overall findings highlight the positive impact of the interventions. Despite these
positive results, certain difficulties persisted even after the interventions. Figure 13 illustrates
that some students continued to adhere to their prior reasoning or shifted to other incorrect
reasoning patterns following the interventions.

Despite the use of different levels of scaffolding, Lin and Singh [62] found that a persistent
alternative conception among students was the assumption that static friction is always equal
to its maximum value, µsFN . Similarly, in Study 1 and Study 2, although the interventions
provided to the students helped them address their learning difficulties, they still struggled to
utilize this knowledge effectively in the evaluation. For instance, in Study 1, not all students
were able to apply the support provided and change their prior reasoning when faced with the
same question again. This observation applies even to the group of students who successfully
generated the correct wave profile, which was the main goal of the scaffolding design. These
findings demonstrate the inherent challenge of designing scaffolding that is suitable for all
students [62, 67]. In Study 2, it was observed that while a few students achieved the learning
goals within the tutorials, they still struggled to answer the questions on the questionnaire
correctly and some of their responses lacked physical meaning.

One potential factor contributing to students’ persistence in incorrect reasoning despite the
intervention could be their prior knowledge and skills. Lin and Singh [62] conducted a study
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that revealed the effectiveness of a particular intervention in a calculus-based physics course
compared to an algebra-based course. However, in the present studies, all participants shared
a similar educational background. They had completed introductory physics courses in their
first year and advanced courses on waves in subsequent years. Therefore, it can be inferred
that the students had similar levels of skill and knowledge in the context of this study.

One recommendation of this study suggested that designing effective interventions is an
ongoing process. Lin and Singh [62] proposed three strategies to assist students with strong
alternative conceptions. First, interventions should focus on directing students’ attention to
the learning difficulties in a more detailed manner. One approach could involve activities
that explicitly invoke alternative conceptions, creating cognitive conflicts that challenge their
existing beliefs. Secondly, it is crucial to provide students with a variety of examples and
situations within the intervention that highlight the conflicts associated with their alternative
conceptions. This exposure encourages students to actively construct and restructure their
understanding of the topic. Lastly, it may be advantageous to prompt students to generate new
cases or situations related to the physics concepts covered in the intervention. This approach
encourages students to apply their revised understanding to novel contexts, further reinforcing
their learning and facilitating a deeper grasp of the subject matter.
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3 Exploring the complexity of the wave equation

The 1-D WE may appear simple compared to more complex physics equations such as the
Schrödinger equation. However, the exploration of the WE in Study 1 and Study 2 reveals
that understanding it is not a trivial matter. This chapter describes some issue related to the
complexity of the WE and suggests that exploring different aspects of a physics equation can
contribute to a thorough understanding.

3.1 Force and Curvature

In 1715, Brook Taylor published a book called ”Methodus Incrementorum Directa et Inversa”
and made several assumptions related to the vibrating string. One of these assumptions stated
that at each point of the string, the vertical force is proportional to the curvature. This
assumption was the only one identified by D’Alembert after deriving the wave equation with
the assumption of small vibrations of a string [68,69]. Taylor’s work provided an early geometric
derivation that gives an idea of the relationship between the tension acting at a point of the
string and the curvature at that point.

In derivations of the WE, it is common to analyze only a small segment of the string.
Analyzing the small segment of the string enables the use of linear approximation, allowing
for the application of Newton’s law. Figure 14 illustrates the small segment of the string that
needs to be considered to derive the WE.

The WE can also be derived using the assumption of curvature ≈ concavity. This assump-
tion arises from approximating that dy/dx is very small. However, it is important to note that
the proportionality between force and curvature is the correct relation. The concavity appears
to simplify the derivation process. Assuming that force is proportional to concavity gives a
reasonable approximation and facilitates the mathematical analysis of wave behavior.

Figure 14: A small segment of the string to derive the WE
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3.2 Convolutions of the wave function: The vibrating string contro-
versy

Since D’Alembert proposed the partial differential equation that became the equation of a
vibrating string, a controversy arose among four prominent figures during that time. In their
paper, Gerald and William [70] depicted the debate over the solution of the WE. They clearly
demonstrated that the meaning of y(x, t) was the central issue of the debate.

D’Alembert considered a stretched string fixed at both ends and used Newton’s second law
until he finally arrived at the WE. He then proposed a general solution of the PDE that he
found as:

y(x, t) = f(x+ t) + g(x− t) (3)

and applying the boundary condition y(0, t) = y(L, t), he found this final solution:

y(x, t) = f(x+ t) + f(x− t) (4)

Euler was one of the first to enter the dispute, and his analysis of the vibrating string is not
significantly different from that of D’Alembert, except for the interpretation of the function f .
Euler proposed that the interpretation of y can be deduced from a plucked string, as shown
in Figure 15. Using D’Alembert’s solution to the WE, Euler argued that the initial shape of
the string would determine its subsequent motion and shape [71]. Wilson [72] referred to this
as a ”thought experiment” when Euler attempted to impose his physical interpretation on the
solution of the WE.

Figure 16 illustrates the physical interpretation of Euler for a plucked string [73]. In his
model, after the initial condition, the string splits into two halves and moves in opposite
directions, forming the kinks at B and C (Figure 16b). According to his interpretation, OB
and Cπ remain stationary after the initial disturbance, while the BC segment, which represents
the moving part of the string, moves at a constant speed (Figure 16c). Euler believed that this

Figure 15: Euler’s plucked string.
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Figure 16: Euler’s physical interpretation of a plucked string [73].

segment vibrates like a wave.
A complete downward cycle occurs when B and C steadily move down along the upper edges

of the parallelogram OAπ D (Figure 16d) until it reaches D. After reaching D, the direction
changes, and it starts moving back towards point A. This interpretation includes both upward
and downward movements associated with a vibrating string.

Later, D’Alembert objected to this argument, saying that if the shape of the string is not
smooth, then ∂2y/∂x2 will not be equal to (1/c)(∂2y/∂t2) [71]. The force on the plucked string
must be concentrated at the corners, and the WE can be applied in this situation [72].

Bernoulli proposed that y(x, t) is the sum of harmonic functions to give his solution a more
physical interpretation. However, this argument was disputed by D’Alembert, who claimed
that the vibrating string consists only of one frequency. Euler also disagreed with Bernoulli’s
solution, stating that it was too specific and could not be generalized to other types of waves.
Lagrange then entered the debate and proposed a completely new approach to solving the
problem of the vibrating string without relying on the WE. He built his interpretation by
imagining a string consisting of infinite points connected to each other. His solution of the
wave function gives a series of normal modes that consist of sine and cosine functions.
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3.3 The wave function

Waves are mathematically expressed by functions of y(x, t) = f(x±vt). Therefore, any function
of this form is a wave function. At first glance, this function seems disconnected from the WE.
Connecting y(x, t) = f(x ± vt) to the WE is quite simple by taking the second derivative of
that function with respect to x and t. Letting x± vt = u and performing a double derivation
with respect to x results in:

∂y

∂x
=

df

du

∂u

∂x
=

df

du
(5)

∂2y

∂x2
=

d2f

du2
. (6)

With respect to t

∂y

∂t
=

df

du

∂u

∂t
= ±v

df

du
(7)

∂2y

∂t2
= (±v2)

d2f

du2
. (8)

Comparing (2) and (4),

∂2y

∂t2
= v2

∂2y

∂x2
, (9)

which is the 1-D WE.

3.4 Transport Equation

The transport equation, which is a first-order partial differential equation, describes the move-
ment of a wave through a medium with constant velocity. It is depicted as follows:

∂y

∂t
= ±v

∂y

∂x
(10)

In fact, the transport equation can actually explain some limited wave phenomena. De-
spite its limitations, emphasizing this equation in teaching waves might be essential to provide
deep understanding to learners. However, many physics textbooks do not present the trans-
port equation, which could be reasonable due to the general consensus on the mathematical
representation of waves.

Presenting the transport equation may answer the question ”Why is the WE presented
in the second-order partial differential equation (PDE) and not the first order?” This is one
unnoticed aspect that could be beneficial to implement when teaching the WE in order to
encourage a deeper understanding of it.
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3.5 Conceptual subtleties

Numerous research in physics education explored students’ difficulties in various physics con-
cepts, including waves [31, 32, 35, 37, 55, 57, 74]. The third paper in this thesis aims to propose
an epistemological dimension of teaching by incorporating less commonly encountered con-
cepts related to the WE. These concepts might offer valuable insights and facilitate a deeper
understanding of the WE for learners.

Based on the previous sections in this chapter, study 3 highlights three key conceptual
subtleties that could be beneficial for teaching the WE. The first concept focuses on the math-
ematical representation of waves. As also discussed in studies 1 and 2, the mathematical
structure of the wave function may appear simple, but understanding its deep meaning poses
challenges.

The second aspect focuses on differentiating between the transport equation and the wave
equation. This exploration aims to elaborate why the WE is expressed as a second-order
partial derivative, while the transport equation falls short in capturing the complexities of
wave phenomena. Lastly, the third aspect explores the relationship between ∂2y/∂x2 and
∂2y/∂t2. Understanding this relationship is crucial to understanding the WE and the associated
physical properties. Conceptually, one can realize that the force acting on points of the wave
is proportional to its curvature and get the WE from that.

In addition, the third paper also touches on the historical episode of the vibrating string.
It highlights Taylor’s original proposal of the relationship between the curve on a vibrating
string and the net force acting on it through geometric analysis. This relation was later used
by D’Alembert, who simplified the mathematical formalism by assuming small slope values,
leading to the derivation of the WE.

4 Conclusion

This PhD thesis aimed to investigate the interplay between physics and mathematics, using
the 1-D WE as a case study. The thesis, along with three accompanying papers, addressed
the research questions at hand. The first guiding question focused on examining how students
establish connections between graphical representations and the physical interpretation of wave
profiles. Additionally, the thesis explored students’ epistemological framing and the challenges
they encountered in relation to the 1-D WE. Finally, the thesis presented conceptual subtleties
with the aim of highlighting uncommon topics associated with the WE.

If we analyze the relationship between the three studies, Figure 17 illustrates their connec-
tion in addressing the research questions posed in this thesis.

4.1 Study 1

The use of graphs as a mathematical representation in wave phenomena has been found chal-
lenging for students, especially when it comes to applying them to particular physical situa-
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tions. Study 1 demonstrated that problems involving graphical representations of waves, which
include variables x and t, are extremely difficult for students.

Before the intervention, no student was able to correctly answer the questions. Many
students had difficulty extracting relevant information from the graph to solve the problem,
and some fell into the trap of focusing merely on periodicity. Students’ reasoning did not align
with the expert approach, despite being aware that points on the wave only move vertically.

After different levels of scaffolding were implemented, students’ performance improved and
they were able to solve the problem correctly. However, some students still persisted in using
their prior reasoning, even though they were able to draw the correct wave profile, which was
the goal of the scaffolding design. This suggests that the scaffolding did not address all the
difficulties faced by students.

Nevertheless, Study 1 highlights that students encountered challenges when dealing with
the uncommon graphical representation of the wave function. The results show that students’
epistemological framing can hinder their ability to see beyond those beliefs.

4.2 Study 2

Study 2 offers a unique perspective on teaching physics equations, specifically focusing on the
1-D WE. While previous studies have primarily investigated students’ epistemological framing
and difficulties in understanding the WE, this study goes beyond by actively engaging students
in exploring different perspectives of the equation.

The pre-test results indicate that students primarily perceive the WE as a mathematical
tool, they often read the calculus terms and variables aloud. Consequently, their responses lack
a deeper physical meaning.

After the interventions, although it cannot be concluded that all students achieved a deep
understanding of the WE in the post-test, as many of them reproduced concepts presented
in the tutorials, the intention was to introduce students to alternative ways of thinking about
the equation. By equipping them with these new perspectives, the aim was to provide them
with valuable tools that could be applied to other physics equations that they encounter in the

Figure 17: The connection of three studies of the thesis
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future. The findings from this study suggest that such an approach is not only feasible but
also holds potential for extension to teach other equations and topics in physics education.

4.3 Study 3

In Study 2, it has been shown that understanding the WE poses a significant challenge. Study 3
identified certain concepts associated with the WE that are not commonly addressed in physics
textbooks or classrooms to propose ways to understand the WE more deeply.

One of the key concepts explored in this study is the difference between transport and WE.
Understanding this distinction enables students to grasp the fundamental idea of a moving pulse
and why the WE is represented by a second-order partial derivative. Additionally, students
should recognize that WE can be derived from the relationship between force and concavity.
However, the derivation of the WE using this relationship fails when one explores deeper the
distinction between concavity and curvature. Hence, it is essential to understand that the
original relationship proposed by Taylor in 1715 was not between force and concavity but
rather between force and curvature.

5 Perspectives for future research

This PhD thesis highlights two cases of interplay between physics and mathematics. The first
case involves understanding the graphical representation of waves to determine the velocities of
points on a wave profile. It was found that students struggled to use the appropriate information
on the graph to find the vertical velocity of points. The second case involves understanding the
wave equation (WE), which consists of a second-order partial differential equation. The results
also indicated that students lack a proper understanding of the physical meaning associated
with the epistemological framing of this equation.

The interventions were designed to help students integrate mathematical representations
and physical situations. Although students’ performance improved during the study, a few still
struggled with learning difficulties after the interventions. Future investigations could consider
several aspects. First, the nature of studies 1 and 2 is qualitative. It would be worthwhile to
replicate these studies with larger samples so that quantitative data can be obtained. This the-
sis also laid the foundation for understanding students’ difficulties and epistemological framing
when interpreting a non-periodic wave profile, as well as their perspectives when making sense
of the WE. This is a crucial aspect for developing future interventions related to these topics.
As we discovered in studies 1 and 2, the designed interventions did not fully meet the needs
of all participants, with a few still failing to provide correct answers and persisting in using
their prior reasoning. Thus, in a teaching situation, students’ responses to the problems and
the designed interventions can serve as valuable tools for researchers and instructors interested
in these topics, enabling them to refine and adapt them.

Finally, there are several aspects that could potentially influence students’ performances
who participated in this study. The curriculum of their universities could be one such fac-
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tor. Study 3 offers an approach to embed this epistemological element within teaching. The
number of studies that implement conceptual subtleties in physics classes and examine student
responses is limited. Hence, more research on this topic could be a necessary component that
requires future evaluation.
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Student difficulties with making sense of graphs in physics have been thoroughly reported. In the study
of one-dimensional waves, the issue is even trickier since the amplitude is a function of two variables
(position and time). In this work, we investigate students’ reasoning and difficulties with interpreting the
graphical representation of the propagation of a pulse in a string. A profile yðxÞ of the pulse was provided
and students were asked to estimate the velocities of several points at the profile. This forced them to
consider the time dimension, by focusing their attention on the motion of these points. This turned out to be
extremely challenging to the students, who manifested several conceptual challenges which were
categorized and analyzed in the first phase of the study. Based on these findings, three levels of
scaffolding support were provided, where each level gradually guided the students to draw the wave profile
after some time has elapsed. The scaffolding turned out to be effective, since many students managed to
identify the new positions of the points successfully. The study reveals how static representations of
intrinsically dynamic phenomena can be challenging for students to grasp.

DOI: 10.1103/PhysRevPhysEducRes.18.020119

I. INTRODUCTION

Graphical representations are widely used as powerful
tools to represent concepts and phenomena in physics. In
fact, the lack of understanding of graphical representa-
tions is often an issue of concern to physics education
research (PER). The literature is vast in both the identi-
fication of misconceptions and the development of
instructional strategies to circumvent them in a variety
of topics such as kinematics, thermodynamics, and
electrodynamics [1–4].
In wave phenomena, graphical representations are parti-

cularly challenging because the mathematical description
of waves involves a function of two variables, position x
and time t. In the one-dimensional case, this function is
generally expressed as yðx; tÞ ¼ fðx� vtÞ, which is not
always treated in mathematics lessons and is quite difficult
to grasp. Although one can choose to represent the
dependence of the vertical displacement y on each of the
variables x and t separately, it is crucial to understand that
they are related. The function yðtÞ describes the movement
of a given particle (fixed x) when time is progressing,
whereas the function yðxÞ describes an instantaneous

configuration of a wave, like a screenshot. Investigating
how students try to make sense of these conceptual
subtleties is the main goal of this study.
The PER literature is also comprehensive in terms of

studies investigating student difficulties with wave phe-
nomena. For example, Sadler et al. [5] found that students
struggled to distinguish between vertical particle motion
and horizontal wave propagation. For the case of transverse
waves, students often concluded that matter was trans-
ported in the direction of wave propagation. Similar
findings also showed that most of the students believed
the particles in the air were pushed together towards the
direction of motion when a sound wave is traveling [6,7].
These misconceptions occurred because students tend to
treat waves as objects and use that reasoning to solve
problems [6–9]. Furthermore, some students struggled to
distinguish between a mathematical representation and a
physical situation, e.g., most students treat the relation
between velocity, wavelength, and frequency of periodic
waves v ¼ λf mathematically without considering how
each variable is related physically [8,10].
In this paper, we explore how university physics

students understand graphical representations of waves
in a manner which goes beyond other studies in the
literature [1–4,11,12]. More specifically, the topic of this
study differs from previous ones because most of them
investigated students’ reasoning in the context of periodic
waves [8,10,13–15]. Here, we focus on students’ ability to
distinguish between the horizontal movement of a pulse
and the vertical motion of matter on a nonperiodical wave
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profile. In particular, we provide students with the profile
[yðxÞ] of a pulse and analyze whether they can estimate
the velocity of some points on the graph, therefore asking
them to reason about time evolution. After assessing
students’ conceptions, three increasingly detailed scaf-
foldings were provided to see if or how they improved
students’ performances when solving the task.

II. PHASE I: STUDENTS’ REASONING
ABOUT THE GRAPHICAL

REPRESENTATION OF A PULSE

A. Materials

Our investigation is based on one conceptual question,
designed to explore students’ understanding of the relation-
ship between the vertical motion of the points on a string,
with the (horizontal) propagation of a pulse with constant
velocity in this string. Four points were located on a pulse
and students were asked to (a) sort out the magnitude of
their velocity, and (b) estimate whether the velocity of each
point is > 0, < 0, or ¼ 0.

Question: A pulse is moving horizontally with con-
stant speed to the right. The profile below represents
a given instant, like a picture (Fig. 1). As the pulse
moves horizontally, the points move vertically (wave
does not transfer matter)
(a) Based on the picture, sort the magnitudes of the

(vertical) velocity at each point from the great-
est to the smallest. Explain your reasons.

(b) For each point, determine whether the velocity
is < 0; > 0, or ¼ 0. Explain your reasons.

From the expert perspective, one way to solve this
question is to draw another profile after some time has
elapsed. Figure 2 shows two wave profiles at two different
instants.
In Fig. 2, the dotted profile represents the pulse after a

short time interval and the red dots show the new vertical
positions of the points. It can be seen that point 4 has the
greatest speed because it has the greatest displacement

compared to other points. Therefore, point 4 requires a
greater speed to attain the final position. With this justi-
fication, the correct answer for question (a) is 4–2–1–3.
To answer question (b), one needs to see the motion

direction of each point. The downward displacement means
a negative velocity (v < 0) and the upward displacement
means a positive velocity (v > 0). Using this approach,
however, the challenge to answer the velocity for point 3 is
inevitable because the point has already moved upward in
the new profile. This is because the question asks about
the velocity in the initial profile, not when the pulse move
after some time has elapsed. In this case, point 3 has zero
velocity. Thus, the correct answer for question (b) is
that velocities of points 1 and 4 are smaller than zero,
the velocity of point 2 is greater than zero, and of point 3 is
equal to zero.
In fact, the expert can solve this question (a) by

only drawing the slope of each point on the graph
to find the speed. However, it is worth saying that
the slope of yðxÞ cannot be treated to find the velocity
without knowing the relation between the slopes of yðxÞ
and yðtÞ. The slope of yðxÞ only addresses the shape of the
pulse, but indeed there is a proportionality between the
slope of yðxÞ and yðtÞ. Thus, one can infer the velocity
based on the slope of each point on the graph of yðxÞ
using this relation. Figure 3 shows the slope of each point
on the graph.

FIG. 1. Problem graph.

FIG. 2. A graph of two wave profiles at two instants.

FIG. 3. Solving question (a) by drawing slope.

RANGKUTI and KARAM PHYS. REV. PHYS. EDUC. RES. 18, 020119 (2022)

020119-2



Based on Fig. 3, it is clear that point 4 has the greatest
slope which results in the greatest speed. Therefore, using
this justification, we can also find the correct answer to
question (a) is 4–2–1–3.

B. Interviews

In order to explore students’ reasoning as fruitfully as
possible, we performed paired semistructured interviews
with 32 physics students from two Indonesian universities.
They were in the second or third year of their studies and all
of them had already taken introductory physics courses,
including basic notions of wave phenomena. Third year
students, especially, had already completed an advanced
course on waves.
Arksey and Knight [16] explain that paired interviews

have the benefit to bridge the gap between pairs.
Consequently, this condition will engage participants in
elaborating more on their answers and gaining more
interactions during the discussion setting. This type of
interview also pushes the participants to work together to
answer the questions that they might not be able to respond
to individually [17]. Moreover, Houssart and Evens [18]
suggest that paired interviews will be more beneficial
for unseen questions, meaning that the questions are
first encountered at the beginning of the interview. This
should provide a collaborative working environment and
encourage students to see alternative views from their
answers.
We followed the interview procedures based on what has

been recommended by the literature. We interviewed
students in pairs, and posed the interview question for
the first time at the beginning of the interview. They read
the questions in a couple of minutes and eventually ask
clarification questions to the interviewer. Students first
responded individually to the question, and then a dis-
cussion in pairs began. In these discussions, students could
defend or change their prior reasoning based on each
argument from their peers. In the end, we gathered one

agreed final answer from the pairs or individual answers if
they could not reach an agreement.

C. Results

We found that no student was able to answer the
questions correctly. Their reasons were diverse and their
conceptual challenges are categorized based on the
common difficulties encountered. Table I shows categories
of students’ conceptual challenges in phase 1.
In general, we found only one category of students’

struggles to answer question (a), which is related to their
difficulty to read the appropriate information of distance on
the graph but with varieties of conceptual challenges.
Meanwhile, the nature of students’ reasoning to answer
question (b) was based on identifying the position in
Cartesian coordinates without considering other physical
aspects within it.

1. Question part (a)

Difficulty in reading distance of each point on the graph
of yðxÞ.—A few students translated the wave profile as a
motion trajectory and used this notion to determine the
displacement between two points. We call this the “roller
coaster” erroneous reasoning. However, the way this error
appeared differed among students. For example Diana1

divided the profile into four parts and conceived four
different motions, the origin (0, 0) moving to point 1,
point 1 to point 2, point 2 to point 3, and point 3 to point 4.
Point 4 will keep moving upwards. She then related her
notion with the proportionality relationship between veloc-
ity and displacement. She answered that point 4 has the
greatest velocity because it has the greatest trajectory from
point 3 to 4. Using that notion, point 2 could also be
considered having the greatest trajectory moving from
point 1 to 2. When asked about this, she said that she

TABLE I. Students’ conceptual challenges in phase I.

Question Conceptual challenge Category
Number of
students

Part (a) Difficulty in reading distance on the graph The roller coaster erroneous reasoning 6
Inaccurate assumption in reading vertical displacement 6
Using horizontal position 7
The wave profile represents wavelength 4
Using periodical wave formulas 9

Total 32

Part (b) Dividing the graph into positive and negative parts 12
Mixing between the roller coaster reasoning
and dividing the graph into positive
and negative parts

20

Total 32

1Student names are pseudonyms.
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measured the motion trajectory of point 2 from the crest of
the wave profile because she assumed that “the point would
start its new movement in that position.” She concluded her
reasoning by answering 4–2–3–1 for part (a). The follow-
ing is Diana’s reasoning:

Diana: The greater displacement of a point will result in
a greater velocity. Point 4 has the greatest trajectory
moving from point 3 to point 4, so point 4 has the
greatest velocity. Point 2 is the second order because I
calculate its trajectory from the crest of the wave profile.
Next is point 3 because it is moving to point 4. Point 1 is
the smallest because it has the shortest trajectory
moving from point (0, 0).

Another interviewed student, Angela, also assumed that
the points on the wave are moving like a roller coaster.
However, unlike Diana, she did not measure the motion
trajectory of point 2 from the crest to point 3 but from the
whole profile from point 2 to point 3. She then decided that
point 2 has the greatest speed and sorted the magnitude of
speed from the greatest to smallest as 2–4–3–1. Here we see
elements of a stronger roller coaster reasoning, as she
sometimes relates higher speeds with regions of lower
potential energy.
Other students referred to the idea of vertical displace-

ments to determine the velocity, but with inaccurate
assumptions. One of the students observed the distance
of each point to the x-axis. She said that the greater the
distance of each point to the x axis, the greater its velocity
and her answer for this question was 4–3–1–2. Julia, also
one of our interviewed students, estimated the value of grid
lines of 1 m on the y axis and then divided the graph into
positive and negative parts.

Julia: If we assume each grid line on the y axis
represents 1 m then point 1 has a distance of 2 m,
point 2 is 0, point 3 is −3 m, and point 4 is 3 m. So the
answer is 4–1–2–3.

Surprisingly, we found some students estimated the
horizontal position to determine the distance of each point.
They said that the further away a point is from the origin
(0, 0) horizontally, the greater its velocity. One of the
student’s reasoning is shown below:

Doddy: The answer is 4–3–2–1 because velocity is
proportional to the distance based on the velocity
formula, which is v ¼ s=t. Velocity in point 4 is the
greatest because it is located furthest compared to other
points.

We do not assume that Doddy considered points on the
wave to move horizontally because he did not state any
displacement of points to answer the question. Even though
this reasoning is simple to understand, using horizontal

displacement seems to be in contradiction to the nature of
motion of particles on the string.
Assuming that a wave is always periodic.—Almost half

of the students assumed that the wave profile in the
question is periodic, even though this was not mentioned
in the question. Although their primary goal was to find
distances related to each point on the graph, these students
associated the distances with wavelengths. We categorized
this erroneous reasoning as the “periodicity fixation.”
Ivan, for instance, assumed that the movement of each

point starts from the origin (0, 0) and follows the wave
profile until it reaches its respective position. This
reasoning is also related to the conceptual challenge of
the roller coaster. However, it was more plausible to place
it into periodicity fixation because he continuously
referred to the notion of wavelength in his answer. He
conjectured that the distance from each point to the origin
(0, 0) determines the magnitude of its wavelength. He then
associated it with the proportionality between wavelength
and velocity. He said that the greater the wavelength of a
point [sic] the greater its velocity. With this notion, he
decided that point 3 has the greatest velocity due to its
greatest wavelength. This point has a 3=4 wavelength
because it consists of one hill and a half valley. Using hills
and valleys to determine the wavelength is common when
students learn periodic waves in these universities; one
wavelength consists of one hill and one valley.
Ivan’s reasoning became more complicated because of

his notion of hill and valley. Paradoxically, he did not
consider the whole wave profile to determine its wave-
length, but asserted a different wavelength to each point of
the profile. Moreover, he argued that point 4 is located in a
new wavelength, therefore it has the smallest speed. The
following is Ivan’s reasoning for question part (a):

Ivan: The order is 3–2–1–4. I calculate the distances of
each point to the origin (0, 0) to determine their
wavelength. Point 3 is the greatest because it has a
3=4 wavelength, point 2 has a half wavelength, and
point 1 has less than a half wavelength. Point 4 is the
smallest because it is located in the new wavelength.

This type of conceptual challenge can also be seen from
Johan’s reasoning. He actually understood that the points
on the wave move vertically, but he believed that the wave
profile in the question is a sine wave. Then, he used a sine
wave function y ¼ A sin ðkx − ωtÞ to find a formula for
velocity, as depicted in Fig. 4.
Johan finally arrived at the velocity formula v ¼

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 − y2
p

. He then determined the magnitude of velocity
using those two variables, amplitude (A) and vertical
displacement (y). He said that the magnitude of velocity
is maximum at y ¼ 0 and minimum at y ¼ A. With that
analysis, he found that point 2 has the greatest velocity
because y ¼ 0 and point 3 has the smallest velocity because
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y ¼ A. In the case of a periodical wave, Johan’s reasoning
is correct because point 2 is located at the inflection point.
However, the wave profile in the question is not periodic.
For point 3, in particular, his answer is correct because this
point is located precisely in the crest and thus has zero
velocity. Finally, he said point 1 has a greater velocity than
point 4 because it has a smaller vertical displacement.
Similar to Johan, Adi also operated the concept of

periodic waves to solve the problem. However, his method
was based on the acceleration formula a ¼ −k2y. He
assumed that the magnitude of speed can be estimated
by using the proportionality relation between acceleration
and velocity. The greater the vertical displacement of each
point, the greater its acceleration, resulting in greater
velocity. He focused on the vertical displacement of each
point and measured it based on the displacement of each
point to the x axis. With this assumption, he then answered
point 4 has the greatest speed. We asked him to clarify his
answer since point 3 and point 4 have the same distance to
the x axis. He then also considered the horizontal position
of a point. Point 4 is located further horizontally than point
3, so that point 4 has the greatest speed. Adi’s reasoning can
be seen below:

Adi: I will use the formula of acceleration which is a ¼
−k2y because of the proportionality relation between
acceleration and velocity. So, the greater y of a point
will result in a greater acceleration, which also pro-
duces a greater velocity. The velocity at point 2 is zero
because y ¼ 0.

With slightly different reasoning, Edy immediately
noticed that the velocity at point 3 is zero by saying it is

located at the position when a point will move between up
and down. This reasoning was undoubtedly correct. He
then noticed that point 2 is located at the inflection point
and concluded that point 2 has the highest velocity. Again,
this answer could be valid if the wave profile in the problem
were a periodic wave. Even though Edy never stated any
formula regarding a periodical wave, we infer that he also
has a periodical wave fixation by his answers to the
velocities of points 2 and 3.

2. Question part (b)

Dividing graph into positive and negative parts.—More
than half of the students just simply labeled the Cartesian
coordinates into negative and positive parts. The velocities
of points located above the x axis are positive, and below
the x axis are negative. Meanwhile, the velocity of points
located exactly at the x axis is zero. The following is one of
the student’s reasoning related to this conceptual challenge:

Johan: The velocity of point 1 and 4 are greater than
zero because they are located above of x axis, so their
magnitudes must be positive. The velocity of point 2 is
equal to zero because it is exactly located on the x axis.
The velocity of point 3 is smaller than zero because it is
located below the x axis, so its magnitude must be
negative.

Students in this group merely applied the position of
each point based on Cartesian coordinates instead of
considering the direction of each point when it is moving.
We notice that the majority of students that hold this
conceptual challenge also had a false assumption of vertical
displacement to answer question (a).
Mixing between the roller coaster reasoning and divid-

ing the graph into positive and negative parts.—Almost
half of the students had a conceptual challenge by mixing
two different notions to answer this question. First, they
claimed that the area above the x axis is positive and the
area below the x axis is negative. Then, they combined that
notion with their incorrect interpretation of a moving point,
the so-called roller coaster reasoning. Here is an example:

Indra: The velocity of point 1 is greater than zero
because it is moving up to the crest of the hill. So, it
requires velocity to climb the hill. I can also see that
point 1 is located in the positive area of Cartesian
coordinate. The velocity of point 2 is zero because it is
located on the x axis. The velocity of point 3 is smaller
than zero because it is located in a valley (moving
down). For the same reason as point 1, the velocity of
point 4 is bigger than zero.

This group’s reasoning can be associated based on how
their method solves question (a). Indra, for example,
reasoned that the points on the wave will move along
the wave profile. Because of this conceptual challenge, his

FIG. 4. Johan’s derivation of a periodical wave to estimate the
magnitude of the speed.
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approach to answer question (b) was affected by this error.
He said that points 1 and 4 are moving up because they are
located at the upward profile whereas point 3 is moving
down because it is located in the downward profile. Then,
he compounded the error by saying that the area above the
x axis is positive and the area below the x axis is negative.
Indra mixed these two conceptual challenges to solve part
(b). Points moving upward (point 1 and 4) will move into
the positive area, so their velocities must be greater than
zero. A point moving down (point 3) will move into the
negative area, so its velocity must be smaller than zero. For
point 2, however, he concluded it had a zero velocity
because it is located at the x axis. Because of this, Indra’s
reasoning seems incoherent because he only analyzed the
position of point 2 instead of applying his two conceptual
challenges like he did when analyzing the other points.
However, Diana, who also mixed these two aspects,
indicated that velocity of point 2 is smaller than zero
because it is located at the downward profile. Thus, her
reasoning seems more coherent.

III. PHASE II: SCAFFOLDING SUPPORT

A. Methodology

The result from the questionnaire made it clear how
challenging the posed question was to the students, which
motivated us to develop instructional strategies to see if
they could understand the basic conceptual issues. Three
levels of scaffolding were implemented and 22 students
who answered the questionnaire were selected randomly to
participate in this stage, where, once again, semistructured
interviews were conducted in pairs.
Methodologically, our study is similar to the one con-

ducted by Maries et al. [19] who developed scaffoldings to
reduce student difficulties with Gauss’s law. Our scaffold-
ings were also designed to incorporate the experts’
approach to solve the problems [20,21]. However, our
supports were slightly different because we did not provide
a complete explanation, but only minor hints to the
students. We expected that students could build their
understanding and answer the questions based on their
own analysis.
The goal of these interventions was to lead the students

to draw the wave profile after some time has elapsed to
reveal possible changes in students’ reasoning to solve the
problem. Under these interventions, we expected that
students could notice the displacements of each point by
comparing two wave profiles at two instants to solve the
problem.
Scaffolding is associated with providing suitable

support to a learner to overcome something that is
difficult to achieve [22]. Originally, the term scaffolding
was used to describe a series of steps for a learner to
achieve a better performance [23]. Nowadays, scaffolding
is used as an intervention to help not only an individual

person, but also pairs and teams in many fields, including
physics [24,25].

1. Scaffolding level 1

The purpose of scaffolding level 1 is to provide an
illustration to the students of the characteristics of the wave
profile after a short time interval. The interviewer demon-
strated physically with his hands how to create a single
pulse on a string that is moving to the right with constant
velocity. Students were then asked to draw the next wave
profile after some time has elapsed on the graph in the
question. Students were also asked to locate the displace-
ment of points in the new wave profile. Students who failed
to draw the correct wave profiles in this stage were given
intervention level 2.

2. Scaffolding level 2

In this level, the PhET simulation called “wave on a
string” [26] was introduced to the students. This simulation
presents the real condition of a vibrating string, and it has a
variety of features that are suitable to our wave profile. This
simulation can be modified into different situations, for
example, showing how a string oscillates with or without
reflections. The vibration source can be created manually
with the possibility of adjusting damping and tension.
Moreover, if the users want to see the movement on the
string in detail, a slow-motion feature can be applied to the
system.
Students were asked to use the simulation to reproduce

the pulse that was given in the question, and they were left
to explore the simulation without any help. Students who
were able to generate the pulse in the simulation were asked
to draw the new wave profile again after a short period of
time. Then they were asked once again to answer the
question. Even though some students did not create the
same wave profile, we asked them to answer the same
question because we wanted them to realize that the shape
of the wave remains the same when it is progressing.
Students who failed to use the appropriate features in the
simulation were given intervention stage 3.

3. Scaffolding level 3

In this final support, we showed to the students how to
create a pulse moving to the right with a constant velocity.
They were instructed to use a manual vibration source, set
the damping to zero, choose no-end string, and use the
slow-motion feature to see the vibration in detail. After
successfully creating the correct simulation, they were
asked once again to draw the wave profile after some time
has elapsed and then answer the questions once more.

B. Results

Students’ performance in the scaffolding environment
was diverse at each level with noticeably scaffolding level 1
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being very challenging for the students. Tables II and III
show students’ results in the scaffolding environment.
These results show that students’ performance has

improved by looking at their success in answering the
question with correct reasoning after scaffolding level II.
Although some students still hold robust erroneous views,
the complex understanding of graphs of yðxÞ and yðtÞ
appeared to be solved by some of our students.

1. Students’ results for scaffolding level 1

We found that all students had difficulties imagining the
nature of a pulse moving to the right with a constant
velocity. Most of the students drew the new wave profile
smaller because they said that the wave will lose its energy
after moving a bit and its amplitude will diminish slowly.
Figure 5 shows Citra’s drawing exemplifying this difficulty.
Based on her drawing, Citra’s difficulties were not only

due to the notion of losing energy, but that she also
struggled with locating points in the new profile. She
started drawing the new profile from the origin and
assumed that the points on the wave would only oscillate
in the fixed x-axis position (except point 1). The way she
located the new positions of the points also seems incon-
sistent. When asked for the reason for that choice, she
simply said that she located the points randomly in the new
wave profile.

Hendri, another of our interviewed students, also thought
that the wave will lose its energy. However, unlike Citra, he
started drawing the new wave profile after a short time
interval to the right from the initial profile. Figure 6 shows
Hendri’s drawing in scaffolding level 1.
His choice to locate the new positions of the points was

based on his conceptual challenge to answer question (a).
Based on Fig. 6, he implemented his notion of roller coaster
reasoning to locate the displacement of points on the new
wave profile. He thought that points on the wave are
moving along the wave profile and the numbers with prime
symbols indicated this conceptual challenge.

TABLE II. Students’ results in the scaffolding (SCL) environ-
ment for question (a) (“1” indicates that students answer the
question correctly, “0” indicates that students answer the question
incorrectly).

Pair Student SCL I SCL II SCL III Drawing

1 1 0 0 0 Failed
2 0 0 0 Failed

2 3 0 0 1 Succeeded
4 0 0 1 Succeeded

3 5 0 0 0 Succeeded
6 0 0 0 Succeeded

4 7 0 0 0 Failed
8 0 0 0 Failed

5 9 0 0 0 Succeeded
10 0 0 0 Succeeded

6 11 0 0 0 Succeeded
12 0 0 0 Succeeded

7 13 0 0 1 Succeeded
14 0 0 1 Succeeded

8 15 0 1 0 Succeeded
16 0 1 0 Succeeded

9 17 0 1 0 Succeeded
18 0 1 0 Succeeded

10 19 0 1 0 Succeeded
20 0 1 0 Succeeded

11 21 0 0 0 Failed
22 0 0 0 Failed

TABLE III. Students’ results in the scaffolding environment
for question (b) (1 indicates that students answer the question
correctly, 0 indicates that students answer the question
incorrectly).

Pair Student SCL I SCL II SCL III Drawing

1 1 0 0 0 Failed
2 0 0 0 Failed

2 3 0 0 1 Succeeded
4 0 0 1 Succeeded

3 5 0 0 0 Succeeded
6 0 0 0 Succeeded

4 7 0 0 0 Failed
8 0 0 0 Failed

5 9 0 0 1 Succeeded
10 0 0 1 Succeeded

6 11 0 0 0 Succeeded
12 0 0 0 Succeeded

7 13 0 0 1 Succeeded
14 0 0 1 Succeeded

8 15 0 1 0 Succeeded
16 0 1 0 Succeeded

9 17 0 1 0 Succeeded
18 0 1 0 Succeeded

10 19 0 1 0 Succeeded
20 0 1 0 Succeeded

11 21 0 0 0 Failed
22 0 0 0 Failed

FIG. 5. Student’s drawing with the next profile become smaller.
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A few students could not draw two wave profiles
separated by a short time interval. Ivan, for example, could
only visualize the next wave profile after it moves a
complete wavelength. He drew the next wave profile from
the end of the original profile, which can be seen in the red
profile from Fig. 7.
Based on Ivan’s drawing, it is impossible for him to

imagine a wave profile after a short time interval. The way
he located points on the red profile also indicated he had a
roller coaster erroneous view. For question (a), we catego-
rized Ivan’s reasoning in the periodical wave fixation
because he analyzed the problem by considering the
wavelength to solve it. However, in this stage, we also
found that Ivan holds a roller coaster reasoning.
One of our interviewed students, Yuda, recognized that

the wave profile will always be identical when it is
progressing. Only the points will be moving up and down
vertically. However, he did not have a picture how to draw
the two wave profiles in one graph. Yuda’s drawing can be
seen in Fig. 8.
Figure 8 shows that Yuda did not manage to draw the

new profile after a short time interval. He only drew one
wave profile and located the points at two different
conditions. The blue dots represent points at the original
profile and the red dots represent the displacement of points
after a short time interval. In the beginning, we thought that

he had a roller coaster reasoning because the points
appeared moving along the wave profile, but this was
not his reasoning. He said that point 1 will be moving
down, point 2 will be moving up, point 3 will be moving
up, and point 4 will be moving down after some time has
elapsed. Points on the wave only move vertically and his
reasoning regarding this was correct. When we asked him
to draw once again the two wave profiles in one Cartesian
coordinate, he was still puzzled about how to do that.
Some students understood that the shape of the wave

profile will be identical when it is progressing. The
difficulty arrived when they located the displacement of
points on the new wave profile. Figure 9 shows that Edy
could draw two wave profiles at two instant times and the
new wave profile is represented with the dotted line. The
displacement of points was still inaccurate except point 3
which was located correctly, showing that point 3 is moving
upward vertically. However, his reasoning regarding the
motion direction of the points was correct. We also noticed
that the dotted profile he drew looked like a repeating
continuous pattern which is the characteristic of periodi-
cal waves.
On the other hand, Indra drew his new wave profile as if

it was traveling as shown in Fig. 10. This result came

FIG. 6. Hendri’s drawing in scaffolding level 1.

FIG. 7. Ivan drew the next wave profile after a complete
wavelength.

FIG. 8. Yuda’s difficulty drawing two wave profiles in one
graph.

FIG. 9. Student’s difficulty to place the displacement of points
on the new wave profile.
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because of his notion about the motion direction of the
points. He said that point 1 will move upward after a short
time interval. His reasoning would be correct if the wave
were moving to the left. From the positions of the points on
the new wave profile, it shows that Indra understood that
each point moves vertically.

2. Students’ results for scaffolding level 2

Seven pairs of students were not able to use the
simulation correctly to imitate the wave profile. All pairs
eventually tried to use different settings in the simulation
several times. However, students tended to use periodic
wave vibration in the simulation instead of using manual
vibration. We also noticed most of them hold a periodical
wave fixation in phase I. One pair of students used the
manual setting, but the damping was not set to zero. The
simulation output was the wave that loses its energy when it
is progressing, and its amplitude diminishes after some
time has elapsed. We noted that this pair had difficulty
drawing the new wave profile smaller in intervention
level 1.
Regarding the reflection, two pairs applied the fixed end

and no end setting, respectively, and the rest of the pairs
applied the loose end setting. They paused the simulation
and showed a periodical wave profile at an instant time to
the interviewer. However, most of them realized that the
way they used the simulation was incorrect because it was
not a single pulse moving to the right with a constant
velocity.
Four pairs of students could set the features properly and

imitate the similar wave profile in the simulation. However,
only three pairs applied the precise settings so that they
could create the same profile as in the question. Meanwhile,
one pair of students failed to move the manual vibration
precisely, so the result of their wave profile was not similar
to the question. However, at this point, they noticed that the
wave profile will always be identical, and the points are
moving vertically in a straight line when it is progressing.
Students who managed to notice this were asked once

again to draw the wave profile after some time has elapsed
and locate the positions of the points. Figure 11 shows one
of student’s drawings after scaffolding level 2.

With their drawings, most of them immediately
noticed that point 4 has the greatest displacement com-
pared to the other points. They then relate this notion to
distinguish the difference of displacement of each point to
solve question part (a). One interviewed student, Edy, who
was categorized as having a periodical wave fixation in
phase I, changed his reasoning to answer this question.
He now focused on the displacement of each point and
said that point 4 has the greatest velocity because of its
displacement.

Edy: I think the greater the displacement of a point, the
greater its velocity. We know that the velocity is propor-
tional to the displacement. So, the velocity in point 4 is
the greatest because it has the greatest displacement.
Also, we can see from the simulation that point 4 has the
greatest speed moving downward compared to other
points.

In contrast, one pair of students who also managed to
grasp the conceptual understanding of a traveling pulse
using the simulation did not use this support to change their
prior reasoning to solve the problem. We note that this pair
failed to create identical wave profiles in the simulation
consistent with the question, but they understood the
concept behind it. Figure 12 shows one of their drawings
after scaffolding level 2.

FIG. 10. Indra’s drawing as if the wave moves to the left.

FIG. 11. Student’s drawing after scaffolding level 2.

FIG. 12. A correct drawing from a student, but it did not help
him to change his prior reasoning.
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Their drawing was still inaccurate because of their
mistake drawing the initial wave profile, affecting their
drawing on the new profile. We intended to ask them to
draw the wave again with the correct initial profile, but we
decided to ask them first whether they wanted to change
their answer. They said that they still hold to their prior
reasoning, and they did not know how to answer the
question based on their drawing. Even though the differ-
ence of displacement of each point it is clearly seen in their
drawing, they still assumed that the greatest speed was
point 4 because it is located the furthest horizontally.
For question (b), the group of students who conceived

the concept of traveling pulse in this level managed to
recognize the motion direction of each point correctly.
Three pairs changed their answers by observing the motion
direction of each point in the simulation. They said that
points moving downwards will have a negative velocity,
and points moving upwards will have a positive velocity.
They said that points 1 and 4 are moving downward,
points 2 and 3 are moving upward.
It is worth noting that our scaffolding is a bit tricky for

point 3. When we emphasized that the question asked the
velocity at the initial profile, then at that point, they realized
that velocity in point 3 is equal to zero. The following is one
student conversation in scaffolding level 2 to solve question
part (b):

Irvin: Points 1 and 4 are moving downward so their
velocities are negative. Point 2 is moving upwards so its
velocity is positive. Velocity in point 3 is equal to zero.

Ruth: Yes, I agree. Point 3 is located in the greatest
vertical displacement. It is the position where a point in
the wave could move farthest. In that condition, the
velocity of a point is equal to zero.

3. Students’ results for scaffolding level 3

At this stage, the remaining pairs were able to visualize
the wave profile with the simulation and they had a better
understanding of the problem. However, there were still
three pairs who were unsuccessful in drawing the wave

profiles. From their pictures, we noticed that they could not
imagine how to draw two wave profiles at two instant times
in one Cartesian coordinate. Figure 13 shows students’
difficulties drawing the new profile after some time has
elapsed.
Diana managed to improve her conceptual understanding

from the simulation but failed to draw the correct wave
profile. She could explain the motion direction of points
correctly, but when we asked her to draw the new wave
profile, she was unable to do that. She tried several times to
draw several wave profiles, but none were correct. From
Fig. 13, it seems like Diana could not imagine how to draw
two identical wave profiles crossing each other in one
coordinate Cartesian.
Nevertheless, four pairs of students were finally able to

draw the wave profile and locate the points correctly in
scaffolding level three. Two pairs could answer questions
(a) and (b), one pair only could answer question (b), and
one pair failed to answer questions (a) and (b).
Figure 14 shows that all the remaining pairs were able to

draw two wave profiles correctly but only two pairs could
notice the different displacement of each point to answer
question (a). Meanwhile, we still found one pair holding a
strong conceptual challenge and they did not change their
prior reasoning even though their drawing was correct.
They still insisted on dividing the graph into positive and
negative parts and determining the magnitude of the speed
based on the incorrect assumption of vertical displacement.
However, for question part (b), three pairs could analyze the
motion direction of points and provide the correct reason-
ing to answer the question.

IV. DISCUSSION

A. Students’ difficulties before scaffolding support

Before the scaffolding support, students held strong
conceptual challenges regarding these wave phenomena.

FIG. 13. A student still could not imagine how to draw two
identical wave profiles in scaffolding level 3.

FIG. 14. Students’ drawings after scaffolding level 3.
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None of the students’ reasoning is scientifically acceptable
and some are quite difficult to understand. The dominant
difficulty for question part (a) is students’ incorrect
interpretation of distance on the graph of yðxÞ and how
they relate that with the proportionality relation between
velocity and distance (v ¼ s=t). Noticeably, most of them
did not mention time explicitly in their reasoning and a few
of them assumed that time is fixed. Overall, most students
tried to find distances randomly to make assertions about
the velocities of each point.
The first conceptual challenge arose when a few students

misinterpreted the wave profile as the motion trajectory,
which we called roller coaster erroneous reasoning. Some
studies show that students assumed that the wave pushes
the particle in front of it forward when it is traveling and
they often treat waves like objects [7,27]. Wittmann [7]
found that students related points in the wave to the
movement of an object in kinematic and failed to distin-
guish between propagating object and propagating wave.
He described this conceptual challenge like a surfer riding
on an ocean wave because it moves everything in front of it.
In our study, students also mentioned that the points move
along the wave profile because of the disturbance on the
string, which can be assumed that they treat the disturbance
like a kick to a ball. However, this reasoning seems to be
contradictory because students were aware that the wave
only transfers energy which was already emphasized in our
question. Therefore, the strong assumption that a wave
should be treated as an object prevented them from solving
the problem correctly.
Another reason why students failed to distinguish the

concept between pulse and particle motion on the wave is
the confusion between the graphs of yðxÞ and yðtÞ. This can
be even more complicated when the students combine it
with the assumption that a wave is periodic. In our study,
almost half of the students assumed that a wave is always
periodic, which is in agreement with several findings
[6,7,28]. The confusion between yðxÞ and yðtÞ is identified
by one study showing that students failed to sketch
different graphical functions using the graph of yðxÞ. For
instance, students misunderstood that yðxÞ can be directly
transformed to sketch the graph vðxÞ by looking at the slope
of the graph [28]. Another difficulty came when students
were asked to interpret the wave properties within the
graphs of yðxÞ and yðtÞ. The result shows that most of the
students were confident that two wave profiles represent
the waveform [6]. In periodic waves, one can use yðxÞ to
determine the wavelength and yðtÞ to determine the wave’s
period. Our wave profile was meant to represent just a
pulse, thus it should not be used to determine wavelength.
It is clear that the periodical wave fixation is robust

among the students. Many referred to periodical properties
and formulas like y ¼ A sin ðkx − ωtÞ to solve the problem.
The profile provided in the question even had a lack of
symmetry, which did not prevent students from thinking in

terms of sines or cosines. This periodical wave fixation was
detected in one study that found more than two-thirds of the
students had a very strong belief that the motion of a
particle will form a sine wave pattern when they were
presented with three different yðtÞ graphs [6]. Another
study also found that students drew the sine wave curve
when they were asked to transform the graph of yðxÞ which
is represented in sawtooth shape into different graph
functions [28]. During the interview, we asked students
about their decision to use periodical waves to solve the
problem and the majority of them said that they are only
familiar with sine or cosine waves, which was also found in
similar studies [6,7,28,29].
In a curved graph of yðtÞ, one can see the slopes at the

points to find whether the velocity is positive, negative, or
equal to zero but not with the graph of yðxÞ.2 Again, mixing
the reasoning between the graph of yðxÞ and yðtÞ and
treating a wave like an object greatly complicated the
students attempts to answer question (b). This phenomenon
can be found when students were presented with a position-
time graph located above of x axis. Many of them could not
imagine that the points have negative velocity due to the
position of the graph in the Cartesian coordinate [30].
Although the function of the graph is different since we plot
the graph of yðxÞ, we can relate that finding by how
students respond to answer question (b). Most of our
students just simply observed where the points are located
in Cartesian coordinates, whether a point is in the þy axis,
−y axis, or exactly in the x axis without considering the
motion direction of the points on the wave. In the curved
graph of yðtÞ, students simply observed the position of
points on the graph instead of analyzing the slope of each
point to find the velocity [11]. Moreover, many students in
our study mentioned that a point located in the x axis
treated having a zero or lowest velocity due to its zero
position, which was also one of the highlighted findings in
Eshach [30] and Mcdermott [11].

B. Students’ performances after scaffolding support

In our scaffolding, we tried to address the conceptual
challenges that were found in phase I by creating two
approaches. The complex relationship between the motion
of points and the pulse on the wave was addressed with a
simulation. Here, students who thought that the points on
the wave move horizontally would finally see that the
points only move up and down. This also tackles the
conceptual challenge of using the position of points in
Cartesian coordinates to define the sign of velocity since
students can notice the motion direction of points.
Particularly, for point 2, students realized that the velocity

2In this situation (pulse moving with constant horizontal speed)
one can indeed use the slope at yðxÞ to infer velocity ðdy=dtÞ.
This is related to the fact that the pulse also satisfies the transport
equation, which states that dy=dx is proportional to dy=dt.
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in that position is not zero but that this is the case of the
points located in the crest or trough of the graph. The
problem of determining distance to obtain the velocity on
the graph of yðxÞ was addressed by asking students to draw
the second wave profile after it moves a bit. This created a
cognitive conflict among students which used inappropriate
ways to define the distance or vertical displacement of each
point on the graph.
Scaffolding level 1was less effective becausewe found that

all the students failed to draw the new wave profile. They
believed that thewavewould lose its energy and the amplitude
would slowly shrink. Our result is in line with a study from
Wittmann [9], who presented a pulse at x ¼ 0 and t ¼ 0 on
the graph of yðxÞ which propagates in the x direction to the
students. He then asked them to draw the condition of the
pulse after moving at x ¼ x0. Most of the students sketched
the amplitude lower after moving at x ¼ x0 due to energy
losses. This reasoning could be accurate if dissipative effects
were taken into account. However, in the idealized situation,
students should recognize that the shape of the pulse will
remain the same when it is moving.
Scaffolding level 2 and 3 were more helpful to the

students. Some of them have improved their performances
when the PhET simulation was used, and it helped students
distinguish the (horizontal) wave motion from the (vertical)
particle motion. One study reported significant improve-
ment in performance of the students using this simulation,
showing that 71% of them correctly recognized the nature
of velocity of the points of the string of a violin compared
to only 21% of students in traditional teaching [31]. The
simulation brings a dynamic component to our static wave
profile because the wave is traveling. The students can now
focus on the motion of some specific points when the wave
is progressing.
In essence, to create the wave profile precisely like in the

problem, students need to use the manual feature to move
the string, set the damping to zero, and use no end string.
How to move the source of vibration is also essential. There
are four important steps to create the wave profile exactly
like in the question: (i) the string should be placed from
above first; (ii) pull the string downward at a specific
position; (iii) pull the string back upward at the initial
position; (iv) pull the string downward again and place it in
the middle position between the whole movement upward
and downward. To make a more precise wave profile,
students need to pull the string a little bit faster downward
than the upward movement. To observe the motion in
detail, students need to apply the slow-motion feature.
Four pairs of students were able to create the correct

profile without any help on the simulation and changed
their prior reasoning. We note that students had different
performances when they precisely imitated the wave profile
to match the question compared to the students who could
only create a similar pulse. Three pairs who managed to
simulate the identical pulse immediately spotted that the

shape of the profile will remain the same and realized that
there was a significant difference between point 4 and the
other three points. The motion in point 4, especially, is
more noticeable to observe because it moves downward
faster. Thus, it was easy for them to determine that point 4
has the greatest velocity even though they had not yet
considered the concept of displacement in their reasoning.
One pair who only managed to create a similar pulse did

not change their prior reasoning despite successfully
drawing the correct wave profile. Although there is a
mistake in failing to draw the wave profile consistent with
the question, they understood that the shape of the wave
will always be identical when it is progressing. One of their
drawings can be seen in Fig. 12, showing two identical
wave profiles in a graph. The difference of displacement
and direction can be clearly seen from those two wave
profiles, but they kept insisting on using their prior
reasoning. As a side note, we did not provide any further
hints after students finished their drawings.
In scaffolding level 3, all the remaining pairs were able

to use the simulation to improve their performances.
However, three pairs still failed to draw the correct profile
and solve the question. Lin and Singh [32] suggested that
the scaffolding’s effectiveness depends on students’ initial
knowledge and skills. Based on our results in scaffolding
level 2 and 3, it is not guaranteed that our designed
scaffolding was effective for all the students even though
we have set a clear goal in our interventions which is
strongly suggested when designing the scaffolding envi-
ronment [32]. The careful design of our intervention was
not enough to help students change their prior reasoning
despite their successful drawing of the correct wave profile.
Students’ performances were also diverse in every level

of scaffolding. We found that a few students were able to
grasp the consistent shape of the wave when it progressed,
and our intended goal of this support was accomplished
only by implementing scaffolding level 2. In the end, all
the students were able to draw the correct wave profile
and the purpose of our scaffolding supports were fulfilled.
However, a few students still hold their robust alternative
conception and did not use that support to change their
prior reasoning. Our findings are similar to some studies
that implemented scaffolding support as a tool to help
students overcome their conceptual challenges. They found
outcomes varied when the students were engaged with
various scaffolding support levels. These studies suggested
that the level of competence is probably the reason why
student performances are diverse in each scaffolding
environment [24,33].

V. CONCLUSION

Our study highlights some of the main difficulties
regarding the propagation of a pulse in a string. All our
students initially tried to extract inappropriate information
to find the distance on the graph of yðxÞ. This becomes even
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more complex because many students are mostly exposed
to periodic waves and always think that the nature of waves
is periodic. In consequence, they hold a robust erroneous
reasoning if they are presented with an unusual wave
profile. Because of their simplicity, it is understandable to
use regular and periodic waves in teaching. However, this
practice may convey to capture a thorough understanding
of wave phenomena.
The second issue is the difficulty of extracting informa-

tion from physics graphs. We found many students quickly
fixated on unsuitable features on the curved graph that led
them into a broader area of erroneous reasoning. Many
phenomena on waves are presented in the graph, and this
condition requires a comprehensive understanding regard-
ing how to relate correct information on the graph into
physical concepts.
In our study, designing scaffolding support becomes a

challenge since students’ response to these interventions is

diverse and not all of them in the end successfully answered
the question correctly. Our purpose of scaffolding support
to lead students to draw the new wave profile after some
time has elapsed was literally achieved. However, not all
students used that help to change their prior reasoning. This
happened because of the prior knowledge and procedural
competences of the students. Further studies are needed to
answer why these phenomena happened among university
physics students.
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Despite its crucial importance in physics, there aren’t many studies focusing on student difficulties
and teaching strategies related to the (1-D) wave equation in the PER literature. In order to
contribute to fill this gap, we conducted a study with university students which focused on specific
aspects that are crucial for understanding this equation. Our results include not only key learning
difficulties and potential teaching strategies to circumvent them, but they also suggest that students
can search for a deeper understanding of physics equations when prompted to do so.

I. Introduction

It is plausible to assume that all physics instructors
wish their students understood physics equations, but
there exists no consensus in the PER literature about
what this actually means. Some of the aspects addressed
in previous studies include being able to identify variables
[1–5], derive equations from first principles [1–3, 5], rec-
ognize mathematical structures [1–3, 5], relate equations
with everyday life [1, 2, 5], and use equations in problem
solving [1–3, 5].

Some studies pointed out that students’ epistemologi-
cal framing1 sometimes resulted in the tendency to treat
physics equations merely as calculation schemes [7–9].
For instance, students were satisfied when they could per-
form mathematical calculations with physics equations
but failed to understand how the variables within the
equations are related physically [1, 10, 11].

Our study focused on encouraging students to make
sense of the 1-D wave equation (WE), chosen due to its
convoluted mathematical structure. At first glance, this
equation may look simple since it only consists of two
second-order partial derivatives and a constant, but ex-
plaining its meaning is far from being trivial. We argue
that by trying to make sense of this particular equation,
students may overcome conceptual difficulties that some
studies already discovered related to wave phenomena
[10–16].

In order to answer the question “what does it mean to
understand the WE?”, we proposed a scheme that con-
sists of three essential aspects: the mathematical repre-
sentation of a moving pulse, connecting y = f(x ± vt)
with the WE, and the relationship between force and
concavity. These aspects guide us to assess students’ in-
terpretation of the main physical concepts behind the
WE. Based on these guidelines, seven learning objectives
(LOs) were defined and integrated in the design of tuto-
rials to help students understand the WE.

∗ aswin.rangkuti@ind.ku.dk
1We use the term of epistemological framing to describe stu-

dents’ perspectives on relevant knowledge in a given situation [6]

II. Fundamental aspects related to understanding
the WE

There are many things that contribute to developing a
physical understanding of the WE. In the following, three
crucial aspects are described and justified.

A. The mathematical representation of waves

Broadly speaking, waves are moving profiles. Math-
ematically, this is expressed by functions of the kind
y(x, t) = f(x ± vt). Thus, in order to be able to un-
derstand the WE, students should first be able to under-
stand how to represent waves mathematically.

Furthermore, many studies have shown that students
tend to refer to periodic elements (e.g. frequency, wave-
length) when asked about essential characteristics of
waves, but in principle a wave does not need to be peri-
odic. In this sense, we wish to move away from this “peri-
odic fixation” and stress the more fundamental and gen-
eral description of a traveling wave by y(x, t) = f(x±vt).

The way we describe a traveling wave is by performing
horizontal graph transformations, as shown in Fig. 1.

FIG. 1: Horizontal graph transformations of f(x)

In order to move the graph to the right, we substitute
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x by x−a, where a is a positive number. If we let a = vt,
then y(x, t) = f(x − vt) represents a pulse propagating
to the right with a fixed shape and constant speed v. A
pulse moving to the left can be expressed by the function
of y(x, t) = f(x+ vt).

B. Connecting y(x, t) = f(x± vt) with the WE

Although apparently disconnected, it is possible to
show that by assuming y(x, t) = f(x±vt), we can obtain
the WE. Thus, y(x, t) = f(x ± vt) and ∂2y

∂t2 = v2 ∂2y
∂x2 are

(almost) mathematically equivalent, and being aware of
this connection is a crucial part of understanding the WE
deeply.

We obtain the WE by deriving y(x, t) = f(x±vt) twice
with respect to the independent variables x and t and
comparing the results. Considering x ± vt = u, double
derivation with respect to x yields.

∂y

∂x
=
df

du

∂u

∂x
=
df

du
(1)

∂2y

∂x2
=
d2f

du2
. (2)

With respect to t

∂y

∂t
=
df

du

∂u

∂t
= ±v df

du
(3)

∂2y

∂t2
= (±v2)d

2f

du2
. (4)

Comparing (2) and (4),

∂2y

∂t2
= v2

∂2y

∂x2
, (5)

which is the 1-D WE.
Although any function of the form y(x, t) = f(x± vt)

satisfies the WE, not all of them represent a physical
wave. For instance, the function of y = (x ± vt)2 is
an infinite parabolic graph and therefore cannot express
waves in the physical world. However, other functions,
such as y = A sin(kx−ωt) or y = 2A sin(kx) cos(ωt), are
examples of wave functions that describe physical waves2.

C. Concavity and Force

It is also crucial to encourage students to interpret the
WE physically. Seeing this equation as a relation between

2A physical wave is a wave that exists in physical reality.

force and concavity34 is one promising way to do that.
This should allow students to tell a “physical story” when
describing the meaning of this equation, instead of see-
ing it merely as a calculation scheme and/or an abstract
mathematical relation.

Fig. 2 shows a bent string and the resultant inter-
nal forces acting on several points. These forces differ
in magnitude; the greater the concavity, the greater the
force. We can express this relation mathematically:

∂2y

∂x2
∝ F (6)

∂2y

∂x2
∝ ma (7)

FIG. 2: The proportional relation between force and
concavity.

If we assume the mass on the string is uniform:

∂2y

∂x2
∝ a (8)

∂2y

∂x2
∝ ∂2y

∂t2
(9)

Then, adding a proportionality constant k and using
dimensional analysis, we arrive at:

∂2y

∂x2
= k

∂2y

∂t2
(10)

∂2y

∂x2
= v2

∂2y

∂t2
, (11)

which is the 1-D WE.

3The term concavity is used to here describe the second deriva-
tive of y with respect to x.

4A more precise formulation of this relationship would be to
state that force is proportional to curvature. But with some ap-
proximations, curvature and concavity become equivalent. This
subtlety was not discussed with the students, the important thing
for us was to make them relate the shape of the profile with the
resultant force at each point.
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III. Methodology

A. Participants and Data Collection

Semi-structured interviews were performed in pairs,
and twenty physics students from four Indonesian uni-
versities participated in our study, capturing a broader
and more representative population. The universities in-
cluded in the study consisted of two top-ranked institu-
tions and two with mid-range rankings, as assessed by
the Ministry of Education, Research, and Culture of In-
donesia.

All students were in the third year of their studies and
all of them had already completed an advanced course on
waves. This condition allowed us to mitigate the differ-
ent approaches and instructions that might exist among
these institutions, as all students had already been ex-
posed to the WE. In these universities, the basic concept
of waves is introduced in the introductory physics course.
However, the 1-D WE is typically covered in more ad-
vanced wave courses. The specific names of these courses
may vary across universities, such as Waves, Physical
Waves, or Waves I and II.

Using semi-structured interviews in qualitative re-
search allowed us to thoroughly explore students’ rea-
soning when answering the questionnaire. The questions
involved were not typical problem-solving questions. In-
stead, students needed to elaborate on their answers, and
the interviewer followed up with them until clarity was
achieved.

Two days before the interviews, we told the students
that the topic of discussion would be the 1-D WE. The
pair interview was chosen because we wanted the stu-
dents to work together during the entire data collection
process. In this way, students could help each other,
speak their “own language”. [17, 18]. The students dis-
cussed their answers with their friends with whom they
already had a relationship, so they felt more comfortable
sharing their thoughts. This made it more likely for them
to provide honest and authentic answers [19, 20].

The interviews were conducted in Indonesian as all
physics courses in those four universities were taught in
the same language. The interviewer, who is the first au-
thor of the paper, conducted the interviews. Due to the
pandemic, the entire data collection was conducted on-
line via Zoom. The interviews were recorded using the
embedded recording feature in Zoom, and the interviewer
also took notes to capture important reasoning and dis-
cussions during the interviews. When students needed to
draw or perform calculations, students were asked to send
the pictures of their works to the interviewer and then
the interviewer shared and discussed in Zoom. The same
method was used when students worked in GeoGebra,
with the interviewer asking them to share their screen in
Zoom.

The data was collected in three stages: pre-test, tu-
torials and post-test, the students remained in the same
pairs throughout the study. The questions were first en-

countered by the students at the beginning of the inter-
view and the students were encouraged to “think aloud”
during the whole process of data collection. The first
tutorial began afterwards, and approximately almost all
the students completed the designed tutorials within two
weeks, depending on their availability. After one month
of finishing the last tutorial, the post-test with the same
questionnaire was given again to the students. Due to
the pandemic, the entire data collection was conducted
online.

B. Questionnaire

The questionnaire consisted of five open-ended ques-
tions to assess students’ understanding of the WE.

Questions

Below you see the 1-D WE consisting of a partial
differential equation which describes a physical process.

∂2y

∂t2
= v2

∂2y

∂x2

1. If you were to explain the meaning of this equation
with your own words (to a non-expert), how would
you do that?

2. There are several terms in 1-D WE
(x, y, t, v, ∂2y/∂t2, ∂2y/∂x2). Indicate what
those symbols refer to.

3. Based on the question 2, indicate the units of those
symbols.

4. Describe a physical situation represented by
∂2y/∂x2 ∝ ∂2y/∂t2.

5. Given the functions below, which ones satisfy the
WE and which can represent a physical wave? (You
can choose more than one). Explain your reason.

(a) y(x, t) = f(x+ vt)
(b) y(x, t) = A sin(kx− ωt)

(c) y(x, t) = e−(x−vt)2

(d) y(x, t) = 2A sin(kx) cos(ωt)
(e) y(x, t) = (x+ vt)2

The goal of the first question is to explore students’
intuition about the WE. In the second and third ques-
tions, we asked them to explain the meaning and unit
of each symbol in the WE (x, y, t, v, ∂2y/∂t2, ∂2y/∂x2).
This question aimed at revealing students’ views about
the symbols condensed in the WE, where one should be
able to relate the meaning of physical symbols to the
appropriate situations.

The most noticeable mathematical structure in the
WE is the proportionality relationship between ∂2y/∂t2

and ∂2y/∂x2. Thus, we asked the students if they could
physically interpret the relationship in question 4. In
fact, this relation is important because it allows students
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to see it as the relationship between force and concavity.
In the last question, different functions were given and
the students asked which ones i) satisfy the WE and ii)
represent physical waves.

C. Tutorials

The tutorials were designed to provide a platform for
students to work collaboratively and discuss their learn-
ing difficulties [21]. When designing the tutorials, we
were inspired by the conceptual blending framework,
which has been recently used to investigate how students
connect mathematics and physics [22–25]. This frame-
work was initially proposed by Fauconnier & Turner [26]
and explains cognitive processes by combining thinking
elements such as symbols and images to create meaning.

Using a conceptual blending framework, Witmman [27]
proposed two schemes of students’ reasoning about wave
propagation that combined three mental spaces, namely,
gestural, perceptual, and verbal to make a new mean-
ing. Eynde et. al [25] used dynamic conceptual blending
(DBD) to investigate students’ performance in integrat-
ing physics and mathematics when dealing with the heat
equation, which has many similarities to the WE. Stu-
dents’ difficulties were identified when they missed indi-
vidual elements of or connections between mental spaces.
For example, some students failed to describe the mean-
ing of heat flow and related that to entropy. Therefore,
they missed the physical element in their reasoning. As
a consequence, they made a mistake by relating entropy
with ∂/∂t in a blended space. To follow up on these
results, the authors suggested that graphical representa-
tions impacted positively on blending mathematical and
physical meaning. This encouraged students to make
sense of the partial derivatives of the heat equation [28].

Our study did not focus on modeling students’ rea-
soning with conceptual blending. Still, we perceived the
potential of using graphical representations to help stu-
dents connect the two mental spaces. In essence, our
tutorials consisted of algebraic and graphical represen-
tations, used in combination to make sense of the WE.
For instance, GeoGebra is one tool used in our interven-
tion that transforms static mathematical representations
into observable dynamic physical situations where stu-
dents could plot the mathematical functions and make
physical meaning of them.

Fig. 3 is one example of how we use the conceptual
blending framework to design tutorial IV, where the solid
circles represent the mental spaces and the dotted box
represents the intervention that plays a role of integrating
those mental spaces.

The activities in the tutorials were designed based on
the framework: elicit, confront, and resolve [21]. In the
elicit phase, students were asked to work on tasks, al-
lowing us to explore students’ understanding and iden-
tify any difficulties on each tutorials. Next, students
were asked questions that confronted their difficulties and

FIG. 3: The design of tutorial IV using the conceptual
blending framework.

prompted them to reflect on their prior reasoning. Fi-
nally, if students continue to struggle, their difficulties
were addressed by other interventions in order to assist
them in achieving the goals set for each tutorial.

We designed 4 tutorials with a total of 7 learning ob-
jectives (LOs) to understand the WE, as shown in Fig.
4. These domains were used to classify and design the
tutorials. The LOs were determined as follows:

1. Apply horizontal graph transformation of y = f(x)
when x is substituted by x+ a or x− a.

2. Relate the intuitive meaning between the graph
transformation and the general solution of the WE.

3. Derive the WE from the assumption of the mathe-
matical description of waves.

4. Reflect about why the WE must be a second-order
partial differential equation.

5. Realize that not every function that satisfies the
WE represents a physical wave.

6. Interpret the WE based on the proportionality re-
lationship between force and concavity.

7. Use the previous relationship and dimensional anal-
ysis to derive the WE.

We addressed these learning objects across four tu-
torials that were designed to address four key aspects:
the mathematical representation of a moving pulse, con-
necting y = f(x ± vt) with the WE, determining when
functions represent a physical wave, and the relationship
between force and concavity.

1. Tutorial I

Students were introduced to the concept of progressive
functions in the first tutorial. They were given three
functions: y = x, y = x2 and y = e2x and asked to
plot these functions in GeoGebra. We then instructed
them to modify the functions by changing the argument
of y = x. At this point, we expected that the students
would have recognized that progressive functions describe
graphs that move to the left or right with a fixed shape.

If the students were able to identify the concept of pro-
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FIG. 4: How students understand the 1-D WE

gressive function, we brought them to the second phase
of the tutorial. We asked a question about a general
function that illustrates an arbitrary graph with a con-
tinuous motion. Students were expected to answer that
y = f(x± vt) represents a graph that moves with a con-
stant speed to the left or right without changing its shape.
In the end, we asked them to transform the three func-
tions provided at the beginning of this tutorial in the
form of y = f(x± vt).

2. Tutorial II

From tutorial I, students had three functions in the
form of y = f(x ± vt). Here, they were asked to dif-
ferentiate the functions twice with respect to time t and
position x. If they managed to differentiate the functions
correctly, we would make them aware that functions that
appear in the form of y = f(x ± vt) satisfy the WE, or
one could find the WE by taking the derivative of these
kinds of functions twice with respect to t and x. The
process of taking the derivative presented as the primary
goal of this tutorial. At the end, students were asked to
provide one or two examples of functions that satisfy the
WE.

Although the functions provided to the students satisfy
the WE, one could differentiate these functions once with
respect to t and x to obtain an equation, so-called the
transport equation as follows:

∂y

∂t
= ±v ∂y

∂x
(12)

The transport equation was introduced briefly after
students managed to reach the primary goals of tutorial

II. We tried to induce a cognitive conflict by asking stu-
dents what if they only differentiate the functions once
with respect to x and t. At this point, students should
have realized that the transport equation also satisfies
those functions and wondered why the WE is represented
in the second-order partial derivative, not the first-order.
Students were told that this was just a question that
they needed to think deeply in order to encourage them
to view a physics equation differently. We ended the tu-
torial session with that problem and did not ask for a
follow-up answer in the next tutorials.

3. Tutorial III

In tutorial III, students were asked to plot the func-
tions from tutorial II with GeoGebra. Up to this point,
students only encountered wave functions that do not
represent physical waves when the shape of these func-
tions are graphs that go to infinity. After analyzing the
three functions, students were given one more function
of y = e−(x−vt)2 , which satisfies the WE and represents
a travelling wave. The shape of this function is a single
pulse moving to the right which can be found in many
wave phenomena, like a wave in a string. When stu-
dents realized that not all functions satisfying the WE
represent physical waves, our goal was achieved in this
tutorial.

4. Tutorial IV

This tutorial is the most important session in our study
since the goals were meant to reveal some important
physical intuitions behind the WE. It is a crucial concept
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FIG. 5: Wave profile posed in the first phase of tutorial
IV

because it allows students to see the WE as a relation be-
tween force and concavity.

The interview began when students were asked to ana-
lyze a wave profile in the first phase of tutorial IV. Seven
points were located on the wave profile (Fig. 5) and
students were required to draw the forces acting on these
points. If students could grasp the idea of the proportion-
ality relation between force and concavity, they should be
able to recognize that the magnitude of forces acting on
each point is different due to the different tension acting
on them. The direction of the force can be found based
on the type of concavity where the points are located.
The direction is downward for the points located in the
concave down and upward for the points located in the
concave up.

Concavity was a tricky concept, and part of this tuto-
rial was designed to address the mathematical formula-
tion of this idea. Therefore, we added two more points
(nine in total, Fig. 6) on the same wave profile. Stu-
dents were then asked to draw the slope on each point,
as shown in Fig. 7, and tell us how fast/intense the slope
changes from one point to another.

At this point, students should have recognized that
∂2y/∂x2 describes the rate of change of the slope, which
is related to the concavity at each point.

In the last phase of this tutorial, students were asked
to find the WE using the concept of the proportional
relation between force and concavity. We provided two
physical conditions before they started to derive it. First,
the mass of all the points on the wave is fixed and they
have a uniform density. This condition would allow them
to neglect mass in their derivation. Second, we told them
to include k as a constant that describes the proportion-
ality between force and acceleration.

FIG. 6: Wave profile posed in the second phase of
tutorial IV

FIG. 7: Slopes on the points in the wave profile

D. Data analysis

Since the nature of this study is exploratory, we dis-
cussed students’ performance from three stages of data
collection: pre-test, tutorials, and post-test. The changes
in students’ reasoning and difficulties to answer our ques-
tionnaire were explored between the pre-test and post-
test. We also highlighted the discussion of students’ an-
swers to question 1. This particular question is essential
in our study because it reveals the changes in students’
epistemological framing when they try to make sense of
the WE after the interventions.

The interviews conducted during the three stages of
the data collection were transcribed and translated in En-
glish. The transcription included students’ drawings, cal-
culations, and some pictures of their works on GeoGebra.
Qualitative content analysis was then employed to inter-
pret the findings from the transcriptions, where the open
coding approach was used to synthesize the data [29].
The coding and categorization process involved grouping
the data based on students’ epistemological framing and
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difficulties encountered in each questionnaire item. The
same technique was also applied to categorize students’
difficulties when implementing the tutorials.

The first author of this paper performed the initial
analysis. Later, the results were reviewed and discussed
with two physicists, who examined the transcriptions and
initial coding. One of them has extensive experience with
teaching an advanced course on waves at university level.
If there were differences in coding and interpretations,
these were deliberated until a consensus was reached.
The final coding and categorization were then verified by
the second author. The coding process also combined the
transcriptions across all four universities, ensuring that
the final coding of the students’ responses to the ques-
tionnaire and tutorials represents the perspectives of all
participants.

IV. Results

A. Students’ performance from three stages of data
collection: pre-test, tutorials, and post-test.

1. Pre-test

We found that students struggled to answer the ques-
tions in our questionnaire. Looking more into specific
content of the questions, we grouped students’ answers
in the pre-test as shown in Table I.

Students’ answers were divided into three different cat-
egories for question 1. A few students described the WE
as a mathematical description by reading the mathemati-
cal terms out loud. Although they mentioned some phys-
ical quantities, their interpretations showed that they did
not have a deep understanding of the WE. These are two
examples of students’ answers describing this situation:

Example I:

Eric5: v is a wave velocity. So, when y is
differentiated twice with respect to time will be
equal to the second derivative of y with respect
to x multiplied by squared wave velocity.

Example II:

Ivan: This is a second order partial differ-
ential equation. It explains the relation of
function y which was differentiated twice with
respect to time will be equal to the second
derivative of y with respect to x.

Some students read the variables out loud to make
sense of the WE. Reading variables in our context is being
able to mention the definition of individual or combina-
tion variables, like reading the definition of variables in

5Students’ names are pseudonyms.

the glossary of a physics textbook. For example, it is
correct that students recognize y as a vertical displace-
ment, but it would be ideal if they could elaborate y is a
vertical displacement at a given x and t.

Example I:

Ryan: This equation describes the time di-
mension of a wave, because we can see time
in the left side of that equation. In the right
side, there is x which describes the position.
Based on this equation, we can determine the
wave velocity, time, and position.

Example II:

Sara: This equation shows the wave accelera-
tion. This equation also has y which describes
the vertical displacement, t is time, v is wave
velocity, and x is position.

Ryan and Sara’s answers show a strong tendency in
reading variables out loud to make sense of the WE.
These students described individual components of the
equation, but they did not explain the equation as a
whole. Furthermore, we also noticed the difference be-
tween their answers, where Ryan tended to say out loud
the definition of individual variables but Sara immedi-
ately mentioned the wave acceleration at the beginning
of her answer. Sara’s answer indicated that she identified
∂2y/∂t2 but avoided answering the definition of ∂2y/∂x2.

We found similar answers from a group of students
who focused their attention on velocity and acceleration.
They were able to define the meaning of this symbol,
but when they tried to relate them with ∂2y/∂x2, they
were confused because they were not familiar with the
mathematical representation of concavity.

Some students tried to be more descriptive to make
sense of the WE. These are the examples that describe
this situation:

Example I:

Ari: Wave is travelling in dimensions x and t.
Wave function (y) is differentiated partially
with respect to x and t because the wave prop-
agates depends on space and time. We use the
second-order partial derivative in order to get
the solution of the WE which has a nature of
harmonic. The nature of a wave is always
harmonic or periodic.

Example II:

ian: The left side of this equation describes the na-
ture of waves because of time and the right
side of this equation describes the nature of
waves because of the space. In one dimen-
sional context, the space is only in the dimen-
sion of x which means the wave propagates
only in the x direction. v is a wave velocity.

interviewer: Could you elaborate more about the
nature of wave because of the time and space?
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TABLE I: Students’ response to the questionnaire during the pre-test.

Question Aspects of understanding the WE Students’ response Percentage of
students

1 The meaning of the WE Trying to make sense of the equation 45 %
Reading the variables out loud 35 %
Reading the calculus terms out loud 20 %

2 The physical meaning of variables within
the WE

Difficulty in interpreting physically
∂2y/∂x2

100 %

Confusion about other symbols 50 %
3 The unit of variables Difficulty in finding the unit of ∂2y/∂x2 100 %

Difficulty in finding the unit of ∂2y/∂t2 10 %
4 The relation between concavity and

acceleration
Difficulty in interpreting the relation be-
tween ∂2y/∂x2 and ∂2y/∂t2

100 %

5 Functions that satisfy the WE Only periodic functions 65 %
All the functions 35 %

Functions that represent physical wave Only periodic functions 70 %
Function (b) 10 %
Function (b),(c), and (d) 10 %
Function (a) and (b) 10 %

ian: In the textbook, y also can be written as u. y
describes the vibration of a particle, moving
up and down repeatedly. So, we can see the
behavior of the point when time is progressing.
The shape will look like a sine wave.

Even though their reasoning does not make a lot sense
physically, seen from an epistemological framing, Ari and
Ian tried to answer this question differently. Their an-
swers focused on describing y, x and t, indicating that
they understood how the vertical displacement varies
with position and time. We also noticed that they clearly
assumed that the nature of a wave is periodic. Looking
at other answers, it is obvious that the periodical wave
is robust among them to make sense of the WE. Here is
another example of a student who tried to explain the
meaning of the WE using a periodical wave function.

nora: This equation is always influenced by x as
a position and t as time, and we can write
it as y(x, t). For example, we can write a
function as y = A sin(kx − ωt). If there is
a phase change, it can be written as y =
A sin(kx− ωt− θ). The sign also can be neg-
ative or positive, depending on its direction.
This function is a solution to the WE. Let me
differentiate this function twice with respect
to x and t.

interviewer: Why did you come up with that
function?

nora: I am not sure, but it is often found in waves.
Based on my derivation, if we substitute the
result to the WE, y = A sin(kx − ωt) is the
solution of the WE.

Students’ answers in this group showed that they did
not relate the specific parts of the WE. Although their
answers pictured a few concepts about waves, we can see
that there was an attempt from them to tell the meaning

of the WE at a different level. From these results, our
goal was students’ attention on conceptual understand-
ing.

It was easy for students to mention the definition of x,
y, t, and v to answer question 2. However, when we asked
them to relate the definition of those variables to the
wave phenomena, some of them struggled. For example,
they recognized x as a physical quantity that describes
“distance”, but they did not explore what x actually is.
The variable of x can be referred as the spatial direction,
which describes the direction of the wave when it travels,
or it tells the fixed position of particles on the wave in
the x-axis.

No student described the meaning of ∂2y/∂x2, or even
just provide a definition. Most of them simply said that
they had no idea about it. A few said it describes the
displacement of a string (y) based on the position (x).
Some of them just read the mathematical term out loud,
saying that it is the second-order partial derivative of y
with respect to x. One student even said that ∂2y/∂x2
is an acceleration due to its similar structure to ∂2y/∂t2.

When analyzing the units, many students correctly an-
swered the units of x, y, t, and v. However, none of them
managed to answer the unit of ∂2y/∂x2. Some said the
unit is meter because the variables in the derivative only
consist of x and y. The rest said that ∂2y/∂x2 has no
unit due to its derivative structure and assumed that the
numerator and denominator have the same unit of m2.

We also noticed that a few students were confused with
the different labels of physical quantities in textbooks and
finally made a mistake with the units. For instance, one
student said that v is frequency because he remembered
that ν (nu) is a symbol of frequency in a textbook which
looks similar to v. This student probably tried to relate
his answer with periodic waves that always are character-
ized by a frequency. One student also thought that y is
a wave function (ψ). This is an example of conversations
from a pair describing this struggle:
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devin: What is the unit of y? Is it ψ?
anna: If y is ψ, then it has no unit.
anna: I forgot what actually y is.
devin: What is actually ψ?
devin: I remember deriving the WE using force.
anna: I am not sure. let’s say for now that y has

no unit.

The difficulties continued when students tried to make
sense of the proportionality relationship between concav-
ity and acceleration. A few of them tried to relate the
individual symbols of the derivatives which can be seen
in this answer:

Ira: ∂2y/∂x2 is distance, and ∂2y/∂t2 is
acceleration. The greater the distance, the
greater the acceleration. However, distance
is inversely proportional to time.

From her answer, Ira only recognized the mathemati-
cal expression of acceleration but not the concavity. She
then related the proportional relation between concavity
and acceleration by looking at a single variable in those
derivatives. Here, we found again that students tend to
break combined variables into a single-known variable if
they had no idea what the description of a derivative was.
Another example can be seen in the following conversa-
tion, where these students only analyzed the variable of
y and t to make sense of this relation.

ari: For example, wave on the string. The further
the wave travels, the greater time is needed.
It can be seen that ∂2y/∂x2 is proportional to
∂2y/∂t2. Suppose y = A sin(kx− ωt) and we
differentiate it twice with respect to x and t.
If we substitute the results into the WE, we
will get the result 1 = 1.

interviewer: Could you elaborate more on what
you mean by the further the wave travels, the
greater time is needed?

ari: It is like a wave travelling. For example, the
wave travels from 0 to x = L. So, the greater
the time needed when the wave travels from 0
to L.

nova: I agree with Zulmi. In mechanics, the fur-
ther the displacement, the greater the time
needed as long as the velocity is constant.

Based on this conversation, it implied that this pair
only describes the relation between x and t which is com-
monly found in linear motions. The decision not to dis-
cuss y to make sense of this relation was probably due
to the similar form of numerator between ∂2y/∂x2 and
∂2y/∂t2.

For question 5, we found that 65 % of students as-
sumed that only periodic functions (functions (b) and
(d)) satisfy the WE. They reasoned that the shape of
those functions generated the sine or cosine alike if they
were plotted into graphs. They also mentioned that the

wave must be continuous. Meanwhile, six students tried
to differentiate all the functions and found that all the
functions satisfy the WE. However, when we asked them
about the similarity between those functions, they could
not explain it. A few students recognized that the wave
function must consist of x, y and t but failed to con-
clude the general form of the wave function. This diffi-
culty prompted them to choose functions that represent
a physical wave, with 70 % of them saying only functions
(b) and (d) are physical waves.

2. Tutorials

a. Tutorial I All the students recognized that the
graph would move to the right by subtracting the magni-
tude of x and would to the left by adding the magnitude
of x with a fixed shape using GeoGebra. Fig. 8 shows
one example of how a pair plotted y = x2 and changed
the argument of x in GeoGebra.

The difficulty emerged when students tried to trans-
form the progressive functions into a general form of the
wave function. They could displace the functions from
one position to the other but struggled to express how
they should keep moving. We helped students by focus-
ing their attention to translating a physically, and then
they realized that time must be involved in order to move
the functions continuously. With this justification, stu-
dents now came up with y = f(x±t). Some of them man-
aged to find the general form of the wave function by us-
ing dimensional analysis which led them to include veloc-
ity. We told the rest of the students about how to make
the functions move faster until they finally were able to
transform the functions in the form of y = f(x± vt). By
the end of the tutorial, students now had functions of
y = x ± vt, y = (x ± vt)2, and y = e2(x±vt) where these
functions would be used again in tutorial II and III.

b. Tutorial II In tutorial II, all the students were
able to differentiate all the functions given to them and
showed that they satisfied the wave function. A few of
them had difficulties with the chain rule, but their pairs
helped them resolve this issue. The goals of these tutori-
als were achieved because students understood that the
wave function must appear as y = f(x ± vt). They also
recognized that the WE could be obtained by taking the
derivative of y = f(x± vt) twice with respect to x and t.

We then asked the students to give one example of a
function that satisfies the WE, and most of them pre-
sented examples of arbitrary functions with the form of
y = f(x ± vt). However, we still found a few of them
reasoned the periodical function to answer this question,
such as y = A sin(kx−ωt) or y = A cos(kx−ωt). It was
on purpose that our tutorials never mentioned any pe-
riodical wave functions to circumvent students’ assump-
tion of periodical waves in the pre-test. However, for
some of them, the wave periodicity seemed robust and
led them to always relate their answers with periodical
wave conceptions. This collaborated the results found in



10

(a) y = x2 (b) y = (x− 2)2 (c) y = (x− 4)2

FIG. 8: A pair plotted y = x2 in GeoGebra and changed the argument from x to x− 2 and x− 4.

our previous study [13].
At the end of this tutorial, students were surprised to

find that all the functions were also satisfied by only the
first derivative. We then told them to discuss it with
their friends after the tutorial ended.

c. Tutorial III In this part, students now plotted
the three wave functions to GeoGebra and found that
none of those graphs represents physical waves as shown
in Fig. 9. For instance, they said that the function
y = (x − vt) represented a straight line, and the shape
of a wave must be “wavy”, indicating a wave must be
presented in a curved graph. Some said that the am-
plitude must be involved, and none of these graphs has
amplitude. Furthermore, students could not see the os-
cillation when these graphs were moving in GeoGebra.
Some said that the graphs indicated the transfer of mat-
ter due to the line on those graphs shifting to the left
or right. A few students also assumed that a wave must
be harmonic, which consists of “hills” and “valleys”. We
noted that the latter reasoning was answered by the stu-
dents who always related their answers with periodical
wave conceptions in tutorial II. Some students also no-
ticed that all the functions represent infinite graphs, and
they said that there is no wave in physics representing
infinite value.

When we posed the function of y = e−(x−vt)2 and told
the students to plot this in GeoGebra (Fig. 10, almost all
of them said that the shape of that function represented a
physical wave. Students recognized that this was a single
pulse travelling to the right. When we asked students
how one can find this pulse in everyday life, many of
them reflected on the shape of a single disturbance up
and down from the end of a string. However, we still
found two pairs of students who said that this profile
does not represent waves because they thought it is not
repeated and the wave must be periodic. At this point,
we expected students to have a broader view regarding
the nature of waves, but a few students did not change
their prior reasoning and kept relating their answers to
periodical waves.

d. Tutorial IV In this tutorial, we found that stu-
dents failed to draw the forces acting on the points of

the wave profile. For instance, some of them were dis-
tracted by the shape of the wave profile to determine the
direction of the force, as shown in Fig. 11

We thought this student assumed that the points were
moving along the wave profile. However, his choice to
draw the forces was based on the wave motion to the
right, which we never mentioned in our tutorial. When
we confronted him about this, he just assumed that the
wave was moving to the right. The following is one rea-
soning from the student:

Eric: The direction of forces is the same as
the motion direction. For example, when the
wave is traveling from the left to the right, the
direction of forces will be pointing to the right.
However, it will be aligned with the wave pro-
file.

A few students thought that the force on the points
could be decomposed into x and y components, as de-
picted in Fig 12. This reasoning is correct in a non-ideal
string but not in an ideal string where the string is as-
sumed strictly flexible. When we asked for their reasons,
they said they were distracted by the force components
of parabolic motion and eventually confused with their
answer.

We circumvented students’ difficulties by encouraging
them to think about the motion of particles in an ideal
string. For a while, students were still struggle to de-
termine the direction of force with this hint, but some
noticed that they only had two options to answer this
problem. If the motion direction of points is to be a con-
sideration, thus the direction of force is only up or down.
We provided another hint to the students by suggesting
that they think about the type of concavity. With this
intervention, they were then able to find the correct an-
swer, as expected. In the end, they said that the direction
of forces on the points in the concave down is downward,
and the direction of forces on the points in the concave
up is upward.

It was easier for students to notice the difference be-
tween the magnitudes of points. They said that points
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(a) y = (x− vt) (b) y = (x− vt)2 (c) y = e2(x−vt)

FIG. 9: Three wave functions plotted in GeoGebra.

FIG. 10: The graph of y = e−(x−vt)2 .

located in a more concave profile resulting a greater force.
They also said that points in the crest and trough have
the greatest force because they are in the most concave
part of the profile. To confirm their understanding, we
asked them to compare the magnitude of forces in points
3 and 6 since the concave down in our wave profile is nar-
rower. They then said that the magnitude of the force in
point 6 is greater than in point 3 because it is located in
the more concave profile.

A few students had difficulty finding the magnitude
of the force because their justification was based on the
source of vibration. They said that point 1 has the great-
est magnitude due to its position close to the source of
vibration. This reasoning implied that these students
thought the source of vibration was close to point 1 and
the energy would be transferred to the neighborhood
points; thus, point 7 has the smallest force. After several

FIG. 11: Students’ drawing based on the assumption of
wave motion.

failed attempts, we then told students to think about the
relationship between force and concavity until they were
able to draw the correct forces on the points of the wave
profile. Fig. 13 shows some correct drawings from the
students.

After the students grasped the idea of the proportional
relation between force and concavity, we plotted more
points in the same wave profile and asked them to draw
slopes on those points. We found that almost all students
were able to draw the slope on the point correctly, but
we still found a few of them struggled to do it, as shown
in Fig. 14. The discussion with their pair finally helped
them to solve this difficulty.

When students had correctly drawn the slope, we then
asked them to formulate the slope mathematically. At
this point, many students said that slope is y = ax + b
or ∆y/∆x. We followed up this by encouraging them
to think about the slope at a particular point, not be-
tween two points. Some students then realized that the
mathematical expression of the slope is ∂y/∂x. However,
we still found that a few students had no idea how to an-
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FIG. 12: A students drew the forces that can be
decomposed into x and y components.

swer that question, and in this situation, we just provided
them what the slope formula.

After that, we asked students to compare the slopes
on the points between concave up and concave down of
the wave profile. Many noticed the difference of slopes
between two sections of the graph and said that the slopes
in concave down are steeper and they change abruptly.
We then asked students to describe the change of slope
mathematically, and most of the students managed to
tell us that ∂2y/∂x2 expressed the concavity. We noticed
that a few students were surprised to find this because
they were more familiar with the expression of ∂2y/∂t2
in physics courses.

At this point, students now tried to find the WE using
the relation between force and concavity. However, the
difficulty came when they arrived at this step:

∂2y

∂t2
= k

∂2y

∂x2
(13)

It is easy for the students to substitute k as v2 because
they have already recognized the form of the WE. How-
ever, we then told them to imagine if they had never en-
countered the WE before; how do they define k? Many
students employed dimensional analysis, but the prob-
lem arose when they realized they did not know the unit
of concavity. Then, they attempted to find the unit of
concavity using the dimensional analysis of the WE and
found that the unit is 1/m. This was indeed correct, but
this was because they already defined k as v2 in their
analysis.

From the expert perspective, the easiest way to find the
unit of concavity is by comparing it to the acceleration
because they are in the same form of second-order partial
derivative.

FIG. 13: Students drew the forces acting on the points
based on the analysis of concavity on the graph.

acceleration =
∂2y

∂t2
=
m

s2
(14)

concavity =
∂2y

∂x2
=

m

m2
=

1

m
(15)

A few students managed to find the unit of concavity
using this method, but many of them said that they had
no idea to answer it if they were not allowed to define
k as v2 in their analysis. After a while, we encouraged
students to compare the unit of ∂2y/∂t2 to find the unit
of ∂2y/∂x2. With this intervention, students then man-
aged to find the unit of concavity and continued working
on their derivation to find the WE.

3. Post-test

Approximately one month after finishing the tutorials,
we noticed that students’ performance improved when
they were encountered with the same question posed in
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TABLE II: Students’ response to the assessment during the post-test.

Question Aspects of understanding the WE Students’ response Percentage of
students

1 The meaning of the WE Trying to make sense of the WE at differ-
ent level

70 %

Reading the variables out loud 30 %
2 The physical meaning of variables within

the WE
Elaborating the physical sense of some
symbols, including the derivatives

100 %

3 The unit of variables Telling the unit of each symbol correctly,
including the derivatives

100 %

4 The relation between concavity and
acceleration

Trying to make sense this relation 100 %

5 Functions that satisfy the WE All the functions in the question. 70 %
All the functions except (d) 30 %

Functions that represent a physical wave Function (b), (c), and (d) 50 %
Periodic function (b) and (d) 20 %
Function (b) 20 %
Function (b) and (c) 10 %

FIG. 14: A student failed to draw the slope on the
points correctly.

the pre-test. Table II shows students’ performance in the
post-test.

When we asked about the meaning of the 1-D WE in
the post-test, we noticed an attempt from the students
to make sense of the WE at a different level. In the pre-
test, we described three categories of students’ views to
make sense of the WE, and one of those was seeing it by
only a mathematical description. Here are their answers
in the post-test:

Example I:

Eric: ∂2y/∂t2 describes the wave accelera-
tion, v describes the velocity, and ∂2y/∂x2

describes the change of slope or describes the
concavity of a wave. So, the WE tells the ac-
celeration is proportional to the concavity in
any points on the wave.

Example II:

Ivan: The acceleration (∂2y/∂t2) will be pro-

portional to the velocity squared and ∂2y/∂x2
which is the change of slope or concavity.

We also noted the changes in students’ views who
tended to read the individual variables of the WE out
loud into a deeper understanding level. These are the
answers from Ryan and Sara in the post-test:

Example I:

Ryan: ∂2y/∂t2 is wave acceleration which is
equal to concavity ∂2y/∂x2.

Example II:

Sara: The WE describes the wave acceleration
depending on the squared velocity and concav-
ity. We also can see that concavity is propor-
tional to the force.

It is clear now that Ryan and Sara analyzed the WE as
a whole instead of distinguishing each variable of the WE
as they did in the pre-test. Sara, in particular, now men-
tioned concavity, where she avoided this mathematical
term in her prior answer.

The nature of students’ answer who already attempted
to make sense the WE in the pre-test was also differ-
ent. In the pre-test, they focused on describing the verti-
cal displacement that depends on the distance and time.
However, in the post-test, they elaborated their prior rea-
soning by emphasizing the relationship between force and
concavity. We also noted that these students now did not
mention any periodical wave conception to justify their
answers.

Example I:

Ari: This equation explains that wave prop-
agates in the dimension of x and t. That is
why this equation is differentiated with t and
x. The second derivation of ∂2y/∂x2 explains
the gradients of points in the graph.

Example II:
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Ian: We can see this equation based on the
relation between force and concavity. On the
left side, we can related it with F = ma, and
we can neglect m in the system because it is
uniform. We know that a = ∂2y/∂t2 will be
equal to ∂2y/∂x2 shows the relation between
concavity and acceleration.

Example III:

nora: This equation tells the acceleration of a
point which is moving at a particular position
because of the disturbance on a string.

ira: ∂2y/∂x2 is concavity
nora: We can also see that this is a second-order

partial derivative equation. So, this equation
also tells the nature of waves that we already
proved before (she referred to a wave function
that represents a physical wave)

In our tutorials, we provided different answers to ques-
tion 1. For instance, one can answer that the WE is
about the relationship between force and concavity. The
other approach is that the WE describes the mathemat-
ical functions that move at a given velocity. However, it
was interesting to see that the majority of students’ an-
swers preferred to relate force and concavity. This sug-
gests that this relation is more easily understandable,
which could be used in teaching.

More thorough answers from the students can be seen
in question 2, where some of them not only mentioned the
meaning of each variable but also attempted to elaborate
them in a particular physical situation. For example, in
the pre-test, many students merely described the defini-
tion of x and y as the length dimension. However, some
students related these variables to the wave phenomena
in the post-test. These are examples of students’ answers
to explain x and y.

Layla: y is a vertical displacement and x is
a position. These variables describe the po-
sition of the string at any particular time or
the condition of points on the string in terms
of its position (x) and vertical displacement
(y).

Mika: y is a vertical position. When we ob-
serve a particular point in a wave, y shows the
position of that point on the y-axis or verti-
cally. At the same time, x is the position of
a point in the x-axis when the wave is travel-
ling.

Noticeably, all students were able to mention the def-
inition of concavity in the post-test, whereas all of them
failed in the pre-test. The discussion within the pairs
helped those who did not remember the meaning of
∂2y/∂x2. Furthermore, all the students managed to de-
fine the unit of each variable, including concavity which
was also the dominant problem in the pre-test. A few

students forgot about the unit of concavity, but they fi-
nally managed to find it using dimensional analysis. Here
is one example of a student describing concavity:

Eric: ∂2y/∂x2 explains the slopes on the
points with different gradients. It shows that
the slopes change when the points are moving.

We can see that there was confusion and understand-
ing regarding the relationship between the slope changes
and motion from Eric’s answer. In fact, the y(x) graph is
a static quantity that represents in a geometrical shape
where time is not involved in this situation. However,
here, we noticed the manifestation of an idea from his
answer that shows he tried to make sense of the concav-
ity with his own words. We also found another student
with a similar situation when she tried to elaborate more
about the concavity. In question 1, Nora did not mention
any periodical reasoning in her answer, but this concep-
tion emerged again when she tried to describe the sig-
nificant of concavity. Here is how Noras’ reasoning that
describes this situation:

nora: ∂2y/∂x2 is concavity
interviewer: Could you elaborate more about it?
nora: A wave usually is represented in the form of

sine/cosine. That is why we can always relate
the concavity in wave phenomena. So, each
point in the wave will move, and all of them
will form a concavity. The concavity itself is
also related to the acceleration of each point
on the wave.

When we asked again about the relation between ac-
celeration and concavity in the post-test, many students
referred to the forces acting on points of a wave. They
said that the force is proportional to the concavity. Thus,
the acceleration is also proportional to the concavity. We
then asked students to elaborate on their answers and
draw a graph to justify their reasoning. Here is one ex-
ample of a pair conversation to answer question 4:

david: The concavity is proportional to the force.
The greater the concavity, the greater the
force. When the force is greater, the accelera-
tion is also greater because the force is related
to acceleration.

mika: Based on my drawing (Fig. 15a, we can see
that point 1-4 are located in a concave down
and points 5-7 are located in a concave up.
The longer arrow indicates a greater force be-
cause they are located in a more concave pro-
file. Furthermore, if we compare the forces
in points 1 - 3, point 3 has the greatest force
because it is located in the most concave part
of the profile. The greater the slope changes
also indicates the greater concavity.

david: My drawing is not that detail (Fig. 15b. I
just want to explain that point 1 is located in
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(a)

(b)

FIG. 15: The drawing of Mika (a) and David (b)
describes the proportionality relation between concavity

and acceleration.

the less concave profile compared to point 2.
Point 2 is located in the slopes that change
abruptly.

mika: The direction of forces will toward to the
zero point (x-axis). If it is concave down, the
forces will be going downward, and vice versa.

For question 5, 70 % of students believed that all the
functions in the question satisfy the WE, whereas 30 %
of them said that function y = 2A sin(kx) cos(ωt) (d) is
not a wave function. They genuinely understood that the
general form of the wave function is y(x, t) = f(x ± t),
but some of them were distracted by the form of function
(d) which is not presented in the general form of wave
function. However, some students believed that function
(d) is just a different form of the wave function, and it is
only the manipulation of trigonometry identity. One pair
of students even recognized that function (d) describes
the wave superposition. They said that the initial form
of the function is just the addition or subtraction of two
wave functions with the form of y(x, t) = f(x± t).

Half of the students said that functions y = A sin(kx−
ωt) (b), y = e−(x−vt)2 (c), and y = 2A sin(kx) cos(ωt)
(d) represent a physical wave. Some students said that
the shape of a wave could be anything, including a single
traveling pulse. A few of them doubted the representa-
tion of function (c) and tried to plot it again in GeoGe-
bra. However, 40% of the students still thought that the
wave must be presented in the form of sine/cosine. A few

students even said that only function (b) represents wave
because it is commonly found in waves. Meanwhile, one
pair of students said that function (d) does not represent
a wave because it is not in the form of y(x, t) = f(x± t).
They said that if a function does not satisfy the WE, it
does not represent a physical wave.

V. Discussion

In physics education, interventions play a key role
to improve students’ reasoning towards expert-like ap-
proaches [5, 30–34]. In this section, we discuss the fun-
damental changes when students tried to make sense of
the WE between pre- and post-test. We do not claim
that our tutorials helped all the students to a full un-
derstanding of the WE. However, data from the qualita-
tive content analysis suggest that students looked at this
physics equation differently after the interventions.

Students’ answers to question 1 in the post-test showed
that they now attempted to make more sense of the WE
in certain ways. Although some were still confused about
some physical concepts, their answers manifested a pur-
suit of a deeper understanding, demonstrating a positive
impact of our tutorials. The “think aloud” interviews al-
lowed us to identify three kinds of epistemological fram-
ing when they were asked about the meaning of the WE:
reading the mathematical operations out loud, reading
the variables out loud, and trying to make sense of the
equation. A group of students who generally viewed the
WE only as describing mathematical calculations, now
considered the physical quantities involved and how they
are related. The same changes happened to the students
who read the variables out loud in the pre-test. Although
a focus on mathematical procedures was still present in
their reasoning, some students now at least tried to see
the WE as a whole without separating its variables or
components to make sense of it.

Comparing the epistemological framing on understand-
ing physics equations, Karam and Krey [5] identified dif-
ferent approaches from two physics students. In the eval-
uation, one student said that understanding a physics
equation is being able to explain the equation in meaning-
ful ways. Meanwhile, another student believed that one
needs to recognize the meaning of symbols of a physics
equation and perform calculation in order to understand
it. We found a similar case in our study where almost
one-third of students did not change their prior reasoning
to answering question 1, where some of them still read the
variables out loud. We did not state that this reasoning
is not acceptable since this is an open question, and one
could perceive a physics equation differently. However, at
this point, we hoped that students would have provided
a deeper analysis of the WE after the interventions.

Our results indicate that the relationship between force
and concavity was tempting to the students, as they of-
ten referred to it throughout their post-test. However, by
only stating it, we cannot conclude that they fully under-
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stood this relationship. It is worth investigating whether
relating force and concavity makes sense for them in some
kind of physical situation. For instance, students could
produce a pulse in a real string and then realize that one
needs more force to make a more concave wave profile.

Regarding concavity, we did not find many studies in
PER investigating second-order partial derivatives. In-
stead, some explored students’ performance of first-order
partial derivative in thermodynamics [35–37]. In the
mathematics education literature, however, a few stud-
ies explored this topic [38–42]. Jones [41], in particular,
distinguished the meaning of concavity into four compo-
nents: the shape of a graph, the sign of the second deriva-
tive of a function, the increasing or decreasing of the first
derivative of a function, and the change of rates. From
the mathematical context, many students mentioned that
concavity describes the shape of the graph and the sign
of the derivative. They then struggled to relate concavity
with slope, with just a few including the rates of change
in their answers.

Although Jones [41] stated that there are four criteria
for understanding the concavity, we only expected that
students could describe it as the shape of the graph and
the rate of change of the first derivative, since these two
are the most relevant for understanding the WE. Where
the slope changes abruptly, the graph is more concave.
In the pre-test, no student succeeded in interpreting the
meaning and the unit of ∂2y/∂x2. However, again, we
found that students manifested the concept of concav-
ity differently in the post-test, mentioning at least two
meanings of concavity. Understanding the concavity was
an eye-opener for some of them, many were surprised
to finally make sense of ∂2y/∂x2. We did not ask how
they felt after finishing each tutorial, but some said they
never thought they could explore so much physical mean-
ing from only one physics equation.

Without a doubt, some students performed well in
mathematics because they managed to derive all the
functions in question 5 and found that those functions
satisfied the WE in the pre-test. However, as some stud-
ies emphasized, proficiency in mathematics does not al-
ways link to success in physics [43–46]. For example, dis-
cussing graphical representations, one study found that
students succeeded in describing the concept of slope in
mathematics but failed in translating it into physics, al-
though the graphs reflect the same idea [45].

Another noticeable aspect of students’ epistemologi-
cal framing was about the nature of wave. For some
of them, y = A sin (kx± ωt) or y = A cos (kx± ωt)
were like a “template”, assuming that these functions are
the only mathematical representation of wave. Although
many physical phenomena in our everyday are presented
in terms of periodicity, the students neglected the basic
concepts of waves. Other studies also found similar sit-
uations, where students thought that the graphical rep-
resentations of waves always represent waveform [12], a
sound wave triggered a sine wave pattern of a particle
[12], drawing a sine wave was proper when when a non-

sinusoidal waveform was posed to them [47]. One reason
to explain the cause of this issue is a strong exposure
to the periodical waves in physics courses that lead stu-
dents to think that the nature of a wave is always periodic
[12, 13, 15, 47, 48].

Nevertheless, although our tutorials had an effect on
the students to some extent, not all of them managed
to change their prior reasoning and improve their perfor-
mance in the post-test. As some PER literature suggests,
developing the sequence in tutorials should be an ongo-
ing process [49, 50]. Our tutorials were designed for an
online format, but we argue by providing hands-on ex-
periences, such as physical activities, may lead to better
improvements in students’ performance.

VI. Conclusion

In our study, we investigated how students tried to
interpret a physics equation and some conceptual chal-
lenges that they had associated with it. Our tutorials
attempted to address this issue by asking specific ques-
tions, where we drew students’ attention to make sense of
the meaning, relation, and interpretation of the symbols
related to this physics equation. After the tutorials, stu-
dents tried to read and interpret the equation physically
and conceptually with a different level of epistemological
framing.

We also argued that the way of asking questions about
a physics equation in our study could trigger students’
curiosity about the nature of physics equations. In our
case, although not all the students manifested a deep de-
tail about the meaning of the WE, we hope that they
look at physics equations differently in the future. Stu-
dents can perceive the Schrödinger, Laplace, heat equa-
tion, etc., in a more meaningful way. In our study, we
focused on some specific aspects related to understanding
the WE which are not usually common in the classroom.
Our study does show that this is possible and it is proba-
bly worth emphasizing this epistemological dimension in
teaching.
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A. Appendix I: Tutorial 1

The mathematical representation of a moving
pulse

Learning Objectives:
1. Translate the idea of graph transformation of y =
f(x) when x is substituted by x+ a or x− a.

2. Relate the intuitive meaning between the graph
transformation and the general solution of the WE.

(a) What would the graph look like if we plot y = x to
GeoGebra?

(b) If we substitute x by x − 2, what does happen to
the graph?

(c) If we substitute x by x − 4, what does happen to
the graph?

(d) If we substitute x by x − 6, what does happen to
the graph?

(e) If we substitute x by x + 2, what does happen to
the graph?

(f) If we substitute x by x + 4, what does happen to
the graph?

(g) If we substitute x by x + 6, what does happen to
the graph?

(h) Now, do the same process for the functions of y =
x2 and y = e2x. You can change the magnitude of
addition and subtraction as you wish.

(i) Based on this, could you provide a function that il-
lustrates an arbitrary graph with a continuous mo-
tion?

After the students find y = f(x± vt)

(j) Can you transform three functions in the beginning
in the form of y = f(x± vt)?

(k) What is your conclusion from this tutorial?

B. Appendix II: Tutorial II

Connecting y = f(x± vt) with the WE

Learning Objectives:
1. Derive the WE from the assumption of the mathe-

matical description of waves.
2. Reflect about why the WE must be a second-order

partial differential equation.
You know that a function that moves to the left and

right is expressed as:

y = f(x± vt)

From tutorial I, you have functions of y = x ± vt,
y = (x± vt)2, and y = e2(x±vt).

(a) Differentiate those functions twice with respect to x
and t. What can you obtain from your derivation?

After the students find that any function in the form
of y = f(x± vt) satisfies the WE,

(b) You know that when we derive twice the function
with the form of y = f(x ± vt) with respect to x
and t, we will get the WE. Why don’t we just stop
at the first derivative? What do you think about
that?

(c) What is your conclusion from this tutorial?

C. Appendix III: Tutorial III

Determining when functions represent a physical
wave

Learning Objectives:
1. Realize that not every function that satisfies the

WE represents a physical wave.
From tutorial II, we have proofed that y = x ± vt,

y = (x± vt)2, and y = e2(x±vt) satisfy the WE

(a) Plot those functions in GeoGebra with a constant
v and t = 0− 10s.

(b) What can you see from the graphs when you move
the slider of time (t)?

(c) Do those functions represent physical waves? Why?
(d) Now, plot y = e−(x−vt)2 in GeoGebra. Do this

function represent a physical wave? Why?
(e) What is your conclusion from this tutorial?

D. Appendix IV: Tutorial IV

Force and concavity

Learning Objectives:
1. Interpret the WE based on the proportionality re-

lationship between force and concavity.
2. Use the previous relationship and dimensional anal-

ysis to derive the WE.
Suppose you shake a tight string up and down with

your hand, and then it will form a pulse which is shown
in the picture below:

FIG. 16: The pulse profile.
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Because we give disturbance on the string, now a ten-
sion force is acting on each point of the string. Let’s
locate several points on the string like in the picture be-
low:

FIG. 17: The pulse profile has seven points placed on it.

(a) Draw the tension forces acting on that profile.

From the concave down part of the wave profile
(b) To which direction are the tensions acting on the

points? Why?
(c) Which point has the greatest tension? Why?
From the concave up part of the wave profile
(d) To which direction are the tensions acting on the

points? Why?
(e) Which point that has the greatest tension? Why?

(f) Between points 3 and 6, which point has the greater
tension? Why?

(g) How do you write this relation mathematically?

Let’s add two more points on the same wave profile
shown below:

FIG. 18: The pulse profile has nine points placed on it.

(h) Draw the slope on the points of the graph.
(i) What is the slope? How do you express the slope

of a point mathematically?
(j) Could you notice the difference in slopes between

concave up and concave down? Could you describe
the difference?

(k) How do you express the change of slope mathemat-
ically?

Now, you know that force is proportional to concavity.
(l) Find the WE based on the relation between force

and concavity. (Mass of particles on the string is
fixed and has a uniform density, k is a variable
that describes the proportionality between force
and concavity).
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Abstract

The 1-D wave equation is one of the most important equations in physics describing how waves

propagate in space and time. Despite being a type of partial differential equation, understanding

this equation is not trivial. There are several hidden concepts founded while exploring this equation

deeply. In this work, we uncover the complexity of the wave equation by highlighting conceptual

subtleties that often go unnoticed in teaching this equation.
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I. INTRODUCTION

Partial differential equations were key to fostering the fruitful interplay between physics

and mathematics. In particular, the wave equation (WE), first introduced by D’Alembert

in the late 1700s, has been played a significant role in shaping this relationship1–7.

Nowadays, the WE is seen as a fundamental equation in physics, describing a wide range of

phenomena. Due to its importance, this equation is broadly taught across physics programs,

although with different approaches. Among them, Feynman8,9 derives the WE based on

sound propagation and electromagnetic waves, while other authors derive it using Newton’s

2nd Law10,11.

Despite the apparent simplicity of ∂2y
∂t2

= v2 ∂2y
∂x2 , understanding this equation deeply is

far from being trivial. The purpose of this paper is to present certain conceptual subtleties

related to the WE, which are not usually addressed explicitly in teaching, in order to make

physics instructors aware of them.

II. WHY SECOND ORDER?

Mathematically, a 1-D wave is represented by a progressive function, i.e., it describes a

fixed profile travelling horizontally as time goes by. This can be expressed by functions of

the kind

y(x, t) = f(x± vt) (1)

where f is an arbitrary function12. Thus, waves are expressed by functions of two vari-

ables, space and time, but in a particular way. For example, functions like y(x, t) = sinx · vt

or y(x, t) = xt2 do not fulfill this requirement.

In fact, the WE can be derived from the assumption that y(x, t) = f(x± vt). All that is

needed is to differentiate it twice with respect to space and time, respectively. For simplicity,

let us consider the case where the wave travels to the right, i.e., y(x, t) = f(x− vt). Letting

x− vt = u and applying the chain rule:

With respect to x:

∂y

∂x
=

df

du

∂u

∂x
=

df

du
(2)

∂2y

∂x2
=

d2f

du2
. (3)
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With respect to t

∂y

∂t
=

df

du

∂u

∂t
= −v

df

du
(4)

∂2y

∂t2
= v2

d2f

du2
. (5)

By Comparing (3) and (5), we get

∂2y

∂t2
= v2

∂2y

∂x2
, (6)

which is the 1-D WE. Thus, the WE can be seen as the result of simple manipulations

of y(x, t) = f(x± vt). But why do we need to differentiate twice? Can we not just stop at

the first?

To answer this question, let us differentiate the same function once with respect to x and

t. Once again, using the chain rule and letting x− vt = u, we have:

With respect to x

∂y

∂x
=

df

du

∂u

∂x
(7)

=
df

du
(8)

With respect to t

∂y

∂t
=

df

du

∂u

∂t
(9)

=
df

du
(−v) (10)

Combining the previous results, we arrive at:

∂y

∂t
= −v

∂y

∂x
(11)

Eq. (11) is often called the transport equation (TE). If the pulse is moving to the right,

then the TE is expressed as:

∂y

∂t
= +v

∂y

∂x
(12)
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This equation characterizes a wave moving to the left or right with velocity v. Thus, the

TE is limited in that it can only describe waves propagating in one direction. Therefore, it

can not account for wave interactions with boundaries.

Consider a sound wave propagating in a straight line. The transport equation can be

used to describe this phenomena. However, when the sound wave collides with an object,

the transport equation fails to describe the resulting changes in the wave’s behavior, such

as alterations in its direction, amplitude, or phase. The transport equation overlooks the

influence of boundaries on wave propagation, which stresses that this equation can not

capture complex wave phenomena.

We can test whether the TE and the WE satisfy certain wave properties, such as super-

position. Consider two pulses traversing the same medium, the first to the right, the second

pulse travels to the left, say y1(x, t) = f(x− vt) and y2(x, t) = g(x+ vt).

At a particular time, the pulses meet, resulting in a wave superposition. The sum of the

two wave functions is the total displacement:

y = y1 + y2 = f(x− vt) + g(x+ vt) (13)

Let us see if this function satisfies the transport and wave equation. We substitute

x− vt = u and x+ vt = v and derive it once with respect to x and t.

∂y

∂x
=

df

du

∂u

∂x
+

df

dv

∂v

∂x
(14)

=
df

du
1 +

df

dv
1 (15)

=
df

du
+

df

dv
(16)

∂y

∂t
=

df

du

∂u

∂t
+

df

dv

∂v

∂t
(17)

=
df

du
(−v) +

df

dv
(v) (18)

(19)

Thus, we do not arrive at the transport equation. Now we derive it again with respect

to x and t.
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∂2y

∂x2
=

d2f

du2
+

d2f

dv2
(20)

∂2y

∂t2
=

d2f

du2
v2 +

d2f

dv2
v2 (21)

If we substitute these results, we will arrive at the WE.

∂2y

∂t2
= v2

∂2y

∂x2
(22)

This demonstrates that the transport equation can in fact account for a single pulse

travelling to the right and left. However, this equation cannot describe more complex wave

phenomena like superposition.

III. SECOND DERIVATIVE OR CURVATURE?

The WE can be interpreted conceptually as a relationship between the resultant force

acting on each point, which is proportional to its acceleration (∂
2y

∂t2
), and the shape of the

wave profile, often expressed by the rate of change of the function’s spatial derivative, ( ∂
2y

∂x2 ).

Intuitively, the greater the curve deviates from being a straight line at a given point, the

greater the force on that point (see Fig. 1).

But is the second derivative the best quantity to represent this aspect related to the

profile’s shape? Consider, for instance, a parabolic function y = (x − vt)2. Intuitively, the

force should be greater at the vertex, but since the second derivative is constant, ( ∂
2y

∂x2 ) gives

the same result for all points of the parabola (see Fig. 2). What is going on?

The issue here is a subtle difference between concavity and curvature. Whereas the former

describes the slope’s rate of change, the latter is inversely proportional to the radius of the

tangent circle, at each point. To determine how much a curve deviates from a straight line,

i.e., its curvature, we use the following formula:

κ =
d2y/dx2

[1 + (dy/dx)2]3/2
(23)
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FIG. 1: The tension of each point on a vibrating string is proportional to the second

derivative

FIG. 2: A parabolic wave profile with constant forces in different points

Let us try to find the curvature of y = x2:

dy/dx = 2x; d2y/dx2 = 2 (24)

The curvature of parabola is defined as:

κ =
2

[1 + (2x)2]3/2
(25)

κ =
2

[1 + 4x2]3/2
(26)
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FIG. 3: Curvature of some points on parabola

Thus, we see that the value of κ (curvature) is dependent on x, as opposed to the second

derivative. For example, the curvature of the parabola at the vertex is

κ(x = 0) =
2

[1 + 4.02]3/2
= 2, (27)

which is its greater value.

Consequently, if we assume that force is proportional to curvature, the WE should be

written as:

∂2y

∂t2
∝ ∂2y/∂x2

[1 + (∂y/∂x)2]3/2
, (28)

which is much more complicated than the usual WE. However, notice that if ∂y/∂x → 0

the usual WE is recovered. We will come back to that.

IV. HISTORICAL INTERLUDE: TAYLOR’S ORIGINAL DERIVATION

Force proportional to curvature was key to one of the first applications of calculus to the

study of waves, which was written by the English mathematician Brook Taylor, famous for

the “Taylor series”, in his “Methodus Incrementorum Directa et Inversa”13. In Lemma IX,

Taylor shows that the force acting on a stretched string is proportional to its curvature at
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any given point. Due to its historical importance and pedagogical potential, we will try to

reconstruct this derivation.

Taylor considered a curve with two adjacent points as shown in Fig. 4. Tangent lines

are drawn from each point, represented by Bt and bt, and normal lines are also drawn from

the same points, intersecting in S. The goal is to determine the net force acting on the arc

segment
⌢

Bb.

FIG. 4: Taylor’s geometrical construction to show that force is proportional to curvature13

Fig. 5 highlights the essential features. We can see that the tensions TB and Tb add up

to Ftr, which is the net force of the tension due to the curved string. The magnitudes of the

forces are proportional to the respective segments, thus

Ftr

TB

=
tr

tB
(29)

From Fig 5, we can also see that the angles B̂sb and t̂Br are equal, meaning that

tr

tB
=

Bb

BS
, (30)

yielding

Ftr

TB

=
Bb

BS
(31)

or
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FIG. 5: The parallelogram that shows tensions acting on two points

Ftr ∝
TBBb

BS
. (32)

As Bb tends to zero, Bb/BS becomes the curvature at point B. Therefore, in the limit,

this relation shows that the net force acting on the small line segment Bb is proportional to

the tension at point B and the curvature at this point, QED.

V. MAKING SENSE OF THE RESTRICTIVE CONDITIONS OF THE WE

Although it makes sense now to assume that force is proportional to curvature, Eq. 28

becomes very complicated to solve. Therefore, some assumptions are necessary to simplify

the mathematical formalism in order to make it easier to solve. From a mathematical ar-

gument, let us consider the case where the first derivative of every point is close to zero

(∂y/∂x ≈ 0). Under this restrictive condition, we can make an approximation where curva-

ture is approximately equal to concavity.

We can apply this mathematical argument to the case of the vibrating string problem,

specifically when the string is fixed at two extremities2. This physical situation became

the subject of debate between D’Alembert and Euler. D’Alembert considered the condition
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where the string has a very small displacement from the straight line and concluded that

the derivation of the WE excluded many physical situations. On the other hand, Euler

approached the problem by considering a plucked string and argued for the derivation using

physical reasoning.

Nevertheless, D’Alembert’s derivation of the WE is now commonly accepted to describe

classical string vibrations. By using Newton’s law, it is mathematically demonstrated why

certain assumptions must be made in order to derive the WE. By contemplating only a small

portion of the string, this derivation allows us to simplify the problem. Taking into consid-

eration the string’s entire curvature would undermine the linear approximation, making it

impossible to derive the WE using Newton’s laws.

After considering the small segment of the string, the basic assumption that must to be

made is that the gravity is negligible compared to the tension on the string. This implies

that the tension only arises from the vibration of the string and that gravity has little to

no effect. We can related this when playing a guitar and we rotate it in any direction. The

sound remains relatively the same, thus illustrating that the gravity has a negligible effect

on the string.

If we observe the tension in one edge of the string in without making any assumptions,

then the force can be decomposed into x and y components, as depicted in Fig. 6 Never-

theless, this condition makes the derivation more complicated.

In order to eliminate the horizontal components on the string, the second assumption

made is that the deflections of the string are small. This condition made the the string

is nearly flat. As a result, we can neglect T cos θ1 and T cos θ2 in the edges of the string

because its magnitude in the opposite direction is equal. We can relate this by thinking a

very tight string on a guitar. When we pluck it, the displacement of string is relatively small

FIG. 6: The condition of one edge of the string with x and y components
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compared to its length.

The second assumption enables us to assume that the tension throughout the string is

uniform. We can visualize this condition when we increase the tension of a guitar string,

that gives the tension at a constant level throughout the entire guitar string. Fig 7 illustrates

the condition of the string under three assumptions.

Using the condition of the string in Fig 7, the net force of this small segment of string is

given by:

T sin θ2 − T sin θ1 = T∆m (33)

The slope of two edges of the string:

m1 =
∂y1
∂x

= tan θ1 (34)

m2 =
∂y2
∂x

= tan θ2 (35)

Since the string has a small vibration, then sin θ1 ≈ tan θ1 and sin θ2 ≈ tan θ2, thus

T (m2 −m1) = T∆m (36)

FIG. 7: The condition of the string under two assumptions
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We consider the mass on the small segment of the string:

m = µ∆x (37)

where µ is the mass per unit length.

Applying Newtons’ second law, we get:

T∆m = (µ∆x)(
∂2y

∂t2
) (38)

T
∆m

∆x
=

∂2µy

∂t2
(39)

Then, we consider the limit of ∆x → 0

lim
∆x→0

∆m

∆x
=

∂m

∂x
=

∂2y

∂x2
(40)

Substituting the results, we will arrive at the WE:

∂2y

∂t2
= v2

∂2y

∂x2
(41)

where v =
√
T/µ is the velocity of the propagation.

VI. CONCLUSION

In this work, we have highlighted some conceptual subtleties of the WE that are not

commonly presented in textbooks. In Physics Education Research (PER), several studies

have found that students often view physics equations solely as mathematical tools, lacking

a proper understanding of their physical implications14–16. We argue that by presenting

these unconventional aspects might be one way to help addressing that belief.

Physics equations are typically used in teaching to solve problems that often involve the

manipulation of numbers and variables17. However, this practice may hinder their roles

and conceptual status. Some studies have proposed different perspectives to explore physics
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equations and concepts that can convey their deep meaning18,19. One more thing that needs

to be considered related to this is the advantage of embedding this epistemological dimension

in teaching. This includes using the historical aspect20–22. These studies emphasize that

using this approach might be more beneficial to pre-service physics teachers in order to

improve their educational practices23, or it offers a new creative perspective of teaching that

allows students’ curiosity and interest in the topics20.

1 J. l. R. d’Alembert, (1747).

2 G. F. Wheeler and W. P. Crummett, American Journal of Physics 55, 33 (1987).

3 P. F. Committee et al., The Logic of Personal Knowledge: Essays Presented to M. Polanyi on

His Seventieth Birthday, 11th March, 1961 (Routledge, 2015).

4 G. Jouve, Centaurus 59, 300 (2017).

5 E. Garber and E. Garber, The Language of Physics: The Calculus and the Development of

Theoretical Physics in Europe, 1750–1914 , 31 (1999).

6 E. Zeeman, Nieuw Arch. Wisk 11, 257 (1993).

7 A. R. Oliveira et al., Advances in Historical Studies 9, 229 (2020).

8 R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vol. I: The

new millennium edition: mainly mechanics, radiation, and heat, Vol. 1 (Basic books, 2011).

9 R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Volume II: The

New Millennium Edition: Mainly Electromagnetism and Matter (Basic Books, 2011).

10 H. Pain, The Physics of Vibrations and Waves, 6th ed. (Wiley, 2005).

11 I. G. Main, Vibrations and waves in physics (Cambridge university press, 1993).

12 While any function in the form of f(x± vt) satisfies the WE, not all of them represent physical

waves. For instance, the function y = (x− vt)2 can hardly represent a wave in physical reality

due to its infinite character.

13 B. Taylor, Methodus incrementorum directa & inversa (Inny, 1717).

14 E. T. Torigoe and G. E. Gladding, American Journal of Physics 79, 133 (2011).

15 J. Tuminaro and E. F. Redish, Physical Review Special Topics-Physics Education Research 3,

020101 (2007).

16 L. N. Walsh, R. G. Howard, and B. Bowe, Physical Review Special Topics-Physics Education

13



Research 3, 020108 (2007).

17 C. Ogilvie, Physical Review Special Topics-Physics Education Research 5, 020102 (2009).

18 N. Lima and R. Karam, American Journal of Physics 89, 521 (2021).

19 N. Lima and R. Karam, European Journal of Physics 43, 035402 (2022).

20 N. Kipnis, Science & Education 5, 277 (1996).

21 H. A. Wang and D. D. Marsh, Science & Education 11, 169 (2002).

22 R. Karam, O. Uhden, and D. Höttecke, Mathematics in physics education , 37 (2019).

23 M. Pietrocola, E. Ricardo, and T. Forato, in Science Education Research in Latin America

(Brill, 2020) pp. 367–393.

14


	Introduction
	The overall purpose of the PhD project
	Motivation of this study
	Research Questions
	Structure of thesis

	Interplay between physics and mathematics: investigating students' epistemological framing
	Students' epistemological framing about physics equations
	Epistemological framing and learning difficulties
	Methodology
	Interviews
	Data Analysis

	Research design
	Preliminary Study
	Data Collection


	Exploring the complexity of the wave equation
	Force and Curvature
	Convolutions of the wave function: The vibrating string controversy
	The wave function
	Transport Equation
	Conceptual subtleties

	Conclusion
	Study 1
	Study 2
	Study 3

	Perspectives for future research

