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Resume

Mange gymnasielærere i matematik finder det vanskeligt at forbinde den teoretiske viden de
tilegnede sig på universitetet med de praktiske opgaver som er knyttet til gymnasial matem-
atikundervisning. Med udgangspunkt i Klein’s anden diskontuinitet søger dette PhD projekt
forsøger at undersøge denne vanskelighed ved at analysere den matematiske viden hos uni-
versitetsstuderende som har afsluttet deres matematiske studier og planlægger at blive gym-
nasielærere, idet vi fokuserer på et specifikt matematisk emne – reelle tal. Eftersom computer
software har indtaget en stadig mere dominerende rolle i dansk matematikundervisning på
sekundært niveau, ikke mindst hvad angår beregninger med og af reelle tal, omfatter denne
afhandling tre forskningsgenstande: reelle tal i universitær matematik, reelle tal i gymnasial
matematik, og reelle tal som de repræsenteres i computere. Afhandlingen ser på modellen
”uendelige decimalbrøker” som en mulig bro mellem de modeller af de reelle tal som findes i
gymnasiet og på universitetet. Herudover introduceres begrebet beregnelighed for at analy-
sere betydningen af computergenererede decimalrepræsentationer af reelle tal. At forstå reelle
tal som uendelige decimalbrøker er afgørende for at linke de tre nævnte forskningsgenstande.
Den antropologiske teori om det didaktiske (ATD) er grundlæggende for afhandlingen. ATD-
begreberne institutionel relation og praxeologi udgør de centrale elementer i vores model af
Klein’s anden diskontinuitet og i analysen af muligheder for at overkomme denne. Udforsknin-
gen af de studerendes arbejde med uendelige decimalbrøk-modeller af de reelle tal, og af bereg-
nelighed, gennemføres i konteksten af ”capstone” kurset UvMat ved Københavns Universitet.
Studiet involverede design af to ugeopgaver som adresserer disse to begreber, analyse af de
studerendes besvarelser af ugeopgaverne, og interviews gennemført i relation til besvarelserne.
Analysen af de studerendes besvarelser viser, at tilgangen til uendelige decimalbrøker sammen
med beregnelighedssynspunktet til en vis grad kan understøtte de kommende læreres anven-
delse af universitetsmatematisk viden på praktiske opgaver fra gymnasial matematik, og hjælpe
dem med at åbne ”black boxes” i matematikværktøjer til brug ifm. reelle tal. Men der er også
mange studerende som ikke kan etablere en forbindelse mellem gymnasiets værktøjsbaserede
matematikundervisning og de to ugeopgaver. Dette forhold fordrer yderligere udforskning,
særlig ift at undersøge om explicit inddragelse af beregnelighedsbegrebet i kurset kan hjælpe
de studerende til at etablere denne forbindelse.
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Abstract

Many high school mathematics teachers struggle to relate the theoretical knowledge they
gained in university to the practical mathematics teaching in high school. This PhD project,
inspired by Klein’s second discontinuity, seeks to bridge this gap by investigating the knowl-
edge of university students who have completed their university mathematics study and plan
to become high school mathematics teachers, focusing on a specific mathematical domain - real
numbers. The primary goal of the project is to aid students in developing an advanced un-
derstanding of real numbers. As computer software has become ever more prevalent in Danish
secondary mathematics education, particularly when dealing with real number calculations, the
thesis considers three main research objects: real numbers in university, real numbers in high
school, and real numbers on computers. The thesis explores the teaching of infinite decimal
models of real numbers to bridge the models of real numbers in high school and university.
Additionally, the concept of computability is introduced to analyze the meaning of computer-
generated decimal representations of real numbers. Understanding real numbers as infinite
decimal representations through the lens of computability is crucial for linking these three
research objects. The theoretical framework of the Anthropological Theory of the Didactics
(ATD) is foundational to this thesis. The notions of institutional relations and praxeology from
ATD are presented as key elements for modeling Klein’s second discontinuity and establishing a
connection to address this gap. The exploration of students’ work with infinite decimal models
of real numbers and computability is carried out within a “capstone” course called UvMat at the
University of Copenhagen. The present study involved the design of two weekly assignments
that incorporate these concepts, the analysis of students’ responses to the two assignments,
and interviews conducted in relation to these tasks. The analysis of students’ work reveals that
engaging with infinite decimals from the standpoint of computability can, to a certain extent,
assist future mathematics teachers in applying their university-acquired knowledge to address
practical tasks in high school and aids them in opening the “black box” of computers when
handling real numbers. However, many students fail to establish a link between mathematics
teaching with digital tools in high school and the two assignments. This aspect needs further
investigation, particularly in exploring whether explicitly teaching the concept of computability
as a mathematical object within the course can help students perceive the connection.
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1 Introduction

During my time as a pure mathematics student in China, I encountered a significant loss of
motivation. It felt like the content I was learning in university had little connection to what
I had studied in high school. As someone who excelled in high school mathematics, I found
myself struggling when transitioning to university-level mathematics. I often questioned the
practical applications and real-life significance of the theoretical mathematics knowledge I was
acquiring. It was not until I began studying programming that I started to appreciate the
importance of theoretical mathematics knowledge in understanding and creating algorithms.
Later, when I had to use Matlab for mathematical modeling, I began to see the value of
mathematical software. However, my involvement in computer-related mathematics came to a
halt when I moved to my research on ergodic optimization for asymptotically additive potentials
in connection with the final thesis for my Master’s degree (cf. Huo et al., 2023).

Upon completing my Master’s program, I felt confident about carrying my seven years of
university-level mathematics knowledge with me as I aspired to become a high school teacher.
However, when I revisited my former high school assignments, I realized that I had lost many
problem-solving “tricks” for high school tasks over the years. I was no longer as skilled as a
high school graduate in mathematics. My university mathematics knowledge seemed to have
no compensating effect in this situation, as I contemplated the outlook of becoming a high
school teacher. With one exception, however: as I looked again at high school mathematics
questions, I noticed that many of them could be easily solved using computer software, at
least for most real-value calculations. However, high school mathematics education in China
typically does not involve the use of digital tools that I used in university like Matlab (except
for calculators, which however are not allowed during exams).

With these doubts and questions, I began my PhD project at the University of Copenhagen.
One significant reason for choosing Denmark was its integration of digital tools into high school
mathematics education. I was also introduced to the issue that had been brewing within me,
known as Klein’s double discontinuity, which I will elaborate on later. Due to language barriers,
I was unable to carry out empirical studies at the Danish high schools, so I directed my focus
towards university mathematics education, with a particular emphasis on mathematics students
who aspire to become secondary school teachers, called future teachers in this thesis.

1.1 The overall purpose of the PhD project

The challenges I have faced are rooted in an intricate lack of clarity regarding the interre-
lationships between three fundamental components: university mathematics education, high
school mathematics education, and digital technology. The most conspicuous discrepancy lies
in the variance between university-level mathematical knowledge and the sort of mathematical
understanding expected in high school, which is also known as Klein’s second discontinuity.

One could visualize each piece of mathematical knowledge in high school akin to individual
beads that need stringing together in a particular sequence. Upon completing high school
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mathematics, students should possess an ordered string of these “beads” instead of merely an
assortment of disparate elements. This calls for teachers to provide students with a figurative
“string” and a systematic “method of arranging the beads” before commencing teaching. To fa-
cilitate this, teachers need a robust mathematical foundation, particularly in theoretical math-
ematics, to connect individual pieces of knowledge. This means high school teachers should
approach teaching materials from a comprehensive perspective, comprehending and mastering
the knowledge rather than merely focusing on sharing techniques for solving practical tasks.
Even if teachers’ university-level mathematical knowledge might not be visibly applied in high
school classrooms, it could still significantly shape teaching strategies and their implementa-
tion. Hence, a pivotal question arises: What specific university mathematics knowledge can
effectively bolster high school mathematics teachers in comprehending and mastering the goals
of high school teaching, and how can this be achieved?

In this thesis, the relationship between mathematics education in universities or high schools
and the use of digital technology shares a similar goal of facilitating more accessible and effi-
cient mathematics learning and teaching. Digital technology, within the context of this thesis,
refers primarily to computer software and calculators, with the latter encompassed under com-
puters due to their similar functional aspects. For high school mathematics teachers, effective
mathematics teaching is not just about understanding the content but also about adeptly using
computers. However, most teachers’ grasp of computer use tends to focus primarily on using
specific functions within the software. For instance, they might know how to use a command
in some mathematics software to compute values of certain special functions but might lack
an understanding of the software’s underlying principles or the rationale behind employing a
particular command within the mathematics software. In this sense, the gap between learning
university-level mathematics and teaching high school mathematics is closely related to the
disparity in computer utilization. Reflecting on personal experience, the computer knowledge
acquired during high school teachers’ university mathematics studies does not readily translate
to the teaching of mathematics in high schools. Thus, the question could be reformulated to
inquire: What specific university mathematics knowledge, combined with advanced computer
proficiency, can effectively support high school mathematics teachers in understanding and
mastering the computer-related mathematical objectives in high school teaching, and how can
this be achieved?

Addressing this pivotal question necessitates more than simply attending standard high
school or university mathematics classes. It requires the design and experimentation of inter-
ventions that seamlessly intertwine these fundamental components. Thus, focusing on future
teachers preparing to engage in high school mathematics teaching in a context that involves
extensive use of advanced mathematical software, becomes crucial. The core objective of my
PhD project is to present results from such experimental work on ways to enrich the math-
ematical knowledge of these future teachers, specifically in the context of computers. The
entire project centers around a crucial yet intricate mathematical domain — real numbers. It
critically examines three closely related research objects that are all concerned with prospec-
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tive teachers’ understanding of real numbers in a variety of contexts. These research objects
encompass real numbers in university mathematics learning, real numbers in high school math-
ematics teaching, and real numbers on computers (as depicted in Figure 1). Ultimately, the
project endeavors to comprehensively connect these diverse research objects, aiming to bridge
the gaps and provide vital insights into the central question:

Q: How can future teachers bridge the gap between the model of real numbers acquired
at university and the model they are expected to teach in high school within the context
of computers?

Figure 1: The research objects of this PhD project.

1.2 Structure of the thesis

This thesis will provide a comprehensive account of my entire research project conducted
throughout my PhD studies. The primary focus of this thesis revolves around the knowledge
of prospective mathematics teachers regarding real numbers as infinite decimal numbers on
computers.

Section 2 will briefly recall the main points of the literature review contained in Paper
I, which focuses on research concerning the digital learning environment for university-level
mathematics students. Then we proceed to elucidate the distinct models of real numbers that
appear in high school and university. Following this, I will enter the core issue that motivated
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my research project, which is known as Klein’s double discontinuity. I will provide a brief
review of previous research on this problem. Following this, I will introduce some mathematical
prerequisites for the specific case of real numbers - the infinite decimal model of real numbers
and the concept of computability, which will be essential for addressing the second discontinuity
in this particular mathematical context.

To guide the exploration of the second discontinuity, I have employed the Anthropological
Theory of the Didactics (ATD) as a foundational framework. This framework is reviewed in
Section 3, for the parts actually used in the thesis. It will play a pivotal role in modeling
and analyzing the second discontinuity. Based on these theoretical preliminaries, I can then
formulate the overall research questions for the thesis.

The research questions have been developed and investigated in relation to a specific insti-
tutional context, namely a “capstone” course for future mathematics teachers at the University
of Copenhagen. In section 4 we provide an outline of pertinent features of this context at a
level of detail which goes slightly beyond what is feasible within the frame of a journal paper.

As we shall see, the research questions contain both theoretical and empirical dimensions.
Identifying necessary extensions and elaborations of students’ mathematical knowledge in a
given context of undergraduate study naturally begins with theoretical analyses, as does the
construction of tasks which support the students’ learning corresponding to these goals. Then,
the implementation must be observed in the given context with appropriate methods to gather
data. Both the preliminary analysis, the task design and the data collection must be done
with due regard to the specific conditions in the context, besides naturally being guided by the
research questions and the underlying theoretical framework. Section 5 is devoted to explain
the methodological choices made to meet these needs.

In section 6, we provide an overview of the results from the three main papers, including
both task design and the results of analysing empirical material like students’ answers to the
tasks.

In section 7, we discuss in more detail how the results are related to each other and to
previous research, as well as the limitations of the results which are implied, for instance, by
the context and small-scale nature of our theoretical analysis, designs, and experiments.

In the concluding section 8 of the thesis, we will summarize the key findings and implications
of the research presented and also outline potential avenues for future research in this domain.
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2 Definitions and background research on main compo-
nents of the thesis subject

As Figure 1 illustrates, the subject of the thesis can be seen as situated in the intersection
of larger research problematiques in which more or less extensive research has been done. In
this section, we review some of that research and also provide some of the basic notions which
structure these areas.

2.1 Digital resources in university mathematics education

At the outset of my research project, I investigated the utilization of digital resources within
university mathematics education. Several factors guided my choice to focus on digital tools at
the university level rather than in high school mathematics education. Drawing from the exam-
ple of Denmark, although various digital tools, particularly Computer Algebra Systems (CAS)
such as Maple and (a part of) GeoGebra, are widely used in schools, their primary function re-
volves around calculations and graphing. They are not extensively employed as instruments for
students to explore deeper theoretical mathematics knowledge beyond the scope of textbooks.
However, the personal knowledge and utilization of digital resources by secondary mathemat-
ics teachers could be expected to have significant implications for their mathematics teaching,
especially concerning the integration of technological tools. Unfortunately, there are not any
university courses in Denmark solely dedicated to enhancing future teachers’ understanding of
mathematical digital tools and establishing a connection with theoretical mathematics.

Paper I provides a categorization of four classes of digital resources based on previous
research on their use in university mathematics education (refer to Figure 2 for more details,
as discussed in Paper I). This thesis, however, will exclusively focus on digital tools. In essence,
digital tools refer to computer software and calculators utilized for solving mathematics tasks.
Based on the use of these tools, they can be categorized into two groups: ready-made tools and
self-made or programming tools. It is worth emphasizing that a single piece of software can
supply tools in both categories depending on the user’s specific purpose. For instance, Maple
can be considered a ready-made tool when used for calculations, and it can also be viewed as
a programming tool when its coding functionality is utilized.

Figure 2: Four categories of digital resource (see Table 1 in Paper I).

The most frequently mentioned digital tools in the literature are the ready-made ones (e.g.
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Lavicza, 2010; Teodoro & Neves, 2011; Oates, 2009; Winsløw, 2003a; Troup, 2019; Buteau
et al., 2010; Buteau et al., 2014; Jarvis et al., 2014; Kilicman et al., 2010; Turgut & Uygan,
2014; Sümmermann et al., 2021). Several of these tools are extensively used in high schools.
While their usage becomes more advanced at the university level compared to high schools,
their primary purpose is to simplify complex or inaccessible steps in graphing or numerical
computation. Therefore, it is important to note that the complexity lies in the mathematical
content these tools support, not in understanding how these tools operate. In other words,
whether at the high school or university level, these ready-made tools are essentially “black
boxes”, and hardly any discussion of their operational principles, neither in teaching nor in the
mathematics education literature.

Conversely, to engage in mathematical use of programming tools requires students to de-
velop new, structured strategies for solving mathematical problems, thus establishing a bridge
corresponding to an essential link between between computer science and mathematics (e.g.
Buteau et al., 2020; Broley et al., 2018; Sangwin & O’Toole, 2017; Cline et al., 2020). Cur-
rently, according to the literature reviewed in Paper I, many university students pursuing pure
mathematics have encountered at least one programming language during university study.
Using such productive digital tools requires (and might therefore lead to acquiring) a solid
grasp of mathematical theory to construct algorithms and translate them into programming
code. In recent years, programming has gained traction in both university and high school
mathematics education. Although programming can provide some counterpart to the “black
box” nature of ready-made tools, the convergence of these two aspects does not seem to be
addressed in the research literature on the mathematical education of prospective teachers.

One of the key questions driving this project is how programming can be employed to gain
insight into the inner workings of CAS software and how this knowledge can be effectively
conveyed to future mathematics teachers. I will explore this question in conjunction with the
disparity in the understanding of real numbers between high school and university mathematics
education, aiming to evaluate what knowledge future high school mathematics teachers possess
about real numbers in a computer-based context.

2.2 Two models of real numbers

2.2.1 Real numbers in high school

Knowledge about real numbers has been integrated into our mathematical study from primary
school. However, the term “real numbers” appears after students have worked with various
concepts related to real numbers, such as the number line, decimals, rational and irrational
numbers. Durand-Guerrier (2016, p341) briefly described how numbers are treated in the
French curriculum before the term “real numbers” is introduced to students:

In the primary schooling, the elaboration of the concept of natural number is ex-
pected from the syllabus, relying on finite discrete collections and on one-to-one
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correspondences between finite discrete collections and initial sequences of count-
ing numbers names. Rational numbers (fractions) and finite decimal expansions
(that from now on we will call decimal numbers) are introduced in the context of
measurement of continuous magnitudes, along with an arithmetic treatment. The
number line plays an important role. At middle school, students go on developing
competences about natural numbers, decimal numbers and fractions. They meet
irrational numbers through the square root of natural numbers that are not perfect
square, such as

√
2. The letter π is introduced in the formula for the circumference

of a circle and the area of a disk, but students use mostly its decimal approximation
3.14.

González-Martín et al. (2013) discovered that in Brazilian textbooks, which are used in state
secondary schools and approved by the Ministry of Education, the definition of real numbers is
always introduced after rational and irrational numbers and real numbers are usually defined
as the union of rational and irrational numbers.

Branchetti (2016) in the background reading of the thesis summarized known difficulties
of high school students and teachers, related to real numbers in terms of five main themes,
including irrational numbers and the number line, drawing from previous research, noting that
this research is actually quite limited.

Voskoglou and Kosyvas (2012) emphasized the common challenge faced by both school
and university students in understanding the definitions of rational and irrational numbers.
González-Martín et al. (2013) provided examples from Brazilian textbooks where rational
numbers are represented by fractions or decimals, and irrational numbers are those that can-
not be expressed as fractions or are infinite non-periodic decimals. None of the textbooks in
their study offered a mathematical explanation to clarify the equivalence between fraction and
decimal representations. Furthermore, the definition for irrational numbers in this case as-
sumes the existence of a broader category, later termed “real numbers” in the textbooks, which
encompasses both rational and irrational numbers. However, what exactly constitutes these
“real numbers” and why they are invented are often left unexplained in textbooks. In other
words, a formal definition for real numbers is rarely provided. Students and teachers tend to
accept these ambiguous objects intuitively. As noted by Voskoglou and Kosyvas (2012), uni-
versity level knowledge for these concepts necessitates students to first have a formal approach
to rational numbers. Additionally, it is observed that “the concept of rational numbers in
general remains isolated from the wider class of real numbers (Moseley, 2005; Toepliz, 2007)”
(Voskoglou & Kosyvas, 2012, p30). Fischbein et al. (1995) found that high school students
and some preservice teachers encounter challenges in providing correct definitions for rational,
irrational, and real numbers due to a lack of emphasis on teaching the hierarchical structure
of the various classes of numbers in high school mathematics education. Interestingly, they
noted that “the concept of irrational numbers does not encounter a particular intuitive diffi-
culty in the students’ mind” (Fischbein et al., 1995, p43). Branchetti (2016, p30) identified
these challenges as stemming from “the incomplete understanding of rational numbers, the
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incommensurability and nondenumerability of irrational numbers”.
Branchetti (2016, p31) identified another factor contributing to the challenges of knowledge

related to real numbers as “the difficulties in managing and making sense of different repre-
sentations”. Some studies (e.g. Sirotic & Zazkis 2007a, 2007b, 2004) have proposed that some
of these difficulties arise from teachers’ knowledge of real numbers. For instance, Sirotic &
Zazkis (2007b) found prospective secondary mathematics teachers encounter challenges with
different representations, particularly when dealing with irrational numbers, even if they are
familiar with the definitions. This also includes the difficulties for prospective teachers in re-
cognizing infinite decimal representations as irrational numbers (Sirotic & Zazkis, 2007b) and
in establishing connections between points on the number line and the decimal approximation
of irrational numbers (Sirotic & Zazkis, 2007a).

In high school, decimal representations are commonly used in calculations, primarily han-
dled by calculators or computers (Durand-Guerrier, 2016). Sirotic & Zazkis (2004) found that
the tendency to rely heavily on calculators has led teachers and students to prefer decimal rep-
resentations over fractional representations, contributing to their confusion about irrationality
and infinite decimal representations. Therefore, as students in France, “students acceding to
university have in general no idea of the differences and interplay between finite decimal num-
bers, rational numbers and non-terminating decimal expansions, and thus are not prepared
for what they will be taught at university.” (Durand-Guerrier, 2016, p341). Working with
these different representations of real numbers without a clear connection between them, the
relationship between students (and even teachers) and real numbers is like “blind men and an
elephant”.

2.2.2 Real numbers at university

Bergé (2010, p217) introduced the role of the set of real numbers R in university mathematics
studies as follows:

In most universities, the set of real numbers is approached in a progressive manner
throughout several courses. In the first Calculus courses the set R is not explicitly
defined; instead, what is used is the naive idea of considering R as all possible
numbers, influenced by the image of the number line. This idea is compatible with
the kind of work usually carried out in these courses, and it allows instructors to
advance through the curriculum fairly quickly. Further on, when studies in Analysis
start and the formally defined set R becomes the natural domain of functions, other
properties become relevant. R is then usually introduced by means of the axioms of
a complete ordered field. In advanced courses, R is presented as the set of rational
cuts or rational Cauchy sequences.

Hence, real numbers at university no longer function as distinct and separated representations,
as was the case in high school, but rather as a unified set to be characterized and utilized.
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At the beginning of Analysis, students are often introduced to a new property of real
numbers, frequently through the supremum property (e.g., in many French universities, as
noted by Durand-Guerrier, 2016). When I studied Analysis, the textbook tried to connect
the high school curriculum by asserting that all real numbers can be represented by infinite
decimal representations, without an unambiguous construction. Occasionally, discussions with
students regarding infinite decimal representations might also involve some properties, such as
0.9 = 1. (e.g. Njomgang-Ngansop and Durand-Guerrier, 2013).

Dedekind cuts, as proposed by Dedekind (1963/1872), stand out as one of the most renowned
method for constructing real numbers. Another method commonly employed for real number
construction is through Cauchy sequences (Durand-Guerrier, 2016), which is more frequently
used in university, particularly in connection with the property of completeness. However, in
university mathematics studies, the process of constructing real numbers via Dedekind cuts
or Cauchy sequences is commonly presented as supplementary material or assigned as part of
reading tasks, with no extensive elaboration.

In university mathematics, real numbers take on a much more theoretical nature. Njomgang-
Ngansop and Durand-Guerrier (Njomgang-Ngansop and Durand-Guerrier, 2013) pointed out
that university students need to not only grasp how to validate related statements about real
numbers but also understand the “truth” behind them (Durand-Guerrier et al., 2012). They
supported this point based on a study involving nine fresh undergraduate students in France,
focusing on the case of 0.9 = 1.

In reviewing the literature on real numbers in university mathematics (e.g., Bergé, 2010�
Njomgang-Ngansop and Durand-Guerrier, 2013� Durand-Guerrier et al., 2012� Durand-Guerrier,
2016), one can observe that certain representations, such as infinite decimals that persist from
high school, are rarely subjected to explicit discussions about specific decimals in university
mathematics education. Therefore, techniques based on such as using computers for deci-
mal computations seldomly arise in the theoretically oriented learning process of university
mathematics.

2.3 Klein’s second discontinuity

Klein (2016/1908, p. 1) introduced the concept of double discontinuity to describe two gaps
between high school and university mathematics. The first discontinuity occurs when a high
school graduate enters university to study mathematics, often finding it challenging to bridge
the contents between university and high school mathematics. This disconnection can lead
some students to believe that high school mathematics has limited relevance to university-
level mathematics. It is essential to understand that in this transition from high school to
university, the role of the person as a student (learner) remains unchanged; what undergoes a
transformation is the mathematics objects. These mathematics objects are taught differently
at various institutions and are received by students with distinct expectations, posing a risk
that students, like I once experienced, may struggle to connect the two. For example, in high
school, a student is expected to solve practical mathematics tasks, while in university, the
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emphasis shifts to proving theorems and engaging in more abstract mathematical thinking.
Klein’s second discontinuity pertains to university students who aspire to become high school
teachers, the future teachers discussed in this thesis. These students then encounter a scenario
where the mathematics they studied in college does not appear useful to the task of teaching
high school mathematics. In this discontinuity, both the position (from students to teachers)
and the mathematics objects shift, due to the change of institutional context. These changes
could result in university students, upon becoming high school mathematics teachers, adopting
teaching methods “in the old pedantic way” (Klein, 1932/1924, p.1) which might be similar to
those used by their own high school mathematics teachers (Lindgren, 1996), and their university
mathematics with time will be as Klein described “remain only a more or less pleasant memory”
(Klein, 1932/1924, p.1).

Klein’s first discontinuity is evident in the transition from the high school model of real
numbers to the university model of real numbers. This gap emerges as students move from
the fragmented elements of the high school real numbers model, which includes concepts like
irrational numbers, decimal approximations, and the number line, to the more formal real
numbers model in university, which involves concepts such as Dedekind cuts and completeness.
Numerous studies have highlighted the challenges associated with teaching real numbers in
both high schools and universities, particularly considering the first discontinuity (e.g. Durand-
Guerrier, 2016).

In my research project, the focus is on the second discontinuity, which pertains to the
disconnection between the real numbers model future teachers acquire at university and the
real numbers model they will teach in high school. This disconnection can be attributed to
three possible factors.

The first factor involves the disparity in the use of digital technology. At university, though
mathematics students have many experiences with digital tools (not only in mathematics learn-
ing), computers or calculators are rarely employed in the study of real numbers, as occurs at
the beginning of first courses on real analysis. In contrast, high school teachers heavily rely
on digital tools, especially CAS and calculators, for teaching subjects related to real numbers.
Digital technology plays a crucial role in students’ work with concrete real functions, like the
computation of function values, zeros, etc. Therefore, future mathematics teachers face the
challenge of comprehending real numbers within a computerized context and using computers
effectively in teaching real numbers.

The second factor is the difficulty future teachers encounter in bridging the gap between
their theoretical knowledge of real numbers acquired at university and the practical real num-
bers tasks they are expected to teach in high school. The transition from theoretical un-
derstanding to practical application in the high school classroom can be challenging without
specific guidance or instructions from university education.

The third factor relates to the transition from a student role to a teacher role. Future
teachers may experience confusion regarding the type of real numbers knowledge required for
instructing students in solving high school-level real numbers tasks. This shift in roles and
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responsibilities can be accompanied by uncertainties about effectively teaching real numbers
in a high school context.

Future teachers’ education plays a crucial role in addressing Klein’s second discontinuity,
particularly in bolstering their knowledge of the mathematics subject they will teach in the
future. As described by Adams (1998, p35):

A major goal of teacher education programs is to provide opportunities for prospec-
tive teachers to acquire subject matter knowledge. The individual who proposes to
teach subject matter to children should demonstrate knowledge and understanding
of the subject matter to facilitate children’s understanding of that subject mat-
ter (Ball, 1990; Even, 1990; Shulman, 1986; Simon, 1993). Mathematics subject
matter knowledge includes understanding of concepts (conceptual knowledge), un-
derstanding of skills, symbolism, rules and procedures (procedural knowledge), and
the relationships which may exist between conceptual knowledge and procedural
knowledge (Ball, 1991; Even & Lappan, 1994; Leinhardt & Smith, 1985; Van de
Walle, 1994). Assessment of prospective teachers to effectively develop and imple-
ment mathematics curriculum, instruction, and assessment relies heavily upon the
teachers’ demonstration of mathematics subject matter knowledge.

It is not the purpose of the present thesis to discuss the extent and effects of the (often rather
superficial) contents that students are exposed to at university, in relation to the theoretical
foundations of the real number system. Rather, its objective is to address and propose bridg-
ing measures for Klein’s second discontinuity by enhancing future teachers’ knowledge of real
numbers based on the above three factors. Essentially, the aim is to construct a bridge be-
tween the two educational institutions, connecting the university model of real numbers with
the high school model of real numbers. To achieve this objective, we need some foundational
“materials” for the bridge’s construction.

1. The infinite decimal model of real numbers - a third model of real numbers, that bridges
the gap between the high school and university models, and is suitable for describing real
numbers as they are handled by computers.

2. Computability - a paramathematical notion which is needed to understand the represen-
tation of real numbers on computers, and whose study we argue could help future teachers
to gain insight into the “black box” of CAS and calculators, incorporating programming
tools.

A detailed explanation of these two “materials” of the bridge will be given in the next
subsections.

2.4 Infinite decimal model of real numbers

Decimal representations of real numbers are relevant to both high school and university math-
ematics education. The infinite decimal model of real numbers serves as a valuable bridge,
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connecting the distinct models used in high school and university settings. It is important to
emphasize that the specific presentation and treatment of the infinite decimal model is not a
novel creation introduced in this thesis; rather, it is drawn from established content, for exam-
ple, from the book The mathematics that every secondary school math teacher needs to know
(Sultan & Artzt, 2018).

Now, I will provide a brief overview of how real numbers can be formally modeled using
infinite decimals, drawing from the second part of Chapter 8 of the book The mathematics that
every secondary school math teacher needs to know (Sultan & Artzt, 2018, p331-358). The first
question addressed in this model is whether all real numbers as defined as at least outlined
in undergraduate mathematics can be represented as infinite decimals. In this representation,
an infinite decimal x = 0.c1c2c3.... ∈ [0, 1) can be expressed as a series x =

∞∑
i=1

ci ∗ 10−i,

where ci ∈ {0, 1, 2, ..., 9} and i = 1, 2, .... The Archimedean property of R ensures that all real
numbers can indeed be represented by infinite decimals, which is formalized in the following
two theorems (Sultan & Artzt, 2018, Theorem 8.52, p336; Theorem 8.52, p337):

Theorem 1 Any decimal number .d1d2d3... represents a series that has a finite sum.

Theorem 2 Every real number N , where 0 ≤ N < 1 can be written as a decimal.

The second question pertains to whether a real number possesses only one infinite decimal
representation. Addressing this, Sultan and Artzt (2018, p348, Theorem 8.65) proved another
crucial theorem in Chapter 8:

Theorem 3 Every nonnegative real number x between 0 and 1 is represented by a unique
infinite decimal, except those numbers whose decimal representations terminate in an infinite
number of zeros or an infinite number of 9’s. These and only these decimals can also be
represented in two ways.

Noting that the result in these theorems can be extended from the interval [0, 1) to all real
numbers by adding integers.

In this thesis, the unique infinite decimal representation of a real number that does not
terminate in an infinite number of 9’s is called the canonical decimal representation of the real
number.

These three fundamental theorems elucidate the rationale behind representing real numbers
using decimals. The proofs of these theorems, as fully presented by Sultan and Artzt (2018),
incorporate concepts from university mathematics, such as series and convergence. Leveraging
university-level concepts to explain decimal representations, which are intuitively used as real
numbers in high school mathematics education, makes this model a valuable bridge between
high school and college models of real numbers.
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2.5 Computability

It is evident that a general infinite decimal cannot be fully contained in a computer. Therefore,
the question arises: how does a computer handle infinite decimals when performing calculations
involving real numbers, particularly irrational numbers? In essence, how is the infinite decimal
model of real numbers adapted to a computer? This prompts the introduction of a new concept
- computability.

In the 1930s, pioneering researchers such as Alan Turing and Alonzo Church laid the foun-
dation for computability theory, often referred to as “recursion theory” (Soare, 1999). The term
“computability” finds its place in various scientific domains, including mathematical logic and
computer science. However, there is a noticeable absence of research in the field of mathematics
education addressing this concept.

Ménissier-Morain (2003) provided three equivalent definitions of computable real num-
bers from the area of computer science along with all relevant properties and corresponding
proofs. Lucier (2022) presented an informal translation of one of the definitions, named “B-
approximable real numbers”(Ménissier-Morain, 2005), into a more accessible version for those
not studying computer science:

we say that a real number x is computable if and only if there can exist a computer
program that computes for each positive integer k (roughly, the number of digits
we want to the right of the decimal point) an integer N such that

|N − 10kx| < 1, or equivalently | N
10k

− x| < 1

10k
. (∗)

This characterization as “informal” primarily stems from Lucier’s omission of a clear def-
inition for the term “computer program”. In an effort to maintain simplicity, Paper IV (p3)
provides an informal yet improved version (compared to Lucier’s) of the definition for “com-
puter program”:

A branch of coding is called a computer program, when provided with an input and
a natural number n, which could produce a decimal with n decimal digits. A com-
puter program has to have an end condition and be restricted to basic arithmetic
operations — addition, subtraction, multiplication, and division - of integers. In
other words, a computer program does not function like a “magic button”; its algo-
rithm should facilitate a process that can also in principle be performed manually
with paper and pen, which we refer to as a “manual operation”.

However, Lucier’s explanation of the computability of real numbers lacks rigor. To illustrate,
let us consider

√
2 as an example. Assume we look at a concrete computer program that

computes
√
2, in the sense of (∗). With the notion in (∗), when k = 2, the value of N could

be either 142 or 143. This implies that when approximating to the second decimal place,
√
2

could be represented as either 1.42 or 1.43. So while the infinite deicmal representation of
√
2 is
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unique, the finite approximations according to (∗) are not. Therefore, building upon Lucier’s
definition of computability, I will introduce a refined version named absolute computability.
Paper IV defines absolute computability as follows:

Definition 2.1 A real number x is called absolutely computable if there exists a computer
program that, for any given n ∈ N, computes the first n decimals of the canonical decimal
representation of x, namely x̂(n) = b10n·xc

10n
for all n ∈ N.

Figure 3 illustrates a potential computer program providing evidence for the absolute com-
putability of

√
2. A concise explanation of the coding in Figure 3 is provided here, with a

detailed discussion available in Paper I.

Figure 3: A computer program demonstrating the absolute computability of
√
2 (see Figure

2 in Paper IV).

Executing the code in Figure 3 on Maple (a CAS software) allows for obtaining the canonical
decimal representation of

√
2 with precision ranging from the first decimal place to the 10th

decimal place. The code adheres to the fundamental principles of a computer program: it
possesses an end condition and comprises only basic arithmetic operations. Thus, it can be
classified as a computer program. In this specific computer program,

√
2 is treated as a zero of

the function f(x) = x2−2. The approach to determining the unique digit in each decimal place
relies on the intermediate value theorem, a concept typically covered in university mathematics
education. By adjusting the range of i, one can obtain the canonical representation of

√
2 with

the desired level of accuracy.
In addition to determining the canonical decimal representation of a real number, partic-

ularly an irrational one, students and high school teachers heavily rely on computers when
computing values of transcendental functions, such as sinx, cosx, and log10 x. While man-
ually calculating special values like sin π, cosπ, or log10 100 may be straightforward, dealing
with a decimal input, like 1.41, for functions such as sin 1.41, cos 1.41, and log10 1.41 requires
the use of computers. Thus, it becomes crucial to understand how computers generate values
for transcendental functions with decimal inputs from a computability perspective. Paper IV
introduces the definition of absolute computability for a function as follows:
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Definition 2.2 Let Dn = {10−ny : y ∈ Z} and D =
⋃

n=N Dn. A function f : R → R is called
absolutely computable if there exists a computer program that, for any given x ∈ D and n ∈ N,
computes f̂(x)(n) ∈ Dn for all n ∈ N.

Figure 4 presents an illustrative approach to calculate the first 4 decimal digits of the
canonical decimal representation of the value of the function f(x) = log10 x with a given
M ∈ D. Similar to the code in Figure 3, the code in Figure 4 adheres to the two principles,
establishing it as a computer program. By adjusting the parameter n in the code, one can
obtain an increasing number of decimal digits for the canonical representation of log10M . It
is crucial to note that the precision of the final result is independent of the number of decimal
digits in the initial input M . A detailed explanation of the computer program is presented in
Paper III.

Figure 4: A computer program demonstrating the absolute computability of the function
f(M) = log10M (see Figure 3 in Paper IV).

The distinction between Definition 2.1 and Definition 2.2 lies in the target of the computer
program. For instance, when considering log10 1.41 and log10 1.42 as two distinct real numbers,
the computer programs used to generate their canonical decimal representations may be the
same or different. However, when treating them as two values of the function f(x) = log10 x

with given x = 1.41 and x = 1.42, the computer programs employed to derive their canonical
decimal representations must be the same.
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3 Theoretical framework-ATD and research questions

3.1 Anthropological theory of the didactics

ATD, the theoretical framework of this thesis, was formulated by Chevallard in the 1980s and
serves as a theory for modeling mathematical activity carried out within a given institutional
context, as initially outlined in (Chevallard, 1991, 1999).

In this thesis, ATD will be employed in particular to model Klein’s second discontinuity.
Before entering this part, it is essential to introduce two crucial notions from ATD that will
serve as key elements in modeling Klein’s second discontinuity: institutional relations, and
praxeology.

3.1.1 Institutional relations

ATD evolved from the didactic transposition theory, which is currently acknowledged as a
subtheory within the broader framework of ATD (see Figure 5). Instead of an exhaustive in-
troduction of the entire didactic transposition framework along with its constituent elements,
I will first concentrate on a central aspect — namely, mathematical knowledge. A comprehen-
sive overview and elaboration of each element involved in this transposition can be found in
Chevallard (2019).

Figure 5: The didactic transposition: how scholarly knowledge outside of school is transposed
into classroom.

Each piece of mathematical knowledge undergoes varied presentations contingent on its
context and audience. To enhance clarity, the ensuing discussion specifically centers on a
particular facet of mathematical knowledge within the domain of real numbers denoted as h,
with a specific focus on the university and high school.

The knowledge of real numbers acquired through university mathematics study by students
is denoted as the scholarly version of h, labeled as hu, encompassing concepts like Dedekind
cuts and completeness. The real number knowledge involved in high school mathematics study
is termed the high school version of h, denoted as hs, and includes concepts such as irrational
numbers. hu focuses on the theoretical aspects of real numbers, enabling university students to
engage in more profound theoretical explorations in mathematics, for example, the complete-
ness of real numbers plays an indispensable role in proving some theorems in Analysis. “In
order to become teachable and (learnable)”, hs “has to be “transposed” from some hypothetical
scholarly world to adapt to conditions specific to the schools” (Chevallard, 2019, p76). The
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theoretical aspects of real numbers are usually taken for granted by most students as well as
teachers, which makes hs places emphasis on the practical application of real numbers, aiding
high school students to address practical problems such as calculating the values of functions.
Thus, the gap between hu and hs appears.

This thesis does not aim to investigate hypothetical strategies for the reduction of the gap
between hs and hu such as altering existing curricula or modifying the content related to real
numbers for learning or teaching at the university or high school level. While acknowledging
that such a gap is an inherent aspect of educational institutions, this thesis operates under the
assumption they are what they are. Therefore, the focus of this thesis shifts away from the
study on hu and hs themselves towards the exploration of what could be done to connect them
for future teachers.

A piece of mathematical knowledge encompasses at least one mathematical object. For
instance, within hs, not only the uncountably many real numbers but also classes of numbers
like the irrational numbers, constitute such mathematical objects. Moreover, a mathematical
object cannot be studied didactically without considering an institution and its different types
of agents, referred to as positions by Chevallard. For example, we say “High school students
use computers to calculate decimal approximations of

√
2”. Here, the mathematical object is

“decimal approximations of
√
2”, the position is students, and the institution is high school.

The relationship of the position x and a mathematical object o within an institution I is called
institutional relation, denoted as RI(x, o) (Chevallard, 2019, p78).

In the high school setting (HS), multiple relationships can revolve around two distinct
positions: mathematics teachers (t) and students (s). The fundamental distinction lies in the
dynamics of teaching and learning the object o. Mathematics teachers shape their approach to
teaching the object o based on their experience or beliefs regarding how students can effectively
grasp and learn it. Concurrently, students acquire the object o as a result of their activity in
the context of mathematics teaching. Thus, RHS(s, o) and RHS(t, o) represent two distinct yet
interrelated relationships, each influencing the other.

For mathematics teachers, o is not a novel concept; hence, the relationship RHS(t, o) encom-
passes a crucial aspect — the teachers’ own knowledge of o. Their relationship to o significantly
impacts their teaching approach and, consequently, affects students’ learning. While it develops
through their teaching experiences in high school, a substantial portion is derived from their
prior relationships, dating back to their time as students in university or even high school.
Klein’s second discontinuity considers teachers’ knowledge within RHS(t, o) and explores the
relationship between RHS(t, o) and their previous personal and institutional relations before
assuming the role of mathematics teachers in high school.

3.1.2 Praxeology

How does one interpret RI(x, o)? To provide a more tangible example, consider the activity
“A high school mathematics teacher teaches real numbers-related knowledge”. What specific
aspects should be considered when understanding this activity? In a more general context, what
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contents should be encompassed in the process of teaching the mathematics objects involving
real numbers? Addressing this question, Chevallard introduced a central subtheory of ATD,
known as the theory of praxeologies (cf. Chevallard, 1991, 1999, 2019), designed to model the
mathematics object o. Praxeological analysis can guide us in exploring and comprehending the
motivations and outcomes of human activities, as explained by Chevallard (2019):

What I had to do, what I do — handle something, think about it, love it, discard
it, etc.—determines my (personal) relation to the objects that make up my cog-
nitive universe. The notion of praxeology was introduced as an essential means
of analyzing human activity—be it mathematical or otherwise. This is where the
reason for labeling “anthropological” the theory developed is most obvious.

Within each praxeology, there are two integral components: the praxis block and the logos
block (see Figure 6), denoted as Π and Λ respectively. A prexeology can be represented as a
pair (Π,Λ). The praxis block delineates a practical activity, such as making a pizza, while
the corresponding logos block provides an explanation for all the steps involved in the process
of making a pizza, rendering the activity meaningful. Each praxis block comprises a type of
tasks and a technique utilized to solve these tasks. This technique is explicated through a
discourse known as technology, and the technology can be generated and justified by a higher-
level discourse termed theory. Together, a technique and a theory constitute the logos block.
It is crucial to clarify that the term “technology” in the context of praxeology differs from
the technology discussed in our introduction to digital tools. In praxeology, technology is an
abstract conception that encompasses mathematical theorems, whereas, in this thesis, digital
technology is simply understood as computers.

Figure 6: The components of a praxeology and their relations.

Now, let us return to the mathematical objects we are primarily focusing on in this thesis
— real numbers, especially in the context of computers. In high school, students can efficiently
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tackle almost all calculations involving real numbers through computers, including tasks like
computing square roots and function values. In this context, we can conceptualize the computer
as a set of “buttons” that, when pressed, provide answers to a host of different questions. Most
types of task they meet and which relate to real numbers can be resolved by pushing the
“buttons” and how the “buttons” work can be theoretically explained by the corresponding
logos blocks.

Every praxeology must incorporate both a praxis block and a corresponding logos block.
However, not all praxis blocks and logos blocks are always well-presented through an institu-
tional relation. In general, high school mathematics emphasizes praxis blocks related to real
numbers, such as calculation activities among real numbers. However, logos blocks related to
real numbers are sometimes inadequately constructed or are directly and confidently accepted
without precise explanations through teaching or learning. For instance, Durand-Guerrier
(2016) found that in the context of French high school, students in grade 12 “learn the mean
value theorem without proof and without a discussion on the fact that this theorem holds in
the set of real numbers.” Thus, the influence of logos blocks related to real numbers seems
somewhat limited in the relationship RHS(s, o), when a high school student s is learning about
a mathematical object o involving real number knowledge. A challenge in the relationship
RHS(t, o) for a high school mathematics teacher t is to address the gaps in logos blocks that
may not be adequately defined or explained in textbooks and to establish connections with the
corresponding praxis blocks.

Conversely, in university mathematics, there is a greater emphasis on logos blocks, such as
characterizing real numbers via the supremum property. However, new praxis blocks related
to this property of real numbers are not extensively taught or presented in the courses or
textbooks at the university. Therefore, a university student σ might not establish a strong
connection with the praxis blocks that could be explained by the logos blocks so that the
students through RU(σ, ω) become mainly a relationship with the logos block of ω. This
variation in mathematics study based on different institutions is a potential reason that students
who have completed high school and are beginning university may find it challenging to engage
in university mathematics study.

The challenges related to praxis blocks and logos blocks within different institutional re-
lations and the difficulties arising during transitions between these relations can be viewed as
potential factors that contribute to Klein’s double discontinuity.

3.2 Theoretical model for Klein’s second discountinuity

Klein’s double discontinuity comprises three crucial transitions: the institutional transition,
involving shifts between university and high school; the mathematical objects transition, en-
tailing shifts between theory-centric university mathematical objects and practice-centric high
school mathematical objects; and the position transition, encompassing the transformations
from high school students to university students to high school teachers. Therefore, personal
and institutional relations effectively encapsulate the interplay among these three transitions.
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Winsløw and Grønbæk (2014) formulated a model for Klein’s double discontinuity as follows:

RHS(s, o) → RU(σ, ω) → RHS(t, o) (1)

where o represents a mathematical praxeology taught by teachers (t) to students (s) in high
school (HS), and ω represents a mathematical praxeology received by students (σ) at the
university (U).

This thesis explores the second arrow in transition (1), representing Klein’s second dis-
continuity. Focusing specifically on the knowledge of real numbers, I utilize ωR to denote the
praxeologies related to real numbers and to be acquired by university students, and oR to de-
note the praxeologies related to real numbers that are intended to be taught in high schools.
Consequently, the second discontinuity, concerning specific knowledge of real numbers, can be
modeled as:

RU(σ, ωR) → RHS(t, oR) (2)

Klein proposed two approaches to address the second discontinuity, as summarized by
Kilpatrick (2019, p218):

(a) offering university courses that would show connections between problems in
various fields of mathematics (e.g., algebra and number theory), and (b) developing
university courses in elementary mathematics from a higher standpoint.

This thesis considers the inclusion of a “capstone” course to address the gap in transition
(2) based on the two proposed approaches. Kilpatrick (2019) describes a “capstone” course as
one that “came near the end of our program and was designed to demonstrate our mastery
of mathematics”. In the context of this thesis, participants in the “capstone” course would
be university students who have completed the rest of their mathematics studies and plan to
become high school mathematics teachers upon graduation (i.e. future teachers), denoted as
σFT . This course introduces future teachers to various mathematics domains relevant to high
school and assists them in establishing connections between university mathematics and high
school mathematics, specifically between ωR and oR in the case of this thesis. The mathematics
praxeologies related to real numbers in this course are denoted as ω∗

R. The new relationship to
be achieved through this course is denoted as RU(σFT , ω

∗
R), updating the transition (2):

RU(σ, ωR) → RU(σFT , ω
∗
R) → RHS(t, oR) (3)

The introduction of the new relationship RU(σFT , ω
∗
R) functions as a bridge connecting

RU(σ, ωR) and RHS(t, oR), thereby creating two possible or potential sub-discontinuities rep-
resented by the two arrows (→). So the capstone course success to address Klein’s second
discontinuity depends in particular, on these new, potential sub-discontinuities. More specifi-
cally we can address these here in terms of the following three questions:
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1. In the construction of ω∗
R, which specific elements pertaining to real numbers are necessary

to include in this praxeology, in order to establish a link between ωR and oR?

2. With regard to the first arrow, how might future teachers effectively engage with the
newly devised praxeology, leveraging the undergraduate relationship to academic knowl-
edge in view of autonomously examining mathematical and didactical questions at the
high school level?

3. Concerning the second arrow, what novel insights into high school real number teaching
could future teachers gain through their involvement with the new praxeology?

3.3 Research questions

Formalizing and sharpening the aforementioned three questions, this thesis endeavors to address
and resolve the following three research questions:

RQ1. How could the praxeology ω∗
R be built so as to include the theoretical perspective

of computability to connect the high school model of real numbers and the university
model of real numbers? In particular, how could task design contribute to developing
and assessing RU(σFT , ω

∗
R)?

RQ2. How could future teachers work with computer algorithms through the designed
tasks from RQ1 to build the connection with RU(σFT , ω

∗
R)?

RQ3. What new relationships to real numbers and functions as they appear in high
school could the work with the designed tasks lead future teachers to acquire?

Let oR be represented by the pair (ΠHS,ΛHS), and ωR be denoted by the pair (ΠU ,ΛU).
The purpose of RU(σFT , ω

∗
R) is to establish a connection between ΠHS and ΛU for future

teachers. Therefore, constructing ω∗
R requires the inclusion of ΠHS and ΛU . However, directly

incorporating these two components into one praxeology is insufficient. Thus, it becomes crucial
to adjust specific elements in ΠHS to align it with the structure of a university-level praxis block.
In this thesis, computer algorithms were employed to perform certain instrumented techniques
from ΠHS. This adapted praxis block, derived from ΠHS, is denoted as Π∗

HS. The logos block
in ω∗

R used to elucidate Π∗
HS is denoted as Λ∗

U . The elements included in Λ∗
U need to provide

a theoretical explanation for the computer algorithms. These elements used to explain the
computer algorithms also need to have a connection with some elements in ΛU . This requires
the computer algorithms to involve university-level real numbers knowledge. Therefore, how
to construct the computer algorithms is crucial for building the logos block Λ∗

U in ω∗
R.

The exploration of the three research questions is distinguished across three main papers
in my PhD project (see the paper list). Each paper contributes distinct perspectives to the
overarching investigation centered around the UvMat capstone course.
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Paper II: This empirical paper delves into the design and implementation of assignments
featuring computer algorithms to construct ω∗

R for future teachers. The data for Paper
II was gathered during the UvMat course in 2021.

Paper III: Positioned as a theoretical paper, Paper III addresses Klein’s second discon-
tinuity, transitioning from a global to a local perspective. It utilizes a newly designed
assignment from the UvMat course in 2022 as a concrete example to discuss the second
discontinuity locally.

Paper IV: Another theoretical contribution, Paper IV centers on how the concept of
computability can aid future teachers in comprehending real numbers as infinite decimal
representations on computers. This paper draws from the examples of both assignments
in Paper II and Paper III, showcasing part of future teachers’ engagement with the two
computer algorithms.

In summary, Paper II and Paper III collectively tackle RQ1, Paper II and Paper IV are
intertwined in addressing RQ2, and Paper III and Paper IV synergize to address RQ3 (see
Figure 7).

Figure 7: The relations between my work in papers and research questions.

Paper II and Paper III provide relevant knowledge on infinite decimal representation, which
is used in constructing ω∗

R in this thesis. Both papers respectively introduced and explained
each task of a designed assignment, from a theoretical standpoint. Hence, the content of these
papers contributes to addressing RQ1.

Paper II and Paper IV encompass the two computer programs featured in Section 2.5 (refer
to Figure 3 and Figure 4). These papers present students’ engagement with the provided
computer programs through the designed assignments from RQ1, accompanied by analysis.
The insights drawn from this exploration contribute to addressing RQ2 in this thesis.

Paper III and Paper IV cover students’ responses to the interplay between future teach-
ing in real numbers and functions and the knowledge they acquired through their engagement
with the two designed assignments (from RQ2). These papers explore two distinct aspects of
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the connections. Paper III centers on the theoretical knowledge of real numbers and algorith-
mic functions, contributing to the advancement of teachers’ understanding of mathematical
teaching objects. Paper IV concentrates on digital technology, offering insights from the per-
spective of compatibility to enhance future teachers’ understanding in dealing with decimal
representations on computers.
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4 Context - “Capstone” course UvMat

The context and date treated in Paper II, Paper III, and Paper IV come from the bachelor
course UvMat at the University of Copenhagen. This annual course typically accommodates
20-30 participants. UvMat is categorized as a “capstone” course due to its primary objective
being to offer a higher-level perspective on secondary school mathematics. It should provide
future teachers with a profound understanding of the content they will teach in secondary
school. While the course is tailored for future mathematics teachers, it does not directly
teach pedagogical or didactical knowledge. The students in this course are identified as future
teachers in this thesis.

UvMat is an optional course offered at the end of a so-called minor in mathematics. In
Denmark, teachers are generally required to teach two subjects. Therefore, students in this
course are mainly university students majoring in subjects such as Danish, history, sports, etc.,
with a minor in mathematics. Given the shortage of mathematics teachers in Danish upper
secondary schools, it is common for university students to enroll in this course to enhance
their possibilities of employment by enabling them to teach mathematics alongside their main
subjects. The students who enroll in this course usually do not possess a strong mathematical
background akin to mathematics major students, but all of them have completed a minimum of
two years of university mathematics courses. According to the requirements of the University
of Copenhagen, students are mandated to have completed the following essential courses in
mathematics before attending UvMat:

• Introduction to the Mathematical Sciences (MatIntroMat)

• Linear Algebra in the Mathematical Sciences (LinAlgMat)

• Analysis 0 (An0)

• Analysis 1 (An1)

• Discrete Mathematical Methods (DisMat)

• Probability Theory and Statistics (SS)

• Probability Theory and Statistics (SS)

• Algebra 1 (Alg1)

• History of Mathematics (Hist1)

• Geometry 1 (Geom1)

These requirements for university students minoring in mathematics at the University of Copen-
hagen, as well as course descriptions, can be accessed on the website (University of Copenhagen,
n.d.).

32



The three main papers pertain to the UvMat course in 2021 and 2022. In both years,
the courses had seven weeks of teaching, each focusing on different mathematical topics, with
the fourth week of the course focusing on real numbers and in particular their infinite decimal
representations. Due to the impact of COVID-19, over half of the course in 2021 was conducted
online through Zoom, including the entirety of the fourth week. The entire course in 2022 was
held onsite as usual. Students were offered 9 hours of teaching each week in the course. In 2021,
the course schedule included a 3-hour lecture on Monday afternoon, a 3-hour exercise class on
Wednesday morning, and 3 hours allocated for working on a weekly assignment with access to
supervision on Wednesday afternoon. In 2022, there was a slight adjustment to the structure
of lectures and exercise classes. Students attended a 2-hour lecture followed by a one-hour
exercise class on Monday afternoon and a 2-hour exercise class followed by a one-hour lecture
on Wednesday morning.

The professor giving the lectures was responsible for determining the weekly mathematics
exercises and lecture content. In both years, the textbook “The Mathematics That Every
Secondary School Math Teacher Needs to Know” by Sultan and Artzt (2018) served as the
primary textbook for this course. The mathematical objects covered in the fourth week of both
years are based on the second part of chapter 8 in the textbook. Students were introduced
to the representation of real numbers as infinite decimals, developing the content outlined in
section 2.2, as well as the proofs of some main theorems stated in the textbook and further
developed in the lectures. However, the concept of computability, which served as the basic idea
for designing the two computer programs, was not explicitly part of the standard curriculum
in this course.

In lectures, the professor introduced and explained some specific content from the textbook
and assigned exercises for students, often selecting them from the textbook, to be addressed
during exercise classes. These exercise classes, led by a teaching assistant (TA), aimed to
ensure that students not only completed the exercises but also comprehended the solutions.
All lectures and exercise classes were in Danish. Students’ attendance in both exercise classes
and lectures was not counted towards the final course assessment.

The professor is also responsible for drafting the weekly assignments, which are new every
year to prevent copying answers by students. As the rest of the course, the weekly assignments
were in Danish. These weekly assignments went beyond the scope of the textbook, requiring a
broader understanding of the week’s content and presenting a challenge to students. Students
had the option to tackle these assignments individually or in groups of 2-3 members. Group
compositions were fixed at the course’s outset and could only be altered with valid reasons.
After students submitted their assignments, the TA reviewed students’ answers and provided
feedback based on the guidelines from the professor. Submissions that were not accepted were
returned to students. Groups or individuals receiving a return could revise their assignment
answers based on the feedback and then resubmit. However, revised versions might still face
rejection. Assignments not accepted in a second attempt were considered a failure. Each
student must submit at least 4 weekly assignments, and these submissions must be finally

33



accepted; otherwise, the student would directly fail the course, and could not attend the final
exam.

In 2021, the professor and I collaboratively designed an assignment for the fourth week of
UvMat. Additionally, we created the computer program presented in Figure 3, which played
a central role in the assignment. The initial draft was in English, as shown in Appendix A,
and was translated into Danish by the professor for student use. This assignment is covered in
Paper II and Paper IV. In 2022, the professor and I, with assistance from the Department of
Computer Science at the University of Copenhagen for creating the computer program shown
in Figure 4, formulated another assignment for the fourth week of UvMat. This assignment
was initially drafted in Danish, actually used for students, and then translated into English by
the professor. The English version is presented in Appendix B. This assignment is covered in
both Paper III and Paper IV.

The 7th week of UvMat completed the statistics part of the course and also functioned as
a preparation period for the final exam, providing students with the opportunity to engage
with exam tasks from previous years. During this week, students also had supervision with
the professor to address any questions from the course. The final exam comprised 5 tasks.
Students were required to complete these tasks individually in 5 hours. All aids are allowed.
A satisfactory answer corresponding to 2 tasks is awarded 02 (the line to pass the exam) and a
satisfactory answer to all tasks is awarded 12. Students were encouraged to refer to the results
from the course reading materials. The professor and an internal censor reviewed the exam
answers from students and determined their exam grades. The responsibility for drafting the
final exam tasks also rested with the professor, with the principles of task design discussed in
(Winsløw & Huo, 2022).
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5 Methodology

This thesis primarily emphasizes the theoretical dimension, with the empirical dimension serv-
ing to support our theoretical analysis. Therefore, the methodology employed in this thesis is
relatively straightforward.

5.1 Methodology for RQ1

Infinite decimal representations of real numbers are encountered through practical tasks in high
school and theoretical constructions of real numbers at university, as discussed in Section 2.2.
The same section notes that while infinite decimal representations are occasionally discussed
in university studies, there is a lack of theoretical explanations regarding how real numbers can
be modeled by infinite decimals. Furthermore, the study of how computers generate decimals
is not covered in either high school or university curricula. Therefore, a comprehensive and
theoretical exploration of the interconnections among infinite decimal representations, real
numbers, and computers is crucial for constructing ω∗

R. The content presented in Sections 2.4
and 2.5 can be seen as foundational elements in the construction of ω∗

R, addressing the first
part of RQ1.

Students in the UvMat course had the opportunity to acquire related content regarding
infinite decimal representations of real numbers from the textbook and lectures. However, the
concept of computability was not covered in either the textbook or lectures. To assist students
in enhancing their understanding of real numbers as decimal representations on computers, we
incorporated computability into two weekly assignments of UvMat in both 2021 and 2022. The
design of these two assignments adhered to the following three general principles:

1. The assignment must include one or more high school tasks.

2. The assignment must incorporate a computer program as a tool to address the high
school task.

3. The assignment must encompass specific university-level knowledge related to real num-
bers, which is applied to solve questions associated with how the computer program
works.

The actual design of the two assignments based on the three principles will be detailed in
Section 6.1.

The assignment, crafted in accordance with the three principles, evaluates students’ pro-
ficiency in applying university theoretical knowledge to elucidate high school tasks, aligning
with the objective of constructing ω∗

R. Moreover, this assignment prompts students to explore
computability by comprehending the provided computer program, facilitating the development
of their understanding of computer operations. Hence, the task design, grounded in the three
principles, addresses the second part of Research Question 1.
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5.2 Methodology for RQ2 and RQ3

Before the fourth week of UvMat, students were provided with two requests for informed con-
sent. One consent pertained to permission to researchers’ use of their assignment answers for
the 4th weekly assignment, including both initial and revised submissions. The other consent
was related to permission to use information obtained from the interviews. The purpose of
data collection, the type of data (assignment answers), and the assurance of anonymization
of personal information before storage and analysis were clearly outlined in the consent for
assignment answers. All students from UvMat in 2021 and 2022 signed this consent. Simi-
larly, the consent for interviews outlined the purpose of the interviews. In 2021, due to the
pandemic, interviews were conducted online via Zoom. The consent specified that the inter-
views would be recorded as videos and that each interview would not exceed 15 minutes. It
assured students that video recordings would be destroyed after transcription. The latter is
in an anonymized form. No parts of the interviews would be shared with anyone, including
course-related individuals like the professor (responsible for final grades). In 2022, there were
two differences in the interview consent. First, the interviews were conducted onsite, and the
interview records were in audio format. Second, students participated in two interviews —
a pre-interview before the fourth week and an post-interview after revising their assignment
answers. The handling of the interview records remained the same as in 2021. All interviews
were voluntary, and students had the right to withdraw from the study and revoke consent at
any time without consequences. A total of 5 students from 5 different groups participated in
the interviews in 2021, and 8 students from 5 different groups participated in the interviews
in 2022. All signed consents were securely stored at the Department of Science Education, the
University of Copenhagen. The results from students’ answers and a portion of the interviews
are used to address RQ2, while other segments of the interviews are employed to address RQ3.

5.2.1 How to process students’ assignment answers in both years

In 2021, nine group assignment answers were received, and in 2022, eight group assignment
answers were received. Eight groups in 2021 and 6 groups in 2022 were asked to revise their
answers, and all revisions were eventually accepted. Notably, in 2022, one group initially
decided not to submit an answer to the fourth assignment. The analysis of these assignments
involved two versions of answers: the initial answers from all students with the TA’s comments,
and the revised versions submitted by groups that were requested to revise. All answers were
submitted online as PDF files in both 2021 and 2022.

Two types of formats were included in the online submissions, with some possible mixture.
The most common format used by students was the digital version, where they solved the
questions on Maple (the primary CAS software used in UvMat) or typed the answers on other
online platforms such as Word. Screenshots of separate answers were then compiled into a
single answer sheet. The second format was a semi-physical version, where students wrote
down answers on paper and took pictures of them. All answers and the TA’s comments
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were in Danish. Due to the language barrier, the textual content of these answers, including
TA comments, had to be translated into English. Answers in the digital version were easily
translated using Google Translator through copy-paste, while answers from pictures of physical
papers, which could not be copied, including TA comments provided in digital handwriting,
were translated by the professor of the course.

Before students began working on the 2021 assignment, a survey about students’ experience
with Maple was conducted via Zoom during the first lecture of the course week. The survey
consisted of 6 questions, and all students had to answer all the questions. The survey was in
Danish and translated from English by the professor of the course. The results of students’
answers to the survey, translated back into English, are presented in Appendix C. From the
survey, only 30% of students reported having used Maple in high school. TI Npire and Geoge-
bra were the most commonly used mathematical tools among them as high school students.
Additionally, 15% of students did not have any experience with mathematical tools in high
school, but all of them had some experience with Maple before the course. The survey results
supported the hypothesis that some questions such as question c) in the 2021 assignment could
be handled and explored by students using Maple.

The evaluation of students’ work on the 2021 assignment began with a review of students’
answers to each assignment question, along with the TA’s comments on the initial submissions.
The assignment question that elicited the most revision requests was scrutinized, and the
revised answers to the same question were analyzed. Attention then was directed to the two
open questions c) and f) (see Appendix A). For question c), which required students to provide
a visual explanation of the given computer program, all visualizations were in the form of
figures presented through screenshots from Maple. The analysis focused on two aspects: the
type of figure and the content that students aimed to express through the figures. Question
f) asked students to discuss the addition of infinite decimals. Students’ answers were initially
categorized into two groups: those who gave misleading answers and those who highlighted
issues with the addition. These satisfactory answers were then analyzed based on how they
presented the problem, either through a visualized approach with textual explanations or purely
through textual explanations.

The analysis of students’ work on the 2022 assignment concentrated on the mathematical
content that students provided through their answers because most questions involved provid-
ing mathematical proofs. The evaluation explores whether students presented comprehensive
mathematical proofs without relying on any mathematical phenomena as evidence, based on
the TA’s comments. Similar to 2021, the assignment question that garnered the most revision
requests was typically scrutinized alongside the revised answers. Students’ answers to the last
question (see question f) in Appendix B) which asked students to explain the given computer
program were also included in the analysis.

Analysis merely based on students’ assignment answers does not provide direct insight into
the impact of working with the two assignments on students’ knowledge of real numbers on
computers (RQ2). Therefore, it was considered to be useful to elicit students’ oral explanations
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of their assignment answers.

5.2.2 Interviews in 2021

All interviews adhered to a standardized set of guidelines and were conducted in English. The
interview guidelines consisted of two parts. In the first part of each interview, students were
instructed to elaborate on their answers to questions c) and f), responding to the following
main questions:

1. Could you take me through how your figures visualize the routine in question c)?

2. Are you satisfied with your figures and why?

3. What challenges did you encounter while creating visualizations or utilizing Maple?

4. Can you explain about your answers to question f)?

5. What is the meaning of question f)?

Apart from the initial five questions, additional relevant questions were posed based on stu-
dents’ responses, particularly concerning question f). For instance, if a student provides only
a conclusion, follow-up questions like “Can you provide an example?” were asked, though
students had the option to decline answering. The aim of these interviews was not only to
gather information but also to assist students in comprehending and addressing the assign-
ment questions by using guiding questions. The responses from students to this part served as
supplementary explanations for students’ answers to the assignment questions and were also
used to answer RQ2.

The second part of each interview involves two questions from a broad perspective:

1. What do you think the most important mathematical point of this assignment is?

2. Do you think the knowledge from this assignment is relevant to a high school mathematics
teacher and why?

This part was used to answer RQ3.
The video recording of each interview was securely saved in a safe drive accessible only to

me. Upon completion of all interviews, the students’ responses were transcribed, and the saved
video recordings were then deleted.

5.2.3 Interviews in 2022

In 2022, a pre-interview was added before the fourth week. In this interview, students were
asked to answer the following 3 questions:

1. What is your major and do you have any teaching experience in mathematics?
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2. Could you find out how many digits are in 24217?

3. How do you define logarithms?

Some follow-up questions were also posed through the conversions with the students. This part
serves as a reference base for the after-interviews, aiming to better capture students’ learning
of infinite decimals throughout the week and assess the impact of completing the assignment
on their understanding of logarithms. The pre-interview is also intended to provide students
with a clearer direction for their study through the week.

The after-interviews consisted of two parts. The first part aimed to contrast with the
pre-interview, incorporating the last two questions from the pre-interview. To relate to the
assignment, interviewees were also prompted to utilize the approach from the assignment to
explain how to calculate log10 25. The second part of the post-interviews mirrored the second
part of the interviews conducted in 2021. The responses of students in the first part, including
those from the pre-interviews, were used to address RQ2, while their answers to the second
part were employed to answer RQ3.

In 2022, all interviews were conducted in English, taking place in a quiet one-to-one setting.
These were onsite interviews, and the recording of students’ responses was in the form of audio
recordings. Students had the option to halt the interview at any time, and they could choose
not to participate in the post-interview even if they completed the pre-interview. All recordings
were securely stored in a safe drive, and after the conclusion of the interviews, student responses
were transcribed in anonymized form and then all recordings were deleted.
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6 Main results

6.1 Main results for RQ1

Paper II and Paper III provide detailed explanations and analysis of the assignments used
for the fourth week of the UvMat course in 2021 and 2022, respectively. In particular, the
mathematical content of both assignments, along with the answers to each question and their
analysis, is thoroughly explicated. In this subsection, I will explain the design idea of the two
assignments, based on the three principles outlined in the previous section, and then provide
a brief comprehensive analysis.

The weekly assignment in 2021 (see Appendix A) commences with a typical high school
task: determining the decimal approximation of

√
2 up to the nth decimal place. The assign-

ment includes the presentation of the computer program (called routine in the assignment)
shown in Figure 3, which serves as a tool for solving the task. Through this program, students
can find the first 10 decimal digits of

√
2 by executing it in Maple. A key task in this assignment

requires students to provide a theoretical explanation of the provided computer program. To
accomplish this, students are expected to apply their real numbers-related knowledge acquired
from university mathematics studies, such as limits and the intermediate value theorem. An-
other significant task involves students modifying and applying the given computer program
to discuss the addition of two infinite decimal numbers.

The weekly assignment in 2022 (see Appendix B) introduces another familiar high school
task: calculating the value of function f(M) = log10M with a given M > 0. The assignment
provides the computer program illustrated in Figure 4. This computer program can produce
the first 4 decimal digits of log10M for a given M > 0 and can be executed using Maple. The
assignment challenges students to prove certain mathematical claims and employ them to elab-
orate the given computer program. To prove these mathematical claims, students are required
to use their university-level knowledge and proof skills, such as series and induction which are
commonly employed for series proofs. The assignment incorporates numerous symbols, guiding
students to address the questions and comprehend the computer program theoretically rather
than relying on some concrete numbers. This design follows the typical style in university
mathematics studies.

The most significant difference between the designs of the two assignments lies in the place-
ment of the two computer programs. In 2021, the computer program (for

√
2) was presented

at the beginning, requiring students to demonstrate their understanding by trying it out in
Maple. Then, the computer program served as a tool to facilitate the exploration of addi-
tional questions, such as determining the first 10 decimal digits of

√
3. While in 2022, the

computer program (for log10 ) was provided in the final task. Students were asked to solve
five related problems first, using the obtained results to explain how the computer program
procedures. This necessitated students to find the corresponding code segments in the program
that matched their earlier results.

Neither of the assignments was intended to require students to create a computer program

40



for solving high school-related tasks. The primary focus of the two assignments is not on the
process of creating such computer programs but rather on providing students with insights into
how computers work when handling infinite decimals. Although the two assignments share a
common goal, their different question arrangements are based on some additional purposes.
The 2021 assignment aimed to provide students with insights into the limitations in yielding
precise answers from computers, such as the example in Figure 8. The assignment in 2022
aimed to help students open the “black box” of transcendental functions, offering them an
opportunity to understand the inner workings of these functions, which they completely rely
on computers to compute.

Figure 8: An example of “mistake” from Maple.

Both arrangements have their advantages and disadvantages. In the 2021 assignment, the
inclusion of open-ended questions, such as visualizing the computer program and discussing the
addition of two infinite decimals could be seen as attempts to broaden the scope of knowledge
covered and encourage independent thinking. However, this approach may lack a standard-
ized criterion for evaluation, leading to informal answers. Students might also put too much
effort into additional knowledge such as how to make visualization and fail to think about the
meaning of the assignment as a whole, even though all tasks are connected. The 2022 assign-
ment addressed this issue by presenting strongly connected questions in a formal mathematical
way. The entire assignment was dedicated to exploring the theoretical explanation of how the
function f(M) = log10M works without computers. However, students may face challenges
in completing all questions, and there was no direct connection with instrumented techniques,
except for the computer program presented at the end.

6.2 Main results for RQ2

The analysis of students’ performance on each task in the weekly assignments for 2021 and 2022
is detailed in Papers II and III, respectively. Paper IV also incorporates some students’ work
on the two provided computer programs. In this subsection, the main results from students’
efforts on the two assignments will be presented.

The primary findings for RQ2 center on two key aspects: the form of answers employed
by students in responding to assignment questions, particularly those requiring mathematical
reasoning, and their comprehension of the two provided computer programs. The following
will showcase some representative examples from students’ submissions.

It was surprising to observe that when university students were presented with tasks related
to high school, they tended to adopt the perspective of high school students, as highlighted
in Paper II and Paper III. They seemed to habitually apply the knowledge and methods they
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had acquired in high school to solve these questions. All submissions from both years were
eventually accepted. A common issue observed in the initial versions of students’ answers in
both years was the informal arguments by which some groups responded to certain questions.
In the 2021 assignment, the task most frequently requested for revision was question b), which
required students to explain why x(n) →

√
2. Only one group provided a satisfactory answer

by employing formal reasoning, as in formal mathematical proof at the university level. Other
groups offered informal explanations on descriptions akin to oral discourse, such as “x(n) gets
closer and closer to

√
2 as n becomes larger”. Similarly, in the 2022 assignment, most students

did not provide a clear proof to show the uniqueness of C(M) ∈ N ∪ {0} in question b),
where they took it as evident that C(M) is unique when C(M) ≤ 10x < C(M) + 1, where
x > 0. Additionally, some students used the pseudo decimal form, like x0.x1x2...., to represent
an arbitrary infinite decimal, despite having learned to model infinite decimals with series in
lectures and the textbook. Students modified their answers in a more formal way through their
revisions, guided by hints from the TA.

This phenomenon could be attributed to two possible reasons. First, there might be a flaw
in the design of the assignment questions. The questions might not have provided sufficiently
clear guidance to direct students to use formal university-level proof. Second, students may
not have placed themselves in the position of university students but reverted to a high school
student position, in view of the task being about what they perceive as high school objects.
As a consequence of the first discontinuity, these could remain, for them, strictly separate from
university objects.

The most interesting aspect of students’ answers from 2021 was their responses to the two
open questions c) and f). The visualizations created by students for question c) could be ca-
tegorized into two main groups: images of the function f(x) = x2 − 2 and dot plots displaying
the results produced by the computer program. Some students combined both approaches
by superposition. Even though some of the figures created by students were similar, the
intended messages were not always the same. For instance, some students aimed to explain
the limits x(n) →

√
2 using dot plots, while others simply intended to showcase the results

obtained by running the computer program. Therefore, these visualizations gained meaning
when students attached specific descriptions and explanations. All students who participated in
the interviews expressed satisfaction with the visualizations created by their respective groups.
Some mentioned that it required significant effort to produce these visualizations, as they lacked
sufficient knowledge on how to use Maple for advanced visualizations, like animations, as they
initially thought were expected. Students’ answers to question f) did not come as a surprise,
as they emphasized that one could not determine the nth decimal of the sum of two infinite
decimals without knowing all the infinitely many decimals of each summand. However, how
the similar conclusions were presented by students, varied. Some students included screenshots
from the computer to illustrate examples, while others provided textual explanations. Thus, it
was not immediately clear from their answers whether the conclusions were obtained using the
provided computer program if they were considered evident, and if they were acquired prior
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to the course. In the interview, a student from a group that did not include any examples
explained that they did use the computer programs but did not include the output in their
and-in. Therefore, it is difficult to determine the extent to which working with the computer
program aided students in discussing and exploring the addition of two infinite decimals. Two
groups that did not provide the expected conclusions did not attend the interviews, leaving
the reasons for their misleading answers unknown.

In the 2022 assignment, the task directly connected to the given computer program was
question f). In fact, students were required in question e) to use the results from previous
questions to experiment with a concrete example - to find the first 4 decimals of log10(57.64).
This meant that, in question e), students had already gained familiarity with the algorithm
underpinning the given computer program before answering question f). Through this process,
students learned to approximately compute the function f(M) = log10M with M > 0 without
relying entirely on computing tools (although they might use computers for basic arithmetic).
Therefore, explaining code segments using the results from earlier questions was not a difficult
task for students, and all answers to f) from their initial submissions were considered satisfac-
tory. In the pre-interviews, none of the students could confidently define logarithms. However,
while most students could demonstrate the process of calculating logarithms by hand in post-
interviews, none of them could provide a formal definition of logarithms after working on the
assignment. This indicates that the assignment played a crucial role in improving students’
practical understanding of how computers process logarithms but did not significantly enhance
their theoretical understanding of logarithms.

Summarizing students’ work with the two given computer programs in both years, it is
evident that students have gained insights into how real numbers can be handled as infinite
decimal representations by computers. This understanding was developed through the com-
pletion of the assignment tasks, indicating a theoretical grasp of the two computer programs.

6.3 Main Results for RQ3

While the RQ2 study revealed that students developed a theoretical understanding of the two
given computer programs, the RQ3 study indicated that when students were required to eval-
uate the entire assignment from a higher perspective, particularly from the viewpoint of a
future teacher, their focus remained on specific tasks. They struggled to provide a theoretical
summary. Consequently, the connections to future high school teaching derived from the assign-
ments were often more technical, such as understanding how to calculate logarithms, rather
than reaching a profound understanding of a specific mathematical concept. The following
presents some typical and varied responses from students in the 2021 and 2020 interviews.

Students’ responses on the most important mathematical aspect of the assignment during
the interviews in 2021 went in two directions. Two students focused on the given computer
program, asserting that the primary objective of the assignment was to understand how a
computer deals with infinite decimals. One student expressed:

All the lessons to learn from this is to be aware of how differently computer pro-
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grams approximate things depending on what you put into it, whether it is a sum
or a square root. That was the most important thing we got from this. (Question)
b) was the one that was the heaviest in terms of the math for us and explaining
what the routine does and how to use it and think about what maple actually
produces for us. That was hard for us to figure out what it is doing and how to
do it. We tested it in different ways as well just to see what happens when we add
different decimals. That was really interesting.

The other three students directed their attention to real numbers themselves, particularly
as infinite decimal representations. One student stated:

I think that the most important thing about this is, it gives a very clear illus-
tration about how to approximate real numbers with what would be equated to
irrational numbers. In the construction of the real numbers, we used these “Cauchy
sequences” to show that when we complete the fields of rational numbers, we get
the real numbers. I think this is a really good illustration of how we always have
a rational sequence converging to a real number. For me that was an interesting
takeaway that goes beyond the scope of this assignment, knowing something about
real numbers.

To the same question, students were very consistent in their responses in the interviews in
2022, which were about how to calculate logarithms. However, students were not so confident
to show their opinions on this question. Most of the students start with uncertain words such
as “I do not know” and “maybe”. The student from the group who gave up submitting the
assignment said:

I figure it is to develop a method to actually calculate the log sequentially one
decimal at a time...We kind of got the idea of what we were to work with, like a
way to calculate the log, but the way the questions were actually put, we somehow
did not manage to figure out exactly what we were going to do in different points.
So having spent some time reading and discussing and getting confused we just
decided we simply do not have the time for it this week so we skipped it.

During interviews, most of the students’ responses regarding the connection between the
2021 assignment and the tasks of a high school mathematics teacher, were somewhat trivial.
Some students provided answers like: “No matter what you teach, it is always a good thing to
know a lot more than you actually need in what you teach”. Besides agreeing that the assign-
ment could help to advance teachers’ knowledge, two students estimated that the topic covered
in the assignment has no relation to what high school mathematics teachers should teach. One
student denied any connection between this assignment and high school mathematics teaching
as follows:
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I don’t think they are going to teach rational and irrational numbers and a high
level of decimals. Not even on a slightly less abstract level. The curriculum of
high school students is very far from this. I think these kinds of numbers and
adding these numbers are too far from the high school curriculum. The students
care more about the knowledge they need to pass an exam instead of having to get
more insight into these kinds of numbers.

Still, one student expressed an opinion on the relationship between teachers and computers:

I think you (teachers) should be able to figure out when maple is good to use and
when it is not. We saw during that week how maple can make mistakes that differ
from the theories we know from mathematics. You should understand the limits
Maple can have when you are teaching.

The responses from interviewees in 2022 regarding the relationship between the assignment
and the teaching of logarithms in high school varied based on students’ mathematics teaching
experience. Those students who had some experience with teaching mathematics at the sec-
ondary level believed the main point of the assignment was not crucial for teaching, as it might
make teaching logarithms in high school too challenging. On the other hand, those without
any experience in mathematics teaching found the assignment quite helpful for a mathematics
teacher teaching logarithms in high school. One student shared an opinion drawn from her/his
own experience:

I always thought that the logarithm is a bit of a mysterious box when you use the
computer ... They (teachers) are going away from all these CAS machine works
and all that in high school or Denmark I don’t know about other countries, but if
they are doing that then maybe the logarithm can be used to calculate with big
numbers by hand and maybe that can make students understand what is happening
better because the computer does not help you understand it but just helps you to
calculate.
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7 Discussion

One of the challenges related to RQ1 was to integrate the knowledge on infinite decimals and
approximate computation, which is taught in high school mathematics, with a university level
approach to real numbers. It turns out that students do not spontaneously mobilize theoretical
knowledge aspects of infinite decimals when faced with a comptational algorithm such as the
one presented in the assignment on the logarithm, which poses a significant challenge for task
design in this context. Thus, students might not have advanced their theoretical understanding
of real numbers and functions when focusing on how decimal representations could be produced
as approximate values of logarithms, even though infinite decimal representations were the
theme throughout that course week. We sometimes overestimate the tendency of students to
seek connections between the lectures and the meaning of the assignments that are proposed
in direct connection to them. Students may find it challenging to take a higher perspective
on seemingly elementary mathematical tasks, potentially leading them to believe that the
assignment’s purpose is to just learn a method to calculate logarithms. Therefore, they may
overlook more theoretical points concerning the meaning of computation of a function by a
digital device, and about the logarithm in particular. This challenge is evident in students’
interviews after working on the 2022 assignment, as they found it easy to explain how to
calculate logarithms by hand but struggled with even basic theoretical questions on logarithms,
such as providing a formal definition.

In high school, the difficulties often encountered with logarithms by students can be gener-
ated by “specific mistakes in manipulating logarithmic expressions, and more general problems
in understanding the meaning of the logarithmic concept” (Weber, 2016, p.S81). Weber (2016,
p.S78) introduced a method to describe logarithms as “repeated divisions”, forming the foun-
dational idea for the author’s interpretation of the “manual calculation of logarithms”. More
specifically, a logarithm loga b (where a is the base of the logarithm) can be conceptualized
as finding how many times a is a factor in b (naturally, this is informal as the number of
times may not be an integer): b ÷ a ÷ a.... ÷ a = 1. The computer program (see Figure 4)
provided in the 2022 assignment was designed based on Weber’s approach to the “manual cal-
culation of logarithms” specifically with a base 10. Furthermore, this approach was also used
by Weber (2016, p.S89) in the heuristic description of logarithms as “counting the number
of digits”, aimed at helping secondary school students understand logarithms by connecting
them to familiar mathematical concepts like decimals. Based on this model, one could man-
ually determine the number of digits in the integer part of a large number, such as 24217 (an
example used in interviews in 2022), in its decimal representation. However, students’ work
in 2022 with the assignment demonstrated proficiency in the technical aspects of this “manual
calculation” but fell short in reaching the theoretical dimension of the approach, particularly
in interpreting “what are logarithms”. Especially for those students who participated in the
interviews in 2022, even though they were asked to determine the number of digits of 24217 and
the definition of logarithms in the pre-interviews, they did not develop the intended theoret-
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ical knowledge of logarithms through the two questions, from the course and the assignment.
Therefore, when asked the same questions in their post-interviews, they were still unable to
systematically and theoretically relate these concepts to explain the corresponding meaning or
definition of logarithms, except being able to calculate the number of digits of 24217 by hand.

Another challenge in RQ1 is to integrate mathematical and didactical knowledge. In sec-
ondary school, “with multimedia capabilities, students are able to visualize mathematical con-
cepts that are difficult to imagine using traditional methods of teaching” (Bakara et al., 2021,
p. 4650). Therefore, how mathematics teachers make didactical use of visualizations produced
with digital tools could come to play a crucial role in students’ understanding of abstract
mathematical notions. A visualized approach to explaining a mathematical procedure, such as
an algorithm for computing the decimal representations of square roots, was integrated into
the assignment in 2021 (question b)). The purpose of this task is to enhance future teachers’
knowledge of how the procedure works mathematically, and, simultaneously, to develop their
ability to communicate and share this knowledge through visualizations produced with Maple,
thus to use the latter didactically.

However, this combination of mathematical and didactic purposes did not function effec-
tively in students’ work. Many students agreed in the interviews that visualizations can be
helpful in mathematics teaching, but they did not perceive a strong connection to the concrete
question of the assignment, out of the common assumption that the knowledge of real numbers
would not be that complex. Furthermore, according to students in the interviews, many of
them expressed that they spent more time creating the figures than they had used to answer the
mathematics questions, which was not the intention of the designer or of the course. Therefore,
although this task to some extent trained students in techniques for creating visualizations, it
did not significantly contribute to advancing their knowledge of real numbers. While we cannot
entirely dismiss the potential value of this approach for combining mathematical and didactical
techniques, it failed to establish meaningful connections for students with the mathematical
objects they would encounter in future teaching. Hence, we decided not to include this type of
task from the 2022 assignment.

CAS is one of the most widely used types of in mathematics teaching and learning (La-
grange, 2019; Drijvers and Trouche, 2007; Winsløw, 2003b). Lagrange (2019, p. 129) asserts
that:

The intriguing fact is that even when the introduction of a technology has been
well prepared by an epistemological analysis and situations have been proposed,
implementation by teachers still looks like a struggle to give birth to a more personal
creation. [...] When a teacher wants to introduce technology, s/he has to integrate
these techniques into his/her own understanding of the domain, into his/her own
personality and to create relevant situations, certainly not an easy task.

Therefore, another combining mathematical and didactic knowledge in the assignment for
future teachers was how CAS deals with infinite decimals before they teach related knowledge
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in the future using CAS. The traditional paper-and-pencil techniques, to some extent, helped
students with reasoning and conceptualizing. However, the “push button” techniques from
CAS cannot directly replace the role of paper-and-pencil although they evidently facilitate
calculations (Lagrange, 2019). For example, Schneider (1999) found that students learned
theoretically important properties of logarithmic functions by solving exponential equations
when asked to use paper-and-pencil techniques, so that even if the teachers were aware that
TI-92 could easily solve the equations they realized the epistemic and didactic value of the
non-instrumented techniques. The two computer programs in Figure 3 and Figure 4 could also
be conceived of as techniques that would allow students to calculate decimal representations of
square roots and logarithms by hand. In other words, the two computer programs transformed
paper-and-pencil techniques into codes while at the same time, avoided using time on the actual
calculations. As students engaged with understanding and interpreting these codes, this was
intended to have similar epistemic and didactic value and at the same time, make the students
reflect on how computers may determine real numbers like these function values. Moreover, it
was hoped that these two assignments enhanced the teacher’s knowledge of digital technology,
which could be helpful for their future teaching with CAS.

In addressing RQ2 and RQ3, our data do not allow us to directly determine whether
students’ work on these two assignments will be beneficial to their actual teaching in the
future. What is certain, however, is that students acquired or improved some aspects of their
knowledge on decimal representation and their meaning in relation to computing function
values approximately. A notable outcome is the transition from confusion about logarithms
to the ability to calculate logarithmic values by hand. Understanding the true impact on
students’ future teaching of the knowledge gained through assignments is challenging, given
that they are not yet mathematics teachers. The gains, including their comprehension of the
assignments and the connection between the theoretical perspectives of the course material
and future teaching, remain subjective and could ultimately only be assessed if we were able to
follow these students into their roles as high school mathematics teachers years later. Therefore,
evaluating our study’s contribution to smoothen Klein’s second discontinuity must be done in
less direct ways.

It is evident that our experiment has several limitations. Firstly, the sample size was rela-
tively small, consisting of 20-30 students each year. This makes it challenging to conclusively
establish the impact of the content and assignments we designed. Moreover, not all students
worked on every assignment question as these were done in groups who sometimes shared the
questions among members in somewhat exclusive ways. For instance, in the 2021 interview,
one student mentioned not being involved in creating visualizations but participating in the
discussion of adding infinite decimals. Hence, the final presentation of the assignment answers
could not attribute each student’s work within the group accurately. Secondly, as the inter-
views were voluntary, those who chose to participate were likely individuals confident in their
work or willing to actively engage in the course. This could potentially introduce bias, as their
responses could potentially be more confident and positive.
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8 Conclusion and perspectives for future research

This thesis addressed Klein’s second discontinuity by exploring strategies to enhance future
teachers’ knowledge of real numbers. The approach involves bridging the gap in future teach-
ers’ practical and theoretical knowledge about real numbers as taught in high school and
university, by constructing an intermediary model which is also useful to analyze more deeply
the functioning and limitation of computing devices in relation to real numbers. In high school,
challenges arise from unclear concepts and relationships among different representations of real
numbers, impacting both didactic and mathematical praxeologies found in this institution, ac-
cording to the background literature reviewed earlier. Our focus is specifically on the decimal
representations commonly used in high school tasks involving calculations. Given that decimal
presentations are also treated from a theoretical perspective in the book by Sultan and Artzt
(2018), more specifically in the chapter concerning real numbers, this thesis utilizes the infinite
decimal model as a bridge to connect the high school and university models of real numbers.
With computers playing a crucial role as computational tools in high school, we also explored
the relationship between decimal representations and computers. The concept of computabil-
ity was introduced to elucidate how computers handle real numbers in the form of decimal
presentations, especially when dealing with irrational numbers and transcendental functions.
Two typical examples, square roots and logarithmic functions, were employed to illustrate how
computers generate decimal representations digit by digit. The theoretical construction of the
infinite decimal model and the concept of computability enabled us to establish new teaching-
oriented connections among the three main research objects: real numbers in high school, real
numbers in university, and real numbers on computers. Together, they contributed to the
development of an intermediate praxeology related to real numbers, bridging the gap between
high school and university praxeologies concerning real numbers.

This intermediate praxeology encompasses a high school praxis block related to real num-
bers and a university logos block related to real numbers, the latter being disseminated in a
capstone course named UvMat. We have focused on the fourth week of the course, in which
completed assignments whose content can be understood in terms of the theoretical notion of
computability, high school tasks related to real numbers as a starting point. In the students’
work on the assignments, it was observed that when faced with a problem, students often strug-
gled to adopt the perspective of a future teacher, tending to automatically place themselves
in the positions of either university students or high school students, thus entering into the
relationship RHS(s, o) or RU(σ, ω). Similar findings were reported by Barquero and Winsløw
(2022) in their study of the UvMat course. Moreover, when not specifically instructed to use
a certain type of reasoning, students turned by default to their high school knowledge and
answered questions in a manner similar to that of high school students. In other words, the as-
signment made them face but not necessarily succeed a number of challenges in autonomously
analyzing common high school problems from a theoretical standpoint and responding using a
rigorous university mathematics approach.
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It is difficult to evaluate the overall impact of students’ work with the intermediate praxeol-
ogy for real numbers. There is no doubt that the work with the assignments made students gain
technical understanding from working with the two computer programs we designed. Some of
the students also consider that, in more generic terms, it is important to “know the basics”,
understood here as having a more connected and coherent knowledge about the number sys-
tem that underlies most secondary mathematics. The knowledge about computation could be
particularly important in relation to a situation, like the Danish high school, where the use of
technology is quite dominant in mathematics. Our results suggest that students have to a large
extent succeeded in opening the “black box” of procedures for which the assignment proposes
possible codes, and symbols like √ and log are in this sense, and to these students, no longer
mere “buttons” on a computer or calculator. While it is challenging to prove the significant
impact of such results on students’ future practical teaching, they demonstrate the didactic
relevance of the notion of computability both as a design tool and as a potential theoretical
element in capstone courses for future teachers who prepared to teach.

This study is devoted to addressing the central question (refer to Section 1.1):

Q: How can future teachers bridge the gap between the model of real numbers acquired
at university and the model they are expected to teach in high school within the context
of computers?

The primary contributions of this study to this question come from three main aspects. First,
from a theoretical perspective, we constructed design tools and concrete assignments aiming
to connect two different models of real numbers, integrating practical problems from high
school with theoretical knowledge from university. This theoretically addresses the challenge
of Klein’s second discontinuity. The content planned for the capstone course on infinite dec-
imal representations of real numbers and the corresponding assignments we designed offers a
promising and feasible example for addressing this discontinuity, providing valuable insights
into enhancing future teachers’ knowledge of the mathematical concepts they will teach in the
future. However, there is still room for improvement in the design of the assignments.

Second, this study confirms the necessity and difficulty for future teachers to overcome the
limitations and stereotypes imposed by institutions when connecting high school and university
real number models� such as high school tasks corresponding to high school knowledge, and
advanced theoretical knowledge for theorem proving. However, the content and knowledge
designed in this study have the potential to help future teachers break through these fixed
mindsets, which would allow them to consider high school tasks from a higher standpoint. It
enables them to flexibly apply university theoretical knowledge to explain and analyze high
school tasks. To achieve the desired goal, future teachers might need much more extensive
training of this kind than what is provided in the isolated seven-week course considered as
context in this study.

Third, this study establishes a connection between real computations on computers and
computer algorithms. This integration, within the contemporary digital context, offers a
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promising and future-oriented way to link the pivotal role of computers in high school in dealing
with real numbers and the otherwise isolated courses on programming in undergraduate math-
ematics education. Through the students’ work, it was observed that such an approach could
assist future teachers in enhancing their theoretical knowledge of mathematical concepts while
simultaneously improving their understanding of the operational principles of digital technol-
ogy in producing real numbers. This represents a substantial contribution for future teachers.
It further equips them with further invites theoretical, didactical reflections on the utilization of
digital technology at the secondary level, for the teachers concerned and for university teachers
as well.

In our study, the concept of computability served as the foundation for a part of our de-
sign and data analysis and provided theoretical support for the above-mentioned intermediate
praxeology of decimal representations. However, the concept of computability was not directly
included in assignments or in the lectures of the course as we designed and observed them.
While certainly gain practical (mute) knowledge about of computability through completing
assignments, very few students considered infinite decimals from this perspective (which was
in fact also not our primary goal). Given that students’ engagement with computer algo-
rithms significantly contributes to their technical knowledge of real numbers, we believe that
incorporating computability as a theoretical component of the intermediate praxeology on real
numbers is a prominent hypothesis for future, continuing study of the topics of this thesis.
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Week Assignment 4

For n ∈ N we define Dn = {10−nx : x ∈ Z}, and we define D = ∪n∈NDn. Also
define D∞ to be the set of formal expressions ±N.c1c2... where N ∈ N ∪ {0} and
ck ∈ {0, 1, ..., 9} for all k ∈ N, and finally let D0 be the set of formal expressions
±N.c1c2...ck000... where N ∈ N ∪ {0}, k ∈ N and c1, ..., ck ∈ {0, 1, ..., 9}.

a) Prove that there exists bijections ϕ : D0 → D and ψ : D∞ \ D0 → R, but that
no bijection exists between R and D.

b) Consider the following routine in Maple (try it out!):

K := 1 :;

for i from 1 to 10 do

for j from 0 to 9 do

if (K + j * 10^(-i))^2-2 <= 0 then

p := K + j*10^(-i);

end if ;

end do;

K := p :;

print(x(i) = evalf(p, i + 1));

end do :;

Explain what the routine does, why x(n) ∈ Dn, and why x(n)→
√

2.

c) Use Maple to produce a visual explanation of how the routine from b) works.

d) Explain how a similar routine can be made for any continuous function f ,
to find a zero between a ∈ Z and a + 1, when f(a)f(a + 1) < 0. How does
the intermediate value theorem come into play? How can you use this idea to
approximate

√
3 by numbers from D?

e) Find a polynomial p such that p(
√

2 +
√

3) = 0, and use the idea from d) to
approximate

√
2 +
√

3 by numbers from D.

f) Investigate what the results from b), d) and e) tell you about addition on
D∞ \ D0.
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Week Assignment 4

Recall from the textbook (and the lectures) that for any x > 0, we can determine a sequence
(ck) with ck ∈ {0, 1, ..., 9} for all k, such that not all ck equal 9, and with

(∗) x = bxc+
∞∑
k=1

ck10−k.

where bxc = the integer part of x. In this assignment, we provide a way to compute log10(M)
for any M > 0, using only simple arithmetical operations. The idea is that to calculate (or
define) x = log10(M), we must find a number x that satisfies 10x = M. With the notation in
(*), the method successively gives bxc, c1, c2 and so on.

a) Based on properties of x 7→ 10x, show that for any M > 0, there is a unique x ∈ R such
that 10x = M . If we know how to calculate this x when M ≥ 1, how can we do it for
0 < M < 1 ?

Because of a), we assume M ≥ 1 from now on.

b) Show that there is a unique m ∈ N ∪ {0} satisfying

10m ≤M < 10m+1.

In the sequel we use the notation C(M) for the number m, determined as above.

c) The number C(M) from b) gives a certain property of bMc. Which, and why?

d) We now assume that 10x = M (cf. a)). Show that bxc = C(M), and that if x is written
as in (*), then ck = C(Mk) (k ∈ N) where the sequence (Mk) ⊆ [1, 1010) is defined by

M1 =

(
M

10C(M)

)10

Mk+1 =

(
Mk

10C(Mk)

)10

, k = 1, 2, ...

e) Find log10(57.64) with 4 decimals by using the method from d) - explain your calculations!

f) Explain briefly how the Maple procedure below (due to Mikkel Abrahamsen, DIKU)
works, and verify your result from e) by using the procedure.

compLog := proc (M, d := 10, n := 4);

local a, i, res, Mnew;

Mnew := M;

res := 0;

for i from 0 to n do

for a from 0 by 1 while d^(a+1) <= Mnew do

end do;

Mnew := evalf((Mnew/d^a)^d);

res := res+evalf(a*d^(-i));

end do;

return res;

end proc:;
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1. Which mathematics tool(s) did you use in high school? (Multiple choice) 

 

 

 

 

 

 

 

 

2. How much experience did you have with Maple before this course? (Single choice) 

 

 

 

 

 

 

3. Please indicate how much you agree with the following statement: “A high school mathematics 

teacher should know more about CAS than the students” (Single choice) 

 

 

 

 

 

 

 

 

4. Please indicate how much you agree with the following statement: “CAS is an important part 

of high school mathematics education” (Single choice) 

 

 

 

 

 

 

 

 

5. Please indicate how much you agree with the following statement: “CAS is an important part 

of high school mathematics education” (Single choice) 

 

 

 

 

 

 

(6)30% 

 

(8)40% 

 

(8)40% 

 

(5)25% 

 

(3)15% 

Answer 1: Maple                                      

 

Answer 2: TI Nspire                                    

 

Answer 3: Geogebra 

 

Answer 4: Other 

 

Answer 5: Nothing 

 

Answer 1: No experience                                     

 

Answer 2: Same experience                                    

 

Answer 3: a lot of experience 

 

(0)0% 

 

(17)85% 

 

(3)15% 

 

Answer 1: Strongly agree                                      

 

Answer 2: Agree                                    

 

Answer 3: Disagree 

 

Answer 4: Strongly disagree 

 

(11)55% 

 

(7)35% 

 

(1)5% 

 

(1)5% 

Answer 1: Strongly agree                                      

 

Answer 2: Agree                                    

 

Answer 3: Disagree 

 

Answer 4: Strongly disagree 

 

(6)30% 

 

(11)55% 

 

(1)5% 

 

(2)10% 

Answer 1: Strongly agree                                      

 

Answer 2: Agree                                    

 

Answer 3: Disagree 

 

Answer 4: Strongly disagree 

 

(5)25% 

 

(10)50% 

 

(3)15% 

 

(2)10% 
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Abstract

We present a new classification of technologies and their didactic functions, based
on the anthropological theory of the didactic and, in particular, on the media-
milieu dialectic. Drawing on this framework, we examine how research on
university mathematics education (UME) has focused on different aspects of
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observe, in particular, that a large part of the existing research literature has
focused on small-scale experiments with ready-made tools (such as computer
algebra systems) and more recently also on the use of online platforms for
teaching and disseminating mathematics. Adopting largely the viewpoint of
university mathematics teachers, such research explores new possibilities for
undergraduate mathematics teaching, taking into account its great heterogeneity
of audiences. Research has so far been much less attentive to the institutional
forces that drive or inhibit the use of technology in universities, as well as to the
changes in mathematical contents which such use often implies, locally (e.g.,
certain mathematical methods cease to be taught) and more globally (e.g., certain
mathematical domains become more or less privileged). Some parts of the
research object are intensively investigated, most notably the use of CAS in
basic university mathematics teaching, while others – such as programming as
a tool for learning and doing mathematics – are only emerging as phenomena to
be studied.

Keywords

University mathematics education · Technology · CAS · Programming ·
Anthropological theory of the didactic (ATD)

Introduction

This chapter focuses on the use of digital resources in university mathematics
education. A specific and classically emphasized trait of university institutions is
the cohabitation of scientific research and teaching. One could then expect new
developments in mathematical research – like increased use of technological tools or
important interactions with computer science – to be quickly and seamlessly
reflected in teaching. However, research suggests that the impact of research is
less direct on teaching (Madsen and Winsløw 2009) and that, in particular, under-
graduate curricula in mathematics are surprisingly static, with the impact of techno-
logical developments typically limited to some specific topics (such as numerical
analysis or statistics) or to a few first-year courses (Bosch et al. 2021). There are
relatively many studies of small-scale experiments with innovation of university
mathematics teaching through the use of ready-made technology and programming,
to some extent based on the researchers’ own use or discovery of those tools in
research contexts (see, for instance, the works presented in TWG14 in the
CERME12 conference, González-Martín et al. 2022), which in some cases lead to
permanent, local changes (examples are given in this chapter, sections “Digital
Media in UME” and “Digital Tools in UME”). The extent and mechanisms of
such impacts of mathematics education research need further investigation, as we
discuss in this chapter.

Mathematics education at university level is, however, not only influenced by
technology through occasional adjustments to the developments in the mathematical
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sciences and their neighborhood, such as mathematics education research. Other
influences come from trends in society and education, such as the more widespread
use of online and hybrid modes of teaching or students’ general habits concerning
computer use, for instance, to take notes or search for information. These influences,
although coming from general and well-known phenomena, still have particular
repercussions on mathematics in higher education, for instance, due to the use of
symbolic writing in mathematics and mathematics-dependent fields. Other impacts
are related to the vast variety of media for higher mathematics that has become
available on the Internet, including discussion forums and videotaped lectures on
almost any mathematical topic. Teachers may use such online resources (in the sense
of Gueudet 2017) actively in their teaching, for instance, by curating them as links
that are shared with students through a course management system. Even when these
are not known to the teachers, they may still be used by students and thus, in a way,
influence the educational processes. Research on teachers’ uses of online sources has
emerged over the past decade or so, while much less research has been devoted to
students’ spontaneous use of these resources and its impact on teaching and learning
(for an exception, see Hausberger 2016).

This chapter aims to further outline and synthesize international research into
technology use in university mathematics education (UME), including university
teachers’ choices and beliefs related to technology, as well as to point out some open
and less explored questions. A main contribution of the chapter is to present and
demonstrate a new way to categorize research on digital technologies in mathematics
education. The framework (described in the next section) is based on the anthropo-
logical theory of the didactic (ATD hereinafter – Chevallard 2019; Chevallard et al.
2022). It serves, in this chapter, to explain and justify:

• The categories used to classify and describe individual research studies
• The methods for selecting and analyzing particular references

We then present outlines of the selected references in four broad categories and
conclude with a summarizing discussion and perspectives for future research.

Methodological Framework

By technology, we refer here broadly to software on electronic devices, from a video
conferencing app to a programming environment. This obviously covers a large
variety of software, all of which could in principle be used in university mathematics
teaching. To organize our categorization of studies of such uses, we begin with basic
assumptions and terminology from ATD (e.g., Chevallard 2019; Lagrange 2005) that
we use throughout the chapter. It was a deliberate a priori choice from the beginning
to develop our categorization based on this framework, to explore its potential in the
special case of university mathematics education, and to test its operationalization
while classifying different studies.

Technology in University Mathematics Education 3



Technology Use in Mathematics Teaching

ATD studies human activity as it unfolds in (and is specific to) social institutions.
Human activity is modeled as consisting in praxis (actions) and corresponding logos
(discourse). Praxis consists in solving problems or tasks by applying one or more
techniques. Logos falls in two parts: technical discourse,which is directly concerned
with describing and justifying techniques, and theoretical discourse, which is more
general and takes technical discourse as an object, so that we can, for instance, link
different technical discourses and discuss their terminology, assumptions, validity,
and scope. We use the term praxeology to refer to collections of related praxis and
logos (so the logos serves to describe, develop, justify, and link the praxis). Note that
in ATD, the term “technology” usually has a specific meaning, different from the
widespread use of the term; to avoid confusion, in this chapter we use “technical
discourse” to refer to this term.

The distinction between praxis and logos leads us to a first classification of
technology use (by a user, x).

• The technology is used as a tool by x, when it allows x to carry out a technique.
• The technology is used as media by x, when it allows x to access and/or produce

praxeologies and, in particular, develop logos.

We emphasize that this distinction is not a classification of digital technologies
but of usages: abstractly speaking, the technology can directly affect the praxeology
activated by a user or can mediate certain relations between the praxeology and the
user, within some institutional context. To provide a simple example, we can think of
a university student working with a mathematical exercise (task), using the computer
algebra system called Maple (see www.maplesoft.com). This same piece of tech-
nology may be used as a tool (offering techniques in the form of ready-made
commands or for writing mathematical text) and as media (to look up mathematical
definitions or theorems).

We define teaching as the efforts made by someone (called a teacher) to enable
someone else (students) to engage with some praxeology (e.g., mathematical). In
particular, the praxis could involve the use of technology as a tool or as media or
both. Moreover, students’ intended use of tools and media could be more or less
guided by the teacher, and the students could be intended to engage not only in using
ready-made tools or media but also in producing them. Teaching is in itself a praxis
with a more or less explicit logos, and studies of teaching often lead to more shared
technical and theoretical discourses about this kind of praxis – as when teachers or
researchers give names to particular techniques or principles of teaching. Therefore,
studies of technology use in teaching will be more or less explicit about the choices
and capacities of the teachers carrying out teaching practices. We also emphasize that
involving technology in teaching may change not only the teaching techniques but
also the mathematical praxeologies that are being taught. This especially holds for
tools, since they provide new mathematical techniques, many times requiring a
modified logos, with new technical, and sometimes even theoretical, discourses.
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Categories of Studies

We have organized our search, analysis, and presentation of the literature in four
categories, according to the above theoretical framework, as we now explain (see
also Table 1).

Considering research studies emphasizing the use of technology in mathematics
teaching at university level, we found that a significant part is related to students’ use
of ready-made (technology based) techniques, like the use of a computer algebra
system (CAS) to perform certain symbolic calculations (thus, carrying out one or
more techniques). In these cases, the tool is typically a black box to students, in the
sense that they do not always know how it works, for instance, how it graphs
functions or inverts matrices. In contrast to this common situation, there is a newer
focus (with surprisingly old roots, as we discuss later in this chapter) on teaching that
emphasizes students’ production of tools, mainly by programming (sometimes also
referred to as coding). The intentions behind such an emphasis can both be to
integrate praxeologies from computer science and software development into a
mathematics course and to pursue the aim that students get a less black box about
the mathematical techniques carried out with the software. Thus, we end up with two
ways of involving technology-based techniques in students’ mathematical work:
engaging students in the use of ready-made tools that can solve certain mathematical
types of tasks and asking students to produce tools (by programming) that can solve
such tasks.

When it comes to media, we can make a similar distinction between productive
and receptive usage modes (as in linguistics, when distinguishing production and
reception of language or text; notice that there is no value judgement in any of the
terms). The most commonly studied mode is the productive one, that is, where
students may produce praxeologies, as in an online teaching platform or while
editing an assignment using a word processor. Most of the commonly used technol-
ogy (like video conferencing apps, content management systems, and web browsers)
is not specific to mathematics, although university students will often meet and use
mathematics-specific technology for editing text (such as TeX or evenMaple). A less
commonly studied phenomenon concerns students accessing mathematical logos
online, much as in a classical library, but now with the vastly enhanced volume and
search engines available on the Internet. We thus distinguish interactive media from
library media. Interactive media are mainly used to exchange praxeologies and to

Table 1 Summary of categories of technology use

Receptive use Productive use

Tools Ready-made tools
(Section “Ready-Made Tools: Use of
Dedicated Software”)

Programming
(Section “Programming and Links with
Computer Science”)

Media Library media
(Section “Library Media: Use of Online
Mathematics Resources”)

Interactive media
(Section “Interactive Media: Online
UME”)
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work collaboratively. Library media are mainly used to search and access informa-
tion and knowledge.

Selecting and Analyzing Studies

The identification of studies for the survey began with:

(a) An initial screening of all issues of the International Journal of Research in
Undergraduate Mathematics Education, for papers focusing on technology use
in teaching; appearing since 2015, it is the main international research journal on
university level mathematics education.

(b) A search on Google Scholar using the keywords university, mathematics edu-
cation, computer and undergraduate, mathematics, and computer, restricting to
the period from 2010 to 2021. We did find a large amount of literature in this way
and then filtered out articles and books that fit the theme of the chapter.

To get a rough impression of the landscape and fine-tune our use of the model in
Table 1, we classified the studies identified in these two searches. In fact, all studies
were clearly classifiable in terms of the technology use that was the focus of the
study. Table 2 shows how many appeared in each category, with n/m meaning that
n studies were found in search (a) above and m in search (b).

Certainly, this coarse search was only a beginning. We also considered papers
identified from the references in papers appearing in the search, as well as papers
known by the authors to be relevant to the theme (including some not written in
English), which led us to consider some references published before 2010.

We then categorized the papers identified according to their focus on ready-made
tools, the production of tools by coding, interactive media, and library media. We
focused on the findings as expressed in the abstract and the conclusion, and then we
identified the institutional context and aims of the usage under study and more
generally the mathematical praxeologies involved (to the extent they are given).
We have in the end selected references to present in each of the four categories, in
view of our assessment of the importance and originality of the findings, the
specificity of findings to university institutions, the level of explicit and detailed
study of actual uses of technology, and a reasonable representativity in terms of
mathematical domains and institutional contexts studied in these references.
Throughout, the above framework served to identify the research objects, the
questions, and findings of the studies, and, in particular, the classification proposed
in Table 1 led us to grouping connected studies.

Table 2 Number of
studies found in initial
screening

Receptive use Productive use

Tools 2/14 1/7

Media 1/2 6/10
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Digital Media in UME

This section considers studies about the use of digital technology in undergraduate
mathematics education as media: a way to access, disseminate, and interact about
mathematical works. The Internet is nowadays the library media per excellence,
which enables access to many resources presenting information, like written texts,
hypertexts, open online courses, animations, video presentations, etc. Its role as
interactive media allows the organization of the exchanges between lecturers and
students and among students themselves. The technological resources associated
with these uses (from a simple web browser to communication, edition, and collab-
oration platforms) are extremely diverse but are also becoming more and more
familiar, especially after their dissemination during the forced switch to fully online
teaching during the pandemic lockdown that began in 2020. In the exploration of the
possibilities, role, and impact of these digital media in undergraduate mathematics
education, we distinguish the case where the entire teaching process is carried out
almost entirely online from the case where online resources complement an instruc-
tional process that is mainly conceived and implemented face-to-face.

A general and striking observation from our reading of studies in these two areas
is that research generally focuses on the effects of using digital media and the kind of
interaction and uses that are made by students and by teachers. Barring a few
exceptions, the focus is not on the kind of mathematics that is taught, the choices
made to structure the content, or the main pedagogical strategy adopted (if any). This
means that most of the instructional processes remain undescribed in the papers, as if
there was nothing special to notice about them. At the risk of oversimplification, we
can describe the mainstream assumptions by saying that, in a typical elementary
university mathematics course like calculus, algebra, linear algebra, or differential
equations, the content is well established and organized in topics defined by some
notions and theoretical developments, associated to a set of exercises and more or
less complex problems. Finding, structuring, and presenting the main content are the
responsibility of the lecturers, while students are mainly required to learn how to
solve the problems by practicing with exercises and paradigmatic examples. Many
studies analyzing the role of technology as media consider this kind of instructional
organization. These assumptions could be related to the fact that research is often
carried out by (or in close proximity with) university teachers and tends to give
prominence to the teacher’s perspective, for whom contents are determined by
syllabi and the main question is that of their delivery.

Interactive Media: Online UME

We can distinguish two types of fully online mathematics courses depending on
whether the interaction teacher-students is synchronous or asynchronous. The first
case appears mainly in recent studies related to the Covid19 pandemic (Radmehr and
Goodchild 2022) or in specific courses like developmental, remedial, or bridging
courses offered prior to or during the first months of tertiary education (Biehler et al.
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2011; Webel et al. 2017). The second case corresponds to the typical “distance
learning” modality, supported by an institutional learning management system
(Moodle, Blackboard, Canvas, etc.) that stores the course content and provides an
infrastructure for interactivity. In both cases, teachers use the system to provide
learning resources to students, usually in sequential order and with some milestones
to pass at certain points, for instance, in the form of tests to take, or work to deliver, at
some specific dates. Then, the teachers provide feedback to students’ work –
possibly, on top of automated feedback provided by the system – and attend to
students’ questions and doubts. In the asynchronous modality, this will be done in
chats, forums, mail exchanges, or similar; in the synchronous mode, face-to-face
interactions are also considered. Similar devices can be used by students to collab-
orate, in a private or public way.

We can consider the US “Math Emporium” as an example of synchronous online
mathematics course, among others (see, for instance, Biehler et al. 2011). This type
is entirely organized and “delivered” online and requires additional teacher work.
For instance, students go to computer labs in groups under the guidance of an
instructor who provides on-demand assistance to students who are struggling with
the material. Unlike asynchronous courses, mandatory group meetings ensure stu-
dents spend sufficient time on learning activities and also help build a feeling of
community among students and with instructors. According to Webel et al. (2017,
p. 356), “rather than listening to in-person lectures, students’ progress through the
course topics at their own pace, moving to more advanced topics only when they are
ready.” Technology is here essential to provide worked-out examples, video lectures,
digitized textbook pages, opportunities to complete the exercises, and feedback on
solutions with guidelines about materials to review or new practice problems.
Moreover, technology is also used to provide immediate feedback to students
through automatic grading and to sequence their work by requiring the completion
of specific activities related to a topic before granting access to the next one.

The design, structure, and content of any online course respond to specific
instructional principles that involve not only what it means to study a given content
but also what this given content is. The research of Webel et al. (2017) is very
illustrative in this respect. To contrast reports on the impact of Math Emporium
courses, they start by noticing the “little information that exists about the nature of
mathematics learning” (p. 359) in such courses. They then question “whether the
efficiencies gained by the use of computer assistance and the diffusion of instruc-
tional roles come at the expense of meaningful learning experiences for the students”
(p. 359). The close relationship between the format of the course and the kind of
mathematics that is consequently taught is examined for the case of algebraic
activities. Their results point at many deficiencies in the students’ capacity to create
models to represent situations and interpret equations in terms of their meaning in the
considered situations. In other words, technology-assisted online courses tend to
foster mathematical activities that may be tested and graded automatically and to
which it is possible to provide automatic feedback because students’ errors can be
foreseen. However, it seems to exclude work with open-ended questions about
complex or extramathematical situations, since such problems tend to admit a
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great variety of approaches and answers. It is also difficult to imagine automated
feedback to students’ written or oral presentation and defense of proposed solutions
and procedures related to such problems. The authors conclude that there is need for
research that takes into account not only passing rates, exam scores, and cost savings
but also explores the nature of the mathematical reasoning that online courses
promote, as well as how students interact and perceive their experiences.

Similar considerations are described by Boyce and O’Halloran (2020) in their
shift from an emporium-style format of a college algebra course to a blended format
where active learning can find a more prominent place. The course evolution is not
only supported by the kind of digital devices proposed but also by changes in the
rhythm imposed – weekly modules – to facilitate cooperative learning activities and
modifications in the course content, like adjusting “the topics and sequencing of
topics [. . .] to make room for problem-solving sessions focused on mathematical
concepts” (p. 459). Students’ discussions of mathematics, written reports, and pre-
sentations of their group work through poster sessions were also integrated. The
authors analyze the kind of mathematics that is to be taught according to the digitally
supported structure of the course. They conclude that “knowing how to use a
mathematical tool is arguably less important than knowing how to use the right
tool to solve a problem, knowing how tools are related to one another, or knowing
how to communicate mathematics with others” (p. 472). Finally, they also point at
challenges in implementing computer-based instruction like “supporting students’
understanding of the concepts of mathematics, promoting student discourse, and
engaging students in challenging problem-solving” (p. 472).

In their paper about fully online (FO) teaching of undergraduate mathematics,
Trenholm and Peschke (2020) address a broader set of courses, focusing on the
asynchronous case, and compare them with current face-to-face (F2F) practices.
They identify key differences between the two paradigms, like the need for a deeper
engagement of FO students; the prevalence of one-on-one experiences with little use
of collaboration; and the difficulties in communicating mathematics via notations
and diagrams or other semiotic resources like gestures and multimodal communica-
tion. Concerning the use of digital resources, there are reasons to think that techno-
logical developments can continue to reduce these differences, by providing new
tools to communicate through simultaneous multiple channels and modalities, as
well as procedures to ensure online reliable proctoring. Technology is bringing the
two modes of education ever closer together, and Trenholm and Peschke (2020)
notice “a realignment in pedagogical approaches between the two communities of
F2F and FO teaching” (p. 27).

In all synchronic and asynchronic modalities, online mathematics teaching
requires specific technological resources to ensure the material dimension of the
mathematical activity: writing, speaking, gesturing, diagramming, and sketching.
These dimensions involve both individual and collaborative activities and commu-
nicating the outcome to others. In this respect, technological resources can foster
certain practices and hinder others, in the same way as a given classroom organiza-
tion, schedule, or blackboard size do so. However, the problem of what kind of
mathematics to teach, and how to teach it, will remain.
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The work of Rosa and Lerman (2011) provides an interesting case in this respect.
They describe an online 40-h course that included synchronous and asynchronous
activities such as chats, forums, email exchanges, and the elaboration of a final
project. An aspect that stands out in their proposal is the innovative character of the
type of mathematical activities that are proposed in the online environment, even if
the technological tools were not as developed at the time as they are today. Instead of
being introduced to some previously established topic – definite integrals – along
with some sets of exercises and problems to solve, students were required to engage
in a role-playing game to help a farm widow manage her property (which included
calculating the area of irregular fields). The function of the digital resource and the
online organization of this type of instruction is, of course, radically different from
those of the Math Emporium perspective. At the same time, the questions raised
might be very similar to those of analogous F2F proposals, proving that the consid-
erations about digital technologies must take into account other kinds of teaching
and learning resources, modalities, and organizations, as well as the mathematical
activities that constitute the goal of the course. In their review about FO tertiary
mathematics, Trenholm et al. (2016) confirm this as they note that the very nature of
mathematics is not being addressed by current professional development efforts and
propose the use of technology-enabled peer assessment processes to help students
engage in higher-level mathematical activities – praxeologies – and student-student
interactivity. They call for progress in FO mathematics pedagogy and suggest that
such a focus would also help improve F2F practice.

Library Media: Use of Online Mathematics Resources

Today’s face-to-face teaching involves a large number of online mathematics
resources that are used for different purposes. The next section considers resources
like CAS that are integrated within the mathematical activity and can be thought of
as part of the mathematical praxeologies (more specifically, while supplying certain
techniques). This section focuses on digital media that are mainly used to get or
provide access to mathematical knowledge: texts, videos, or animations presenting
topics, a corpus of exercises and problems, examples of problem resolutions,
activities to test the mastery of a given content, etc. These media can incorporate
interaction in the form of feedback or options for cooperative use. Several studies
address different kinds of exploitation of such tools: solving tasks (Kanwal 2020;
Rønning 2017), receiving lecturers’ feedback (Robinson et al. 2015), passing tests
(Kinnear et al. 2021), learning collaboratively (Heinrich et al. 2020), doing home-
work (Dorko 2020), or, more generally, the interaction of students with different
digital resources (Anastasakis et al. 2017; Fleischmann et al. 2020; Oates et al.
2014). As with the previous case, we first discuss the importance of the link between
the choice of digital media and the type of mathematical activities these resources
support or hinder. We finish by pointing at some uses of digital media that do not
seem to have been considered in research and seem also mostly unmanaged in
university education.
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Fleischmann et al. (2020) focus on the benefits and appreciation of the integration
of digital learning materials from an online course for students in an attendance-
based learning environment. Their design corresponds to a blended learning scenario
based on an already existing course concept. One interesting, expected result
concerns students providing positive overall feedback about the support provided
by the digital learning material, especially “passive elements” like dynamic applets
and videos as part of the lecturers’ presentation, which did not change in a major way
their previous in-class learning strategy. We can interpret this in terms of the
prevailing didactic contract (Brousseau 1997): students appreciate the incorporation
of digital tools as long as they do not increase students’ level of responsibility for the
content, in the learning situation. A related point is found by Anastasakis et al.
(2017), who studied the kind of resources students use when studying mathematics
and the goals and reasons for their choices. They find that students use a variety of
resources (like online videos, WolframAlpha, and online encyclopaedias) but mostly
those provided by the university and their written notes. Students’ aim is mainly
related to passing the exams and getting a high mark, so they choose what they think
is helpful to that end, according to their reading of the didactic contract. Oates et al.
(2014) also note the crucial role of the lecturers’ practices as an example, privileging
the use of technology (videos, websites, simulators, and CAS), as a key factor to
explain students’ engagement with digital tools. As noticed in the previous section,
we also observe here that, in none of the investigations considered, the researchers
comment about the kind of instructional organization that is implemented nor about
the content structure associated with it.

Other authors put a stronger emphasis on the connection between both. For
instance, Rønning (2017) directly studies the influence of computer-aided assess-
ment (CAA – here Maple T.A.) on the way students work with mathematics. He
finds that students develop strategies to obtain quick, direct answers to problems
(“hunting for the answer”) and pay less attention to writing out the solution process
carefully. At the same time, students report learning more from the lecturers’
feedback than from the automated one, because teachers also address the solution
process and their way of reasoning. We can see here two different modalities not
only of learning but also of doing mathematics. The author states that “problems
handled with CAA must have clear, objective answers, whereas human markers can
handle both objective and subjective problems, and also human markers can act
flexibly when faced with ill-posed or unanticipated student responses” (p. 98).

Similar considerations are reported by Kanwal (2020). In her study about stu-
dents’ interactions with an online environment, the author also found the use of a
variety of resources on top of those provided by the course, conducted through
Pearson’s MyMathLab (MML) and based on a concrete textbook ofMathematics for
Engineers. In this case, the author provides some details about some mathematical
activities performed by the students. She finds deviations from what is initially
expected – like “hunting for the answer” – due to the way the automated system
conditions the kinds of activities that are proposed and the strategies that are
fostered: division of problems into sequences of operations, choice of tasks that
can be divided into single steps, etc. The term “black-boxed mathematics” is used to
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explain that the change produced also affects the theoretical developments that are
needed to justify the procedures and results obtained. The author says that “the
implementation of [the online] environment does not ensure that the students engage
with the mathematical tasks in the expected manner” (p. 62). We could go further
and discuss specific transformations of the mathematical content that is taught and
learnt in both its technical and theoretical dimensions.

The work of Dorko (2020) addresses this transformation when searching to
characterize the nature of Calculus II students’ activity as they complete an online
homework assignment – here, about sequences. Instead of talking about “hunting
for the answer,” the author characterizes students’ multiple attempts and forma-
tive feedback as a cyclic activity and compares it to mathematicians’ problem-
solving activity. However, she also notices a critical difference: mathematicians
validate their results by themselves, while it is the online platform that does
the verification for students. The author does not analyze the kind of mathemat-
ical problems that constitute the online homework nor whether or how the
choice of the online modality affects what kinds of problems can be worked
on. Again, the mathematical content is taken as a parameter instead of a variable
to question.

Two other important aspects remain unexplored in the investigations considered
above. One corresponds to the way digital tools can help develop – or to the contrary,
hinder – the collective dimension of the mathematical activity. To this respect, in
their exploration of the perceived experiences of mathematics lecturers and students
in Norway as they transitioned to fully online education in 2020, Radmehr and
Goodchild (2022) point at the difficulties for interaction and collaboration as one of
the major challenges to address. We can mention to this respect that university
mathematics education does not always foster the implementation of cooperative
activities and tends to be dominated by individual mathematical practices. Moreover,
teamwork in mathematics is more present in research than it is in teaching. There-
fore, teachers could find ways to exploit more and better the spread of digital
platforms to share and capitalize on teaching strategies, thus developing a more
collective vision of the profession.

The last aspect that appears unexamined – and remains unmanaged in many
university teaching settings – concerns the opportunities provided by digital media
to access information and how this modifies what doing mathematics means, not
only for students but also for mathematicians. Several studies (Anastasakis et al.
2017; Dorko 2020; Kanwal 2020; Oates et al. 2014) indicate that students sponta-
neously use a variety of digital tools (forums, videos, websites, etc.) to access
information outside the media provided by the institution (course material, lecture
notes, and the like). Being able to read, confront, test, and validate the mathematical
information that appears in such a variety of online sources is a critical competence
nowadays to do mathematics – not only to learn it. We still know little about how
students deal with those alternative media and, more importantly, how to manage it
within the instructional process (Hausberger 2016).
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Digital Tools in UME

We now consider research on university teachers’ and students’ use and production
of digital tools that can solve certain mathematical types of tasks. We note, initially,
that there seems to be some delay – if not a more permanent discrepancy – between
the overall roles of digital tools in mathematical research and practice (e.g.,
Lockwood et al. 2019) and its presence in undergraduate and graduate curricula,
particularly within pure mathematics.

Programming has emerged in mathematical practices over more than 70 years ago
and has gained some place in undergraduate education as well. From the 1990s,
ready-made tools (CAS, spreadsheets, etc.) have become gradually more available
and efficient, as has their use in secondary and tertiary education. We examine
research on these developments in this section.

Ready-Made Tools: Use of Dedicated Software

Different ready-made tools have been used in UME, such as spreadsheets, for the
teaching of probability and statistics (e.g., Lagrange and Kiet 2016), or in some
engineering courses (e.g., Castela and Romo Vázquez 2022). Other environments
that allow for modeling and visualization have also been used (e.g., Hogstad et al.
2016). Among the different tools available, CAS have received considerable atten-
tion in the UME literature. For this reason, we focus a part of this section on CAS use
by university teachers and then zoom in on studies focused on students’ learning. We
finish this section identifying some potential risks related to the integration of ready-
made tools at the tertiary level.

Regarding the use of CAS by university teachers, Lavicza (2008a) noted that
“little attention has been paid to why and how CAS is being integrated into the
university curriculum, what factors influence CAS integration, or the extent to which
CAS remains permanently used in a university environment” (p. 121). We note that
two views are present in the literature: (1) university mathematics teachers use
technology at least as much as school teachers, although a large part of this use is
not reported in the literature (Buteau et al. 2010a), and (2) the impression that
undergraduate mathematics education seems blind to technological advances,
which are, however, much more present nowadays in many areas of mathematical
research (Artigue 2016).

To produce a clearer view of trends in the existing literature on the use of CAS at
the postsecondary level, Buteau et al. (2010a) analyzed a corpus of 204 papers. This
first corpus considered the journals International Journal for Computers in Mathe-
matical Learning (since its beginning in 1996) and Educational Studies in Mathe-
matics (since 1990). They also selected proceedings from the conferences Computer
Algebra in Mathematics Education (since 1999) and the International Conference
on Technology in Collegiate Mathematics (since 1994). A first remark is that
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whereas 88% of these papers are practice reports by practitioners (presentation of
examples, examples with practitioner reflections, classroom study or survey, exam-
inations of a specific issue, or only abstracts), only 10% were education research
papers. In the sub-corpus of practitioner reports, the most integrated tools that are
mentioned at that time are graphing calculators (40%), Maple (25%), and
Mathematica (20%) (see also Buteau et al. 2010b). The factors which influence
teachers’ decisions about CAS integration, as reported in these papers, were grouped
in three main categories: (1) technical issues (lab availability, reliability of technical
support, system requirements, troubleshooting), (2) cost-related issues, and (3) ped-
agogical issues. The last category is the most present in the analyzed corpus, and
among the 11 issues identified, the more frequently mentioned are (a) the difficulty to
design appropriate assessment integrating technology (related to the time it takes to
properly address this issue); (b) the difficulty for students to learn the new syntax;
(c) the fact that technology may provide answers in an unexpected format that does
not match the paper-and-pencil expected solution; and (d) the need for time for
faculty to design courses and meaningful activities with technology. These issues are
identified as obstacles to an extensive integration of CAS in teaching. Moreover, this
integration is mostly studied in individual courses (67% of the corpus), with few
reports about integration in a group of courses or program-wide. We note that some
of these issues point at difficulties related to the didactic transposition work, since
integrating CAS requires the creation of praxeologies to be taught that integrate new
types of tasks adapted to the instrumented techniques and new theoretical develop-
ments. We return to this point below.

The results above thus identify major reasons that influence faculty’s decision to
integrate or not technology in their teaching. Buteau et al. (2010b) also offer some
interesting information about specific uses of CAS by university teachers, with
calculus (including precalculus and multivariable calculus) being the courses most
present in their corpus. Regarding the programs where CAS are integrated, Buteau
et al. (2014) collected data from 302 Canadian instructors, indicating that 92% use
CAS for mathematics and computer science majors, 87–89% use it for science or
engineering majors, and 70% use it for mathematics education majors. The limited
geographical scope of the instructor survey calls for further research to have a better
view of the programs where CAS (and other dedicated tools) is being used. Regard-
ing the actual uses of CAS, the most reported use was to provide an experimental
laboratory where students could explore mathematical objects (Buteau et al. 2010b,
p. 59), followed by visualization and exploring real world or complex problems;
another use consists on using the CAS to assign projects and homework (Buteau
et al. 2014). Buteau et al. (2010b) also note that an important number of papers
emphasize the potential benefits for students of using CAS: promoting a greater
understanding of mathematics (for instance, allowing the use of several representa-
tions), supporting students’ development to achieve and learn independently (for
instance, through exploration), increasing student motivation to learn, facilitating
access to harder and more realistic mathematics, and being responsive to twenty-
first-century workplace needs. The idea that the use of CAS can also help focus more
on conceptual understanding, leaving tedious calculations aside, is also mentioned
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(we return to this point later in this section). Among the examples of innovative uses
of CAS, Buteau et al. (2010b) mention examples like explore integration by approx-
imating area with finite Riemann sums, visualizing different terms of a Taylor series,
and visual experimentation with the formal epsilon-delta definition of a limit;
visualization of complicated three-dimensional surfaces or solution of systems of
linear equations is also cited. It seems, however, that the use of CAS is rather local,
affecting a topic or a type of tasks, with little studies of a systematic integration of
CAS in the praxeologies that are taught, with their consequent transformations.

The previous results led to an interest to go deeper into the factors that encourage
teachers to use CAS in their teaching. This led to the abovementioned survey with
302 Canadian postsecondary instructors (Buteau et al. 2014; Jarvis et al. 2014). As
many as 81% participants used CAS outside teaching (e.g., research), while 69%
used CAS in their teaching. An important result of this study is that the analyses
suggest that the strongest predictor for the use of CAS in one’s teaching is the use of
CAS in one’s research; this result agrees with a similar finding from an international
study considering university mathematics teachers in Hungary, the UK, and the USA
(Lavicza 2008b). This could be seen as a possible explanation for a spontaneous
integration of technology in tertiary teaching (Buteau et al. 2014), since it is already a
tool in many instructors’ research practices. This result is reinforced by the data
concerning the inverse tendency: the participants who reported never using CAS in
their research all mentioned either never (67%) or rarely (33%) using it in their
teaching. It is also worth noting that respondents who used CAS in their teaching
exhibited two dominant ideas about the role of CAS: CAS is a tool (not a purpose in
itself) that helps learn mathematics, and CAS is used when it is believed it will help
students understand better (this is similar to the common distinction between
pragmatic and epistemic values of instrumented techniques, defined by Artigue
2002, p. 248 – we return to this distinction below). The first case involves a
transformation of praxeologies to include CAS, at least in the praxis component
(techniques and types of tasks), while the second may overlook the changes of
mathematical praxeologies that come with CAS techniques. Some participants also
mentioned that CAS is not the most relevant technology for their courses, in
particular for statistics courses. More information from this survey concerning
programming is discussed in the next section. Finally, among the conditions iden-
tified by the participants as important for a successful integration of technology,
beyond individual initiatives, there are a key proponent in a decision-making
position in the department, a strong and shared incentive for change, strategic hiring
practices, an administration that supports creative pedagogical work, and a contin-
uous and determined revisiting of the original program vision.

The previous paragraphs provide a broad view of the uses of CAS in post-
secondary education as presented in recent literature, in particular, the practices of
Canadian instructors. We now examine some of the reported uses of CAS and other
ready-made tools, as well as some of the reported effects of this use. Calculus
courses have received special attention since very early. Some examples include
studies related to the visualization of the local linearity property related to the
derivability of a function at a point (Tall 1996), the qualitative study of differential
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equations (Artigue 1987), the visualization of epsilon-delta strips (Roh and Lee
2017), etc. These different initiatives over the years have led, for instance, to the
revision of whole calculus courses with the integration of technology, such as
DIRACC Calculus (Thompson 2019; Thompson et al. 2013). It is undeniable that
the use of different dedicated technology has been connected to the evolution of
research about the teaching and learning of calculus. Among others, the role of
technology as a support for visualization and coordination between registers has
been highlighted (e.g., Artigue et al. 2007). However, we note that for studies that
focus on punctual activities, it is typically not clear how the integration of these tools
(to produce some techniques, such as graphing) impacts on the whole course or lead
to the development of stable new praxeologies for the students.

The use of dedicated technology in studies related to topics other than calculus
has also grown in the last years. For instance, Troup (2019) describes the use of
Geometer’s Sketchpad (GSP) to develop a conceptualization of the derivative of a
complex-valued function. In this study, speech, gesture, technology, and reasoning
about complex numbers are interconnected, helping students “discover that for a
complex-valued function, its derivative describes how a small disk around a point is
rotated and dilated by the function” (p. 4). This is seen as an important leap for
students, moving from the derivative of a real-valued function to the derivative of a
complex-valued one. The use of GSP allowed for an inversion in the tasks: instead of
starting with formulae and interpreting them geometrically later on, Troup (2019)
constructed an activity that starts with an embodied, geometric reasoning to then
move toward symbolic algebraic reasoning. This allowed to reason about disks
which need to be small enough to “stay away from bad points” (p. 22). Other studies
are not mainly concerned with visualization and aim at constructing activities that
foster students’ relating of theoretical and practical aspects in real analysis.
Gyöngyösi et al. (2011) follow the distinction (e.g., Artigue 2002) between the
pragmatic value (the efficiency for solving tasks) of instrumented techniques and
their epistemic value (the insight they provide into the mathematical objects and
theories to be studied). Drawing on the notion of praxeology, they propose an
organization of tasks concerning sequences and series, to be solved using Maple,
which allows students to produce some examples that can help them grasp and use
theoretical results. This way, instrumented techniques can support theoretical rea-
soning. Their experimentation allows for identifying two main groups of students:
the proud purists (p. 2011), who are successful in analysis and are not very eager to
useMaple in a real analysis course, and the challenged but helped, who are students
struggling with some parts of the course and who benefited from the tasks where
instrumented techniques can be used. Studies about the use of ready-made tools in
advanced, traditionally theoretical courses definitely challenge our own (and stu-
dents’!) epistemological views concerning mathematical activity.

Many writings in this area – and not only in journals accepting practitioners’
reports from practice – take a less critical stance. They report on students’ improved
learning or easier access to grasp some notions, as a consequence of some activities
designed for this purpose, and involving some dedicated technology. However, there
are studies that highlight how the use of tools for algorithmic tasks also has the
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potential to raise new questions that produce conflict and foster reflection. Dreyfus
and Hillel (1998) reported on the use of Maple in tasks concerning the Gram-
Schmidt procedure to obtain an orthogonal basis for the space of quadratic poly-
nomials. The tasks of finding an approximation for cos(x) and for x3, which can be
carried away implementing an algorithmic technique in Maple, led some students to
reflect about the theory. In particular, the researchers describe the event organized in
episodes: (1)Maple at rest (where students exchange about the task without actually
using the software), (2) Maple as a graphic calculator, (3) Maple as an investigative
tool, and (4) beyondMaple (where the students, after the investigation, discuss about
the concepts at play and their own understanding). This organization shows that,
even without actually using the software, students can exchange to try to understand
some tasks, use the technology in an algorithmic way, and then explore new
questions that lead them to better grasp the underlying notions and results. Dreyfus
and Hillel (1998) contend that the technology helped as a mediator, supporting
students’ reasoning even when they lacked the precise, technical vocabulary neces-
sary. In this sense, the participants of the course in question agree to some extent that
by taking care of the computations, the use of technology allowed for more time to
be devoted to reflection. This matches one of the advantages of using technology
highlighted by several studies and mentioned above.

We also wish to mention some recent advances in the use of specialized technol-
ogy for the learning of proof, with two examples. In the first example, Sümmermann
et al. (2021) discuss the role of simulations (in their case, for an algebraic topology
course, using the dynamic topology environment ARIADNE) and their impact on
the concept of proof. The authors propose that simulations can allow the construc-
tion of proofs, with the advantage of avoiding symbolic representations. This way,
these activities can be seen as a gateway into proving, “giving an alternative access
to proofs in a non-formal highly interactive setting” (p. 457). In particular, they study
the necessary conditions that simulation-based environments need to fulfill to allow
the construction of proofs while also identifying some challenges for simulation-
based proofs to be regarded as genuine proofs. This leads again to considerations
about the epistemological dimensions of mathematical activity. Due to the increasing
number of mathematical simulations becoming available for students and teachers,
more research is needed in this area. The second example concerns automated
theorem provers. These environments are not, strictly speaking, ready-made tech-
nology as they require some level of coding activity (of a special kind). Very recent
reports “suggest a positive impact [of using theorem provers] on students’ under-
standing of the necessity of mathematics rigor and subsequent advantages for proof
production and proof writing” (Thoma and Iannone 2022, p. 65). Thoma and
Iannone (2022) report on the use of the theorem prover LEAN to support students’
learning of proving. The technology was presented to students in a voluntary
workshop, which ran parallel to a proof course in a first-year mathematics program.
In their study, 36 students (7 LEAN users and 29 no LEAN users) tackled in the
interviews one specific question (an unfamiliar result to prove: if n ∈ ℕ is perfect,
then kn is abundant for any k ∈ℕ). Among the LEAN users, two main characteristics
of their proofs are identified: (1) an accurate and correct use of mathematics language
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and symbols, together with the use of complete sentences and punctuation, and (2) a
clearer structure, with an overt breakdown of proofs in goals and subgoals. This
study illustrates how the use of ready-made tools – in particular theorem provers – is
gradually including more theoretical areas that go beyond the classic uses of CAS in
calculus and linear algebra, where ready-made tools are usually reduced to provide
techniques for calculations and graphing. These very recent studies call for further
research into how technology integration affects not only the learning of proof and
reasoning but also their very nature while also call for studies identifying potential
drawbacks.

Most of the studies cited in this section concern experiments where the use of
technology is seen as a lever to improve student learning of mathematics. Reflections
on the problems that the use of technology can provoke are also necessary. We finish
this section citing one report that analyzes some challenges about the use of
technology. Discussing the potential of CAS use in introductory university teaching,
Winsløw (2003) uses the notions of semiotic and discursive activity to argue that the
lever potential (allowing students to operate at a high conceptual level), usually put
forward by studies, needs to be problematized. He also notes that

. . .the use of a CAS – at least, a priori – facilitates neither coordination of registers nor the
main discursive functions. The simple representation of objects and transformations is not
simplified, either. On the contrary, we have an extra medium (the computer), an additional
special code (depending on the CAS) for semiotic activity, and a kind of ‘automatic semiotic
agent’ with a potential influence on discourse [. . .]. These additions may be particularly
disturbing for novice users of CAS. (Winsløw 2003, p. 276)

Some of the potential risks of CAS use – identified in observations by Winsløw
(2003) – and based on Brousseau (1997, pp. 25–27) are:

• The Jourdain effect: where students perform CAS-assisted semiotic actions and
are then told “what they have done” in terms of a higher-level discourse that is
essentially beyond their reach

• The animator effect: where the teacher’s activity becomes conditioned by how
much the students talk or use the CAS, losing focus on the actual (mathematical)
aim of the activity

• The particularity problem: where the focus on particular examples may lead to an
emphasis on inductive reasoning, hindering deductive reasoning which is com-
mon in advanced courses.

• The black-box effect: where the inaccessibility to the processes leading to a result
promotes the (ab)use of trial-and-error techniques when confronted to an unex-
pected result instead of resorting to analyzing the reasons for the first result

• Conflicting intentions: when students tend to learn instrumented techniques with
the aim of passing the course, rather than trying to understand the content at play

These potential risks are a consequence of the lack of well-planned integration of
CAS in the mathematical activities that are taught and learnt. They contrast with the
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number of papers that report on successful experiments when introducing technol-
ogy and only consider observed advantages. They also warn us about being aware
that simply visualizing certain notions does not ensure, per se, an adequate grasp of
these notions. Gyöngyösi et al. (2011) provide some examples of tasks that aim at
going further, through activities that may lead from checking some examples to
seeing the need of using theoretical results. However, more research is needed
concerning the limitations and unwanted side effects of common use of CAS at
university level, along with proven strategies to overcome these.

Programming and Links with Computer Science

It is by no means a recent position that computer programming should figure in the
undergraduate mathematics curriculum, citing programming as a tool to develop
powerful techniques for carrying out a wide range of mathematical tasks. As a
recently appointed mathematics professor at Stanford University, Forsythe (1959)
estimated that “there seems to be over 3,000 automatic digital computers now
installed in the United States” (p. 651). This was of course supposed to be an
impressively high figure at the time of writing. Forsythe defines “numerical analysis”
as “a branch of applied mathematics” which covers “any type of problem which an
automatic computer should be able to solve” as well as “techniques for coding”
(pp. 654–655). For the undergraduate mathematics curriculum, he proposes “a
special coding course for all students” and that “numerical analysis could otherwise
be sifted in with the basic mathematical theory” (p. 658). He also outlines topics
suitable for such sifting in as diverse domains as calculus, linear algebra, logic,
differential equations, probability and statistics, number theory, geometry, and
Fourier series. Forsythe admits that he is “making a recommendation which is almost
two generations ahead of the current textbooks” (p. 661), and in fact he soon moved
to other, perhaps more fertile, institutional terrains. From 1965 until his death, he
served as chairman of the then new computer science department at Stanford – thus
personifying how this new discipline broke away from mathematics. Before the
creation of the department, he notes:

The role of the Computer Science Division is likely to be increasingly divergent from that of
Mathematics. It is important to acquire people with strong mathematics backgrounds, who
are nevertheless prepared to follow Computer Science into its new directions. (Forsythe,
quoted in Knuth 1972, p. 723)

It is interesting to dwell on a wider and older perspective in Forsythe’s (1959) plea
to integrate numerical analysis more or less throughout undergraduate mathematics.
He cites a famous three-volume text written 50 years before, by none less than Felix
Klein (2016). Klein distinguished “precision mathematics” and “approximation
mathematics” (the third volume of his book treats the latter). According to Forsythe
(1959), “Klein goes on to say that, while in research differentiation between pure and
applied mathematics may be essential, such differentiation is not reasonable in

Technology in University Mathematics Education 19



teaching” (p. 653). However, while Klein focused on secondary school mathematics,
Forsythe saw the new uses of computers and, in particular, coding, as means and
reason for extending the integration to university teaching – arguing that university
students must also experience computational and theoretical mathematics as deeply
related.

Now, over 60 years later, we cannot say that this idea has fully materialized. As
we discuss in the following, there are repercussions in undergraduate mathematics of
both the institutional separation and the continued scholarly interaction, between
mathematics and computer science. The use of programming for solving a wide
range of mathematical tasks has certainly continued to be an area of vivid research
and technological development. Still, we cannot say that undergraduate mathematics
has become permeated, in general, by the use of computer programming and
“numerical analysis” in the sense of Forsythe’s early work.

Studies focusing on programming as a tool or subject in university mathematics
education fall in two kinds: case studies of actual uses in individual institutions and
courses (e.g., Lockwood and De Chenne 2020) and more general overviews and
proposals (such as Forsythe’s). A few studies also address how the use of program-
ming in mathematical research is (or is not) reflected in UME.

We first consider the more global sort of studies – far from citing concrete types of
tasks for which the students use or device techniques based on programming.
Clearly, “university mathematics education” cannot be reduced to undergraduate
and graduate programs in pure mathematics or to courses taught by faculty employed
in a mathematics department (of some sort), but in our experience, relatively many
studies focus more or less explicitly on these cases.

In Buteau et al.’s (2014) previously cited survey with 302 Canadian instructors,
18% indicated to have used programming in their teaching, while 42% said to have
done so in their research. One could naturally speculate that, with the low response
rate, the absolute figures might not be representative; in particular, mathematicians
with little interest or experience with technology might not be inclined to reply to
such a survey. The authors certainly note that “conclusions of the study are [. . .]
somewhat limited by these various sampling issues” (p. 40) and, possibly as an
instance of this, that only a minority of the respondents identified themselves as pure
mathematicians (p. 39). Indeed, one would expect applied mathematicians to be
more likely to make use of programming in their research while still undertaking
their part of large enrollment, basic courses which involve no such use. Still, citing
the difference in programming use within research and teaching, the authors consider
that “reflection by mathematicians on the potential benefits of incorporating com-
puter programming into mathematics research activities could, we feel, lead to an
increased integration of computer programming in undergraduate mathematics
instruction” (p. 53).

A similar survey, focused exclusively on the presence and character of courses
involving programming in undergraduate mathematics curricula in the UK, was
carried out by Sangwin and O’Toole (2017). Complete responses from about half
of the identified mathematics departments were received, with partial responses from
63% of those departments. Among those departments who responded to the
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question, 52% indicated “all single and joint honors students take a compulsory
course where computer programming is a significant learning goal” (p. 1139). The
authors also found that “numerical analysis is currently the most common mathe-
matical subject for compulsory courses which involve programming,” MATLAB
being the most popular programming language in such courses (p. 1141). We note
that similar trends were found in a recent study of European and Canadian under-
graduate programs in pure mathematics (Bosch et al. 2021). As for the UK, Sangwin
and O’Toole (2017) further found that “computing is disproportionally assessed by a
significant course work component, compared to other university mathematics
modules” (p. 1140), in which closed-book exams dominate. Programming may,
indeed, lend itself more to forms of assessment based on course work (e.g., Buteau
and Muller 2017); however, in a context where most course units are primarily
assessed by traditional exams, one could speculate that the result could be that
students and faculty consider programming-oriented units as somehow inferior and
isolated. The authors also found that “no university let someone from outside the
mathematics department teach the core compulsory programming modules”
(p. 1144) and that, according to faculty members, a significant part of the students
are “reluctant” to learn programming (p. 1146). The first observation could in part be
explained by institutional mechanisms for distributing funding based on teaching
and in part result from a desire to align such modules with the overall curriculum.
The latter may reflect that such modules are, perhaps frequently, seen as a necessary
evil by some students and faculty, as when the latter refer to programming as “a skill”
(p. 1146).

Moving closer to the actual and potential roles of programming as a tool for
students to create mathematical techniques, recent studies report on degree programs
in which programming has been deliberately and extensively integrated in several
core mathematics modules. Cline et al. (2020) report on how this was done for more
than a decade in a liberal arts college in the USA, again with MATLAB used both as
a programming language and as a CAS. In single variable calculus, for instance,
students create a technique for finding zeros of a function based on Newton-
Raphson’s method, as well as techniques to compute Riemann integrals to solve
certain modeling tasks (p. 741). Later, in complex analysis, they use programming to
study complex difference equations and their visualization through fractals (p. 745).
In final projects, students use programming in their study of more advanced tasks,
such as solving the Navier-Stokes equations with the finite element method (p. 746).
Faculty members of Brock University, Canada (e.g., Buteau and Muller 2017), have
presented a similar, long-lasting, and apparently successful experience in a series of
papers. In both contexts, it is interesting to note a prevalence of project-based
assessment and that mathematics faculties have fully taken on the curriculum, noting
(in the case of Cline et al. 2020) that “the introductory computer science courses at
our institution do not meet our needs, as the existing courses do not sufficiently
demonstrate their relevance to mathematics” (p. 739). Both notes align well with
findings from the more general UK study, outlined above.

Currently, there thus seems to be three overall options for teaching students to
create mathematical techniques by programming (rather than simply using packages
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of techniques, such as CAS): (1) not doing so at all, (2) doing so in a few more or less
isolated add-on modules, and (3) doing so in many or all undergraduate courses. The
latter option, echoing Forsythe’s (1959) vision, does not simply enrich an otherwise
classical “precision mathematics” curriculum but also changes its mathematical
contents, with more emphasis on applied and discrete mathematics. The choice is
therefore largely between different mathematical contents and profiles: it is didactic,
not merely pedagogical. Indeed, the third choice could have considerable potential
and presence in mathematics courses taught, for instance, to engineering and busi-
ness students. It is not merely a choice to make, as such transformations would
require considerable work to prepare new mathematical and didactic praxeologies:
new types of tasks and problems, assessment methods, explanations and other
theoretical discourses, etc. It would also demand a significant change in our vision
of what mathematical activities consist of.

Summary and Outlook

As we hope to have shown in the preceding sections, technology use in university
mathematics education represents a research object with several distinct parts, and it
is also in several ways different from technology use in primary and secondary level
mathematics. The present chapter offers two main contributions to research on this
topic:

1. A theoretical framework for distinguishing and analyzing the different didactic
uses of technology (outlined in Table 1), based on ATD

2. A critical review of existing research, pointing out not only achievements and
insights but also blind spots both in terms of the research objects considered and
the questions that are explicitly addressed

We note that these two contributions are not independent. One can interpret (1) as
creating a “map” of the research object, but the ATD perspective also implies a
deliberate focus on the (praxeological) levels at which the different types of tech-
nology use affect students’ and teachers’ mathematical activities and how this
depends on institutional conditions and constraints (not only on individual or
cognitive features). The map aspect suggests that some parts of the research object
are intensively investigated, most notably the use of CAS in basic university
mathematics teaching, while others – such as programming as a tool for learning
and doing mathematics – are only emerging as phenomena to be studied. Even for
the more extensively studied case of how ready-made tools are or could be used in
teaching, the critical and comparative viewpoint seems to be underrepresented in
research. Studies mainly focus on the effect of technology resources in students’
practices and learning outcomes but rarely connect these practices and outcomes to
the choices made about the type of mathematical content and activities that are
chosen and organized in the course.
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The focus on various positions within institutions (here, universities) provides a
framework for the critical (rather than merely synthesizing) reading of the literature.
In particular, we can observe that a large part of the research conducted so far takes –
more or less implicitly – the viewpoint of one or a few teachers within one institution
and often one particular course, in which experimental practices with technology
have been observed and documented. Then, this context – which acts as a more or
less extensively described background – is rarely questioned, and very often this
includes the mathematical praxeologies to be taught (possibly with very local
variations due, for instance, to the use of CAS). In other words, the external didactic
transposition (e.g., Bosch et al. 2021) is rarely visible or questioned, and the
institutional relativity of the results is at best implicit. A major value of the institu-
tional focus is to emphasize this relativity and to question its necessities beyond the
viewpoint of teachers who face (but may not even fully realize) the constraints of one
particular institution.

One can also note a certain tendency, particularly but not exclusively in early
studies, to adopt a proponent perspective, in the sense that local designs are
described along with observations of their benefits for students (according to implicit
assumptions about the kind of mathematics that should be learnt), while problematic
features or alternatives may be less emphasized. This, in fact, could also be seen as
an effect of research done from a teaching development perspective, however useful
that perspective may be for identifying and exploring new potentials.

We have also considered a few large-scale studies involving several institutions
and questioning, for instance, the connection between technology use in mathemat-
ical research and in undergraduate or graduate teaching and the perspectives and
possibilities of individual university teachers. We note that these studies concern
mostly the use of technology. In relation to university mathematics, the use of digital
library media by teachers and students – and how it is or could be institutionally
conditioned – appears to be particularly underresearched. When it comes to research
on digital interactive media, the pandemic situation from 2020 has certainly led to
new waves of studies also in relation to the university level, and it is probably too
early to summarize what this will add to existing research. Less well-understood
aspects, such as the role of students’ collaboration in the context of mathematics
courses, may indeed come to appear more prominently due to the nonvoluntary and
extensive use of digital platforms during this period. The same could be said more
globally about how tools and media enable or enforce changes (rather than mere
enhancement) in the mathematical praxeologies to be taught and consequently those
that are actually taught and learned.

To conclude, the use of digital tools and media in university mathematics
education remains a small but growing field of research. Due to the continuous
development of the mathematical sciences and the way they use and contribute to
digital technologies, the field requires a multiplicity of expertise and potential for
collaboration between scholars and university teachers with different backgrounds.
At the same time, it is important that didactics research develops more global
viewpoints than explorative experimentation with new tools and media, to take
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into account the changes that digital tools operate not only in the way mathematics is
taught at university but also in the very nature of mathematical praxeologies.
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 In our investigation of university students’ knowledge about real numbers in relation to 

computer algebra systems (CAS) and how it could be developed in view of their future activity as 

teachers, we used a computer algorithm as a case to explore the relationship between CAS and 

the knowledge of real numbers as decimal representations. Our work was carried out in the 

context of a course for university students who aim to become mathematics teachers in high 

schools. The main data consists of students’ written responses to an assignment of the course 

and interviews to clarify students’ perspectives in relation to the responses. The analysis of 

students’ work is based on the anthropological theory of the didactic (ATD). Our results indicate 

that simple CAS-routines have a potential to help university students (future teachers) to apply 

their university knowledge on certain problems related to the decimal representation of real 

number which are typically encountered but not well explained in high school. 

Keywords: CAS, ATD, real numbers, future teachers 

INTRODUCTION 

Klein (2016, p. 1) pointed out that young university students find it hard to use the mathematical 

knowledge, which they learnt at school as they deal with university level mathematics problems. Then, after 

they graduate from the university and go back to upper secondary school as mathematics teachers, it is also 

hard for them to find connections between teaching there, and what they learnt at university. This constitutes 

Klein’s (2016) classical “double discontinuity” problem.  

Durand-Guerrier (2016) studied the first discontinuity in relation to the specific case of real numbers. The 

author identified several gaps between the ways real numbers are conceived and taught in high school and 

at university. Along the lines of Durand-Guerrier (2016), González et al. (2019) proposed two challenging 

situations for the teaching of real numbers at high school. In this paper we show a proposal for university 

teaching that aims to address the second discontinuity in the special case of student’s relation to real 

numbers.  

So, the question is what should future teachers know about the real numbers and especially, what should 

they learn about real numbers at university? This question is almost as old as mathematics education research 

itself. Already, Klein (2016, p. 34-35) suggested that decimal notation was historically decisive to lead 

mathematicians onto the general arithmetic of “irrational numbers”. Nevertheless, research on real numbers 

teaching or learning we can find is not much. González-Martín et al. (2013) believe that one of the difficulties 

in teaching or learning real numbers lies in the relevant definitions. For example, Zazkis and Sirotic (2004) 

found the obstacle to learn irrational numbers for students is their understanding of the equivalence of 

definitions. There is a “missing link” between the fraction representation and decimal representation of a real 
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number. This kind of “missing link” is not only the negligence in teaching but also the unclear definition of real 

numbers in high school textbooks. González-Martín et al. (2013) studied the introduction of irrational and real 

numbers in Brazilian textbooks for secondary education. They found that the definition of real numbers 

always appears after the definition of irrational numbers and is expressed as the union of the set of rational 

numbers and the set of irrational numbers, i.e., ℝ = 𝕀 ∪ ℚ, where ℝ, 𝕀, and ℚ are the sets of real, irrational, 

and rational numbers respectively. However, the definition of the irrational number is based on the 

assumption of the existence of real numbers, i.e., 𝕀 = ℝ\ℚ. This seems to make sense but in fact, an 

independent definition of real numbers did not appear at all. This problem is easily ignored in textbooks by 

teachers and students, and they accept the definition in textbooks as “a transparent rule which does not need 

justification” (González-Martín et al., 2013, p. 239). Enhancing teachers’ knowledge of real numbers might 

assist them in going beyond circular and unsatisfactory definitions as found in the textbooks mentioned 

above. Our present work is on the teacher knowledge about decimal representations of real numbers and 

focuses on those university students who intend to become teachers at secondary school.  

Another question arises: How could we support them to develop that knowledge? Maybe today’s 

widespread use of digital technology (in mathematics and other school subjects) offers and requires modified 

answers to this question. We can find some studies related to the use of computer algebra systems (CAS) in 

mathematics education (e.g., Gyöngyösi et al., 2011; Lagrange, 2005). In this paper we take into consideration 

an aspect of secondary school mathematics which has so far been neglected in most of the literature on the 

teaching of real numbers there: the use of calculators and computers, including more advanced uses such as 

graphing and programming, which is common at this level in many countries. In Denmark, CAS like Maple, TI 

Nspire, and Geogebra are commonly used in upper secondary schools. In schools and in society at large, real 

numbers and functions are increasingly accessed and handled through CAS and other mathematics software. 

However, in the teaching of mathematics at university, such use of tools appears at most in introductory 

Calculus courses and not in later, more theoretical courses. Future teachers of mathematics often take such 

more theoretical courses and find that they are far from what is taught at secondary school. In this paper, we 

particularly investigate the use of simple programming as one strategy to bridge the gap. 

The paper is structured as follows. In the next section, we will recall how the anthropological theory of the 

didactic (ATD) works as a theoretical framework to reformulate Klein’s (2016) second discontinuity problem 

and based on this formulate our research questions. Then, the mathematical context will be introduced, 

including the background on infinite decimal model of real numbers, the elaboration of the given computer 

algorithms and addition of infinite decimals. After mathematical context, we will introduce the empirical 

context for the study, and the methodology used to analyze the research questions will also be shown in this 

section. Then, we will present the results based on data collected in a “capstone course” called UvMat. In the 

end we will draw up conclusions along with perspectives for further research.  

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

ATD, initiated by Chevallard (2019), was used by numerous authors (Barquero & Winsløw, 2022; Winsløw, 

2013; Winsløw & Grønbæk, 2014) to model Klein’s (2016) “double discontinuity”. Following Chevallard (2019), 

we denote by 𝑅𝐼(𝑝, 𝑜) the relation between a position 𝑝 within the institution 𝐼, and the knowledge object 𝑜. In 

ATD, a knowledge object is modelled as a praxeology. A praxeology contains a praxis block and a logos block. 

There are two parts in the praxis block, a type of tasks and techniques used to solve the tasks. The logos block 

is composed by the technology part, which is a discourse about the techniques, and the theory part which 

justifies the technology part and explains its relation to praxis block. These notions are more thoroughly 

introduced in Chevallard (2019) or Winsløw (2011).  

The praxeologies we study in this paper are related to real numbers as these appear in Danish high school 

and at university. Using the theoretical model of Klein’s (2016) second discontinuity proposed by Winsløw 

(2013) we can represent the passage we are interested in, as  

𝑅𝑈(𝜎, 𝜔ℝ) → 𝑅𝑆(𝑡, 𝑜ℝ),                                                                                                                                                     (1) 

where 𝜔ℝ is any mathematical praxeology about real numbers worked by students 𝜎 in the university 𝑈, while 

𝑜ℝ is any mathematical praxeology about real numbers supposed to be taught in the institution secondary 

school 𝑆 by teachers 𝑡 (the → of the passages above can be considered as a gap between university and high 



 

 European Journal of Science and Mathematics Education, 2023 

European Journal of Science and Mathematics Education, 11(2), 283-296 285 

 

school). Future teachers’ knowledge could be important for narrowing this gap. In particular, we can 

sometimes select some elements related to logos blocks from 𝜔ℝ to justify the praxis blocks from 𝑜ℝ. In other 

cases, we need to add some mathematical elements to bridge the gap, ending up with a slightly larger object 

which we denote by 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ . Therefore, for those future teachers in university (represented by 𝜎𝑓𝑡), we aim 

at a new relation 𝑅𝑈(𝜎𝑓𝑡, 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), where 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is really connected by links known to 𝜎𝑓𝑡. 

The first question is what kind of content should be included in 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Barquero and Winsløw (2022) 

have considered the decimal representations of real numbers such as constructing a decimal representation 

for a given number. They particularly investigated students’ work on the graphs of a function by using different 

representations of √3 on Maple (a CAS the students know from the first semester courses). In this paper, we 

continue to consider real numbers as decimal representations, particularly about addition of infinite decimals 

operated on Maple. 

In university, mathematics students who intend to become future teachers will acquire a certain amount 

of knowledge of real numbers. How students select the suitable theoretical elements from 𝜔ℝ to explain the 

real number problems in secondary school is a sub-discontinuity under the Klein’s (2016) second gap, which 

can be formalized as the following transition: 

𝑅𝑈(𝜎, 𝜔ℝ) → 𝑅𝑈(𝜎𝑓𝑡 , 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅).                                                                                                                                         (2) 

How to support this transition is our second question, which is also the main work in this paper. We 

formulate these two questions as the precise research questions:  

RQ1: How could the idea of ‘infinite decimal’ be related to university mathematics and taught to future 

secondary school teachers?  

RQ2: In particular, how can working with a given computer algorithm support university students’ use of 

(university level) mathematical knowledge to address secondary school level questions related to the infinite 

decimal model of real numbers? What new mathematical and didactical knowledge on decimal 

representations of real numbers can such work enable students to develop? 

Note that RQ1 is a theoretical research question, asking for specific links between a school mathematical 

notion (“infinite decimals”) and appropriate undergraduate mathematics, thus it is about the knowledge to be 

taught to future teachers. RQ1 is in general answered by several classical and newer texts (e.g., Sultan & Artzt, 

2018), and we summarize one answer at the beginning of the next section. We address RQ2 by investigating 

students’ work on a concrete assignment, also presented in the next section. Our answers to RQ2 are derived 

from analyzing students’ written reports in response to the assignment, as well as interviews with selected 

students. 

MATHEMATICAL CONTEXT 

Real Numbers Represented as Infinite Decimals 

In university, students will meet the completeness property of real numbers in one of the first courses in 

analysis. They may also be given various explanations of what real numbers are, from the number line to 

Cauchy sequences or Dedekind cuts (Bergé, 2010), although these constructions are seldomly treated in detail 

(so, they do not study equivalence classes of Cauchy sequences, etc.). The elements actually covered, 

particular various consequences of completeness related to convergence and compactness, then form part 

of 𝜔ℝ, but with little direct connection to the earlier praxeologies 𝑜ℝ learnt at school. The completeness 

property, however, was coined at the end of the 19th century in order to formalize the idea that any real 

number can be represented by an infinite decimal (Bergé, 2010), an idea already met in school. 

Completeness–or, more intuitively, the decimal representation–can be used to explain that the set of real 

numbers satisfies the Archimedean axiom, i.e., for any 𝑥 ∈ ℝ , there is an 𝑁 ∈ ℤ such that 𝑥 ≤ 𝑁. It follows from 

this that, for any 𝑥 ∈ ℝ, there is a unique 𝑁 ∈ ℤ such that 𝑁 ≤ 𝑥 < 𝑁 + 1.  

This kind of knowledge is thus formally related to logos block in 𝜔ℝ, but will not be explicit at the secondary 

school level, although it is entirely compatible with the “number line” metaphor used there. It may not even 

be taught to university students although it is crucial to the connected extension 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (a metaphorical 

notation we use to designate the coherent praxeology aimed at future teachers). For RQ1, our aim is to 
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elaborate from 𝜔ℝ the meaning of an infinite decimal as a more or less unique representation of a real 

number. An infinite decimal is denoted as ±(𝑁. 𝑐1𝑐2𝑐3 …), where 𝑁 ∈ ℕ ∪ {0} and 𝑐𝑖 ∈ {0, 1, 2, … , 9}. We mainly 

consider nonnegative infinite decimals here, as a negative infinite decimal can be defined as the additive 

inverse of a positive one. We use a part of chapter 8 in the book The mathematics that every secondary school 

math teacher needs to know (Sultan & Artzt, 2018) to outline a possible answer to RQ1.  

An infinite decimal 0. 𝑐1𝑐2𝑐3 …  ∈ [0, 1], where 𝑐1 , 𝑐2 , 𝑐3 … ∈ {0, 1, 2, … , 9} can be rigorously defined by 

0. 𝑐1𝑐2𝑐3 … = ∑ 𝑐𝑖 ∙ 10−𝑖∞
𝑖=1 . It is sufficient to consider the interval [0, 1] because we can get numbers in other 

intervals by adding some integer. The two main results that should be established are (a) ∑ 𝑐𝑖 ∙ 10−𝑖∞
𝑖=1  always 

converges and (b) every 𝑥 ∈ (0, 1) can be written as a unique infinite decimal which does not terminate in 9̅. 

Result (a) means that any infinite decimal makes sense because the infinite series ∑ 𝑐𝑖 ∙ 10−𝑖∞
𝑖=1  always has a 

finite sum, due to convergence properties known from 𝜔ℝ (geometric series). Result (b) begins with the 

converse: any real number in (0, 1) can be written as an infinite decimal. The last part of (b) amounts to prove, 

again from 𝜔ℝ, that 0. 𝑐1 … 𝑐𝑘000 … and 0. 𝑐1 … 𝑐𝑘−1(𝑐𝑘 − 1)999 … represent the same number. The two results 

are divided into three theorems (Sultan & Artzt, 2018) and the corresponding proofs based on 𝜔ℝ can be 

found there too. After this, we can define irrational numbers as infinite decimals that do not represent a 

fraction of integers. It is also proved that irrational numbers correspond exactly to infinite, non-periodic 

decimals. Several examples and exercises related to secondary school mathematics are provided by Sultan 

and Artzt (2018), concerning, for instance, how to find a fraction representation of a periodic infinite decimal 

representation. These praxeologies can, to some extent, eliminate the “missing link” of the two 

representations mentioned before. With this we have outlined the central elements of 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, which forms 

the basis of our answer to RQ1. We now consider how to elaborate on this answer by considering RQ2. 

Computer Algorithms 

Before we answer RQ2, we need to introduce two things: computer algorithms, and more knowledge on 

infinite decimals related to (but exceeding) what is presented by Sultan and Artzt (2018). These two things are 

concretely developed in an assignment (see Appendix A) designed for students and the answer to RQ2 is 

based on students’ answers to the assignment. This assignment contains two parts. The first part is the 

understanding of a given routine. This routine is implemented in Maple and can be used to find the first 10 

digits of √2, one by one.  

It is not a new idea that programming could be a possibly central tool to introduce in undergraduate 

mathematics. As early as 1959, Forsythe (1959) proposed to integrate coding in most of all introductory 

university mathematics. Our aim with the assignment was not quite as ambitious. The aim of introducing the 

Maple based routine is to show how to compute the decimals of certain well-known irrational numbers by 

elementary computations (relying only on the four operations with finite decimals, and on evaluating 

inequalities of rational numbers) that could in principle be carried out manually. The routine merely allows us 

to speed up the calculation. Producing the decimal representation of √2 is a secondary school task, carried 

out there with calculators, but seeing how it could be done concretely is not a common experience in 

secondary school. Thus, the new technique contributes to the praxis block in 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, while considering its 

justification and consequences contributes to its logos block. 

No matter which way we use, computer or pen-and-paper, we usually cannot specify all of the decimal 

representation of an irrational number. Therefore, we usually use an approximate decimal to represent an 

irrational number and this approximate decimal is a rational number. Let 𝑥 = 𝑁. 𝑐1𝑐2𝑐3 … be an infinite decimal 

where 𝑁 ∈ ℕ and 𝑐𝑖 ∈ {0, 1, 2, … ,9} for all 𝑖 ∈ ℕ. We denote by 𝑥(𝑛) the 𝑛 digits approximation of 𝑥, so 𝑥(1) =

 𝑁. 𝑐1 = 𝑁 +
 𝑐1

10
 , 𝑥(2) = 𝑁. 𝑐1𝑐2 =  𝑁 +

 𝑐1

10
+

𝑐2

100
,…, 𝑥(𝑛) = 𝑁. 𝑐1𝑐2𝑐3 … 𝑐𝑛 = 𝑁 + ∑ 𝑐𝑖 ∙ 10−𝑖𝑛

𝑖=1 . Obviously {𝑥(1), 𝑥(2), 

…, 𝑥(𝑛), …} is a monotone bounded sequence, so the limit of this sequence exists and is in fact equal to 𝑥. This 

is connected to the content in the previous subsection and justifies the praxis block.  

In this routine we use the polynomial 𝑓(𝑥) = 𝑥2 − 2 whose unique positive root is √2. Since 𝑓 is increasing 

on (0, ∞), and we have 𝑓(1) = −1 < 0 and 𝑓(2) = 2 > 0, it follows from the intermediate value theorem (𝜔ℝ) 

that √2 is located in (1, 2). Similar basic reasoning shows that √2 is in (1.4, 1.5). Therefore, the first decimal of 

√2 is 4. The routine uses two loops to repeat this process until it finds all first 10 decimal digits of √2. First of 

all, the initial value (which is called 𝐾 here) should be set to 1, the integer part of √2 according to the above. 
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In the routine, 𝑖 is used to number the decimals that we aim to find, and this is the “external” loop. The number 

of the decimal digits to be produced can be modified by the users (in the assignment, we set it so as to find 

the first 10 decimal digits of √2). Considering that our focus is on the decimal part, we simplified the routine. 

Now, let us turn to the “inner” loop, where 𝑗 ∈ {0, 1, 2, … , 9} and 𝑗 ∙  10−𝑖 represents a potential 𝑖th decimal 

contribution to the sum. When (𝐾 + 𝑗 ∙  10−𝑖)
2

− 2 ≤ 0, the computer will save the last value 𝑝 = 𝐾 + 𝑗 ∙  10−𝑖 

and continue to increment 𝑗 until (𝐾 + 𝑗 ∙  10−𝑖)
2

− 2 ≥ 0. After the if- condition is satisfied, the value of the 

sum 𝐾 will be updated for the next 𝑖 and the computer will print the value 𝑥(𝑖) which is equal to 𝑝 = 𝐾 + 𝑗 ∙

 10−𝑖 (Maple by default gives a fraction form of 𝑝, so we have to use the evalf-command to transform 𝑝 to a 

(finite) decimal form; no “rounding” is done here. The number of digits produced by the evalf-command 

includes the integer part, so we need to use 𝑖 + 1). In general, for each 𝑖, the “inner” loop will produce a new 

𝐾 and an 𝑥(𝑖) (In order to only show 𝑥(𝑖) in the final result, we use “:” to make 𝐾 invisible). 

The main part of this routine is the “inner” loop (the “external” loop is mainly used to determine the 

position of the decimal digits). In this loop, we can get that for each 𝑥(𝑖), one has 𝑥(𝑖)2 − 2 ≤0 and 

(𝑥(𝑖) + 10−𝑖)2 − 2 ≥ 0. Therefore, by results known from 𝜔ℝ, lim
𝑖→∞

𝑥(𝑖) = √2. The proof of the limit is a part of 

what students could produce as an answer to question b) in the assignment. We also hope students could 

associate with the intermediate value theorem for continuous functions as they explain the working of this 

routine. A complementary visualized explanation from students to this routine is also asked for (question c)); 

indeed, using Maple to “visualize” difficult points forms part of what could reasonably be expected from 

teachers’ relationship to instrumented techniques. 

Addition of Infinite Decimals  

The real numbers are not simply to be computed digit by digit; we also need to consider operations with 

real numbers, which leads to difficulties in the case of decimal representations. To add two integers or finite 

decimals numbers, the algorithm learnt in primary school is to add digits from the last position on the right 

(possibly “carrying over” exceeding digits). For some infinite decimals like irrational numbers, this way does 

not work. Can we add with approximate decimals of numbers? To be concrete, two irrational numbers, 0.1234 

… and 0.8765 …, the sum of their first four decimal digits is 0.9999. If the sum of their 5th decimal digits is more 

than nine, the first four decimal digits of the new sum will turn out not be 9’s but 0’s. Some students may have 

become aware of this problem while studying decimals, or their teachers could have mentioned this in 

secondary school. The investigation about how students use the computer algorithms above to address this 

question from the new university level construction is also a part of our answer to the first part of RQ2. 

We need to introduce some notation from the first part of the assignment. Let 𝔻𝑛 = {10−𝑛𝑦: 𝑦 ∈ ℤ} for 𝑛 ∈

ℕ and 𝔻 = ⋃ 𝔻𝑛𝑛∈ℕ . We denote by 𝔻∞ the set of formal expressions ±(𝑁. 𝑐1𝑐2𝑐3 …) where 𝑁 ∈ ℕ ∪ {0} and 𝑐𝑖 ∈

{0, 1, 2, … , 9}, and by 𝔻0 be the set of formal expressions ±(𝑁. 𝑐1𝑐2 … 𝑐𝑗0000 … ) where 𝑁 ∈ ℕ ∪ {0} and 𝑐1 … 𝑐𝑗 ∈

{0, 1, 2, … , 9}. Clearly we can interpret numbers in 𝔻∞\ 𝔻0 as real numbers based on the above (the 

representation being furthermore unique). Let 𝑥, 𝑦 ∈ 𝔻∞\ 𝔻0. Through calculation (by computer or pen-and-

paper), we can only get 𝑛 digits approximation of 𝑥 and 𝑦, denoted by 𝑥(𝑛) and 𝑦(𝑛) where 𝑥(𝑛), 𝑦(𝑛) ∈ 𝔻𝑛. 

For each 𝑛 we can form 𝑧(𝑛) = 𝑥(𝑛) + 𝑦(𝑛). When 𝑛 goes to infinity, one has that lim
𝑛→∞

𝑥 (𝑛) + lim
𝑛→∞

𝑦 (𝑛) =

lim
𝑛→∞

𝑧(𝑛) determines some number 𝑤 in 𝔻∞\ 𝔻0. But we have not, thereby, reduced addition on 𝔻∞\ 𝔻0 to the 

addition on 𝔻; but we cannot know if “carry overs” will lead to a failure of the following equation: 

𝑥(𝑛) + 𝑦(𝑛) = 𝑤(𝑛), for any 𝑛 ∈ ℕ.                                                                                                                                     (3) 

This quandary is not treated in any depth by Sultan and Artzt (2018). We hope this quandary would be 

discovered by students through working with the example in e) and f) of the assignment in Appendix A. This 

will then develop students’ technical and theoretical knowledge related to the non-trivial addition of two 

infinite decimals.  

In the question e) of the assignment in Appendix A, students were concretely asked to discuss the sum of 

√2 and √3. If we regard √2 + √3 as one number, which is still an irrational number, the above routine can be 

adapted to produce the first 10 (or more) decimal digits of √2 + √3 . The main job for students is to find a 

polynomial with √2 + √3 as root, and with integer coefficients (in order to remain with finite decimals in the 

algorithm). The simplest candidate, found by many students (following a technique known from exercises in 
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the textbook) is 𝑝(𝑥) = 𝑥4 − 10𝑥2 + 1. Now, let 𝑥 = √2, 𝑦 = √3 and 𝑤 = √2 + √3. Students were expected to use 

the above routine to find 𝑥(𝑛), 𝑦(𝑛) and 𝑤(𝑛) for 𝑛 from 1 to 10. When 𝑛 = 6, we will get 𝑥(6) + 𝑦(6) = 3.146263 

and 𝑤(6) = 3.146264, which means 𝑥(6) + 𝑦(6) ≠ 𝑤(6). This shows concretely that the equation (3) does not 

always hold, and that is the point which students are asked to make in question f).  

It is clear that the use of computers to answer the last question greatly saves time and in practice enables 

getting to the point above. Students’ didactical knowledge gained from this assignment will be analyzed later.  

CONTEXT AND METHODOLOGY 

We conducted an experiment to investigate the two research questions presented above in a course called 

UvMat, which is taught for future mathematics teachers in secondary school at the University of Copenhagen 

(Denmark). UvMat is not a mandatory course, and it involves 20-30 students each year, a professor who plans 

the course and gives the lectures, and a teaching assistant (TA) who is in charge of exercise classes and of 

grading assignments. In Denmark, high school teachers have to qualify in two subjects, one is called “major” 

and is studied for about three years, the other is the “minor” and is studied for about two years. Most 

participants in UvMat study mathematics as a minor, in addition to their major subject (such as physics) and 

will then be authorized to teach these subjects in high school. Due to the shortage of authorized teachers, 

some of them already have some experience with part-time high school mathematics teaching. The aim of 

this “capstone course” is to help future teachers to consider high school mathematics from an advanced 

standpoint, according to Klein’s (2016) expression. This kind of “capstone course” thus aims to strengthen the 

connections between praxeologies met in high school and at university. Throughout the course, students 

attend lectures and exercise classes (in Danish), following the textbook (Sultan & Artzt, 2018), and they also 

do mandatory written assignments in groups (in Danish), every week.  

The fourth week of UvMat is based on the second part of chapter 8 of the textbook, dealing with decimal 

representation of real numbers. We designed a group assignment (called WA4) with six questions for this 

week (the full text is included here as an appendix which the original version is in Danish). Our study is 

designed to investigate RQ2 by analyzing data collected from students’ written answers to WA4 and the 

interviews with students. Our answer to RQ1 (see the previous section) outlines what students could learn 

from lecture and textbook and is part of the background for WA4.  

The first question in RQ2 is analyzed from the logos blocks that were used by students to explain the given 

computer algorithm (question b) and c) in WA4 and their observations related to the addition of infinite 

decimals with the help of this computer algorithm [question f] in WA4). Eight groups’ answers to WA4 from 

students were received. First, we reviewed their answers to question b) and c) which asked students to explain 

the given routine in two ways: mathematical proof, and visualization. Our analysis focused on two aspects: 

what university-level knowledge the students applied, and how students made use of this knowledge. 

Secondly, we reviewed students’ answers to question f). The analysis of students’ answers considered their 

extent to which they can apply the mathematical theory of the course to explain observations from using the 

routine on the given concrete case. In addition, we also interviewed five students from five different groups 

who had volunteered to participate. The purpose of the first part of the interviews is to further understand 

the written answers given by the students. For example, some groups post similar visualizations to question 

c), but without a clear description, so the rationales and intentions behind those visualizations could still differ. 

In the interview, they got another chance to explain what they want to express through the visualizations and 

how it is, for them, connected to the given routine. In addition, there were also some errors that appeared in 

students’ written answers to question f), where we could not decide whether they are due to calculation 

mistakes or more conceptual problems, as many groups did not show how they get to their answers. So, in 

the beginning of the interview, students were asked to elaborate on their answers to question c) and f), which 

was used to complement our previous analysis for the first question of RQ2. The last part of the interviews 

relate to more general questions relating to the purpose of the assignment and its relation to the rest of the 

course. 

UvMat does not aim to impart didactical knowledge, but we still expected that students could develop 

some didactically relevant knowledge from WA4. Question f) was designed not only to investigate the addition 

between two infinite decimals, but also to identify the theoretical perspectives that students could develop 
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from exploring this question (the second question of RQ2). To investigate the perspectives and views of 

students emerging from their work with WA4, we asked relatively broad questions in the interviews such as: 

what did you learn from working with WA4? and what is the relation between WA4 and mathematics teaching 

in high school? Our analysis for the second question of RQ2 was based on their answers to such questions 

(and follow up questions) raised during the interview.  

RESULTS 

Students’ Work With the Given Computer Algorithm 

In question b), we asked students to solve the tasks: Explain what the routine does, why 𝑥(𝑛) ∈ 𝔻n, and 

why 𝑥(𝑛) → √2. The main challenge of question b) is explaining the convergence of 𝑥(𝑛). Therefore, in 

students’ answers, the university-level notions involved were “sequence” and “limit of sequences”. However, 

students use these notions in similar and rather informal ways in their answers. We found that seven groups 

did not give a formal argument (as hoped for) but explained the convergence informally, like merely 

summarizing what they observed from the numbers produced by running the routine. Such empirical reasons 

are common in secondary school but are not acceptable in most undergraduate mathematics courses. A 

typical example of an explanation is this answer from one group:  

In this way, the routine finds, for each decimal added, the decimal number that is closest to √2 from 

below. We thus form a sequence of numbers 𝑥(𝑛), where 𝑛 is the number of decimals, and 𝑥(𝑛) 

converges towards √2. That is lim
𝑛→∞

𝑥(𝑛) = √2 (translated from Danish). 

Only one group solved this task as we explained in the former section by using the definition of limit:  

We will now show that lim
𝑛→∞

𝑥(𝑛) = √2. By construction, 𝑥(𝑛) ≤ √2 for all 𝑛, as in the code, we only 

add decimals as long as the number is smaller than √2. Furthermore, the decimal which is added 

in the 𝑛th decimal is the largest number for which the output remains under √2, so if you add 10−𝑛, 

you will get above √2. Therefore, 𝑥(𝑛) + 10−𝑛 ≥ √2. If we put this together, we can get 𝑥(𝑛) ≤ √2 ≤

𝑥(𝑛) + 10−𝑛, which is the same as 0 ≤ √2 − 𝑥(𝑛) ≤ 10−𝑛. That means |√2 − 𝑥(𝑛)| ≤ 10−𝑛. So, for any 

𝜀 > 0, we have |√2 − 𝑥(𝑛)| <  𝜀, for all 𝑛 > 𝑙𝑜𝑔10(
1

𝜀
). So, for all 𝜀 > 0, there is 𝑁 ∈ ℕ such that 

|√2 − 𝑥(𝑛)| <  𝜀 when 𝑛 > 𝑁. This means exactly lim
𝑛→∞

𝑥(𝑛) = √2 (translated from Danish). 

In general, students do have a strong tendency to prefer informal explanations based on secondary school 

mathematical conceptions even though the concept of sequence only appears at university in Denmark–not 

in high school. This situation can be attributed to students not putting themselves in the right position, as 

university students about to deepen their knowledge of high school mathematics. When they were facing 

what they perceive as a secondary school task, without being given specific directions for what to do, most 

students act as high school students 𝑠 rather than preservice students 𝜎𝑓𝑡 at university. They did not 

spontaneously consider that it is necessary or useful to draw on university level methods. In addition, this 

also reflects the lack of coherence, perceived by students, between logos blocks (from 𝜔ℝ ) and praxis blocks 

(from 𝑜ℝ). Therefore, this type of exercise helps with the construction of 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and thus the transition (2). 

We also asked students to explain the routine in another way (question c): use Maple to produce a visual 

explanation of how the routine works. Similar with question b), the pertinent university level knowledge in 

question c) is about sequences and continuity, and we focus on whether students’ answers draw on such 

knowledge,. All groups used the point plot to show first 10 elements of the sequence {𝑥(𝑛)}𝑛=1
∞ , which can be 

done easily after running the routine. Students used this way to illustrate the convergence 𝑥(𝑛) → √2 , as 

visualization of their explanations in question b). To explain this convergence, some groups combined the 

point plot with a function plot for 𝑥 ↦ 𝑥2 − 2. Another common way is to superpose the point plot with a plot 

of the line 𝑦 = √2 where we can see the 10 points are closer and closer to this line. One group superposed 

the graph of the function 𝑦 = 𝑥2 − 2 and the ten points (𝑥(1), 𝑦(𝑥(1))) , … , (𝑥(10), 𝑦(𝑥(10))), showing how they 

get closer and closer to the zero (√2, 0) of 𝑦. Even though this group had plotted the function 𝑦 = 𝑥2 − 2 on 

the interval (0, 1.42), after the fourth point it is no longer possible to see the changes between points. This 
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problem was also indicated in the group’s answer. In fact, this problem also occurred on figures with the 

added line 𝑦 = √2. One of the groups solved this problem with three local zooms of the figure. 

The visualizations above emphasize the sequence produced by the routine, rather than how the routine 

actually works (the two loops) and why (intermediate value theorem). Two of the groups made up for this by 

also presenting another kind of point plot (e.g., Figure 1), to explain how the “inner” loop works. Figure 1 

shows how the “inner” loop determines 𝑥(1), by stopping as it “overshoots” and returning the previous value. 

In fact, Figure 1 only compared (𝐾 + 𝑗 ∗ 10−𝑖) with √2 when 𝑖 = 1, which simplified from the if-command in the 

routine (which compares, in fact, (𝐾 + 𝑗 ∗ 10−𝑖)
2

− 2 with 0). The “inner” loop stops when it finds some 𝑗 such 

that (𝐾 + 𝑗 ∗ 10−𝑖)
2

− 2 > 0 and that is why in Figure 1, the sequence stops at 𝑗 = 5. 

 

Figure 1. The point plot that shows how the “inner” loop of the routine determines 𝑥(1) (Source: Author’s 

own elaboration) 

Although we think most visualizations fail to substantially address “how the routine works”, students were 

quite confident about their work, when asked to explain it during interviews. They believed the figures match 

their explanation of the routine. One student described their figure in the interview as: “… it made good sense…” 

Many groups also, verbally, explained details in the coding of the routine, like why 𝐾 starts from 1, but this 

was not visualized. From the explanations both in their answers and interviews, students thought the routine 

is used to create the sequence and thus, the convergence is, to them, the most important aspect of the 

routine. Therefore, the point plot which shows the subsequence of  {𝑥(𝑛)}𝑛=1
∞  appears sufficient for students. 

Still, we think that merely showing a visualization of the outcome or product of the routine does not really 

correspond to the normal understanding of “visualizing how the routine works” (the process that produces 

the outcome or product). 

In addition to the students’ capacity of reading the routine, question c) also requires students to use simple 

codes from Maple by themselves. Students’ competence to use computer tools influenced their creation of 

the visualizations. In the interviews, all participants were satisfied with the content of their figures, but they 

still thought the figure itself could be improved. One interviewee said his group considered to use an 

animation to show the “inner” loop and the final subsequence, but they failed to realize that idea. Though all 

students had some experience with Maple before UvMat, the interviewees still recognized that they spent 

more time on tedious details of how to make a figure than on how to understand the routine. One student 

described the main difficulty in answering question c) as related to names of colors in Maple:  

“… I was not sure which colors Maple has. That was something I could not find easily, and I was not 

sure how to program the colors …” 

Questions d) and e) serve to extend students’ work with the routine, and to prepare question f). The first 

half of question d) prompts students to activate their knowledge of the intermediate value theorem, which 

clearly belongs to university mathematics. This theorem, in fact, guarantees the success of the routine. The 
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second part of question d) and e) asked students to use the routine to find approximate decimals of √3 and 

√2 + √3 respectively. All groups were able to modify the routine to get correct answers. Question e) also 

examined students’ knowledge of polynomial which typically presents at university. We will use the results 

obtained in question d) and e) by students and analyze their answers for question f) in the next subsection.  

Students’ Work on the Addition of Infinite Decimals 

The last question of the assignment is: f) investigate what the results from b), d), and e) tell you about 

addition on 𝔻∞\ 𝔻0. This is a very open question. It does not require new applications of the routine, but 

rather to reflect on previous results. As explained before, the point of this question is that addition and 

approximation to finite decimal do not commute: with 𝑥 = √2, 𝑦 = √3 and 𝑤 = √2 + √3, we may have 𝑥(𝑛) +

𝑦(𝑛) ≠ 𝑤(𝑛). In fact, students computed 𝑥(1) to 𝑥(10) using the given routine in b), 𝑦(1) to 𝑦(10) in d) and 𝑤(1) 

to 𝑤(10) in e). Comparing, they could notice that 𝑥(6) + 𝑦(6) ≠ 𝑤(6).  

To explain this phenomenon, the students can combine knowledge from 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. On the one hand, we 

know from practice with calculators that something which ought to be 0 sometimes end up as something 

which is not zero. On the other hand, the theoretical model of real numbers as infinite decimals does not 

offer an easy way to describe the basic operations like addition: we cannot add “from the right” and adding 

from the left may lead to errors (as in the case above).  

Six groups pointed out the “unusual” addition. Three of them showed the comparison of 𝑥(𝑛) + 𝑦(𝑛) and 

𝑤(𝑛) on Maple and found the special case when 𝑛 = 6 as we expected (e.g., Figure 2). However, the other 

three groups did not show any examples, but they all pointed out that two infinite decimals cannot be added 

decimal by decimal. We interviewed two students from these groups. One of them was not happy with this 

answer because they did not see what the question required from them. According to this student they 

compared the data obtained from the previous questions both by hand and Maple, and noticed 𝑥(6) + 𝑦(6) ≠

𝑤(6), but then struggled to explain the phenomenon, considering if it might be related to the possibility of 

equivalent decimal representations which terminate in infinite numbers of 9’s or 0’s.  

 

Figure 2. An example from one group that how to find the “unusual” addition by Maple (reprinted with 

permission of the students) 

In fact, this concern is irrelevant because the question was restricted to the set 𝔻∞\ 𝔻0, which avoids 

decimals with nothing but 0’s in the end. The other student was very satisfied with the given answer and 

thought there was no need to put more effort into question f) because the conclusion they gave was obvious. 

In this group they did not compare the results from previous questions because they believed cases like 𝑥(6) +

𝑦(6) ≠ 𝑤(6) were not a surprise. As the student from this group said  

“… it makes sense, but we did not think we have to do it …” 

In addition to the above-mentioned six groups, there were also two groups that produced entirely 

misleading answers. One of the groups presented their conclusion after comparing 𝑥(𝑛) + 𝑦(𝑛) and 𝑤(𝑛) thus:  
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After looking at the different decimal numbers, it is the same whether you first take the different 

decimal expansions separately or you take it together …” (translated from Danish).  

One possible reason for this answer is that students did not carefully compare the data. Another group did 

not pay attention to the comparison between 𝑥(𝑛) + 𝑦(𝑛) and 𝑤(𝑛). They gave the following answer: 

“… If we combine the three observations, these examples indicate that addition in 𝔻∞\ 𝔻0 is a closed 

operation, since the sum of two elements from 𝔻∞\ 𝔻0 is again an element in 𝔻∞\ 𝔻0. This is 

consistent with that 𝔻∞\ 𝔻0 is isomorphic with ℝ (question a)), which is closed during addition …” 

(translated from Danish). 

We can see this group was trying to answer question f) at a theoretical level using ideas (about properties 

of operations) learnt at university, but there are two problems in their answer. Firstly, all results from the 

routine are finite decimals which means the addition between these decimals happened in 𝔻𝑛. Students could 

not get any results about addition in 𝔻∞\ 𝔻0 directly from such observations but they could consider the “cut 

off” map 𝜑: 𝔻∞\ 𝔻0 →  𝔻𝑛 given by 𝜑(𝑥) = 𝑥(𝑛). Then the question would turn into looking at whether 𝜑(𝑥 + 𝑦) 

equal to 𝜑(𝑥) + 𝜑(𝑦). Obviously, from the same case (𝑛 = 6), the equation does not always hold, so that (in 

university language) 𝜑 is not a homomorphism. Secondly, the operation on ℝ can be transferred to 𝔻∞\ 𝔻0 

because there exists a bijection between 𝔻∞\ 𝔻0 and ℝ (proved in question a)) so that, trivially 𝔻∞\ 𝔻0 is 

isomorphic with ℝ when endowed with this addition. But the results to be considered for question f) suggest 

that students should think about whether the addition on 𝔻∞\ 𝔻0 could be defined directly using decimals. 

This, however, is far from straightforward, as the examples show. From the interview of one student of this 

group, we know that they did not really reflect on this difficulty. The way they thought about this question 

falls short of university level standards and also lacks links to praxis block of secondary school mathematics 

(as we will now detail).  

Students’ Mathematical and Didactical Knowledge From the Assignment 

Finally, how could the knowledge have developed from students’ work on this assignment support 

teaching–as integrated mathematical and didactical knowledge? One of the purposes of this assignment is to 

help students think about how computers and calculators handle infinite decimals. We all understand that 

infinite decimals cannot be completely displayed by a computer, so the computer has to somehow convert 

infinite decimals into finite decimals. In particular, irrational numbers are handled as a special kind of rational 

numbers. This transformation could cause computers to make apparent errors when they operate on 

irrational numbers (e.g., question f). Indeed, secondary school teachers in Denmark need to manage pupils’ 

use of CAS in relation to real numbers. How can a teacher deal with infinite decimals on CAS when they teach 

real numbers? The routine given in the assignment allows students to take a look into a possible procedure 

for directly calculating the first 10 decimal digits of √2 (and, in fact, a wide range of zeros of other given 

functions). Although we do not consider the actual algorithms behind commands such as “sqrt” (square root) 

or “solve”, the routine opens up the “black box” to some extent. This could help future teachers reflect on how 

computers may more generally handle real numbers. In addition, the discussion about addition on infinite 

decimals could also help teachers understand why this sometimes leads to strange-looking results. 

However, not all students saw the didactical relevance of WA4 as we would like them to. When we asked 

students about the relation between this assignment and secondary school teaching during interviews, only 

one student’s response directly involved the representation of infinite decimals on computers and suggested 

that secondary school teachers  

“should be able to figure out when Maple is good to use and when it is not.”  

Whereas other interviewees gave a neutral answer like  

“… no matter what you teach, it is always a good thing to know more than you actually need …”  

or claimed that this assignment is beyond the secondary mathematics level,  

“… the curriculum of high school students is very far from this …” 
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Students did not mention question c) about visualizing the algorithm when asked to identify the main 

points of the assignment. We consider this question may have been too open or technically demanding to 

really contribute to their relation of type 𝑅𝑈(𝜎𝑓𝑡 , 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅).  

Students’ responses in the interview did not reflect much awareness about the didactical implications of 

the assignment. It would require further research to evaluate if and how working with such interface tasks 

could nevertheless leave an impact on students’ subsequent teaching practice. 

DISCUSSION 

How can a course like UvMat support the development of secondary school mathematics? More 

specifically, to what extent can achieved new relationships 𝑅𝑈(𝜎, 𝑜ℝ ∪ 𝜔ℝ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) improve their future teaching? Our 

data does not shed light on this, but the relation between teachers’ knowledge and school teaching is not a 

new topic. For example, Hill et al. (2005) found teachers’ mathematical knowledge (close to the mathematics 

they teach) has a significant effect on their students’ achievement at primary level in USA. From a more global 

point, the teacher education and development study in mathematics (TEDS-M) conducted surveys about 

teacher education within 17 countries, which included future teachers at secondary level (Krainer et al., 2015). 

Schmidt et al. (2011) reexamined the data from 2010 TEDS-M and focused on middle school teachers’ course 

taking. Their results indicate that high performing teacher education programs include both general 

undergraduate mathematics courses and also courses which, like UvMat, focus more specifically on 

mathematics for teaching. But these studies all consider mathematical knowledge in very broad categories, 

and it is a completely open question how work with specific school mathematical themes like the real number 

system in practice contribute to teaching related to those themes.  

CONCLUSION 

Our brief analysis of the students’ answers and interviews with them, suggests that problem situations 

involving simple CAS-routines could be a promising setting for applying university mathematics on high school 

level problems related to real numbers, but that this does not necessarily develop new, didactically relevant 

knowledge. Indeed, we found that when we do not clearly indicate the direction of problem solving, some 

students do not draw properly on university knowledge, but resort to informal or misguided explanations 

rooted in their high school experience. Further research is needed to explore how problems could be 

designed in order to reduce or eliminate this kind of regression.  

To summarize our answer to RQ1, the main idea is to explore the definition of real numbers as ‘infinite 

decimals’ in terms of infinite, convergent sums of fractions. This turns out to be a challenging approach for 

students, in particular when confronted with special cases where these sums are computed step by step using 

a computer routine, and do not add up as expected. Indeed, our observations in relation to RQ2 suggest (as 

developed in more detail in previous sections) that students struggle to explain the subtle difficulties that 

arise with addition and, more generally, with the operations on real numbers in this approach. Nevertheless, 

this approach is highly relevant to understand the shortcomings of computers and calculators when it comes 

to numerical computations with real numbers. 

Indeed, with the increasing use of digital tools in high school mathematics, it becomes problematic if 

teachers have no idea of the connections–and differences–between theoretical mathematics (in particular, 

real numbers and their operations) and the representations and operations which such tools offer. We should 

also note that the first answers by students, considered here, were not the end of their work with the 

assignment: incorrect or incomplete answers had to be reworked in order for the assignment to be accepted. 

Confronting students with inadequacies or insufficiencies in their initial answers, and prompting them to 

submit acceptable ones, certainly leads the students to realize how advanced mathematical viewpoints can 

be used to think about subtleties in what appears, initially, to be elementary and somewhat trivial. To make 

students realize the need to question and analyze outputs from digital tools–as well as to look into how they 

are or may be produced–is one important goal which assignments, such as the one considered, may 

contribute to achieve. 
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Abstract – The global question of how to identify, develop and assess 
mathematical knowledge that is relevant to future secondary school 
teachers, has been central in the emergence of mathematics education 
research from early on. We review parts of this history from the viewpoint 
of the anthropological theory of the didactic, and in particular the notion 
of relationships to mathematical praxeologies that are held by certain 
positions within school and university institutions. We also consider a 
modern case, where the questions arise in a very practical sense: how to 
bridge the gap between standard undergraduate mathematics courses and 
a school relevant model of real numbers and functions? We show how both 
theoretical and practical aspects of this more local question arises in a so-
called capstone course for students with about two years of undergraduate 
mathematics experience.   
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Resumé – La question globale d’identifier, développer et évaluer les 
connaissances mathématiques qui sont pertinentes pour les futurs 
enseignants du secondaire, a été depuis les débuts un levier central dans 
l’émergence de recherches en didactique des mathématiques. Nous 
exposons des éléments historiques de cette question du point de vue de la 
théorie anthropologique du didactique, et en particulier la notion de 
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rapport aux praxéologies mathématiques entretenu par certaines positions 
au sein des institutions scolaires et universitaires. Nous examinons aussi 
un cas moderne où ces questions apparaissent d’une manière plus 
pratique : comment combler le fossé entre une licence générale en 
mathématiques et des conceptions des nombres réels et des fonctions 
d’une variable réelle qui sera pertinente pour l’enseignement secondaire ? 
Nous montrons comment les aspects théoriques et pratiques de cette 
question plus locale apparaissent dans un cours de synthèse pour des futurs 
enseignants, qui ont passé deux ans de cours mathématiques universitaires.     
 
Mots-Clés : connaissances mathématiques d’enseignant ; représentation 
décimale de nombres réels ; cours de synthèse pour enseignants ; seconde 
discontinuité de Klein. 
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INTRODUCTION 

We consider that the following question indicates a central raison 
d’être of the Didactics of Mathematics (across all of its variations): 

Q0: What knowledge must mathematics teachers have in order 

to deliver good teaching? 
The question is evidently broad and imprecise, most notably 

due to the undefined meaning of “good”. It is also clear that more 
precision is needed to obtain a question that could have scientific 
answers. But both teachers, researchers and even broader groups 
would recognize some meaning in Q0. They might also agree that 
the links between research in Didactics of Mathematics on the one 
hand, and mathematics teacher education on the other, are both 
strong and old, and come from the expectation that the former 
could produce knowledge that is useful to the latter and hence, at 
least in some sense, the kind of knowledge that Q0 asks about. 

Of course, teacher knowledge is in general a very complex 

object. Few would deny that it involves professional components 

that need to be acquired through practice. On the other hand, few 

societies assume today that teacher knowledge can be acquired 

exclusively through practice; in other words they establish some 

form of “initial” education. For the teaching of academic subjects 

like mathematics, this initial education almost invariably involves 

this subject matter in some form. And it is generally considered a 

truism that teachers should possess a solid knowledge of the 

subject they teach, in casu mathematics. 

As we shall see later, it could be said that the Didactics of 

Mathematics was born from the realisation (or at least the 

conviction) that “mathematical knowledge” is part of the answer to 

Q0, but that the following subquestions are non-trivial: 

Q1: What mathematical knowledge is necessary (or just 

relevant) for mathematics teachers to deliver “good” teaching? 

How is it best acquired and certified? 

Q2: What other forms of knowledge (if any) are necessary? How 

are they best acquired and certified? 
Again, these questions clearly lack precision, but we can now 

formulate the overall aims and structure of this paper:  
▪ first, provide a theoretical framework for the study 

(including more precise formulation) of Q1, based on the 

Anthropological theory of the Didactic (ATD), 

and then use this framework to: 

▪ outline main trends of existing methods and answers for 

Q1 that can be found in the international research literature,  

▪ analyse more deeply the problem of task design for pre-

service teacher education (as a partial way to answer Q1) 



4 Recherches en Didactique des Mathématiques 

illustrated by some cases of tasks developed at the University 

of Copenhagen, in relation to prospective secondary level 

mathematics teachers’ knowledge about real numbers. 

The last point constitutes the main part of the present paper, which 

is mainly theoretical (with the case illustrating and generating 

theoretical points). At the end we return to the meaning of this 

particular problem and case within the broader context of Q1. 

Note that in this paper, we consider only the (needs for 

developing) mathematical knowledge of prospective teachers. This 

is in no way to be construed as a denial of the relevance of other 

forms of knowledge or of the professional knowledge developed in 

and through teaching practice. We also recognise that it is not 

possible or productive to fully isolate or delimit “mathematical” 

components of mathematics teachers’ knowledge within their 

theoretical and practical knowledge at large. Nevertheless, there 

are important and researchable problems related to Q1 which are 

specific to the selection, delivery and assessment of mathematical 

knowledge within (initial) mathematics teacher education – and it 

is on some aspects of these that we focus here. 

FRAMEWORK AND RESEARCH QUESTIONS 

Any society that certifies individuals for teaching mathematics at a 

given level will furnish practical answers to Q0, Q1 and Q2, at least 

(but not always limited to) the knowledge required at the entrance 

of the profession. We can consider these answers as collections of 

relationships to (knowledge) objects 𝑂𝑘  to which the 

mathematics teacher 𝑡 within a certain school institution 𝑆 must 

hold a certain relationship 𝑅𝑆(𝑡, 𝑂𝑘) to, i.e. some collection of 

type 

(1) ⋃ 𝑅𝑆(𝑡, 𝑂𝑘)𝑘∈𝐾𝑆
 

(cf. Chevallard, 1992), where 𝐾𝑆  is a finite index set. This 

collection may in principle be empty, if no requirements are 

present; but even if no initial teacher education exists, other 

requirements (such as 𝑡 having previously occupied the position 

𝑝  as pupil in some school institution 𝑆′ , where 𝑆′ = 𝑆  is 

possible) with more or less specified relationships  𝑅𝑆′(𝑝, 𝑂𝑘) 

obtained to some objects 𝑂𝑘 , could still be stipulated. Even in this 

case, a special institution 𝐼 – which is typically, but not always, a 

teacher education institution of some sort - may be endowed with 

the power to decide whether or not an individual 𝑦  has the 

relationships required to occupy the position t in S. In principle, the 
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question is then whether the relationships of 𝑦  to 𝑂𝑘  are 

sufficiently near 𝑅𝑆(𝑡, 𝑂𝑘) for all 𝑘 ∈ 𝐾𝑆. However, in practice, 

due to a great distance between  𝐼 and 𝑆, it is common that 𝐼 

replaces { 𝑅𝑆(𝑡, 𝑂𝑘)|𝑘 ∈ 𝐾𝑆}  by { 𝑅𝐼 (𝑦, 𝜔𝑘)|𝑘 ∈ 𝐾𝐼} , where 

{𝜔𝑘|𝑘 ∈ 𝐾𝐼} consists of objects used by 𝐼 to certify officially that 

𝑦 satisfy the said requirements (and we use the letter 𝜔, instead 

of O, to stress the change of institution). And then society will 

assume that if  

(2) ⋃ 𝑅𝐼 (𝑦, 𝜔𝑘)𝑘∈𝐾𝐼
 

is affirmed by 𝐼 for some individual 𝑦, then that person can be 

admitted to position 𝑡 within 𝑆, and we may assume, or merely 

declare, that (1) is then satisfied. Concretely, (2) is often 

determined by 𝑦 passing a certain number of tests within 𝐼, each 

determining whether a certain number of relationships 

𝑅𝐼(𝑦, 𝜔𝑘) are satisfactory. This is to some extent the case also for 

the tasks for future teachers, presented later in this paper, even if 

they are designed deliberately to relate to some 𝑂𝑘 .  

Anyone with any experience of current teacher education (or 

certification) systems will know that while (2) is more or less 

concretely specified by the regulations within 𝐼, the relation of (2) 

to (1), and also (1) itself, are often far from transparent. Moreover, 

(1) develops throughout the career of a teacher in position 𝑡, and 

this may well lead to initial inadequacies being remedied. 

Nevertheless, we cannot assume or claim from the outset that 

(2) is completely arbitrary with respect to (1). In particular, when 

it comes to mathematical objects 𝜔𝑘 met by 𝑦 within 𝐼, some 

are indeed likely to be closely related to mathematical objects 𝑂𝑘  

met by pupils 𝑝  and teachers 𝑡  within 𝑆 . To identify and 

question such cases, at least locally, is the main idea of this paper 

when it comes to addressing Q1 in practice, following up on our 

previous work (Winsløw and Grønbæk, 2014). 

To do so, we need a less abstract way to describe the “objects” 

of type 𝑂𝑘  and 𝜔𝑘. In ATD, knowledge objects – in particular, 

elements of mathematical knowledge – are more recently 

modelled, within ATD, as praxeologies, consisting of praxis and 

logos blocks (Chevallard, 1999). We will also consider, from this 

point on, the frequent case (cf. below) where the institution 𝐼 

educating and certifying teachers is a university institution 𝑈. 

Considering now the special case of mathematical praxeologies  

{𝜔𝑘|𝑘 ∈ 𝐾𝑈}  for which 𝑈  requires future teachers to hold 

relations 𝑅𝑈(𝜎, 𝜔𝑘) in view of their pertinence to some school 

mathematical praxeology 𝑂𝑘 , we may consider the passage (or 

rather, possible relations) of type 
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(3) 𝑅𝑈(𝜎, 𝜔𝑘) → 𝑅𝑆(𝑡, 𝑂𝑘) 

where the arrow merely indicates the chronological order in which 

an individual may occupy the positions 𝜎 and 𝑡 as student within 

𝑈 and teacher within 𝑆. The mathematical praxeologies, to which 

the individual relates in these positions, are in principle different. 

Even the mathematical praxis and logos required from the teacher 

in relation to some 𝑂𝑘 , in which her pupils are to engage, may be 

quite different from the relation aimed at for the pupil, as when the 

teacher is supposed to pose and correct exercises for the pupils.   

In other words, (3) can be used on very specific cases of the 

relation between (1) to (2), typically singled out because 𝑅𝑆(𝑡, 𝑂𝑘) 

is of some importance, and can be expected to be related to 

𝑅𝑈(𝜎, 𝜔𝑘) , due to 𝑂𝑘  and 𝜔𝑘  being somehow related 

mathematical praxeologies. That such impact and relatedness may 

be relatively absent – not only locally, but in a more general sense 

– is what Klein (1908) singled out as the second discontinuity 

afflicting modern organizations of mathematics teacher education 

(cf. Grønbæk and Winsløw, 2014): both the university student and 

the active teacher may perceive little or no impact or relatedness of 

the kind just defined.  

On this theoretical background, we can now develop the initial 

question Q1 into the following research questions which, although 

they are likely far from covering all aspects one could see in Q1, 

are at least amenable to research, for fixed institutions 𝑆 and 𝑈: 

RQ1. Given a central praxeology 𝑂 to be taught in 𝑆, how 

can some 𝑅𝑈(𝜎, 𝜔) be used to build school relevant 𝑅𝑈 (𝜎, 𝑂)? 

RQ2. What needs exist to develop 𝑅𝑈(𝜎, 𝜔)  further (into 

what we shall later call 𝑅𝑈
∗ (𝜎, 𝜔)), in view of contributing to 

𝑅𝑈(𝜎, 𝑂)?  

These questions do not adopt the global viewpoint indicated by 

(1) and (2), as they focus on “central” instances of praxeologies. 

This implies a methodology of case studies (constrained by 

institutions and specific choices of the praxeological instances). 

However, some of the previous international research, which we 

review in the next (background) section, has in fact adopted the 

more global viewpoint. We discuss how these studies contribute to 

answer the questions above, or at least to motivate them. 

We emphasize that this paper is essentially a theoretical paper, 

where cases are used to generate hypotheses and illustrate the more 

general research questions outlined above; by cases we mean 

instances of mathematical praxeologies, and to some extent 

concrete institutional contexts. 
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SYNTHESIS OF GLOBAL POSITIONS AND RESULTS  

Klein’s heritage 

As exposed in some detail by Winsløw and Grønbæk (2014), Felix 

Klein  was one of the first who problematized the passage from 

university studies of mathematics to teaching at what we would 

now call secondary level, beginning with his inaugural address as 

professor in Erlangen in 1872. The life, work and legacy of Klein 

– particularly within mathematics education – has been  reviewed 

in larger depth within a recent book edited by Weigand, et al. 

(2019). Kilpatrick (2019, p. 215) notes, in his chapter within this 

book, that 

Klein’s courses for teachers were part of his efforts to improve 

secondary mathematics by improving teacher preparation. Despite 

the many setbacks he encountered, no mathematician has had a 

more profound influence on mathematics education as a field of 

scholarship and practice. 

We note here the strong link between teacher education and the 

birth of “mathematics education as a field of scholarship”, also 

stressed in our introduction of Q0 at the outset of the present paper. 

It was Klein’s personal and institutional efforts to improve the 

preparation of secondary mathematics teachers that first led him to 

reflect, more broadly, on the needs and nature of mathematics 

education. His influence in this regard stretches far beyond his own 

environment and time, most famously through the foundation of 

the International Commission on Mathematical Instruction, for 

which he served as the first President from 1908 to 1920. 

His ideas on mathematics teacher education have also exercised 

a more practical and longstanding influence, not least through the 

use of his lecture course for future teachers both in Germany and 

in other countries (for a recent translation into English, see Klein, 

2016). The main idea of these lecture notes was interpreted, by 

Grønbæk and Winsløw (2014), in terms of (3): to develop 

prospective teachers’ relationship 𝑅𝑈(𝜎, 𝜔)  with “higher 

mathematics” (Klein’s term) through specific courses at the 

university, in view of becoming more useful for them as teachers, 

in other words, to enrich relationships of type 𝑅𝑆(𝑡, 𝑂). In Klein’s 

work, Q0 and Q1 are not sharply distinguished, and while the  

possibility of ruptures between (1) and (2) is broadly recognized, 

Klein clearly saw it as a task for universities to bridge it through 

adaptations of (1), not so much to some inert version of (2) as to 

the service of a secondary school mathematics curriculum which 

would also have be updated in the light of recent developments of 



8 Recherches en Didactique des Mathématiques 

“higher mathematics”. Klein clearly saw that such an endeavour 

would require a strong commitment of university mathematics 

teachers not only in teacher education, but also in contributing 

more directly to the development of secondary school 

mathematics; his own efforts in this direction were many-sided and 

influential as well, as documented by several chapters in (Weigand 

et al., 2019). 

Now, a century later, we can notice both successes and apparent 

failures of this programme. “Higher mathematics”, in the sense of 

courses whose content is roughly selected from what form the 

bases of current scholarship in pure mathematics – continues to be 

a main ingredient in secondary mathematics teacher education in 

many countries. Sweeping reforms of mathematics education 

curricula, both at university and in schools, were carried out in the 

1960’s and 1970’s, under the label “New Math”. The outcomes 

continue to be analysed and debated (see, for instance, Kline, 1973, 

for an early, and naturally controverted, contribution). While it is 

impossible to know what Klein’s view on these later reforms would 

have been, it is certain that the fundamental distance between the 

mathematical sciences (not limited, by the way, to pure 

mathematics) and school mathematics has not ceased to grow. 

University mathematics curricula have remained surprisingly 

stable since the 1960’s – notwithstanding later adaptations, most 

notably to include newer developments in statistics, computing and 

discrete mathematics (cf. Bosch et al., 2021). At the same time, 

reforms of school mathematics have been frequent, deep and 

strongly debated in many countries of the world, both before and 

after the period of New Math, and in many different directions.  

Despite the necessary brevity of this outline, there is no doubt 

that the problem for mathematics teacher education which Klein 

identified, remains of strong actuality. It is, roughly, the non-trivial 

character of Q1 in institutional set-ups where university 

mathematics is strongly involved, as it continues to be in most 

Western countries (OECD, 2014). Some of Klein’s concrete 

proposals are also relevant to answering RQ1-RQ2, as we shall 

touch upon later for the special case of the mathematics 

surrounding the concept of real numbers. 

Qualitative and quantitative research on Q1 and Q2 

The more global questions introduced above have been the subject 

of both theoretical, qualitative and quantitative research, at least 

since the late 1960’s. A famous early contribution was Begle’s 

(1972) study of how teachers’ knowledge of abstract algebra 
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correlated with the knowledge on school algebra of their 9th grade 

students. Begle (1972, p. 14) concluded that: 

…teacher understanding of modern algebra (groups, rings, and 

fields) has no significant correlation with student achievement in 

algebraic computation or in the understanding of ninth grade 

algebra. Teacher understanding of the algebra of the real number 

system has no significant correlation with student achievement in 

algebraic computation. However, teacher understanding of the 

algebra of real number system does have a significant positive 

correlation with student achievement in the understanding of ninth 

grade algebra. Nevertheless, while this correlation is statistically 

significant, it is so small as to be educationally insignificant.  

These first results are still sometimes cited without the 

reservations and limitations that the author himself points out – 

such as the fact that the involved teachers were voluntary 

participants in a summer school on mathematics, and therefore not 

likely to be representative of 9th grade teachers at large. 

Nevertheless, these first results challenged the assumption that 

teachers’ more extensive record of higher mathematics courses will 

automatically result in better teaching, reflected through the 

knowledge of their students in theoretically related fields of school 

mathematics. This largely confirms one of Klein’s basic claims that 

the impact of academic courses cannot be taken for granted. 

Follow-up studies with somewhat less biased samples of teachers, 

such as Eisenberg’s (1977), broadly confirmed this point, but also 

strengthened one of Begle’s (1972) explicit hypotheses: that there 

might be “a lower bound of knowledge, below which the 

relationship between teacher knowledge and student performance 

does hold” (Eisenberg, 1977, p. 221).  

This hypothesis, together with the possibility of other measures 

of “teacher knowledge of mathematics” correlating with student 

knowledge, was since examined further. An interesting study of the 

cited hypothesis – with a much more global scope than the case of 

abstract algebra and school algebra – was carried out by Monk 

(1994). He examined correlations between the number of academic 

mathematics courses taken by secondary level mathematics 

teachers, and their students’ performance gains. Monk did in fact 

find a positive correlation with students having taken up to about 5 

courses (a minimum largely exceeded by current undergraduate 

requirements in many countries). This suggests – with multiple 

caveats – that a minimal undergraduate mathematics background, 

formed by up to a year of full time academic mathematics study, 

does have a positive effect on the teachers’ efficiency, but that 

anything beyond that may have little or no effect. Naturally, as with 
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all quantitative studies of correlations, many other variables could 

possibly have significant explanatory value, and at least to some 

extent put the suggested “positive effect” into question. 

The question of how to define, and possibly measure, relevant 

forms of teacher knowledge, is latent in Q0, Q1 and Q2, and more 

explicit (and limited to mathematical praxeologies) in RQ1-RQ2. 

Quantitative studies will eventually make choices along these 

lines, as when items are formulated for use in a test (where a 

relationship 𝑅𝐼(𝑥, 𝑂) of some member of I to some O is assessed 

based on how 𝑥 solves one or more tasks pertaining to 𝑂). The 

question then arises, especially for studies of more global 

categories of knowledge: what relation exists between the 

inventory of tasks proposed, and a qualitative or theoretical 

definition of the categories?  

Indeed, inventories of items have recently been constructed and 

used in major international studies of how student and mathematics 

teacher knowledge correlate, along with categories of knowledge 

(relevant to Q1 and Q2) that are defined in careful, yet quite general 

terms. A major centre for research in this area has been the 

University of Michigan, where an elaborate theorization of 

mathematical knowledge for teaching (MKT) was used, at the 

dawn of this millennium, in a large scale investigation of primary 

school teachers’ MKT and found strong correlation with their 

students’ mathematical achievement, even when controlling for 
other plausible factors (Hill et al., 2005). Moving to international 

comparative studies, these ideas and methods were further refined 

and subsequently deployed in the “Teacher Education and 

Development Study in Mathematics” (TEDS-M) study, which 

involved 17 countries (Tatto, 2013). The results from this study are 

very rich and complex – including comparisons of teacher 

education programmes across and within countries – and cannot be 

subsumed in a few phrases. We shall however note two points, in 

the words of some of the main specialists: 

For secondary programs the most important influence on 

knowledge for teaching is the opportunity to learn university level 

mathematics (…) and the opportunity to read research in teaching 

and learning. (…) Teacher education programs’ quality of 

opportunities to learn – as measured by their association with high 

levels of mathematics teaching knowledge, coherence on program 

philosophy and approaches, and internal and external quality 

assurance and accountability mechanisms, are all features that 

seem to contribute to increased levels of mathematics knowledge 

for teaching among future teachers (Kraineret al., 2015, p. 118) 
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 Closer studies of the most successful mathematics teacher 

education programmes for (lower) secondary school, carried out 

by Schmidt et al. (2013, p.5), further identified course elements 

which these seem to share to a high degree; these include six 

standard undergraduate mathematics units (beginning calculus, 

calculus, multivariate calculus, differential equations, linear 

algebra, probability) along with three units on school mathematics 

education (math instruction, observing math teaching, functions). 

These programmes naturally all contain more elements; but this 

“core” is important to note. It is hard not to notice the consistence 

with Monk’s early results and also with Klein’s contention that 

school oriented complements to university mathematics are 

needed. The emphasis, in the previous citation, on “coherence” and 

“quality assurance”, still leaves much room to fill in, in relation to 

(3) and the more specific questions RQ1-RQ2: how, in fact, can 

well-acquired elements of “basic undergraduate mathematics” be 

developed and tuned towards the needs of the future teacher in a 

coherent way? After a brief discussion of the experimental context, 

we shall turn to this question while, as already mentioned, focusing 

on some central mathematical objects. 

A SPECIFIC INSTITUTIONAL CONTEXT 

A considerable part of TEDS-M was focused on mapping out 

teacher education system at a global level, briefly explained above. 

We shall now delve further into local aspects related to RQ1-RQ2.  
We consider these in the context of the largest mathematics 

programme in Denmark which offers teacher qualification for 

upper secondary school, offered at the University of Copenhagen. 

In Denmark, only upper secondary teachers receive their initial 

education in universities. After graduating from university, 

teachers have to pass a practical and theoretical course on 

pedagogy, while teaching; the subject specific parts of this course 

are quite limited, and as the various university programmes are 

quite different, the course has few if any concrete links to these. 

From the list of courses listed by Schmidt et al. (2013), all of 

the general mathematics courses (and much more) are required for 

future teachers studying at the University of Copenhagen. 

Meanwhile, only two units specifically directed towards teachers 

are currently offered: a general course on didactics of mathematics 

labelled DidG (with some parts being shared with other science 

disciplines, due to the teachers having to specialise in two 
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disciplines), and a course labelled UvMat (Mathematics in a 

teaching context). The first course corresponds roughly to the 

“math instruction” unit mentioned by Schmidt et al., while UvMat 

covers a relatively wide range of elementary school mathematics 

subjects (besides functions and equations, also number systems, 

discrete mathematics and statistics), all aiming at providing 

students with a deeper knowledge of these subjects in view of 

preparing them as future teachers with respects to how these 

domains appear in Danish upper secondary school.  

Both DidG and UvMat deliberately draw on elements of the 

undergraduate courses, and thus aim at providing elements of the 

“higher standpoint” called for by Klein, as well as being capstone 

courses in the sense further described by Winsløw and Grønbæk 

(2014). The two courses are still quite different in the sense that 

DidG is focused on cases and methods of teaching, while UvMat 

is focused on mathematical content. Both courses involve (as other 

university courses) both lectures and extensive work with 

assignments or “exercises”. 

As in the study (Winsløw & Grønbæk, 2014) of “challenges” 

met by such a capstone course, we shall focus here on how UvMat 

attempts to tackle concrete instances of (3). In that paper, it was 

pointed out that UvMat does not attempt to address 𝑅𝑆(𝑡, 𝑂) 

directly, while students are still in position 𝜎 within 𝑈; this may 

also to some extent represent a difference with DidG. In our recent 
paper (Winsløw & Huo, 2023), we described a main strategy of the 

course as supporting students in a transition represented as  

𝑅𝑈(𝜎, 𝜔) 
𝑇
→ 𝑅𝑈 (𝜎, 𝑂) 

through the design of tasks T that somehow link a university 

mathematical praxeology 𝜔  with a school mathematical 

praxeology 𝑂. As some of the university level praxeologies are 

also developed further within the course (rather than simply drawn 

from standard courses) a full representation of the course 

objectives is 

(4) 𝑅𝑈 (𝜎, 𝜔) → 𝑅𝑈
∗ (𝜎, 𝜔)

𝑇
→ 𝑅𝑈(𝜎, 𝑂) 

and with this extension, the course can be said to offer many 

concrete proposals related to RQ1-RQ2. In particular, the task 

design is used not only in the development but also in the 

assessment of 𝑅𝑈
∗ (𝜎, 𝜔) and 𝑅𝑈(𝜎, 𝑂), or combinations of these. 

We note that 𝑇 itself does usually not belong to the types of tasks 

found in 𝜔 or 𝑂, but is designed to link these, while drawing on 

𝑅𝑈
∗ (𝜎, 𝜔) and enriching both this and 𝑅𝑈 (𝜎, 𝑂). 
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LOCAL MATHEMATICAL CONTEXT: REAL NUMBERS 

In our recent research in the context of UvMat (within the frame of 

the second authors’ thesis) we have focused on the students’ 

knowledge about the system of real numbers. This system can 

roughly be described as a set, ℝ , equipped with arithmetical 

operations, an order structure, and a related topology. All of these 

are crucial to central domains of upper secondary mathematics, 

including calculus, analytic geometry, and vector algebra (over 

ℝ), among others. The real number system is of course linked to 

and based on subsystems, especially the systems of integers and of 

rational numbers. Nevertheless, there are considerable and general 

differences between how these number systems appear in 

university and school institutions. In this section we present these 

along with overall UvMat choices related to RQ2 (chiefly, at the 

level of theory). 

Real numbers in undergraduate mathematics 

Real numbers are especially fundamental to calculus and analysis, 

where university students will meet more or less deep treatment of 

some of their properties related to limits and more generally, order 

structure. Even at university, such properties may be simply 

claimed or presented as evident, especially in calculus courses. In 

more theoretical courses, students are presented with the notion of 

Cauchy sequence, and the fundamental property that Cauchy 

sequences of real numbers converge. Results related to limits and 

continuity of functions get a more rigorous foundation in axioms 

or claims about the real number system, and the related topology 

of the real number set. Also ℝ itself may get to be defined in some 

way, most commonly as the completion of ℚ. The latter number 

system – of rational numbers – is usually taken for granted in 

analysis courses, while a more formal treatment appears in abstract 

algebra (as the field of fraction determined by the integral domain 
ℤ ). However, as algebra and analysis courses operate 

independently in the undergraduate curriculum, these 

constructions will appear rather disconnected to students. Also, 

introductory analysis texts typically pass over the construction of 

ℝ, and present only some of the fundamental properties (like the 

supremum property) as an early stepping stone towards more 

technical results, such as the extremal value theorem for 

continuous functions on compact sets. Students are then exposed 

to a rapid succession of theorems and proofs, confirming and 

adding to what they learned in calculus at secondary or university 
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level. Special functions (like exponential or trigonometric 

functions) still appear in examples, but they are (like the real 

numbers themselves) not treated any further. The end result, which 

we can write roughly as 𝑅𝑈 (𝜎, ℝ), is then what students retain 

from these various expositions to the properties of real numbers, 

mostly within calculus and analysis courses. Naturally, many other 

mathematical objects than numbers strictly speaking – such as 

functions, operations on functions and various results on these – 

contribute to students’ theoretical and practical conception of the 

numbers. But about these in isolation, students may actually know 

little more than what they learned in school.  

Real numbers at primary and secondary school 

The real numbers appear little by little, and in a much more 

fragmented and intuitive way, in primary and secondary school 

mathematics (see e.g. González-Martín et al., 2013), both within 

arithmetic of natural numbers, integers, and rational numbers, and 

also in geometry, school algebra, and (based on these) early 

calculus.  

The idea that each point on the “number line” correspond to a 

number, also appears early on, with the representations of integers 

and fractions helping to view these as related and subject to a 

common order. Since digital technologies play a great role in 

calculation with numbers, both in school and society, decimal 

representations of numbers are likely to occupy a strong place in 

the pupils’ relationship to the mathematical object ℝ , that is  

𝑅𝑆(𝑝, ℝ) . Arithmetic operations are supported by handheld 

calculators from primary school on. Both these and the order 

structure are more straightforward with finite decimals than with 

fractions. Finite decimals also seem to exhaust the points that can 

be identified on a number line equipped with a scale or ruler.  

The fact that fractions are needed both to define finite decimals, 

and that not all fractions correspond to finite decimals, is not really 

treated. Of course, periodic or otherwise strange “decimals” may 

be contended to be really somehow “infinite”. If finite decimals are 

not carefully defined in terms of fractions, this new variety of 

decimals may also pass silently into 𝑅𝑆(𝑝, ℝ) as a fact of life 

which does not require further explanation or questioning. Indeed, 

students will encounter “numbers” like roots of integers or the 

mysterious fellow π  that are chiefly “real” to them as a 

consequence of being easily manageable on a calculator (where 

they work, indeed, as and with decimals). 
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At more advanced points in upper secondary school, the work 

with functions and equations is also heavily supported by graphical 

representations and (at least to produce these) by digital tools. This 

will then add more geometrical or visual elements to 𝑅𝑆(𝑝, ℝ), 

mostly in a non-conflictual way: the intersections of curves can be 

both seen and calculated in consistent ways. Since the work is, at 

this point, also often heavily supported by algebra, many pupils 

struggle even when calculating tools are proposed as means to 

overcome some of the more technical points of the tasks they are 

assigned; but these tasks are frequently constructed so as to limit 

these struggles through the use of standard techniques. Pupils are 

rarely or never exposed to tasks that challenge their intuitive notion 

𝑅𝑆(𝑝, ℝ) of the real numbers as points and decimals. 

Real numbers in UvMat 

We now present how UvMat addresses RQ2 at the level of 

mathematical theory on ℝ, in view of the discontinuities outlined 

in the preceding subsections. The main idea is to formalize the idea 

of real numbers as infinite decimals on the basis of theory from the 

undergraduate analysis courses.  

During the fourth week lectures of UvMat, the construction of 

ℝ  as the completion of ℚ  is rapidly reviewed and 

institutionalized, including the existence of suprema for non-empty 

subsets of ℝ  with an upper or lower bound (presented as an 

“axiom” in a prerequisite analysis course). The starting point is 

thus the existence of a complete ordered field ℝ containing the 

integers. From the supremum axiom, we derive the Archimedean 

property: for every real number 𝑥 there is a unique integer 𝑚, 

such that 𝑚 ≤ 𝑥 < 𝑚 + 1.  

From this point, the lectures follow Sultan and Artzt (2018, pp. 

335-353) to show the existence of decimal representations of real 

numbers 𝑥, through an inductive construction of a sequence 𝑑𝑘  

of finite decimals such that 0 ≤ |𝑥 − 𝑑𝑘| < 10−𝑘  for all 𝑘. By 

the definition of limit, which is well known to the students, this 

means 𝑥 = lim
𝑘→∞ 

𝑑𝑘 . It is also shown that sequences of the form 

𝑑𝑘 = ∑
𝑐𝑗

10𝑗
𝑘
𝑗=1 , where 𝑐𝑗 ∈ {0, … ,9}, always converge, and that if 

two such sequences have the same limit – say ∑
𝑏𝑗

10𝑗 = ∑
𝑐𝑗

10𝑗
∞
𝑗=1

∞
𝑗=1  

– then either 𝑏𝑗 = 𝑐𝑗 for all 𝑗, or one of the sequences of decimals 

becomes eventually 0 (say, 𝑐𝑗 = 0 for 𝑗 > 𝑁0) while the other 

becomes eventually 9 (𝑏𝑗 = 9 for 𝑗 > 𝑁1), and moreover if 𝑁 is 

the least natural number that realizes both properties, we have 𝑐𝑗 =
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𝑏𝑗  for 1 ≤ 𝑗 < 𝑁  and 𝑐𝑁 = 𝑏𝑁 + 1 . This, with some minor 

details added, proves that real numbers are in fact “infinite 

decimals” ∑
𝑐𝑗

10𝑗
∞
𝑗=1  in the sense that all real numbers do have an 

infinite decimal representation, that every infinite decimal 

representation corresponds to a real number, and that this 

representation is unique except if it terminates with 0’s or 9’s (in 

which case there are exactly two such representations).  

Naturally, other properties, such as the rational numbers being 

exactly all real numbers with an eventually periodic decimal 

representation, are also added (for some students recalled) to enrich 

this formalization. The lectures also address, briefly, whether ℝ 

could be simply defined as the set of formal infinite decimals, and 

point out some difficulties related to arithmetic operations. 

Many students have certainly become aware – often in school 

– of facts like that finite decimals such as 1.02 = 1.020̅ also have 

an alternative infinite decimal representation (here, 1.019̅). But it 

is clearly new to them that they can be derived from university 

material on ℝ. We thus have a theoretical extension 𝑅𝑈
∗ (𝜎, ℝ)  

of 𝑅𝑈 (𝜎, ℝ), which formalizes crucial elements of 𝑅𝑆(𝑝, ℝ), with 

a potential of strengthening a future 𝑅𝑆(𝑡, ℝ) – at least in the 

sense of denaturalizing, for the teacher, the intuitive idea of infinite 

decimals, as a way to think of general real numbers. Also crucial 

practices of the teacher – such as relating to the way computers 

handle real numbers – could be prepared by it, as we shall argue in 

the next section, when considering some elements of the tasks 

students engage in to build 𝑅𝑈(𝜎, 𝑂).  

A CASE OF TASK DESIGN IN THE LOCAL CONTEXT  

University mathematics courses (such as UvMat) present students 

with some praxeological elements of a more theoretical nature 

during lectures, while devolving assignments and other tasks to 

students in view of strengthen their relationship with the 

praxeology at large. Especially in more theoretical courses, one 

may seek to engage students in tasks which build or extend theory 

(e.g. Grønbæk & Winsløw, 2007) and UvMat does so in at least 

through mandatory weekly assignments which develop some 

theoretical point, often starting from examples. They can be 

considered concrete proposals for the aims explicit in RQ1: build 

new, school relevant relationships of type 𝑅𝑈 (𝜎, 𝑂)  while 

drawing on 𝑅𝑈(𝜎, 𝜔) or a possible extension 𝑅𝑈
∗ (𝜎, 𝜔). As RQ1 

suggests, the design work departs from some school relevant 
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𝑅𝑈(𝜎, 𝑂), and seeks a relevant 𝑅𝑈(𝜎, 𝜔) or 𝑅𝑈
∗ (𝜎, 𝜔) that could 

be used to build 𝑅𝑈 (𝜎, 𝑂).  

Among the crucial new objects introduced in upper secondary 

school are exponential, logarithmic and trigonometric functions, 

whose importance in mathematics and other disciplines need no 

defense. We wish to strengthen 𝑅𝑈(𝜎, 𝑂) related to these, while 

drawing on the extension 𝑅𝑈
∗ (𝜎, ℝ) outlined above. In particular 

we consider that knowing an algorithm which computes a function 

“from the decimals of the input to the decimals of the output” could 

reinforce the students’ relationship to the (school) model of the real 

numbers and relate it to a non-trivial function. We shall now 

consider a proposal for how to do so in the case of logarithms. 

An algorithmic approach to logarithms 

The assignment is based on an algorithm proposed by Goldberg 

(2006) for the computation of logarithms “digit by digit”. The 

algorithm is most easily introduced by way of an example.  

Consider 𝑥 = 432.1 ; the idea to compute log10 𝑥  is to 

determine the decimals of a real number 𝑦 = 𝑁. 𝑑1𝑑2 ⋯ 

satisfying 10𝑦 = 𝑥. We should thus have 

(*)    432.1 = 10𝑁+
𝑑1
10

+⋯ = 10𝑁 ⋅ 10
𝑑1
10

+⋯ = 10𝑁 ⋅ 𝑚1 

where 𝑚1 = 100.𝑑1𝑑2⋯.  As 1 ≤ 𝑚1 < 10 , the right hand side 

has 𝑁 + 1 digits before the comma, so from the left hand side we 

get 𝑁 = 2. Dividing (*) by 10𝑁 we get 

4.321 = 100.𝑑1𝑑2⋯ 

and as we now wish to proceed to determine 𝑑1 we rewrite this as 

4.32110 = (100.𝑑1𝑑2⋯)10 = 10𝑑1.𝑑2𝑑3⋯ = 10𝑑1 ⋅ 𝑚2. 

Again 1 ≤ 𝑚2 = 100.𝑑2𝑑3⋯ < 10  so 𝑑1 is one less than the 

number of digits in the integer part of 4.32110 ≈ 2269042.7, that 

is, 𝑑1 = 6. Note here that the computation of 4,32110 requires 

nothing more than basic multiplication and results in a finite 

decimal. We continue with  

(2.269042671)10 = 10𝑑2 ⋅ 𝑚3 

to find 𝑑2, and so on.  

With this procedure, all it takes to compute log10 𝑥 is to be 

able to count the number of digits in the integer part of a given 

number, and multiply the number by itself (10 times). It can thus – 

for a given finite decimal – be done with only the four basic 

operations. In particular exponential functions are not required to 

carry out the algorithm. Of course such knowledge is required to 

verify that it computes an inverse of 𝑥 ↦ 10𝑥  – or as above, to 

develop the algorithm for this purpose.  
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In the assignment developed for the UvMat students we chose 

to focus on the verification issue, and on the possibility of 

computer implementation. Details are given in the next section. 

The motivation for these choices was that the detailed construction 

and properties of exponential functions were already treated in the 

lectures, with only brief remarks about logarithms as the inverses 

of these (cf. Winsløw, 2013). This builds only on 𝑅𝑈(𝜎, ℝ) from 

university courses, and not on 𝑅𝑈
∗ (𝜎, ℝ) more directly connected 

to school models of ℝ. However, as students always compute and 

graph transcendent functions with digital devices, the algorithmic 

or decimal approach, along with computer experiments, explains 

what that “black box” may contain. At a deeper level, it formalises 

the intuitive idea of log10 𝑥 as “the number of times 10 divides 

𝑥” (Weber, 2016).  

Goldberg (2006) developed the same ideas with other bases 

(both for the logarithms and the representation of real numbers); 

indeed computation is simpler in base 2. In the course we did not 

include expansions of real numbers in bases other than 10, as this 

further extension of 𝑅𝑈
∗ (𝜎, ℝ)  has much less relevance to 

𝑅𝑆(𝑡, ℝ) than the formalisation of decimal expansion.  

An example of a student assignment  

The assignment begins with a preamble, explaining its purpose as 

“developing a method to compute log10 𝑀  for a given 𝑀 >
0 (…) in the sense that we compute the decimals of log10 𝑀 

successively, using only basic arithmetic operations.” The 

assignment had six tasks: 

a) Prove from properties of 𝑦 ↦ 10𝑦  that for any 𝑥 > 0 

there is a unique 𝑦 ∈ ℝ so that 10𝑦 = 𝑥. If we have a 

method to compute such 𝑦 for any 𝑥 > 1, how can we 

do it for 0 < 𝑥 < 1? 

b) Assuming 𝑥 > 1 , show existence and uniqueness of 

𝑐(𝑥) ∈ ℕ ∪ {0} such that 10𝑐(𝑥) ≤ 𝑥 < 10𝑐(𝑥)+1. 

c) Explain how to determine 𝑐(𝑥)  from the decimal 

representation of 𝑥. Give a couple of examples. 

d) Given 𝑥 > 1 and letting 𝑦 be as in a), we wish to find 

the decimal representation 𝑦0 + ∑ 𝑦𝑘10−𝑘  𝑘 of 𝑦. Show 

that this can be done by : 𝑦𝑘 = 𝑐(𝑥𝑘) when we define, 

recursively: 𝑥0 = 𝑥 and  𝑥𝑘 = (
𝑥𝑘−1

10𝑐(𝑥𝑘−1)
)

10

for 𝑘 ∈ ℕ. 

e) Use d) to compute log10 57.64 with four decimals. 

f) Interpret a given Maple routine as implementing d). 
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The aim of this assignment is primarily that students work on a 

non-trivial case of an algorithm that computes the values of a 

function “digit by digit”, and could therefore be thought of as the 

mathematical basis of a “calculator button” (or command) to 

compute that function. In other words, the primary point is more 

on the decimal representation of real numbers, and less on the 

concrete example (log10).  

In task a), students need to use the property that 𝑦 ↦ 10𝑦 is a 

bijection from ℝ to ℝ+. The rest of the assignment is about the 

algorithm to actually compute (the decimals of) 𝑦 for a given 𝑥. 

Tasks b) and c) were designed to define the auxiliary function 

𝑐: [1, ∞[→ ℕ ∪ {0}  which is central to the algorithm. In d) 

students must then explain how the given algorithm allows us to 

find the decimals of 𝑦 (from 𝑥). The task e) allows students to try 

out the algorithm on a concrete number (like we did above) and 

task f) provides students with a piece of code which they should 

recognise as implementing the algorithm from d), and try out in 

Maple. 

Now, we consider briefly how students draw on 𝑅𝑈(𝜎, ℝ) to 

answer the assignment, based on the students’ answer sheets and 

interviews conducted with them in view of gaining further insight 

into what they learned from working with the assignment.  

In task b), there was a considerable diversity among student 

answers. More than half of students considered that what is to be 

proved is equivalent to existence and uniqueness of 𝑐(𝑥) such 

that 𝑐(𝑥) ≤ 𝑦 < 𝑐(𝑥) + 1, where 𝑥 = 10𝑦 , but without explicitly 

referring to the result from a). Moreover the existence of the 

“integer part” is treated as obvious by students, while in the course 

it was proved to be a consequence of the Archimedean property of 

ℝ. So at this point students continue to treat properties of ℝ with 

the same informality as is usual in high school. 

Another way some students take is to divide [1, ∞[  into 

segments [10𝑘 , 10𝑘+1[ , observing that [10𝑘 , 10𝑘+1[  and 

[10𝑘+1, 10𝑘+2[  are disjoint for all 𝑘 ∈ ℕ ∪ {0} . Therefore, as 

students explained: “It is then true that the union of all these 

disjoint sets corresponds to [1, ∞[, and it is then true that a number 

will always lie in just one of the sets”. Some students used a proof 

by contradiction to show that a given 𝑥  could only be in one 

interval of type [10𝑘 , 10𝑘+1[. These arguments are more similar to 

what students will have met at university, relying explicitly or at 

least implicitly on the equality [1, ∞[= ⋃ [10𝑘 , 10𝑘+1[∞
𝑘=0 .  

In task c), students learnt how to determine 𝑐(𝑥)  by only 

looking at the decimal representation. It was not difficult for 
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students to find that 𝑐(𝑥) is the number of digits in the integer part 

of 𝑥 minus one. There were, curiously, still some groups who did 

not give any examples, as asked for by the task. This task is used 

to help students to solve the core part – task d).  

In task d), students were asked to explain the algorithm, where 

one really needs to use explicitly that a decimal representation of a 

real number is a kind of sum, and also the property 10𝑎+𝑏 =
10𝑎10𝑏 . However, some students mixed formal and informal 

representations. For example, one group used 𝑦 = ⌊𝑦⌋ +
0. 𝑐1𝑐2𝑐3 …(⌊𝑦⌋ is the integer part of 𝑦) as the representation of 

infinite decimals when they were solving the task although 𝑦 is 

represented as 𝑦0 + ∑ 𝑦𝑘10−𝑘  𝑘 in the task. The informal 

representation is of course closer to high school practice. To 

explain infinite decimals as infinite series is on the other hand a 

main point in this part of the course. Although those informal 

expressions did not affect the essence of students’ final proof, we 

still observe that some students are somewhat limited by high 

school conceptions when faced with common high school notions. 

Their reluctance to use formal reasoning in relation to such notions 

is a very general experience in the course.  

Task e) asked students to try out the algorithm with a concrete 

example and all students succeeded by following the steps in task 

d). Task f) tested whether students could relate the code to their 

own explanation in d). These two tasks are follow-up questions to 

the task d) which are hoped to increase the students’ grasp of the 

point of the assignment.  

We interviewed 8 students after they got the revision comments, 

mainly to learn what they saw as the point of this assignment. All 

students agreed that the assignment showed them another way to 

calculate logarithms where they got new insight into logarithms, 

beyond or behind its status as a “button” on calculators. One 

students described “…I knew that the logarithm was the inverse to 

the exponential but I never quite figured out how to calculate them. 
But now we learned a little bit about that with this approximation 

and then of course something about how maple works…” Some 

students also felt it was very surprising that they actually could 

calculate logarithms by hand: “I think I learned how to easily 

calculate logarithms by hand without using Maple.” Most students 

did not focus on the relation between the infinite decimal 

representation of real numbers and this assignment, even though 

this was the main focus in that course week. Only one interviewee 

talked about the computation of decimals “digit by digit”: I think it 
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is to develop a method to actually calculate the logarithms 

sequentially one decimal at the time.  

The mixed student impression of what this task was for, 

illustrates a general challenge with assignments in the course, 

namely that students may succeed with carrying out certain 

technical steps (drawing on some 𝑅𝑈 (𝜎, 𝜔)) without seeing how 

the steps, together, support a major point in relation to high school 

mathematics. It visibly does not suffice to state the overall point in 

a preamble. One point that needs more attention is how to 

formulate “summary questions” which allow students to reflect on 

more general points of the assignment, without these questions 

being perceived as of the type “write your opinion” (or worse, 

“guess what the teacher wants”). In this case, the meaning of an 

explicit or computational specification of a function is extended 

from “algebraic formulae” (thoroughly known from school) to a 

recursive algorithm that makes explicitly use of the decimal 

representation of real numbers. Another possibility is to 

institutionalise such theoretical points in a follow-up lecture, 

referring explicitly to the assignment. Naturally, the whole set-up 

with lectures and exercises could be questioned, however in a 

relatively traditional institutional context, there are also strong 

conveniences by keeping the formats that students are used to.  

CONCLUSION 

It is interesting to observe that while modern research into the 

nature and effects of mathematics teacher knowledge has adopted 

relatively global categories and viewpoints – corresponding to 

what might be represented as 𝑅𝑆(𝑡, 𝑀)  where 𝑀  is in some 

sense “school mathematics” – the original point of view of Klein 

was much more local, considering for instance how future 

teachers’ relationship 𝑅𝑈 (𝜎, ℝ)  to the real numbers could be 

developed based on the “advanced standpoint”, of type 𝑅𝑈(𝜎, 𝜔), 

developed at university. The global viewpoint is certainly 

important when considering policy issues related to institutions and 

international comparison, which in some cases even goes beyond 

considering the single school discipline 𝑀 = ∪𝑖 𝑂𝑖 . Still, the more 

local viewpoint needs to be recovered in order to address the 

didactical question of how to actually develop and assess 

relationships of type 𝑅𝑈(𝜎, 𝑂 ) , while drawing on some 

𝑅𝑈(𝜎, 𝜔). Even some policy issues – like what contents to include 
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or reinforce in study programmes for future teachers – depends on 

what we know at this level.   

Klein’s concrete proposals to this end were given in the form 

of notes from a lecture course. In this paper, we have developed 

and exemplified an alternative and altogether more student 

oriented approach related to task design. At the same time, we have 

exemplified the general scheme (4): with 𝑅𝑈 (𝜎, 𝜔) being given by 

an undergraduate mathematics programme that is not specifically 

designed for teacher education, it may be necessary to develop such 

relationships further to what we have denoted 𝑅𝑈
∗ (𝜎, 𝜔), in order 

to create viable tasks that can lead students to didactically relevant 

new relationships to school praxeologies, such as a deeper 

understanding of decimal representations of real numbers, special 

functions and so on. We emphasize that developing such tasks 

requires simultaneous and up-dated knowledge of both the 

undergraduate prerequisites and high school mathematics. 

Moreover, previous studies of how pupils and teachers at large 

relate to a given high school praxeology could be invested in the 

selection of problematic local contexts and in the design process.  

Other simple aims and methods that one can pursue in the design 

of such tasks were proposed by Huo and Winsløw (2023).  

We do not claim that task design is the only or even a sufficient 

means to achieve, for instance, a relationship to the real numbers 

which is relevant to how these appear at secondary level, and in 
other contexts where digital tools are more dominant than in 

scholarly mathematics. In fact, our case also suggests that just like 

regular undergraduate courses, capstone courses may benefit from 

a vigorous dynamics between students’ work with challenging 

aspects of high school mathematics and lectures which focus on 

extending deepening their theoretical knowledge in directions that 

are relevant to such student work. Further research is needed to 

estimate the effects of such courses on actual relations of type 

𝑅𝑆(𝑡, 𝑂), and effects of 𝑅𝑆(𝑡, 𝑂)on the relationship to 𝑂 of the 

students of 𝑡.     

Thus, from a modern point of view – where the gap between 

the standard undergraduate mathematics programme and 

mathematics in secondary school and society has certainly 

increased – RQ1 cannot be seriously considered without also 

taking RQ2 into account. In the case considered, the rigorous 

approach to infinite decimals requires revisiting and extending 

previous work on properties related to completeness. In many 

contexts, identifying such needs could lead to renegotiating key 
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elements of the external didactic transposition at university, with 

the possibility of enriching the general undergraduate programme. 
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1 What are real numbers?

Numbers are central mathematical objects throughout a student’s mathematical journey. They make
their initial appearance in primary school as natural numbers and later expand to include fractions and
decimals. Upon entering secondary school, students are introduced to rational numbers, represented
by fractions, before encountering irrational numbers, which are distinct from rational ones. Eventually,
they come to real numbers, which are typically defined as the union of rational and irrational numbers
(González-Mart́ın et al., 2013). With the introduction of transcendent functions like logarithms, the
utilization of real numbers extends to non-arithmetical calculation. Although these computations
can be intricate, especially when involving irrational numbers, calculators or computers often replace
manual calculations. The results are typically displayed on calculators or computers as decimals,
accurate to a specific number of decimal places, depending on the task’s requirements. This transition
to digital computation is undeniably convenient and widely accepted by both students and teachers.
However, the underlying reasons for certain errors (cf. Barquero & Winsløw, 2022) in computer
calculations are often neglected by students and teachers or rarely contemplated by them along with
how a calculator or a computer performs these calculations.

As students transition into university, they often carry with them the naive model of real numbers
characterized as the first level of conceptualization of real numbers according to Bergé (2008) from
their high school experience. However, they quickly realize that this familiar model no longer applies
in a university setting. In university, students are introduced to a newly defined concept of real
numbers, often beginning in their first analysis classes. One of the most common approaches to
constructing real numbers at this level is through Dedekind cuts. While some textbooks may introduce
infinite decimal representations of real numbers, these topics are often briefly covered in class or
assigned as supplementary reading. Real numbers in the university context extend beyond being mere
numerical values; they become a set or a space that serves various mathematical concepts and theorems.
The practical use of real numbers, as encountered in high school, becomes less relevant in advanced
university-level mathematics. At the same time, computer-based calculations, which dominate the use
of real numbers in high school, disappear in the university mathematical landscape.

The understanding of real numbers can be somewhat unclear for students both in high school and
university (cf. González-Mart́ın et al., 2013; Bergé, 2010). In high school, real numbers are often
introduced individually, and they are also depicted as points on a number line. However, questions
regarding the mathematical meaning of the number line and in what sense there are no gaps or
discontinuities in the number line are typically left unanswered. On the other hand, university-level
mathematics, which places a strong emphasis on principles and foundations, typically does not answer
the specifics of how real numbers are processed or represented on computers. This lack of insight
into the computational aspects of real numbers can create a significant challenge for individuals who
have completed their university mathematics studies and are on the verge of becoming high school
mathematics teachers (called future teachers following). They face a substantial transition between
different models of real numbers, which can make the task of teaching real numbers in high school more
challenging. Given this significant transition, it becomes essential for prospective secondary teachers
to learn about mathematical connections between the real number models encountered in university
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and high school mathematics (Branchetti, 2017b; Branchetti, 2017a).
In this paper, I will present a (well-known) intermediate model of how real numbers can mathe-

matically be defined as infinite decimals, serving as a bridge between the two previously mentioned
models. Based on this, I will introduce the concept of computability, delving into how computers han-
dle infinite decimals. This exploration of computability seeks to establish a connection between the
non-computer-based university-level real numbers context and the computer-dependent high school-
level real numbers environment. Furthermore, I will outline a possible approach to efficiently convey
this idea to future teachers. To illustrate these two points, I will provide two examples drawn from a
specific course taught at the University of Copenhagen.

2 Theoretical framework and research questions

This paper is based on the Anthropological Theory of the Didactic (cf. Chevallard, 1992), abbreviated
ATD. In ATD, a piece of knowledge is modeled as a praxeology. Each praxeology is composed of two
components: a praxis block and a logos block. The praxis block encompasses practical problems or
specific tasks, along with the corresponding techniques employed to address these tasks, and the logos
block comprises discourses that provide a theoretical elaboration of the praxis block.

While every praxeology has these two blocks, they are not always directly apparent in teaching and
learning. In high school, the praxis block, denoted as ΠHS is relatively straightforward to identify. For
instance, students use a calculator to find the value of f(x) = ln(x) when x = 2 (which can amount to
one or more techniques within the praxis block) but without any explanation from teachers regarding
how the function works on the calculator. Students may become proficient in operating the calculator
to obtain correct results without a deeper understanding of the function or real numbers. Exploration
of how a function works on a calculator is rarely an objective in high school teaching and learning but it
belongs to the corresponding logos block. Teachers might not even possess this knowledge themselves.
Hence, crucial elements of a potential logos block often remain invisible within the context of high
school mathematics education.

Conversely, teaching and learning at the university level place greater emphasis on logos blocks
denoted as ΛU . Students delve into various theoretical aspects of real numbers, including concepts like
completeness. However, this theoretical knowledge often lacks a direct application to concrete prob-
lems. Additionally, calculators and some mathematical software become less prominent in university
mathematics. The focus shifts towards understanding the underlying principles and theories, fostering
a deeper comprehension of mathematics. Hence, future teachers may possess substantial theoretical
knowledge concerning real numbers but they might still encounter difficulties in determining which
theorems or theories to apply when faced with practical questions like “how a function works on the
calculator”.

Future teachers, therefore, might perceive a substantial disparity between what they learned at
university and what they are expected to teach in secondary schools. This gap between high school
and university for a future teacher, as described by Klein (2016), is often referred to as Klein’s second
discontinuity. One potential explanation for this discontinuity is the disconnection between the two
blocks of praxeology in both academic institutions. In this paper, my objective is to construct a
new praxeology that serves as a bridge, forging a connection between high school mathematics and
university mathematics for future teachers. This new praxeology should incorporate a praxis block
derived from ΠHS , denoted as Π∗

HS and a logos block featuring components from ΛU , which can be
used to elaborate the high school mathematics-related logos block, denoted as Λ∗

U .
Taking into account the wide use of digital tools within high school mathematics, and building upon

the challenges in teaching and learning real numbers mentioned in the previous section, the following
two questions emerge:

RQ1. How to expand a praxeology of real numbers by incorporating a logos block Λ∗
U that

provides a mathematically meaningful description of Π∗
HS on computers?

RQ2. How can the idea from RQ1 be prepared and disseminated to future teachers in a pure
mathematics study programme (concretely: in a teaching-oriented capstone course within such
a programme)?

To answer RQ1, we first need to define real numbers as a set of infinite decimals. The construction
of Π∗

HS essentially signifies the utilization of a computer to find the decimal representation of a real
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number. For instance, concrete tasks like calculating the first 10 decimal places of π or ln 2 are where the
solution is normally achieved through computers by high school students. The key to addressing RQ1
lies in the construction of Λ∗

U , to determine what corresponding university-level knowledge concerning
real numbers needs to be included and how to establish its relevance to Π∗

HS .
The core challenge in comprehending how computers calculate decimals pertains to the ambiguity

surrounding the computer commands responsible for generating these decimals. For instance, deci-
phering how the computer interprets a command like “ln” remains elusive. An understanding of these
internal mechanisms would enable us to demystify how computers produce real numbers as decimal
representations. Although it is an impossible task for future teachers to fully open the “black box”,
they can explore potential solutions based on their existing knowledge. One approach is to devise
some computer algorithms that can substitute commands within the “black box”. Based on this idea
we can integrate programming with high school exercises, where Π∗

HS could be reformed as obtaining
the first n digits of a decimal representation for a given real number by executing a designated piece
of coding on a computer. Hence, the purpose of Λ∗

U at this point is to provide a theoretical expla-
nation of the given computer algorithms. In this paper, I will illustrate how a computer produces
real numbers as decimal representations through two examples with two different computer algorithms
from a computability perspective. It is necessary to emphasize that computability is not typically part
of the standard university mathematics curriculum; rather, it serves as a guiding framework here to
aid future teachers in connecting segments of university-level knowledge and high school computation
practice, and forging connections between them.

The extended praxeology, asked for by RQ1, can be likened to an unpacked parcel awaiting collection
and delivery to future teachers. To address RQ2 effectively, we can divide this question into three
distinct components:

1. Parcel Preparation: How should we “pack” the praxeology in a comprehensible and pedagogically
effective manner?

2. Delivery Context and Method: In what context and through what methods should we deliver
this prepared praxeology?

3. Confirmation of Delivery: How can we ensure that the packaged praxeology reaches future teach-
ers and is duly affirmed by them?

In this paper, “packing” the praxeology involves the development of a structured lesson plan which
includes designing the lecture content, formulating exercises as practice, and creating an assignment
to assess future teachers’ understanding. The execution of this plan serves as the delivery context and
method. The confirmation of the extended praxeology’s delivery is assessed through future teachers’
performance in completing the assignment.

3 Computability

What is computability? In a broad sense, as described by Lucier (2022), “an object is computable
if there can exist a computer program that is guaranteed to compute it in a finite number of steps.”
This section is not intended to provide a complete mathematical exploration of computability but it
focuses on how to describe real numbers as decimal representations on computers from the perspective
of computability (RQ1), specifically within the computer algebra system (CAS). Lucier (2022) did
not give a clear definition for “computer program”. Therefore, an interpretation of the “computer
program” outlined is demanded here. In the context of this paper, a branch of coding is called a
computer program, when provided with an input and a natural number n, which could produce a
decimal with n decimal digits. A computer program has to have an end condition and be restricted to
basic arithmetic operations — addition, subtraction, multiplication, and division - of integers. In other
words, a computer program does not function like a “magic button”; its algorithm should facilitate a
process that can also in principle be performed manually with paper and pen, which we refer to as a
“manual operation”.
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3.1 Computable numbers – square root 2

To produce a decimal representation of irrational numbers like
√
2 is a common task in high school,

and students usually use calculators or CAS to get an answer (for example, the command “evalf” on
Maple). I will explore this example within this subsection. I will use the following slight formalization
of Lucier’s definition of computable real numbers (Lucier, 2022, p330).

Definition 3.1. Let Dn = {10−ny : y ∈ Z}. A real number x is called computable if there exists a
computer program that, for any given n ∈ N, computes a number x(n) ∈ Dn that satisfies |x(n)−x| ≤
10−n for all n ∈ N.

A collection of mathematical results related to this definition has been presented by Ménissier-
Morain (2005).

In high school, both teachers and students place great emphasis on obtaining a specific value through
calculation, often seeking a unique result. Because of this, Definition 3.1 needs to be strengthened.
For example, when we take n = 2, both 1.41 and 1.42 can represent

√
2. In this setup, a real number

can be represented by two different decimals for a given level of approximation you specify; it depends
on the computer program which of the two is produced (for instance, it may round up or down, always
give the smaller one, and so on).

A critical requirement for the decimal representation of real numbers is uniqueness, which is evident
in the description provided by the following theorem (Sultan & Artzt, 2018, p. 348, Theorem 8.65).

Theorem 1. Every nonnegative real number x between 0 and 1 is represented by a unique infinite
decimal, except those numbers whose decimal representations terminate in an infinite number of zeros
or an infinite numbers of 9’s. These and only these decimals can also be represented in two ways.

The unique infinite decimal presentation of a real number that does not end in an infinite sequence
of 9’s is called the canonical decimal representation of the real number in this paper.

If the number to be computed is 1, then the computer program satisfying the requirements in
Definition 3.1 may produce, for a given k, either 0.9. . . 9 (k 9’s) or 1.0. . . 0 (k 0’s), and we may
in this case not know if even the first decimal produced is correct (since at an unknown distance,
something different from 9 may appear in the “true” number). This inability to produce the canonical
decimal representations (every time, not just sometimes) is frequent with real-life calculation devices
(cf. example in Figure 1). It often confuses students when they expect a certain result (say 0, with
the canonical decimal representation 0.0...) but get something else (see Figure 1 for an example). We,
therefore, consider it an important part of teachers’ knowledge that computer programs sometimes do
not produce the canonical decimal representation, that they may even get all the decimals wrong, and
that in actual practice it may be hard to predict when that happens.

Figure 1: An example of calculation error on Maple.

Here, I introduce a new concept “absolutely computable”.

Definition 3.2. A real number x is called absolutely computable if there exists a computer program
that, for any given n ∈ N, computes the first n decimals of the canonical representation of x, namely

x̂(n) = ⌊10n·x⌋
10n for all n ∈ N.

As an example, we can easily construct a computer routine (see Figure 2) that can be run on Maple,
to find the first 10 decimal digits of the canonical decimal representation of

√
2. In this routine, the

function f(x) = x2 − 2 is an aid to produce
√
2 because

√
2 is one of its zeros; as the function is only

based on arithmetic (multiplication and subtraction) it is much less of a “black box” than
√
2. The

routine can produce as many canonical decimal digits as you want by changing i, thus it is a computer
program that demonstrates

√
2 is absolutely computable. This routine can also be modified to show

the absolute computability of any other algebraic number such as
√
3, by changing the function and

the initial value K.
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Figure 2: A computer program to compute first 10 decimal digits of
√
2 one by one.

Let x =
√
2. The sequence {x̂(i)} (x̂(i) is written as x(i) in the routine for coding convenience)

that can be produced up to some point by the routine, is convergent, with limit
√
2. More specifically,

for each i, one has x̂(i)2 − 2 ≤ 0 and (x̂(i) + 10−i)2 − 2 ≥ 0, which implies limi→∞ x̂(i) =
√
2. Huo

(2023) presented a detailed explanation of the routine.
There are a couple of important points to highlight here. Firstly, it is crucial to note that the

function employed in this routine must have only integer coefficients. For instance, if we use the
function f(x) = x−

√
2, which also has zero

√
2, the routine can still run and obtain the same results.

However, it loses its purpose in exploring and showcasing the decimal representation of
√
2.

Secondly, the addition of two canonical decimal representations may not yield another canonical
decimal representation. For example, letting x =

√
2, y =

√
3 and z =

√
2 +

√
3, the equation

x̂(n)+ ŷ(n) = ẑ(n) does not hold with n = 6 (ŷ(n) and ẑ(n) can be obtained by modifying the routine
in Figure 2).

Thirdly, it is essential to provide a more detailed explanation of the “evalf” command. As mentioned
earlier, this command can easily cause errors. However, in this specific routine, I opted to use it because
p is a finite decimal represented as a fraction in Maple. Therefore, employing evalf(p, i + 1) ensures
that the output is presented as a finite decimal.

3.2 Computable functions – logarithm

In the previous example, we focused on the real numbers themselves – to find the canonical decimal
representation - but in fact, the decimal representation is often found in high school when calculating
the value of some transcendental function as some decimal approximation. It is not complicated for
polynomials, for instance, to find f(x) = x2 − 2 when x = 1.414; this, students can do by hand.
However, it is normally impossible for high school students to compute transcendental functions with-
out computers or calculators (except for very special cases, like sin 0) – for example, to calculate
f(x) = log10 x when x = 1.414.

But what exactly do these symbols represent? To high school students, these symbols might
resemble buttons on a calculator or commands in computer software. What do these symbols signify
to a calculator or a computer, and how do they perform these calculations? This exploration leads us
to broaden our understanding of computability from real numbers to functions.

Definition 3.3. Let D =
⋃

n=N Dn. A function f : R → R is called absolutely computable if there

exists a computer program that, for any given x ∈ D and n ∈ N, computes f̂(x)(n) ∈ Dn for all n ∈ N.

It is important to distinguish between absolutely computable functions and absolutely computable
real numbers. For instance, let log10 a and log10 b be absolutely computable with computer program
A and computer program B respectively, where a, b ∈ Dn and a, b > 0. When we assert that log10 a
and log10 b are two absolutely computable numbers, it means that computer program A and computer
program B can either be the same or different. However, if we claim that f(x) = log10(x) is an
absolutely computable function, computer program A and computer program B must be the same.
In essence, for computable functions, the computer program must accommodate all possible inputs.
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Therefore, if a function f : R → R is absolutely computable, then for any x ∈ Dn, f(x) is also an
absolutely computable number.

I will take Figure 3 as an illustrative example to elucidate a possible way a computer computes
the function f(x) = log10 x. The idea behind the algorithm (further discussed by Weber, 2016) is that
since aloga M = M for a > 0 and M > 0, we can informally think of loga M as the “number of times”
(not necessarily integer) that we need to multiply a by itself to get M , or as the number of times
M contains a multiplicatively. Incidentally, this establishes an analog with division, since M/a can,
similarly, be thought of as the number of times M contains a additively.

Figure 3: A computer program to compute first 4 decimal digits of log10 M one by one

Notice that the routine only works for M ≥ 1, but if 0 < M < 1 we can use loga M
−1 = − loga M .

To better explain the routine, we take M = 57.64 as an example. If log10 57.64 = N.c1c2... where N
is a non-negative integer and c1, c2... ∈ {1, 2, ...9}, then we have

57.64 = 10N+
c1
10 +

c2
102

+... = 10N · 10
c1
10+... = 10N ·m1

Because 1 < m1 < 10, we have 10N ≤ 57.64 < 10N+1 and we see N = 1. Therefore, by dividing 10N

(10 here), the above equation can be rewritten as 5.764 = 100.c1c2... which can be rewritten as

M1 = 5.76410 = 10c1 · 10
c2
10+... = 10c1 ·m2

where 1 ≤ m2 < 10. We can now find c1 = 7 (as M1 = 5.76410 ≈ 4 · 108 can be found using
primary school techniques). By repeating the process, we could find as many ck as we want to, where
k = 1, 2, 3, .... In fact, the decimal approximation we get from the routine is the canonical decimal
representation of log10 57.64 because there does not exist c′k ∈ {1, 2, ...9} with c′k ̸= ck such that

10c
′
k ≤ Mk < 10ck+1. Thus, N.c1c2... is the canonical decimal representation of log10 57.64.
I must bring attention to a minor flaw in the design of the routine illustrated in Figure 3. While

Mk is indeed a finite number, the “evalf” command displays only 10 digits, subject to rounding, if
specific accuracy requirements are not stated. This rounding does not affect the value of ck, but it can
influence some Ml (l > k), resulting in a wrong cl. However, this issue can be corrected by adjusting
the commands within the algorithm.

4 Dissemination of computability: a case study

Before delving into the response to RQ2, it is essential to clarify what constitutes the “unpacked”
praxeology that will be delivered to future teachers in both examples. In the case of computable
numbers, Π∗

HS involves the execution of the computer program detailed in Figure 2 using Maple
to obtain the initial 10 decimal digits of the canonical decimal representation of

√
2. On the other

hand, Λ∗
U encompasses the explanation provided in the previous section, elucidating how the computer

program operates. Similarly, in the example of computable functions, Π∗
HS pertains to acquiring the
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first 4 decimal digits of the canonical decimal representation of f(x) = log10 x for a given value of
x, such as 57.64. This is accomplished by running and analyzing the computer program on Maple
outlined in Figure 3. Correspondingly, Λ∗

U includes the explanatory content related to the computer
program. Hence, the ribbon of the parcel in both examples is the knowledge of real numbers as
decimal representations, which should be the key during the preparation before delivery. It’s worth
noting that some might argue that knowledge of coding is also a crucial component in understanding
computability. While this is a valid point, it is assumed that most mathematics students at university
possess some degree of knowledge and experience with coding. In this paper, the primary focus is on
the pure mathematics aspect.

A suitable context for delivering the praxeology must contain two points: a group of students who
have finished university mathematics study, and individuals or a designated entity capable of guiding
these students with a planned curriculum that encompasses mathematical knowledge. In my specific
case, I have chosen the UvMat course at the University of Copenhagen. UvMat is an elective course
designed for individuals who have completed at least two years of pure mathematics study at university
and intend to pursue careers as secondary school teachers in Denmark. This course is offered annually
and enrolls 20 to 30 participants. Its primary objective is to guide future teachers in revisiting high
school-related mathematical concepts from a university standpoint, a model referred to as a “capstone
course” according to Winsløw and Grønbæk (2014). Notably, the course’s curriculum includes a topic
dedicated to real numbers as decimal representations during its fourth week each year, which serves
as a suitable testing ground for the praxeology created in this paper.

During the fourth week of this course, students are required to attend two lectures that are prepared
and presented by a professor. These lectures are based on Chapter 8 of the book titled The Mathematics
That Every Secondary School Math Teacher Needs to Know authored by Sultan and Artzt (2018).
Following each lecture, a teacher assistant takes on the responsibility of guiding the students through
a series of exercises that have been selected by the professor. These exercises, which are often drawn
from the book itself (Sultan & Artzt, 2018), serve as practical applications and opportunities for the
students to practice the concepts covered in the lectures. Towards the end of the week, students
are presented with a challenging assignment that is closely tied to the content they have studied
throughout the entire week. This assignment is designed to apply the knowledge and concepts they
have acquired. The teacher assistant reviews the assignments submitted by the students and provides
feedback based on their responses. Students are then given the opportunity to revise and resubmit
their assignments, taking into consideration the feedback provided. The revised assignments serve
as their final submissions. In Sultan and Artzt’s book, an infinite decimal ±0.c1c2c3.... is rewritten
as a series

∑∞
i=1 ci · 10−i, where c1, c2... ∈ {0, 1, 2, ..9}. A key component of Chapter 8 in the book

is to facilitate the understanding of the fundamental theorem such as Theorem 1, which also serves
as the central theme for the lectures. The proofs of these theorems necessitate the application of
knowledge acquired in university-level mathematics. For example, students are required to prove that∑∞

i=1 ci · 10−i always converges.
In addition to covering the fundamental theorems and exercises from the book, the assignment is

intentionally designed to encourage students to explore concepts beyond the book’s scope, utilizing the
knowledge they have gained during the course. The assignments often prove to be quite challenging
for many students. These assignments essentially can be seen as a method to deliver the praxeology.
During the academic year in 2021, I crafted an assignment for this course week that focused on the
infinite decimal representation of the square root. In this assignment, students were asked to explain the
routine presented in Figure 2 and use it to explore and discuss the addition of two infinite decimals (the
whole assignment is presented by Huo (2023)). Students were expected to go through the whole idea
I presented in the previous section about how a computer deal with real numbers as infinite decimals
representation. Certain questions in the assignment were framed from a high school perspective, such
as the request to explain the coding visually.

Upon reviewing the initial submitted versions of the students’ answers and considering the feedback
provided, two key issues related to the assignment’s design have been identified. Firstly, the use of
terms like “explain” and “why”, led students to adopt an informal style of response, resembling the way
high school exercises are typically answered. For instance, when asked to explain why x(i) →

√
2 as

i → ∞, some students simply stated that x(i) gets close enough to
√
2 without providing a formal proof

using the limit definition. However, when the feedback pointed out the need for a formal limit proof,
all groups eventually attached a complete proof. As a result, students faced challenges in proactively
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applying the concepts from Λ∗
U in their responses, leading to connect Π∗

HS and Λ∗
U . Secondly, the

assignment was designed with the intention of placing students in the role of a teacher, prompting
them to contemplate how a computer produces decimal numbers digit by digit and why it sometimes
produces unexpected results.

We now consider a similar assignment for the fourth week of the UvMat course in the 2022 academic
year (all the tasks on this assignment were shown by Winsløw and Huo (2023)). This assignment
commenced with a review of how infinite decimals are presented in the textbook and lectures and
explicitly stated that the purpose of the assignment was to enable the calculation of x = logM10 , for
any M > 1, using only basic arithmetic operations. The computer program shown in Figure 3 was
introduced after students had completed five purely mathematical tasks. Students were eventually
required to employ the solutions they had derived for the previous questions to elucidate how the
routine functioned, with M = 57.64. The assignment shifted all attention towards comprehending the
provided routine. I view this assignment as a successful delivery method because it compelled students
to engage with Λ∗

U first, prompting them to uncover the corresponding Π∗
HS .

After students revised their assignment answers, I conducted interviews with voluntary participants
in both years. In the interviews, participants were asked to explain what they had learned through
the assignments. In 2021, the majority of students struggled to articulate the overall significance of
the entire assignment. Only one student pointed out, “I believe that a teacher should understand
when to employ computers and when not to.” Another student went as far as to question the relevance
of this assignment to high school teaching. Through the students’ responses in these interviews, it
became evident that the prepared praxeology was not being entirely delivered to these future teachers
in 2021. In 2022, I improved the interview process. Each group of students had a representative
for the interviews, and I conducted interviews with individuals before the lectures to assess their
comprehension of logarithms. All interviewees were initially familiar with logarithms, viewing them
as the inverse of exponential functions. However, during the follow-up interviews after revising their
assignment answers, they expressed surprise and demonstrated that they now comprehended how to
manually calculate logarithms and understood them as separate from exponential functions. One
student mentioned, “I never quite understood how it worked. Now I understand after this course a
little bit more.” This shift in their understanding marked a successful delivery of the praxeology.

5 Conlusion

The newly proposed praxeology indeed constructs a bridge, connecting the model of real numbers in
university study with the model of real numbers to be taught in high school (RQ1), and it can be
disseminated to future teachers through a capstone course like UvMat (RQ2). However, how future
teachers could use this praxeology to autonomously explore real numbers as infinite decimal models
on computers is not addressed in this paper. In the examples discussed in the previous section, as stu-
dents engaged with the assignments, their primary focus remained on completing the designated tasks.
Despite our efforts to clarify the purpose of the assignments, most students continued to prioritize task
completion without fully comprehending the assignment’s broader significance within the context of
the week’s theme (i.e. the representation of real numbers as infinite decimals on computers). Only
a small minority might contemplate the potential value these two assignments held for their future
teaching roles (such as the student who said “I think a teacher needs to know when to use computers
and when not.”) One possible explanation for this phenomenon is that the UvMat course has not suffi-
ciently emphasized the importance of integrating computability as a central element in the exploration
of real numbers as infinite decimals on computers. In fact, the UvMat course itself did not explicitly
cover the concept of computability, despite its incorporation into the task design. Expecting future
teachers to independently explore real numbers as infinite decimals on computers from the perspec-
tive of computability merely through completing the assignment may be an ambitious proposition.
Therefore, extending RQ2, another question emerges: once future teachers receive this “packaged”
parcel, how should they proficiently unpack and harness its contents? I hypothesize integrating the
concept of computability as a mathematical concept in the course could potentially enhance future
teachers’ ability to unpack this praxeology effectively. The limited existing literature and research on
computability in mathematics education contribute to the difficulty of predicting the full extent of
the potential improvement that this computability-focused approach could bring to future teachers.
Further investigation and empirical studies conducted within real course settings may provide valuable
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insights into the practical implications of this approach.
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González-Mart́ın, A. S., Giraldo, V., & Souto, A. M. (2013). The introduction of real numbers in sec-
ondary education: An institutional analysis of textbooks. Research in Mathematics Education,
15 (3), 230–248. https://doi.org/10.1080/14794802.2013.803778

Huo, R. (2023). Drawing on a computer algorithm to advance future teachers’ knowledge of real num-
bers: A case study of task design. European Journal of Science and Mathematics Education,
11 (2), 283–296. https://doi.org/10.30935/scimath/12640

Klein, F. (2016). Elementary mathematics from a higher standpoint: Volume i: Arithmetic, algebra,
analysis (G. Schubring, Trans.) [Original work published 1908]. Springer Berlin, Heidelberg.
https://doi.org/10.1007/978-3-662-49442-4

Lucier, B. J. (2022). The nature of numbers: Real computing. Journal of Humanistic Mathematics,
12 (1), 317–347. https://doi.org/10.5642/jhummath.202201.25

Ménissier-Morain, V. (2005). Arbitrary precision real arithmetic: Design and algorithms. The Journal
of Logic and Algebraic Programming, 64 (1), 13–39. https://doi.org/10.1016/j.jlap.2004.07.003

Sultan, A., & Artzt, A. F. (2018). The mathematics that every secondary school math teacher needs to
know (2nd edition). New York: Routledge.

Weber, C. (2016). Making logarithms accessible – operational and structural basic models for log-
arithms. Journal für Mathematik-Didaktik, 37 (Suppl 1), 69–98. https ://doi .org/10.1007/
s13138-016-0104-6

Winsløw, C., & Grønbæk, N. (2014). Klein’s double discontinuity revisited: Contemporary challenges
for universities preparing teachers to teach calculus. Recherches en Didactique des Mathématiques,
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