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Summary

This thesis is about using complex networks to examine how
physics students learn physics. It is an interdisciplinary and
highly exploratory project between physics and science ed-
ucation, which results in a dissertation containing elements
from network physics as well as constructivist learning the-
ories. The premise of the thesis is that networks offer a way
of quantifying learning situations, which can contribute to an
understanding of what learning in physics entails. The thesis
consists of a synopsis and four articles.

The synopsis develops the theoretical foundation for link-
ing learning theory with network theory. The starting point is
a tripartite division of the field of research in science teach-
ing, which has a tension between measurements on learning
situations, learning theoretical models, and didactical consid-
erations. The goal of the second chapter of the synopsis is
to make it probable that network theory can help to resolve
some of this tension. The result of the second chapter is three
broad research questions: The Theoretical Question, The Mea-
surement Question, and the Didactical Question. These three
questions are the recurring themes in the following articles.

The first and longest article describes a method to develop
a network-based method which can capture socio-cultural as-
pects of learning. The starting point is open survey responses,

where students in a Danish upper secondary physics class
name, with whom they have worked in physics in the past
week and give a short description of the work. The students’
open response to this question is integrated with physics edu-
cation research literature and socio-cultural learning theory to
develop eleven different categories describing what students
communicate about in physics. These categories are used in
a new survey, where students can name, for example, whom
they remember having communicated with regards to problem
solving in physics. The students’ are asked for replies weekly
and their answers are used to create student interaction net-
works of class communication patterns within different cate-
gories. The networks are analyzed using network theoretical
quantitative measures. Subsequently, the network analysis re-
sults are compared with students’ reflections on what led them
to name specific individuals and with the teaching plan for the
class. From a network theoretical point of view, laboratory
work is characterized by more ineffective communication than
normal class communications. This leads to the hypothesis
that a change in laboratory work should result in changes in
the communication patterns measured by network theory.

The second article is a network theoretical article which
examines how first-year university physics majors organize

13



Summary

themselves into groups. The data collection follows the same
pattern as the data collection in the first article: Students are
asked to name the individuals with whom they remember hav-
ing communicated during the past week. They can choose be-
tween all students in the study and from the same eleven cat-
egories as in the previous study. The article shows that the
network, which maps the academic interactions of students,
seems to stabilize towards the end of the measurement period.
This means that the students interact with numerous others at
the beginning of their study, but they return to previous part-
ners at the end. The article also develops and tests a measure
of how students divide themselves in relation to gender, lab
exercise classes, and grade. The measure is called the segrega-
tion. There is a significant but not large segregation according
to gender and a significant and large segregation according to
laboratory class number. There is no significant segregation
with regards to grade.

The third article combines university student networks from
the first nine weeks of their studies. Whereas the previous ar-
ticle analyzes the networks week-by-week, the links in this
article are summed together to give a picture of how much in-
dividual students have communicated with each other over the
course of the first nine weeks. The article uses categories de-
veloped in the first paper: problem solving, concept discus-
sion and, in-class social communication. The last category
describes non-physics related communication taking place at
scheduled classes, lab exercises, and lectures. It turns out that
the networks describing social communication outperform the
two other categories when predicting a student’s grade in later
courses from their positional advantage in the current network.

Whereas the first three articles are concentrated on socio-
cultural aspects of learning, in the fourth article I show that
the network can also describe elements of students’ cognitive
state. The article argues that mental structures used to struc-
ture physics academic thinking can be captured by networks of
words students use to describe how a physical system works.
The article provides simple examples of these networks, made
from high school students’ responses to an open-ended prob-
lem concerning waves on a string.

14



Sammenfatning

Denne afhandling handler om hvordan man kan bruge
netværk som en matematisk størrelse til at undersøge hvor-
dan fysikstuderende lærer fysik. Det er et tværfagligt og i høj
grad afsøgende projekt mellem fysik og undervisningsviden-
skab, hvilket gør at afhandlingen indeholder både fysikfaglige
elementer i form af netværksteori og undersvisningsfaglige el-
ementer i form af læringsteoretiske analyser. Præmissen for
afhandlingen er, at den kvantificering netværk tilbyder kan
bidrage til en udvidet forståelse af hvad læring i fysik inde-
bærer. Afhandlingen består af en kappe og fire artikler.

Kappen udvikler det teoretiske fundament for at koble
læringsteori med netværksteori. Udgangspunktet er en tredel-
ing af feltet for forskning i fysikundervisning, hvor der er en
spænding mellem målinger på læringssituationer, læringsteo-
retiske modeller, og didaktisk brug. Målet med kappens første
kapitel er at sandsynliggøre, at netværksteori kan bidrage til
at løsne denne spænding. Kappen udmønter sig i tre brede
forskningspørgsmål: Det Teoretiske, Målingsspørgsmålet, og
Det Didaktiske spørgsmål. Disse tre spørgsmål er de gen-
nemgående temaer i de følgende følgende artikler.

Den første og længste artikel beskriver en metode til at ud-
vikle en netværksbaseret metode, der kan indfange sociokul-
turelle aspekter ved læring. Udgangspunktet er åbne sur-

veybesvarelser, hvor studerende i en dansk gymnasieklasse
navngiver, hvem de har arbejdet sammen med i fysik i den
forgangne uge. De studerende giver ogsåen kort beskriv-
else af, hvad de har arbejdet sammen om. De studerendes
åbne svar på, hvad de arbejder sammen om, bruges sam-
men med fysikdidaktisk literatur og sociokulturel læringste-
ori til at udvikle elleve forskellige kategorier der beskriver,
hvad studerende kommunikerer om i fysik. Kategorierne
anvendes i et nyt survey, hvor de studerende nu kan svare
om hvorvidt de kommunikerede sammen med bestemte navn-
givne andre om opgaveløsning. Kategorierne afprøves på
samme klasse på et senere tidspunkt i deres studieforløb, og
de studerendes ugentlige navngivninger inden for kategorierne
bruges til at lave netværk af klassens kommunikationsmønstre.
Netværkene analyseres ved brug af netværksteoretiske bereg-
ninger. Beregningerne kobles efterfølgende til både studeren-
des reflektioner over hvad der fik dem til at navngive bestemte
personer og til læreplanerne for klassen. Ud fra et netværksteo-
retisk synspunkt er laboratoriearbejde karakteriseret ved mere
ineffektiv kommunikation end normal klassekommunikation.
Det leder til en hypotese om, at en ændring i laboratoriearbe-
jdet skulle kunne måles som en ændring i kommunikations-
mønstre.
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Sammenfatning

Den anden artikel er en netværksteoretisk artikel som under-
søger, hvordan førsteårsstuderende på fysikstudiet på Køben-
havns Universitet organiserer sig i grupper. Dataindsamlingen
følger samme mønster som den anden dataindsamling i første
artikel: De studerende bliver ugentligt bedt om om at krydse
de personer af, de kan huske at have kommunikeret med in-
den for den seneste uge. De kan vælge mellem alle studerende
på studiet og de samme elleve kategorier som i det tidligere
studie. Artiklen gør brug af én af de kategorier der blev udvilk-
let i den første arikel - kategorien der angiver, om to stud-
erende har kommunikeret sammen om at løse en fysikopgave
(opgaveløsning) - til at vise, at netværket af studerende ser ud
til at blive mere fastfrosset henover måleperioden. Det vil sige
at de studerende afprøver mange muligheder for at interagere
i begyndelsen af deres studie, men de vender tilbage til udval-
gte tidligere samarbejdspartnere senere i forløbet. Artiklen ud-
vikler og afprøver også et mål for hvordan studerende opdeler
sig i forhold til køn, regne- og laboratoriehold, og karakter.
Der er en signifikant men substantielt ikke ret stor opdeling i
forhold til køn og en signifikant og substantiel stor opdeling i
forhold til regne- og laboratoriehold. Der er ikke en signifikant
opdeling af de studerende i forhold til karakterer.

Den tredje artikel kombinerer universitetsstuderendes
netværk fra de de første ni uger af deres studietid. Hvor
den forrige artikel analyserer netværkene uge for uge, er
forbindelserne i denne artikel lagt sammen for at give et billede
af hvor meget de enkelte studerende kommunikerer med hi-
nanden. Artiklen anvender opgaveløsningskategorien nævnt
ovenfor og to andre kategorier, begrebskommunikation og so-
cial kommunikation i forbindelse med forelæsninger, labora-

toriearbejde, og/eller regnetimer. Det viser sig, at netværkene
der beskriver social kommunkation er bedst til at forudsige
studerendes karakterer i de to kurser der følger direkte efter
de første ni uger af deres studietid.

Hvor de første tre artikler har vægt på sociokulturelle aspek-
ter ved læring, søger den fjerde artikel at godtgøre, at netværk
også kan beskrive elementer af studerende kognitive tilstand.
Artiklen argumenterer for at mentale strukturer der bruges til
at strukturere fysikfaglig tankegang kan indfanges af netværk
af de ord, som studerende bruger til at beskrive hvordan et
fysisk system fungerer. Artiklen giver simple eksempler på
disse netværk, lavet ud fra gymnasieelevers besvarelser af en
løst formuleret opgave om snorbølger.
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Project Overview

This PhD project explores how networks can be used in
physics education research (PER) to connect measurements,
didactics, and theory. More specifically, I have aimed at care-
fully connecting constructs from network science with con-
structs from learning theory (socio-cultural and cognitivist)
and with constructs from didactics (competencies). This has
allowed me to develop and employ quantitative measure-
ment methods to create networks describing competencies and
learning processes.

As mentioned in the summary, I have used these methods
to describe learning processes in both secondary and tertiary
level physics education. I see networks as a valuable link
between these three overarching themes within the field of
physics education research (PER), because they can act as
complex quantifications of the structure of human relations.
This thesis serves as an example of that.

The remainder of this chapter consists of an elaboration on
my motivation for doing this project, followed by an overview
of the process of writing this PhD thesis. Finally, I map con-
nections between different parts of the dissertation as a net-
work to help the reader navigate the dissertation.

Researcher motivation

Entering the field of science education and didactics with a
background in physics, I have taken an interdisciplinary view
on this thesis work. It has not been possible, nor do I think
it is desirable, to neglect the way of thinking, the tools, and
the reasoning skills from physics, or to neglect methods, prac-
tices, and theories in science education research. Since physics
and science education research are (at least) two different dis-
ciplines, combining the two must be interdisciplinary at some
level.

My rule of thumb in this work has been that the level of in-
terdisciplinary necessary to answer my research questions has
been reached when the disciplines have become so interwoven
that removing one of them would cause the whole work to col-
lapse. For example, the probabilistic measures developed and
used in Relations between network and other attributes (p.59)
were created in the field of network physics. The conclusions
in that chapter are based on correlations between these mea-
sures and grades and cannot be done without them. On the
other hand, the same conclusions are based on cognitivist and
socio-cultural theories; they make little sense without these
theories. Thus, the answers depend on both fields of research.

17



Project Overview

MEASUREMENT

DIDACTICS THEORY

NETWORKS

Figure 1: This work explores different ways in which networks can
be used to connect measurement, didactics, and theories as all these
apply to physics learning. The dotted lines indicate that, while other
ways of connecting the three exist, this work deals explicitly with
how networks can be used in this respect.

When I first started reading about learning theories, a di-
vide was set up between cognitivistic and socio-cultural learn-
ing. The cognitivists were concerned with development of
mental schemata, while the socio-culturalists primarily were
concerned with the development of language and mediation of
artifacts. Somehow, the different foci were seen as incommen-
surable theories. However, that notion never did make much
sense to me.

In my master’s thesis I argued that there were no any real
differences between the two, and that they could be seen as
merely views of learning at different scales (Bruun, 2008). Of

course, one of the grand old men of cognitivism, Jean Piaget
(1896-1980), did in his later work consider socio-cultural as-
pects, just like Lev Vygotsky (1896-1934), the grand old man
of socio-culturalism, described detailed mechanisms for how
the individual acquires knowledge (Vygotsky, 1978). Bruner
(1997) describes the differences between the two:

One, Piaget, studies thought in its nomothetic and
explanatory manifestation, the other, Vygotsky its id-
iographic and interpretive expression (Bruner, 1997,
p. 139, my emphasis).

In this view, the tension between Piaget and Vygotsky is be-
tween the general explanation and the detailed description.
Bruner proceeds to say that as paradigms the two approaches
may have grown incommensurable, but he maintains that both
views are important to understand learning.

Lately especially work in the field of metaphor theory
(Lakoff and Johnson, 1980; Roth and Lawless, 2002; Lakoff,
1993; Johnson, 1987) can be seen as bridging the gap between
the two (Sinha and De Lopez, 2000); it connects the cultural
aspects of metaphor and analogy as developing entities in their
own rights with mental schemata. However, I do not see any
real gap to be bridged. Instead, I see learning as a process hap-
pening in a complex system ‘composed of interconnected parts
that as a whole exhibit one or more properties [...] not obvi-
ous from the properties of the individual parts’ (Wikipedia).
The interconnected parts constituting the system are both in-
dividual minds (as complex systems in themselves) and their
relations. Part of my motivation for conducting this study is to
test this argument and to find a way to model this system.

18



Researcher motivation

As a physicist, I view quantitative modeling as a key feature
of natural scientific endeavor. At least in part, I view the field
I am undertaking from a natural scientific perspective as op-
posed to restricting myself to humanistic and social sciences.
This means that the models I want to create are of a quanti-
tative nature. They will be heavily integrated with qualitative
data, but the goal of the models is to produce hypotheses which
can be tested quantitatively.

The tricky part is to be very careful to investigate and clar-
ify what the models predict or try to quantify. What I am in-
terested in is to find out how I can measure student responses
to teaching-learning environments quantitatively. I want to in-
vestigate to what extend I can use these kinds of measurements
as evidence that processes of learning have occurred. The pre-
dictions, explanations, and quantifications, which the models
produce will influence my perspective on learning.

Making quantitative measurements of learning processes is
a hard problem which I will try to solve using ideas from
cognitivist learning theories, socio-cultural learning theories,
and physics (specifically network physics). The key idea from
physics is that it is possible to use quantitative macroscopic
data to investigate microscopic entities and relations, or more
generally, that it is possible to say something about what we
cannot see based on what we can see.

We cannot see learning as a process, just like we cannot
see pressure, energy, or heat. My argument is that we can see
the effects of learning processes, simply because they are pro-
cesses, and processes leave traces behind for those who care
to find them. However, this is not to say that learning has not
occurred if we cannot see the effects of learning processes.

If we become better at finding and measuring effects indi-
cating that a learning process has occurred our certainty that
learning has occurred will improve as well. Such certainty is
based on evidence and one might suspect that different teach-
ing methods will make students and teachers leave different
traces of their learning processes. The tools I will use to inves-
tigate these traces come from cognitivist, socio-cultural, and
network physics theories. Thus, what I am aiming at develop-
ing here is a framework for evidence-based models of teach-
ing, learning, teaching methods, and teaching-learning envi-
ronments.

I believe that evidence-based models of teaching can be-
come useful by increasing the amount of data and the qual-
ity of that data. Just like a high quality picture takes up more
space on a hard drive than a low quality picture, high qual-
ity data, whatever that might be, is likely to take up a lot of
space in the research. However, just like the high quality pic-
ture shows more detail so should high quality data show more
details about learning. I do not, for example, consider Force
Concept Inventory (FCI) test scores or grades as high quality
data in this respect. They may be reliable, but they do not tell
us much about the processes of learning.

Increasing the amount and quality of data raises the ques-
tion of ways to collect, manage, analyze, and interpret that
data. I believe it to be desirable to automate as many of these
processes as possible in order to meet these demands. Au-
tomation should make the handling of large amounts of high
quality data manageable.

This raises the questions of what kinds of data can be pro-
cessed automatically and what these kinds of data say about
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learning. A large part of the work with this thesis has been
to find different ways of automating the processing of differ-
ent kinds of data. An equally large part of the work has then
been to relate the data, which could be automated, to learning
in physics.

In sum, this thesis is based on the belief that it is a quality in
itself within educational research to accumulate large amounts
of data and process them to make quantitative explanations,
predictions, and hypotheses. It is equally based on the belief
that these predictions and hypotheses must be integrated with
qualitative explanations, predictions, and hypotheses. Neither
qualitative nor quantitative data are in themselves enough to
understand how learning occurs or what processes lie at the
root of learning.

Illustration of process

Figure 2 is an illustration of the different research processes
leading to different products in this PhD work. The primary
purpose of the figure is to show, that as a developing re-
searcher, one goes through a lot of diverse and intertwining
sequences and the whole process becomes more and more in-
tense towards the end. Notice for instance that Year 1 has been
allotted significantly less space on the downward facing time-
line than Year 2, which in turn has a lot less space than Year
3. I will not attempt to explain all the abbreviations of the dif-
ferent activities. They merely serve to show that the activities
were different.

I completed the majority of the required courses and at-
tended most of the conferences in the beginning of the PhD

project. Though not shown in Figure 2, the initial period was
also characterized by a lot of reading and reflecting. Here both
courses and conferences helped structure reading as well as
thinking.

Especially reading about socio-cultural theory was impor-
tant since data collection started in the beginning of Year 2
after the a pilot study. Here, the Learning in Practice (LIP)
course which dealt with Cultural Historical Activity Theory
(see e.g.Roth et al. 2009) helped structure my reflections about
socio-cultural learning as I was reading Communities of Prac-
tice (Wenger, 1998) at the time.

The following period was a hectic mix of teaching, attend-
ing courses, designing the network survey, and collecting data.
It resulted in a lot of products. The most important was the raw
data used throughout the remainder of the PhD project. Here,
I continuously got to present, write, and discuss my ideas with
researchers from my own department, with other PhD students
during courses, and with upper secondary as well as university
teachers. These different ways of expressing thoughts about
networks have continued throughout the study. In my view,
they are essential to the development of this and further work.

One of the turning points in the process was the conference
for the National Association of Research in Science Teaching
in 2011 in Orlando. For the first time, I met other people who
shared some of my thoughts on networks in science education
research. This encounter resulted in a change of research en-
vironment1 for three months at the physics education research
group at Florida International University (FIU).

1The change of research environment is mandatory for PhD students at The
University of Copenhagen

20



Researcher motivation

coursePlan

Activity

Product

Activity Product

Course

EERSS

OIS

ATD

iUP

LIP

Teaching

SSL

DidNatV

MtG

DidG

Res. Bud.

Co Sup

ConferenceDPS Annual

May Conf

ESERA 2009

ESERA 2011

NARST 2011

KP 2011

Collection

End

Start

Design

Survey

EB Kin

Analyze

Answers

Write

Write

Program

Mixing

Read

Article

Thesis P3

Thesis P2Write Thesis P1

Write Thesis P4

Synopsis

SNA CoP

ATD CoP

CompMod

PLW as TS

Presentation

Presentation

Res Design

SNA CoP

MtG

Web material

Survey

Blog/Wiki

Poster

Kin Ex

PERC 2012 CoP PER

Data

Raw data

Pilot Raw data

Raw data

R script
Segregation

Linear Modeling

Processed data

Models

Segregation

TE+H For Tot. Net. Z-scores Net.

Learning
Network

Linguistic

Txt Conversion Linguistic Nets

Search Inf H Correlations

Learning
Networks

Student

Learning
Networks

Student

Learning
Networks

Student

Target Entropy TE Correlations

Figures

Design Doc

Application

kinExPlan

teachPlans

teachPlans

ILO lesson

Year 3

Year 2

Year 1

Figure 2: Illustration of processes and products on a timeline.

Working at FIU involved a lot of reading, programming, and
analyzing to understand the kind of data I had collected. This
is represented by the three Student Network Learning activity
blobs towards the beginning of Year 3 in Figure 2. Network
data is very difficult to get a grip on, because there are so many
ways of combining data within the network as well as with ex-
ternal data. After many discussions, we settled on developing
the network measures target entropy and search information
as they apply to directed and weighted networks. The work
eventually resulted in what I present as the third paper in the
thesis.

Writing this paper also changed my view on the format that
I wished to use when writing the dissertation. Before engaging
in writing the first network paper, I had been working from the
premise of writing a monograph. However, the paper made
me realize that writing papers and a synopsis would provide
me with a better focus.

This resulted in a hectic last period of the PhD project with
many activities and products. I have indicated that I have not
finished reading, programming, and analyzing the data. There
are many more possibilities for activities and products.

Network map of the dissertation

The purpose of this section is to help the reader see some of the
connections between different parts of the work, which I con-
sider significant. Understanding the networks I have worked
with during this PhD project in all their complexity is diffi-
cult. From my point of view, the thesis as a whole makes the
most sense when regarded as a connected whole by the reader.
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This is why I have made a network map of the dissertation.
The map of the dissertation is shown in Figure 3 on the facing
page.

Although the map has been created using network methods,
I will not go into the details of how it has been created or the
detailed meaning of circles and arrows from a network per-
spective. This seems to be a research project in its own right
and it is quite possible to derive meaning without it. However,
a brief explanation of the color codes and an interpretation of
circles and arrows are appropriate here.

The circles represent sections in chapters or papers in this
dissertation. The color code shows where the circles belong.
The sizes of the circles are based on the number of different
words in the section. I interpret this as a marker that the big
circles have more detailed arguments than the smaller ones.
The arrows are based on how similar two sections are with
regards to phrasing. The arrows generally go from bigger to
smaller circles to indicate that the arguments developed in the
detailed sections feed into the smaller sections. In general, I
do not want to assign too much meaning to the direction of the
arrows. What is important here is where the connections place
the different circles on the map.

On the basis of this representation, the most important sec-
tion in this work is Developing Interaction Categories in the
first paper of the thesis. This section outlines most of the
methodology permeating the whole thesis. Therefore, it feeds
in to later sections in the same paper as well as other sections.

The learning-theoretical stand point of this thesis is devel-
oped in Rapprochements: Networks, physics, and learning
(p.25). The central parts of this chapter are the developments

of student interaction networks and cognitive networks as a
blend between network theory and learning theory.

The upper left corner of the map shows a cluster cen-
tered around the green circles representing Conclusion (p.67).
Again, the importance of Developing Interaction Categories
is represented by the connection to the Introduction to the
Conclusion. While a lot of sections feed into the sections in
the Conclusion chapter, it is worth noting that the two circles
representing Perspectives and the final paper are also located
there, too. While it is natural to have some kind of connection
between the conclusions and the perspective, the placement of
the fourth paper is a reminder that this paper needs more work
in order to become an integrated part of the dissertation. This
issue will be further addressed in the summary for the paper.

The cluster to the lower right involves a lot of technical con-
siderations, but the connection to the large section Interpret-
ing Network Properties with Socio-Cultural Learning Theo-
ries could be seen as an indication that focus is always on how
to interpret the quite complex network measures. However,
the cluster gives an indication that this thesis is technically
dense, something, which I believe, is necessary for a deep un-
derstanding of how learning and networks can be integrated.
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This research is centered around physics education research
(PER) and around the didactics of physics. While PER is a
Northern American term, the didactics of physics is of Euro-
pean origin. While the two traditions have overlaps, there are
differences. The starting points of PER center around individ-
ual student performance and issues, while didactics of physics
in the French tradition focus on teaching situations as in Di-
dactical Situations (Brousseau, 1997; Tiberghien et al., 2009).
The German tradition has a philosophical aspect represented
by the term Bildung - often translated to literacy (Dolin, 2002).
Most of this thesis refers to the Northern American tradition,
PER, because a lot of the research on networks relates mostly
to this tradition.

PER grew out of a need for more physicists. In the be-
ginning, researchers focused primarily on individual student
performance (Forsman, 2011; Beichner, 2009). Since then,
the field has grown to include motivation, self efficacy, pol-
icy, teacher training, retention/attrition, student epistemologies
and interventions using a variety of methods, including vari-
ous tests and other student output, (video) observations, and
interviews. Lately, socio-cultural aspects have been taken into
consideration by different PER groups.

Different sub-fields of PER can be broadly characterized as
dealing with the development and testing of different teach-
ing forms and methods, epistemological aspects of teachers’
and students’ beliefs and actions, and socio-cultural aspects of
teachers’ and students’ agency and identity. This study lies
within the intersection of the latter two. However, the end of
the thesis presents the argument that networks are quite gen-
eral in their application, so they might find their way into all
forms of research.

Forsman (2011) lists around 80 PER groups around the
world. This thesis is written as a PER project within a general
science education department, and naturally the PER groups
do not account for all research within or applicable to the
physics teaching and education. However, they can be seen
as hubs of research pertaining specifically to PER.

PER can be understood as a field within physics (Forsman,
2011, p. 12) and a field within educational research, and thus
has to acknowledge standards from both fields. In doing so the
PER field becomes interdisciplinary, and involves theoretical
considerations and methods from sociology, the humanities,
and science, specifically physics. Thus, PER is subjected to
at least some of the standards from all of these major areas,
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depending on what view of interdisciplinarity we take.
At this point it might be fruitful to consider what kind of

interdisciplinarity PER can be subjected to. One kind of inter-
disciplinarity is when one area is subjugated to the other. If we
say that PER is an area within physics, the part that is physics
has prominence and educational research may be a part of the
PER package allowed only as an unwelcome passenger pro-
viding buzzword explanations to quantitative results. If on the
other hand, PER is subject to educational research, physics
becomes a case within this area. It might just as well be chem-
istry, biology, or history, and results from PER only make
sense in light of results from other sub-fields within educa-
tional research. While some may believe that interdisciplinar-
ity means that one field is in some way subject to another, the
following paragraphs proceed to explore other possibilities.

The hierarchical coordinations of PER with physics and ed-
ucation research can be contrasted with a kind of interdisci-
plinarity seen in engineering. Here, different disciplines con-
tribute to solutions on a footing determined by the problem at
hand (Richter and Paretti, 2009). For example, when building
a structure where both structural material properties and elec-
trical circuits are important, these two engineering disciplines
need to be coordinated to produce a solution. Still the two need
not communicate extensively with each other about their epis-
temological and ontological foundations. In PER research an
analogy could be the development of some physics problems
(requiring for example the domain of quantum mechanics) and
the analysis of how students solve these problems (requiring
for example the domain of video observation). While both the
problems and the analysis are important aspects of this kind of

research, researchers need not consider how uncertainty prin-
ciples in quantum mechanics affect their ability to transcribe
student videos.

A third kind of interdisciplinarity is when the two fields are
integrated. In science this happens when scientists from dif-
ferent disciplines work together to understand a phenomenon
of interest to the involved disciplines. One example is nano
science, where the common denominator is “things that are
nanometer sized” (∼ 1− 100nm). Other examples are plane-
tary science and climate change. Here, researchers need to be
clear on what premises lie behind their inferences in order to
use others’ results in their work. A biologist in nano science
needs to be certain that results from a colleague physicist build
on data and warrants which are compatible with biologists’ if
he is to use them properly in his research. In PER the question
is more pressing since physics and educational research do not
necessarily share views on what exists and how we produce
knowledge.

One way of integrating two disciplines would be to view
them as analogous to each other, and then investigating this
analogy. Then blending the two (Podolefsky and Finkelstein,
2007) constitutes PER; that is, creating a space where some
of the ideas from both fields survive and ideas which belong
to none of them are created. It is beyond the scope of this
thesis to perform this analysis, but this chapter does seek to
lay the foundation of an integration between network physics,
cognitivist, and socio-cultural learning theories.

This integration is vital for this thesis, since on the one hand
from the perspective of educational research, networks are
only mathematical structures with no relevant meaning. On
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the other hand from the perspective of physics, educational
research offers very difficult data to analyze; it is not easy
to set up and test successful quantitatively predictive models
to investigate learning. A successful integration of physics
and educational research could however lead to stronger re-
sults, since we would then gain the benefit of both the very
full descriptions prominent in educational research and the
hypothetico-predictive (Lawson, 2003) quantitative models
which are prominent in physics.

Starting from how networks have been used in educational
research (primarily PER), the following section focuses on two
broad types of networks: student social networks and cognitive
networks. The discussion draws mainly on work that has in-
formed this project. As shown in Illustration of process, the
process has been iterative, and including the many almost-but-
not-quite relevant studies would create a more muddy picture
than necessary.

Blending constructivist learning in physics with network
theory (p.37) integrates constructivist learning theories with
network physics. This may be seen as a step along the way to-
wards understanding PER as a blend between physics and ed-
ucational research. In this context, network studies represent
examples of an understanding and Challenges (p.44) sums up
up the challenges this understanding produces. Finally, Re-
search questions (p.47) indicates which of the challenges this
dissertation addresses.

Networks in education research: A
focus on science and physics

Physics education research (PER) groups work with all aspects
of physics education, but few articles within the field of PER
use networks. The use of networks seems to be increasing in
general in educational research and also in PER, but network
articles seem to emerge independently in different sub-fields.

The majority of work in educational research utilizing net-
work theory investigates social networks via social network
analysis (SNA). In SNA researchers can represent people (for
example students) as circles and connections between people
as lines. Some people appear more central in these networks
than others, because they are more connected. One of the ma-
jor questions in SNA is then what this centrality means.

For example Enriquez (2010) investigated who students re-
ported communicating with using different modes of commu-
nication, for example face to face contact, mobile phone, on-
line posts, and online chatting. Asking about these different
modes of communication produced networks with very differ-
ent structures. For example, the face to face network resem-
bled a star, whereas the mobile phone network had a much
more complex structure. Enriquez concluded that centrality
is fluid across communication modes, but she did not really
tell us what the students communicated about. Thus mode of
communication for Enriquez’ study is more about what device
the student used to communicate with, rather than what they
communicated about.

Instead of focusing on the devices used to communicate,
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this study turn towards what students communicate about. The
primary reason for this shift is that it is possible to use mobile
phone data (Onnela et al., 2007; Eagle et al., 2009), online
discussion boards (Dawson, 2008; Macfadyen and Dawson,
2010), emails (Kossinets and Watts, 2006) and even digitally
based proximity data (Eagle et al., 2009) to create more ac-
curate networks than self reported interactions. But it is not
possible to use these data to find out what interactions in a
learning context a student remembers.

One of the key ideas in this thesis is that it is possible to con-
nect the interactions a student remembers in a physics learning
context to learning processes and learning outcomes of physics
instruction. Developing network methodology (p.51) describes
a detailed design for making this connection. With such a con-
nection, network representations of connections between stu-
dents give insight into possible learning processes in a physics
classroom (p.59) or in a cohort of physics students beginning
at a university (p.59).

Networks can be many other things than networks of peo-
ple. In general, networks consists of entities of interest and
bonds/connections between entities. Linguistic networks (Ma-
succi and Rodgers, 2009) are networks of words, and the rela-
tion between them can be that they are adjacent in a text. Epis-
temic networks (Shaffer et al., 2009; Rupp et al., 2009; Bodin,
2012) identify different cognitive categories in an observation
situation and link them based on adjacency in time. This work
makes use of networks of coding categories (for details, see
Paper I) where two categories are connected if they are used
to code the same piece of data, and correlation networks (Fig-
ure 14 on page 62), where two variables are connected if they
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any combination of these four types.

are correlated to some level of significance. The problem in
this context is to figure out what the entities and bonds mean
for our understanding of physics learning processes.
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In network theory, the entities are called nodes and the
bonds are called links. We can distinguish between four types
of networks (Costa et al., 2007) as illustrated on Figure 4.
First consider the network, where there are arrows of differ-
ent widths between the nodes. The arrow indicates a direction,
for example that a student, A, has named another student, B.
The width indicates the strength of the connection, for exam-
ple if A has mentioned B three times in some study. This is
called a directed weighted network. Consider now that the line
between A and B signifies that they have taken the same three
courses. Then it makes little sense to put a direction on the
links. This is an undirected weighted network. Stripping the
networks of weights then produces directed and undirected un-
weighted networks.

From an educational perspective, working with networks
might seem very technical and not related to learning theo-
ries. This is why one of the main research questions in this
work centers on how network science and learning science in-
form each other. The idea of coupling network and learning
theory has already produced results which encourage further
investigation.

The next sections review in turn physics educational stud-
ies using social networks involving students and using what
can be called cognitive networks. The emphasis is on what the
networks can tell us about issues pertaining to physics learning
and education, and not on technical definitions from network
theory. The sections below will not attempt to explain all the
network terms used in the studies, but only those needed to un-
derstand the messages from the studies. Instead the terms rel-
evant to this project will be explained in the chapters in which

they appear.

Student interaction networks

If we only focus our attention on the students and how they
interact with each other, we leave out interactions between
students and teacher, students and family/friends, and inter-
actions between students and other agents (e.g. computers)2.
Thus, we only count interactions between students, and call
these student interaction networks (SINs).

In social network analysis, SINs would be called social net-
works. However, social networks may indicate many types of
relations, which student interaction networks do not. Social
networks may involve connections between organizations, re-
search papers, as well as different kinds of human interaction
(Scott and Carrington, 2011). From this point of view student
interaction networks are a subset of social networks.

Kossinets and Watts (2006) used time-stamped e-mail head-
ers recorded over one academic year as a proxy for student in-
teractions. In their study, they focus on what factors influence
the creation of ties in SINs and they would probably see their
networks as social networks of students set in the context of
universities. Thus, their study is more a network study than
a PER study. The total data set includes a whopping 22,611
graduate and undergraduate students.

Kossinets and Watts (2006) establish relationships between

2For example, in Actor Network Theory (Latour, 2007) non-living things
may have agency as well. While the topic of agency is interesting in
connection with networks, this study does not explicitly investigate how
agency might be represented in networks.

29



Rapprochements: Networks, physics, and learning

students by noting that in the context they investigate, “ongo-
ing social relationships produce spikes of e-mail exchange that
can be observed and counted”. At any given point in time, the
strength of a relation between two students in their network is
approximated by number of e-mails sent between them in the
last 60 days. They then assess the likelihood that two students
make a connection based on different factors. Factors like gen-
der, age, and year play less of a role compared to shared classes
and the tie strength of mutual acquaintances. This means that
if two people who do not know each other share a class or have
a relatively close relationship with the same person, they are
likely to make a connection.

This is an indication that the learning context and the cre-
ation of social and academic ties in that context are linked;
being spatially close to another person for an extended period
of time increases the probability of communicating. It seems
reasonable to expect that what students would communicate
with that other person about is somehow related to the learn-
ing context that they are part of. Extending our knowledge
from “there was communication” to “what was the communi-
cation about” would allow us to probe what kind of processes
facilitated the creation of the tie in that context.

Another interesting finding of Kossinets and Watts (2006),
which can inform our position on SINs, is that while the over-
all structure of the network is stable, the connections of in-
dividual actors are not. This means that connections based
on actions do not remain constant; student interactions change
over time, as this study also confirms (see Time development
of student interaction networks).

This is an extension of the fluidity argument put forth by En-

riquez (2010); not only do student positions vary within modes
of communication, but also in time. It is an important result
for this study in two respects. First, we cannot assume that we
measure the social network of students by making one mea-
surement examining only one mode of communication. Sec-
ond, social networks as they are lived/experienced by students
are dynamic entities. One week, a student might be the center
of the network, while he is the connecting link between two
groups at other times.

Even if positions change from week to week, the posi-
tion of a student in a network integrated over some time, can
be related to academic success. Relations between network
and other attributes (p.59) shows this for student grades as a
marker for academic success, and a series of papers (Dawson,
2010; Dawson et al., 2010; Macfadyen and Dawson, 2010)
have coupled student online discussion activity in courses with
the likelihood of getting a good final grade.

To establish links between students, Dawson (2010) uses
online discussion boards. If Student A posts a message to the
forum, and Student B replies to that initial post, a relation-
ship is established between Students A and B. Link weights
are established on the basis of “increased levels of communi-
cation exchange between different actors [...] in the network”
(Dawson, 2010). The networks of that study were established
through discussion posts related to a specific unit of a chem-
istry course which blended online learning with traditional in-
struction.

One of the findings of the study from a network perspective
is that students with a high number of out-going and incoming
links (called the total degree) end up with a better grade than
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students with a low total degree. More precisely students in
the 90th percentile grade group had a mean total degree of
5± 10, and students in the 10th percentile group had a mean
total degree of 2±3.

Moreover, high performing students also were more likely
to include an instructor and high performing students tended
to link to other high performing students. This is interesting
compared to the findings in Paper II and Paper III in this the-
sis. These papers show no evidence that students coordinate
themselves according to grade. The discrepancy may be ex-
plained by the cautionary note of Enriquez (2010): We might
not capture the processes related to learning by measuring only
one mode of communication.

Brewe et al. (2012) circumvent the problem of measuring
modes of communication by asking students who they work
with on homework with in a specific context: The physics
learning center (PLC) where a diverse set of students meet to
work on physics homework. The question neatly captures the
context and renders the fluidity question irrelevant.

Linking the network representation to demographic data,
Brewe et al. (2012) are able to predict the centrality of students
in the resulting network. Via multiple hierarchical regression
(see also Paper III), they found that days spent per week and
whether or not the person was a physics major where the best
predictors for centrality in the collaboration network. Gender,
ethnicity, and introductory course type (modeling/traditional)
were not.

In network theory centralities are measurable quantities,
and in social network analysis centrality is often used as a
proxy for power (Wasserman and Faust, 1994; Scott and Car-

rington, 2011). Centrality can be computed in many different
ways (Wasserman and Faust, 1994), corresponding to differ-
ent perspectives of what it means to be central. For Brewe
et al. (2012) a central person not only has many connec-
tions; a node’s centrality also depends on the centrality of the
neighboring nodes. Brewe et al. (2012) quantify this using
Bonacich’s centrality (Bonacich, 1987), which depends both
on the number of connections a student has and on the central-
ity of neighbors.

Power in SNA is understood as relational, meaning that
powerful people have relations which make them appear cen-
tral in the network (Scott and Carrington, 2011). For the pur-
poses of studying physics learning, thinking in terms of posi-
tional advantage seems much more fruitful. For Brewe et al.
(2012) a link means that a student thinks of another student as
a collaborator when doing physics homework. Even if we do
not know the details of the interactions leading to this link, we
can assume that the central people in this network will have
had more interactions about physics homework in the PLC
than non-central people. If the interactions helped students
with physics, this is advantageous, and then we can say that
students who are central have a positional advantage. In this
light, what Brewe et al. (2012) found was that the physics ma-
jors who spent many days per week in the PLC had positional
advantage.

In a socio-cultural study of three students’ increased par-
ticipation (Wenger, 1998; Lave and Wenger, 1991; Bielaczyc,
1999) in a physics learning community, Goertzen et al. (2012)
discuss what such a positional advantage may mean for stu-
dents participating in a community of learners. The study has

31



Rapprochements: Networks, physics, and learning

two data sets: One is a network survey where links are made
between students based on students naming who they work
with to learn physics. The other data set consists of three 60-
minute interviews with each student to elicit the students’ per-
ceptions of the learning community and their part in it.

The researchers used diagrams of each student’s self-
reported connections to visualize how the student’s number of
ties changed during a period of time. Three such ego networks
for each student showed that they started with zero to one con-
nections, gained connections in the middle of the study, and
ended up with more connections at the end of the study. The
diagrams also showed that student ego networks became more
connected, meaning that the students named by the subject stu-
dent also named each other to a larger degree.

Detailed descriptions of how these students change their at-
titudes about learning, their identity, and their ties to other stu-
dents in the physics classroom load meaning into the networks.
For example Marta, one of the students, for whom learning
involves discussing the meaning of physics concepts and ex-
plaining ideas to others. Thus, the meaning of a tie going from
Marta to others is likely to be indicative of processes of dis-
cussing meanings of concepts.

It is tempting to say that successful students will have a
larger amount of ties, but as the standard deviations reported
by Dawson (2010) show, we have to be careful with interpret-
ing the number of ties that way. While high performing stu-
dents in that particular learning community on average have a
significantly higher number of links than low performing stu-
dents, the standard deviations are larger than the averages re-
ported. This indicates that a high performing student might

have a lower number of links than a low performing student.
Thus we cannot characterize a student’s positional advantage
solely on the number of links. An analogous conclusion may
be drawn in the case of the study of community of learners
in physics (Goertzen et al., 2012), where one student, Sergio,
is also successful and has very few links to others, and thus
a small ego network. We cannot see how each of the three
students’ ego networks are connected to the rest of the net-
work, and yet network connections may influence their aca-
demic success.

In Paper III, we show that measures that take the whole net-
work into account when determining the centrality of a student
(e.g., Bonacich’s centrality), can aid in the prediction of future
grades. Thus, it might be that even if Sergio does not end up
having a large ego network and reports working mostly alone,
he is still engaged with the learning community. He can benefit
from discussions with others and contribute to other students’
understanding.

One of the students investigated by Goertzen et al. (2012)
said that the ties she made in her physics class were likely to
be lasting, like family. Her statement emphasized that being
a student at a university entailed both an academic part and a
social part. These two parts where investigated by Forsman
(2011) in the context of three Swedish engineering programs.
With a focus on student retention, they asked students to write
down the names of the fellow classmates they interacted with
and what characterized the nature of the interaction. The char-
acterization scale was from one (only social) to five (only aca-
demic), with three being both social and academic. They man-
aged to distinguish between the academic and social networks,
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and thus quantified the existence of these two kinds of systems.
Other studies use SNA to analyze social networks in ed-

ucational settings (e.g. Daly and Finnigan, 2010; Pitts and
Spillane, 2009; Pustejovsky and Spillane, 2009), but they do
not investigate learning processes in general or in physics in
particular. The field of Computer Supported Collaborative
Learning has made use of SNA in interpreting learning pro-
cesses specifically involving the use of computers (e.g. Cho
et al., 2007), which seems too limited for the purposes of this
research. In fact, no publications seem to investigate how
student networks of subject specific interactions develop over
time. The next section investigates a more microscopic view of
networks. The networks in the following section are all related
to learning or ability to do physics as it is expressed in net-
works of student conceptual understanding. These networks
are all related to cognition, which begets the term cognitive
networks.

Cognitive networks

Cognitive networks aim at describing the cognitive state of a
person and can be extended in many directions. Nodes in cog-
nitive networks need not be written words. They may be ac-
tions that a researcher identifies and categorizes. Likewise,
links in cognitive networks may be dependent on how students
argue for their connections, or they may be based on adjacency
of categories in a transcript. One may view concept maps (No-
vak, 2010) as a special case of this broader class of networks.

Researchers and teachers have long used concept maps as
a way of accessing, developing, and assessing student knowl-

edge. Novak (2010) describes them as hierarchical networks
where concepts are nodes and a link between concepts signi-
fies some connection between these concepts made by, in our
case, the student.

A concept is ‘a perceived regularity (or pattern) in events
or objects, or records of events or objects, designated by label’
(Novak and Cañas, 2008). A knowledge unit is a string of con-
cepts tied together by lines linking words or linking phrases to
form a proposition; a declarative statement which is either true
or false.

As a teaching-learning tool, concept maps are used to make
students organize concepts and connections between concepts.
While the exact interplay between the learner’s memory sys-
tems and developing concept maps is unknown, (Novak and
Cañas, 2008) describe them as ‘a kind of template or scaffold
to help organize knowledge’.

A good concept map is generated as an answer to a focus
question. From there overarching concepts diverge into less
important or at least more isolated concepts, creating seman-
tic units that can be read as sentences. Each semantic unit
in a concept map is a proposition, here understood as a state-
ment which has meaning in the context of the focus question.
Maps with many such meaningful interconnections between
concepts are considered good, while maps where concepts
have been connected as strings represent ‘poor understanding
[...] or inadequate restructuring of the map’ (Novak and Cañas,
2008). Thus, a student map is taken to express some level of
the student’s understanding of the focus question.

One might express two concerns with concept maps. First, if
knowledge structures are not only propositional, concept maps
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do not necessarily reveal much about a student’s understanding
of physics. Johnson (1987) and diSessa (1993) both propose
cognitive units important for learning which are not proposi-
tional. Johnson’s image schemata are dynamic and change-
able multimodal structures that we use to coordinate our ac-
tions. On a deeper level with regards to physics, diSessa’s p-
prims are knowledge units which coordinate a person’s sense
of mechanism with regards to mechanics. Thus, focusing only
on how concepts relate in a concept map by prompting stu-
dents for concepts may not reveal much of what they know.

The second concern is about the hierarchy of concept maps.
diSessa (2002) argues that p-prims can be structured in coor-
dination classes, which are highly hierarchical, and that this
changes the way the p-prims are triggered and related. More-
over, change may involve stages where knowledge is not as
hierarchically structured. By imposing a hierarchical structure
on students, we might not get a fruitful map of their knowledge
state; one which allows us to evaluate the students’ knowledge
in order to take some kind of action. To sum up this concern:
How can we know from a good concept map if student knowl-
edge is structured hierarchically or if this is an effect from the
mapping procedure?

In a recent study Koponen and Pehkonen (2010) asked stu-
dents training to become physics teachers to make connections
(links) between concepts. The concepts were given to them by
the researchers, thus producing a concept network. The con-
cepts were taken from an expert version of the concept net-
work, and the allowed links were either ”experimental proce-
dures, which are operational definitions of a concept or laws
or their demonstrations” or “modeling procedures, which can

also be simple definitions or logical deductions”. The nodes
were not only concepts but also quantities, laws, and funda-
mental principles.

Using these two types of links lead to two different kinds
of structure in the expert version of the network. First, the
structure of the concept map revealed that concepts tend to be
highly connected with each other, something which Koponen
and Pehkonen (2010) interprets as a marker of coherent knowl-
edge structure. Second, there are hidden hierarchies dividing
the network into distinct levels much like a concept map.

For each node, i, in the expert network the importance, Ii,
and the hierarchy, Hi, can be calculated (refer to Koponen
and Pehkonen (2010) for details), producing vectors Iexpert =
(Iexpert

1 , .., Iexpert
N ) and Hexpert = (Hexpert

1 , ..,Hexpert
N ). Since the

student networks consists of the same nodes, but with differ-
ent connections and thus different Ii’s and Hi’s, they can define
the dot product Istudent · Iexpert . Normalized to the length of the
expert vector, this is a projection of the student network impor-
tance values onto the expert network importance values. It is
measuring the similarity between the two network measures.

This is a way of evaluating the student networks, since they
measure the quality of knowledge as Q = I×H, where I and
H are the projected values. This allows researchers to compare
different types of student networks with each other via the ex-
pert network. For example, Koponen and Pehkonen (2010)
find that many of the student networks can be represented
graphically like chains of weakly connected nodes. These net-
works signify low quality knowledge structures, while more
web-like structures signify higher quality knowledge.

Koponen and Pehkonen (2010) show that careful interpre-
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tation of network motifs and structure allow researchers to
quantify the coherence of student knowledge structures. They
have made an effort to produce a correspondence between the
structures in their network. Thereby, the structures are read-
ily recognizable as knowledge structures pertaining to linking
physics concepts via experimental and modeling procedures.
This constrains the knowledge structures Koponen and Pehko-
nen (2010) examine to only “scientifically acceptable” ones,
thus hiding from researchers information about other concep-
tions the students might have.

Moreover, the idea of projecting networks is also an impor-
tant contribution. It allows us to compare different networks
if we have calculated, for example, a measure of centrality for
each node. However this similarity measure is dependent on
a complete overlap of nodes in the two networks, thus again
constraining students to use exactly the words teachers and re-
searchers find acceptable. Thus from a point of view examin-
ing the development of language (Lemke, 1990; Ogborn et al.,
1996; Roth, 1995), this is not the most informative approach.

Bodin (2012) uses a completely different way of establish-
ing a cognitive network. She uses epistemic framing (Rupp
et al., 2009; Shaffer et al., 2009) to code student interviews,
and make networks of the codes based on adjacency of the
codes in the transcript. The codes become nodes in an epis-
temic network of knowledge, skills, and beliefs.

According to Bodin (2012), epistemic elements represent
knowledge, skills and beliefs. Epistemic framing describes
the organization of epistemic elements. An epistemic frame
is a construct theorized to contain information about knowing
what, how, and with, thus forming an organizational principle

for practices in a community of practice (Shaffer et al., 2009;
Louca et al., 2004; Bing and Redish, 2009). Bodin’s funda-
mental assumption is that epistemic frames can be validly rep-
resented by epistemic networks of coded transcripts. As such,
epistemic networks represent knowledge networks in a more
broad sense than for example concept maps or networks.

Groups of connected nodes can be captured by a particu-
lar algorithm for partitioning a network into groups, called In-
fomap (Rosvall and Bergstrom, 2008; Rosvall et al., 2009).
Infomap bases groups on an information flow perspective on
networks. In this view, links are conveyors of information be-
tween nodes. A group of nodes are grouped together in mod-
ules if information flows quickly between them. More impor-
tant groups account for more of the information flow.

In this light, Bodin finds that modules labeled Values, Dif-
ficulties, and Strategies account for much of the information
flow in the epistemic networks before a teaching intervention.
After the intervention these categories have been replaced by
Model representation and Troubleshooting as the most impor-
tant modules. Also, Bodin is able to map how, for example, the
Difficulties module evolves using so-called alluvial diagrams
(Rosvall and Bergstrom, 2010). These diagrams illustrate, for
example, that the nodes in Difficulties split up to be only part
of the new modules Model representation and Troubleshoot-
ing.

Bodin’s study shows that student responses can be used to
produce networks which tell us something about student cog-
nitive and affective structures. However, she uses interviews,
which are time consuming and thus her sample is small (six
students). In this study, Paper IV discusses how written re-
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sponses to conceptual questions may be converted to linguistic
networks representing aspects of student thinking. The price is
that such questions might not elicit any affective factors which
can be converted into nodes and links.

Inspired by Shaffer et al. (2009), Bruun (2011) shows an
analysis of a video recording of students and uses the software
ELAN to annotate student words, gestures and actions. The
analysis shows that the network representation can be used to
visualize how students use different modes of representation
when communicating about physics. The categories represent-
ing nodes are very coarse grained. For each student, Bruun
only considers speech, gesture, and other actions. With three
participating students, this only yields nine nodes, and only
outlines the structure of the interaction. However, it does show
that gestures are part of how the students communicate.

Another but still related form of representation to consider
are networks that map human writing. While these linguistic
networks seem unexplored in an educational context, other re-
search suggests that linguistic networks may reveal structures
concealed in plain text (Masucci and Rodgers, 2009). One
possible use of these kinds of networks is for analyzing stu-
dent writing about physics.

The rationale for using student writing as an indicator for
their cognitive state is that writing permeates our culture. One
way of asking people to describe their view of something is to
ask them to write about it. In physics classes writing is mostly
confined to reports or to argue for your reasoning when doing a
test. Asking students to write how they would go about solving
might produce well structured texts revealing how they think
about a specific physics problem.

Recent studies(Masucci and Rodgers, 2009; Masucci et al.,
2011; Masucci and Rodgers, 2006) have investigated writing
as linguistic networks. One way is to use text mining tech-
niques (Feldman and Sanger, 2007) to reduce words to their
stem form, remove common words (for example “and”, “a”,
“for”) and connect the resulting words in a network if they are
adjacent in the transformed text.

These studies are not related to physics education research,
but Paper IV discusses a technique derived from this line of
thinking to investigate how linguistic networks can be inter-
preted as markers for students’ cognitive states. Such net-
works may complement other markers like grades and FCI test
scores. The networks are made from student written answers
to openly formulated problems in physics.

The idea is that the way a student expresses himself/herself
about physics is indicative of how they perceive concepts and
their connections in physics, in a way that concept maps, con-
cept networks, and epistemic networks do not capture. The
present work positions linguistic networks in the discussion of
how networks can be used to capture student understanding
and use of physics in a quantifiable manner. This is an im-
portant discussion if networks are to be used for this purpose,
which is why one of the research questions will center around
this discussion.
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Blending constructivist learning in
physics with network theory

Constructivism is the underlying idea in work with both social
and cognitive networks. From a constructivist view point, a
person learns by integrating new knowledge with pre-existing
knowledge. Classically, two views on how this happen have
competed since the 1920’s.

In the cognitivist or Piagetian tradition, the learning process
starts with the student making an observation (Lawson, 2003,
p. 7). The observation could be the task to draw a force di-
agram for a box on a slab. The current mental structure, or
schema, in his/her long term memory system uses the obser-
vation to initiate some kind of behavior (ibid). This could be to
draw a force diagram, with the box represented as a rectangle
and arrows representing forces. Say that there is a teacher who
can verify the drawing. For the student the expected outcome
of his/her behavior could be that the teachers acknowledges
the drawing. Then we would say that the observation had been
assimilated into the knowledge structure of the student. He/she
would know only that he/she could also solve this kind of prob-
lem. If the teacher indicates that it is wrong, the student is in
a state of disequilibrium. To make sense of the observation
and solve the task, he or she must make room for rearranging
the knowledge structures. This would be to accommodate new
knowledge.

In the competing socio-cultural or Vygotskian tradition,
learning involves first and foremost language and signs (Vy-
gotsky, 1978). Learning happens in two steps. First there is

a social interaction in which language plays a key role in me-
diating knowledge about how the task should be solved. This
would in many cases involve a textbook or a teacher presen-
tation about force diagrams. Then the student needs to inter-
nalize the drawing of force diagrams in order to solve the task.
Students might scaffold each other to solve the problem if the
problem lies within their zone of proximal development.

For Vygotsky, learning happens by using signs and arti-
facts in social interactions, and knowledge as a higher mental
function is then primarily developed in relation to others. In
the cognitivist tradition, learning happens when an individual
adapts mental schemata to their observations, and thus knowl-
edge is represented by mental schemata.

Knowledge is a bit misleading from this author’s standpoint,
and one could argue that developing competencies might be a
better concept for describing learning.

As defined by Dolin et al. (2003) scientific competency is:

The ability and will to act, alone and with others, us-
ing scientific curiosity, knowledge, skills, strategies,
and meta-knowledge to create meaning and auton-
omy, and participate in decision making in situations
where it is relevant. (Dolin et al., 2003, author trans-
lation)

For the purposes of this thesis, consider this changed version
as a description of physics competency:

The ability and will to act, alone and with others,
using curiosity, knowledge, skills, strategies, and
meta-knowledge as these apply to physics, in order
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to negotiate meaning, to develop a distinct identity
within the field of physics, and to participate in rele-
vant decision making situations.

Keeping a focus on competencies acknowledges that knowl-
edge is both individual and shared, but also relates knowledge
to other aspects of learning, thus emphasizing that a focus on
knowledge alone does not give us the full picture of learning
in physics. Like Dolin et al., the physics competency stresses
that curiosity and strategies are things that can be learned, just
as knowledge and skill. It recognizes, like Novak and Cañas
(2008), that learning also entails affective aspects, so not only
ability but also will to act is an important part of learning.
The removal of scientific serves to emphasize that this work is
about physics learning and results from here may or may not
apply to other fields. Creating meaning and autonomy in the
original definition derive from the German Bildung tradition
(Klafki, 1996), and it is linked to a way of being in the world
or in this case to act within the field of physics. However, in
the view presented here, any one person does not create mean-
ing and autonomy. Instead, persons negotiate meaning and
develop identities - notions which are derived from, among
others, Wenger (1998).

This description of competencies is an important of the
study, and one of the research questions addresses the con-
nection between teaching practices, competencies and changes
in networks. This relates to the didactics of physics, since the
question addresses how networks can help investigate how stu-
dents respond to the learning environment, for example teach-
ing and learning activities. Learning as a change of competen-

cies should be recognizable as changes in networks.
In this view, learning is the integration of new ways of be-

ing curious, of new knowledge, skills, strategies, and meta-
knowledge with the existing, which changes a person’s ability
and will to act, while being aware of both oneself and one’s
surroundings; the context. For now it remains a postulate that
this view can integrate both cognitivistic and socio-cultural
learning theory. The following section elaborates on this idea,
thus further relating cognitivism, socio-cultural theory and net-
work theory.

Blending learning mechanisms:
Socio-cultural theory and constructivism

If the definition of learning postulated above actually does in-
tegrate cognitivistic with socio-cultural views learning, then
we should make sure that the mechanisms for learning are
compatible. Remembering that Bruner (1997) warns us that
they may have grown incommensurable, the learning mecha-
nisms of Piaget and Vygotsky do not exclude each other. For
example, Sinha and De Lopez (2000) find that even young
children integrate ‘socially normative knowledge [...] with
their capacity for schematizing spatial relations.’ Further they
argue that this ‘presupposes a cognitive representational ca-
pacity, which [...] is based in the ability to “abstract” schema-
tization from immediate perceptual content.’

In the context of learning physics, schemata, cognitive
structures which shape among other things student actions,
predictions, affect, and strategies, may be viewed as a work-
ing model for how to act in given situations involving physics.
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Figure 5: Student setup and the circuit that the students discussed
(Bruun, 2011). In the circuit, circles with X’s are light bulbs with
equal resistance. Students rank the read-out of each ampere-meter
in the circuit. Each student has a worksheet and a lap-top computer.
A piece of software installed on the computer allows students to test
their ranking.

These can be incorporated in a socio-cultural understanding of
learning, where sign and language affect and are affected by
these schemata. Learning in this sense cannot be static, but
must entail change. It can be change of both signs, language
and individual schemata.

As an example of this Bruun (2011) investigates how four
students negotiate meaning (Wenger, 1998) while doing a task
in an upper secondary physics class on electricity. In the
study, the praxeologies of the Anthropological Theory of the
Didactical (Bosch and Gascón, 2006) are used as proxies for

schemata. In short, a praxeology consists of a perceived task,
a technique for solving the task, and a theoretical layer which
explains the use of the technique and reasoning behind using
the technique.

In the study, the four students are to rank the read-out of
ampere-meters in a circuit with resistors with known resis-
tance connected in a combination of serial and parallel con-
nections. See Figure 5. One student, Catherine, expresses a
working model of electricity, in which she follows the current
by following the lines in the circuit. In this model, the path
with the fewest light bulbs is the path with least resistance.
Another student, James, has a different working model, which
prompts him to identify and mark the parts of the circuit which
are serial and parallel. He then uses the appropriate formula to
calculate the resistances and is able to compare quantitatively
which ampere-meter has the greater read-out.

The students discuss which model is right, and James
quickly convinces Catherine that his answer is correct. He
does this without any of the students trying to find out if her
answer is correct using the computer. Over the course of about
five minutes, there is discussion where Catherine repeatedly
asks James about his thinking, and where James explains it us-
ing gestures, drawings and words. Catherine changes her view
to be in accordance with James’, and in the end she feels confi-
dent that she understands the situation, and proceeds to explain
it to a second student, Elin. Notably both Elin and the fourth
student, Idun, have been practically absent in the preceding
discussion.

This example highlights that to understand what kind of
learning is taking place, we need to consider both what is go-
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ing on between the students and what is going on within the
students. As a group the students change the coordination of
competencies: James explains his thinking to Catherine, who
then acts to explain the physics reasoning to the Elin. As a
person, Catherine changes her thinking about that particular
problem, something which might signify a change in the co-
ordination of her internal schemata. But all this happens as a
complex interplay between students, internally in students and
in the students’ interaction with artifacts.

This view of learning is different from both socio-cultural
learning and traditional cognitivism. The internal change in
Catherine could be explained as a schematic accommodation,
but it is bound to the socio-cultural context of the learning
situation. Thus, the view of learning is a blend in the sense
that (Podolefsky and Finkelstein, 2007) use it, because corre-
sponding ideas in two domains of knowledge (here the two
learning mechanisms) are projected into a new domain (Fig-
ure 6). In this new domain, internalization is enriched and
thus changed to include accommodation, and the assimila-
tion/accommodation is enriched to incorporate the interper-
sonal scaffolding. The new concepts are something else than
both of the “old” concepts, and we can now describe learning
as the tension between shared and individual competencies.

While Podolefsky and Finkelstein use blending to teach
electro-magnetic theory via analogies (Gentner and Colhoun,
2010), this section shows how blending can support an inte-
grated view of the mechanisms of learning. The view entails a
complex tension between the individual and its surroundings,
but no attempts at explaining how these theoretical considera-
tions might be studied, verified, changed via empirical obser-

Coordination 
with world

Assimilation/
Accomodation

Radical 
Constructivism

Interpersonal
Scaffolding

Intrapersonal/
Internalization

Socio-
semiotic Learning 

Blended 
learning space

Change in (image)
schemata

Change in shared 
coordination of competencies

Figure 6: Blending learning mechanisms. In this thesis the view is
put forth that classical cognitivism, exemplified by radical construc-
tivism (Von Glasersfeld, 1996) does not concern itself with interper-
sonal relations, while socio-cultural learning as exemplified by Vy-
gotsky (1978) does not concern itself with the details of how individ-
uals minds change.

vations or rejected have been made yet.
Since networks offer unique mathematical and visual ways

of investigating complex patterns and have already been suc-
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cessfully used to inform physics education research, they may
be expected to be useful to further an understanding of learn-
ing. Networks might be useful for connecting cognitive and
socio-cultural networks in an operational manner, and this will
be part of one of the research questions. To render such a con-
nection probable, the next step is to integrate the current un-
derstanding of learning with network theory.

This amounts to more than using networks as a methodolog-
ical piece of equipment. For the purposes of physics education
research, nodes and links need to be infused with meaning, but
within network theory nodes and links are connected to other
concepts. So if we want to use networks, we have to consider
more aspects of the theory.

Blending the blend: Educational networks
in physics

The task of this section is to link network theoretical concepts
to the learning mechanisms derived above. This is more than
a mere operationalization of learning concepts using the net-
work toolbox. The area of networks has its own theoretical
constructs, some overlapping with the constructs we have al-
ready seen. Blending these with the already blended learning
space yields a PER understanding of three different kinds of
networks: student interaction networks, cognitive networks,
and epistemic/discussion networks (Figure 7).

Before this, consider briefly two conceptions of network
theory. Borgatti and Lopez-Kidwell (2011) distinguish be-
tween theories of networks and network theory. For Borgatti
and Lopez-Kidwell the first case concerns models of how net-

works form, but the meaning extends to apply also to how
structure is measured and how communities are identified.
Network theory could concern the advantages of social cap-
ital, where one’s position in the network allows one to gain
access to more or less resources than others. A discussion
about social capital is beyond the scope of this thesis, but es-
pecially Paper III identifies ties between network position and
advantages not measured by networks.

This section focuses on how structural aspects of networks
and the ideas of communities can be related to learning. As
highlighted both by Borgatti and Lopez-Kidwelland by Ros-
vall et al. (2009), network theory can view the links between
nodes in a network as conveyors of flow as Bodin (2012) did,
but also as a kind of girders supporting the architecture of the
network (Borgatti and Lopez-Kidwell, 2011). If for example a
link signified “someone with which a person could act”, then
no information might flow. This tension could be called “flow
versus relational”, borrowing from Rosvall et al. (2009).

Blending network theory with learning theories yields a
third kind of tie, as put forth by McCormick et al. (2011).
Here a link signifies a process of transformation; learning is
neither just the flow of information nor to act with someone.
In a participatory framework like that of Wenger (1998) - and
consistent with the definition of learning in this work - a link
should be designed to signify the construction of knowledge,
and development of skills, strategies, curiosity, and the shap-
ing of identities.

Focusing now on Figure 7, consider first blending struc-
tural changes in networks with the two types of changes in the
blended learning space. An important concept in both theories
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Figure 7: Blending network theory with learning theory as concep-
tualized in the previous section (Figure 6) involves projecting net-
work concepts to multiple other concepts in the new blended domain
(physics education research Networks).

of networks and network theory is centrality, and we need to
relate this to learning. In general, a node’s centrality measures
how important the node is in the network or advantageous its

position is. There are many centrality measures, and ones
found most fruitful in this work are the ones where a node’s
centrality is calculated on the basis of the rest of the network.
Bonacich’s centrality is one, and Paper III describes three oth-
ers in detail.

Structural changes in the network will consequently change
these centralities, as is the case in Bodin’s work, where the
centralities of nodes are used to calculate the modules de-
scribing student epistemic frames. In Koponen and Pehkonen
(2010) the centralities of nodes determine the overall quality
of knowledge, and changes in centralities would then change
the overall quality of knowledge. In Goertzen et al. (2012),
the degrees of students and their ego networks change as they
participate more and more in the learning community. Thus,
structural changes as captured by centrality measures happen
in networks describing both communities of practice and cog-
nitive development. This is why in Figure 7 there are lines
from structural changes in networks to cognitive, epistemic,
discussion, academic, and social networks.

The structure of networks can also be characterized by the
presence and abundance of different motifs in the network
(Costa et al., 2007). Clustering is a measure designed for such
a characterization. The (global) clustering coefficient of a net-
work is the number of closed triplets (three nodes A, B, C with
links A-B, B-C, A-C) divided by the total number of connected
triplets (three nodes A, B, C with a minimum of two links be-
tween them, for example A-B, and B-C).

Another measure of the structure of a network is the degree
distribution, measuring the frequency with which you find a
node with k connections. Figure 8 shows the total degree dis-
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Figure 8: The degree distribution of in class social discussions from
week 38 of the study described in Paper II shown both with normal
scales and with double logarithmic scales.

tribution for a week in one of the studies in this work. Many
real life networks including linguistic networks (Masucci and
Rodgers, 2009) obey a power law or a power law with a cutoff
(Newman et al., 2001). This seems to be true for this partic-
ular network. This means that there are many students with
few connections (few reported interactions, in this case), and
a few students with many connections. In a learning context
we might consider using the few students to spread ideas, or
we might consider working to change the distribution so that
more students have many links.

Likewise the degree distribution of cognitive networks may
be related to the cognitive state of the student, for example
a power law might indicate that some concepts have higher
priority than others, although the work of Bodin and Paper

III suggests that other methods for investigating this might be
more fruitful. Degree distributions are mentioned here mainly
as an example of how change in overall network structure
could be related to learning and because they are often used
to characterize networks in network papers.

While structural changes in the network as measured with
centrality and whole network measures inform our position on
networks in physics education research, the idea of developing
communities in networks may also be captivating. Network
literature is ripe with algorithms for partitioning a network into
communities, modules, or groups (Lancichinetti et al., 2009),
but there is no consensus of what defines a community. Per-
haps PER can provide data, which may aid theories of net-
works to this end.

In PER it seems that only Forsman (2011) investigated
briefly the community structure of a network of students. As
he relates to retention and not learning, we have little guidance
as to how network communities or modules may be blended
with for example communities of practice or to cognitive states
of students. Thus it remains open how network communities
relate to groups of students studying physics.

With the work of Bodin (2012) however, we do have a
first step of how modules of cognitive (epistemic) elements
might be grouped to inform a position of schematic change.
If Bodin’s modules represent cognitive structures like p-prims,
image schemata and other types of schemata related perhaps to
competencies in the sense defined on page 37, then her study
shows how teaching and learning activities can change these
structures in the context of physics. Then this is an example of
how learning can be captured via networks.
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As pointed out by Koponen and Pehkonen (2010), viewing
networks drawn in different ways may point to different fea-
tures, so there is also a visual side of network theory, which
we should not neglect. In this dissertation this is exemplified
by the snapshots of networks depicted in Paper II and also
online (see Paper I). The visual representation is one of the
strengths for researchers working with networks, and looking
for changes over time in a cognitive or student interaction net-
work could give valuable insights into learning processes as
they unfold in a classroom and in students.

This means that the PER Networks in Figure 7 include this
form as representation on equal footing with numbers, ta-
bles and graphs. Brewe et al. (2012) uses a circular form to
show where the most connections are, Koponen and Pehkonen
(2010) uses a dendrogram to show hierarchies, and most of
this work uses a forced based drawing algorithm (Kamada and
Kawai, 1989; Csardi and Nepusz, 2006) to show the overall
structure of the network.

Most of the studies on educational networks do not consider
the actual changes in these networks over time; only Goertzen
et al. (2012) and Bodin (2012) do that. While the stationary
state of a network can say something about a student’s cogni-
tive ability or about possible student interactions, in the con-
text of learning, we will always be concerned with changes,
and thus changes in networks over time seem to be the most
interesting development we can strive for. To get there how-
ever, we need to overcome several challenges. The following
section outlines some of these challenges, thus allowing re-
search questions to be formulated.

Challenges

The challenges outlined in this section fall in three categories:
Challenges related to theoretical issues, challenges related to
measuring networks, and finally challenges related to didac-
tical implementation of network theory. The challenges are
outlined in turn.

This chapter has focused on taking up the challenge of relat-
ing network theories to learning theories. The scope has been
narrowed down to learning mechanisms. Theories of learning
involve many other aspects, as the wide array of subfields in
PER testifies. The detailed role of language as represented in
networks has not been investigated, and this has been pointed
out by many (classically Ogborn et al., 1996; Lemke, 1990) as
an important factor when learning science. Further, gestures
and other actions like interactions with software, pen & pa-
per and other forms of representation (Roth, 1995; Roth and
Lawless, 2002)are crucial for understanding how physics is
learned. Also, capturing identity issues might be challenging
in a network representation, something which epistemic net-
works might be useful for. In reverse, given a network (cogni-
tive, epistemic, or interaction), it is a continuous challenge to
derive meaning from its structure, from individual node posi-
tions, and from any development of the network. For example,
to what extent does a node in a student social network rep-
resent a student? To what extent does a node in a cognitive
network represent a part of a mental structure in a student?

The challenges of measuring networks involve establishing
reliable and valid connections between nodes and even to de-
fine what nodes are. Any understanding of the composition
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Challenges

and structure of the network (i.e. the state of the network)
must be intimately connected to the way the network data was
collected. The understanding students have of a network sur-
vey question (what prompts the student to mark someone as
a collaborator) hold valuable information about the learning
processes experienced by that student. Likewise, a student’s
understanding of what it means to create a concept network in
a particular subject in physics influences the way in which the
map is created. So one part of the measurement challenge is
to collect data in a way which makes student understandings
transparent. A second part is then to link the network represen-
tation to this understanding as Koponen and Pehkonen (2010)
does.

In terms of interaction networks there is a fundamental
problem with people rating the quality of their connection with
others as good/bad or more or less influential. It is simply
a matter of the truthfulness of the rating; people who answer
surveys (including network surveys) notoriously impose what-
ever picture of themselves they believe the researcher should
have.

On the other hand there is a fundamental problem with ob-
jective measures because they do not measure the quality of
the connection. In a phone call network, what did they talk
about? In an e-mail network, what was the e-mail about? In a
discussion forum, what learning processes can we connect to
the fact that one student answers another student’s post?

The third challenge is related to how networks can be used
further in didactical research design. This is in many ways the
most central question, because if we cannot use networks, why
bother investigating them? Note again that most of the stud-

ies utilizing networks do not investigate how they change. But
learning physics is a process, so the usefulness of networks
must be tied to how they relate to this process. To be useful
in understanding physics learning, networks must yield infor-
mation about processes of learning physics, be they cognitive,
socio-cultural or a blend. They should act as a quantitative
gauge of competencies in physics, and they should in some
way be related to teaching practices and learning outcomes.

These are harsh challenges. It is easy to get lost in a fas-
cination of networks, but we must stress that if networks are
to gain position in physics education research, they should at
least show the promise of overcoming these challenges. And
in essence, that is what this dissertation is about.

Before formulating these challenges as research questions,
I want to make a short digression. I have written at length
about social network analysis, networks as they are used in
physics, and networks as they are understood in PER. In the
next short section I want call attention to the relation between
social network analysis and network physics as fields.

On the relation between the physics of
networks, social network analysis, and the
networks in this work

There is a divide between the literature in physics dealing
with social networks and the corresponding literature in so-
ciology. This illustrated in Fig 3.3 in Scott and Carrington
(2011), where it is clear that physicists cite physicists and so-
ciologists cite sociologists. This partition into broad groups
citing each other can be seen as an indicator of some enmity
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between physicists and sociologists dealing with networks.
This is further backed up by Chapter 3, where physicists are

portrayed as imperialists ignoring all the good work the sociol-
ogists have done. After having discovered SNA, “these physi-
cists, new to social network analysis, did not read previous
literature; they acted as if our 60 years of effort amounted to
nothing [...] They simply claimed research topics that had al-
ways been part of social network analysis and made them top-
ics in physics” (Ibid, p. 28). The two groups have developed
very different ways of analyzing and interpreting networks, al-
though some things remain the same. The book calls for fruit-
ful collaboration between the two, and this work does consider
the work of both groups.

As a further note, the understanding of networks in this the-
sis is fundamentally different from the assumptions of SNA.
As pointed out in Blending the blend: Educational networks
in physics above and in Paper I, linkages may not allow flow
of information between actors nor conceptualize lasting pat-
terns of relations among actors (Borgatti and Lopez-Kidwell,
2011; Brewe et al., 2012; Wasserman and Faust, 1994). Links
between students in this work signify processes of transforma-
tion (McCormick et al., 2011), consistent with the construc-
tivist view on learning presented above. As such, I hesitate to
see network positions as indicative of power, but would rather
like to see them as positions of advantage in the case of hu-
mans and positions of importance in cognitive networks.
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Research questions

The previous sections have elaborated on the connections
between network theory, learning theories, didactics, and
quantitative measurements. One of the themes has been of a
more theoretical nature, with a focus on how network science,
cognitivist, and social constructivist learning theories can in-
form each other. A second theme centered on how these learn-
ing theories can be operationalized in a network approach for
studying learning. This theme has to do with how network
science can be used to measure quantities relevant for learn-
ing. Finally, a third theme touches on the use of networks
in didactical research investigating the processes of learning.
This theme is of a didactical nature, addressing how changes in
networks correspond to for example changes in competencies.
The previous section outlined some of the challenges to each
theme. The following three sections specify the challenges
to theory, measurement, and didactical use in three overarch-
ing research questions. Each overarching research question
is followed by sub questions to give more precise directions.
Since the work presented in this thesis is by nature exploratory
and the challenges are considerable, the research questions are
broad. Very sharp research questions belong to well-developed
research fields and traditions. As a field of research, educa-
tional networks is far from well developed.

The Theoretical Question

Q1: How can the science of networks and theories of social
constructivist and cognitive learning inform each other to in-
vestigate student learning in physics classes?

• Q1a: What parts of social constructivist theories and cog-
nitive theories can be represented in networks?

• Q1b: What analogies between the science of networks
and learning theories are fruitful for an understanding of
what it means to learn physics?

• Q1c: How do variations in network structure, dynamics,
and agency contribute to a social constructivist and cog-
nitive learning perspectives?

The Measurement Question

Q2: How can a network science approach be used to quantify
the state of student understanding and use of physics?

• Q2a: What methods for collecting data can be developed
and how can the data be represented?
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Research questions

• Q2b: How can student levels of competency in physics
be understood in the context of network representations?

The Didactical Question

Q3: How can one describe the process of learning of physics
from changes in relevant networks?

• Q3a: What types of networks can be defined to yield in-
formation about processes of learning physics.

• Q3b: How can the development of students’ physics com-
petencies in relation to their network practices be as-
sessed?

• Q3c: How can the effect of teaching practices on student
learning outcomes (competencies and knowledge) be in-
vestigated using knowledge about changes in networks?

Comments

The intention is to engage with the question of what it means to
’learn something’ in physics from the perspective of a physi-
cist as well as from that of an educational researcher. The
methods used in both disciplines are weaved together in the
following sense: The students in this study are subject to con-
ceptual questions and questionnaires as is one of the standard
methods in physics education research. A mixture of theory
from physics and didactics is then used to create categories,

which can serve as nodes and links in network representa-
tions of social interactions and cognitive networks. Once ob-
tained, these networks are analyzed using the methods from
the physics of networks and social network analysis (SNA).
From these quantitative analyses, the theory and method must
be constantly modified to integrate physics and physics educa-
tion research in a meaningful way. The thesis papers show how
one can engage with the question of learning from a physics
point of view as well as from an educational research view-
point

The chapters following this one are overviews of the thesis
papers. The actual papers are included as appendices. Each
overview consists of an introduction where the paper is framed
in terms of what research questions it addresses and the pa-
per’s status with regards to publication. This is followed a
short overview of the main results of the paper, which also
puts the work in a more general context. Finally, the epilogue
of each chapter addresses issues of validity and reliability. The
central issue for this thesis work is validity, while it does not
prioritize reliability as much. The thesis as a whole is to be
seen as a proof of existence, rather than a continuation of a
well-established field. However, for each of the papers, the
epilogue sketches how reliability could be improved.

The logic of the order of papers is as follows. After the
theoretical considerations of this chapter, Developing network
methodology (p.51) outlines how Paper I addresses the prob-
lem of finding a method to establish theoretically informed
link categories based on a particular student context. The out-
line of Paper II (p.55) shows that the categories developed for
the context of Paper I can be used meaningfully in another but
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Comments

Chapter 2: Rap-
prochements

Paper I Paper II Paper III Paper IV

Theoretical
Question (Q1)

Q1a-c Q1a,Q1c Q1c Q1a-b Q1a-b

Measurement
Question (Q2)

- Q2a Q2a Q2b Q2a-b

Didactical
Question (Q3)

- Q3c Q3a-c Q3a Q3b

Table 1: The chapters and papers in this dissertation that help answering the research questions. Each paper is outlined in a different chapter
following this chapter.

related context; the shift is from an upper secondary physics
class to first year in a university physics program. Both Paper
I and Paper II investigate week-by-week variations in student
interaction networks. Paper III, outlined in Relations between
network and other attributes (p.59), then assumes that sum-
ming up links from each week of a seven week period gives
a valid network of a students positional advantage during the
first semester. The final paper presented in Paper IV, which
is outlined in Analyzing student writings in physics (p.63), is
an example of how one could work with cognitive networks.
It investigates the possibility of converting student writing to
linguistic networks (Masucci and Rodgers, 2006), which are
then analyzed using network theory.

The papers do not follow the order of the research ques-
tions. Instead, each paper addresses different parts of the main
themes of this thesis as represented by the sub questions. Table
1 shows which sub questions each chapter addresses. sums

up how the different research questions have been answered,
and finally outlines how networks can be integrated in future
physics education research.
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Developing network methodology

This chapter is an introduction followed by an outline of
and an epilogue to the first paper of the dissertation: Com-
bining methods to analyze student relations: Network science
and communities of practice. The actual paper is included in
Appendix I.

The paper addresses how socio-constructivist and compe-
tency based learning theoretical constructs can be represented
as links in networks. As such it addresses the theoretical sub
question Q1a. It also addresses the theoretical sub question
Q1c and the didactical sub question Q3c, because it investi-
gates how networks vary in time, and relates this to both learn-
ing theory and didactical use. Finally, it is an answer to the
measurement sub question Q2a, because it describes a method
for collecting and representing network data.

The paper needs further editing to be ready for submission,
but the intention is to submit a version of it to International
Journal of Research and Method in Education (IJRME).3

3At the time of publication, it is still uncertain in what form and where the
paper will be submitted. Please cite as: Bruun, J. (2012). Combining net-
work science with communities of practice to analyze learning processes:
Interpretation, structure, and development of student networks. Networks
in physics education research: A Theoretical, Methodological, and Di-
dactical Explorative Study (IND skriftserie vol. 28). Copenhagen: De-
partment of Science Education.
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Figure 9: How networks are generated from student self reports in this
study. In the bottom, the circles with the letters A and B are called
nodes, and the arrows are called (directed) links.
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Developing network methodology

Outline of Paper I

The paper contributes to the field of physics education research
by creating, testing, and validating a method for generating
networks to describe social learning processes in physics class-
rooms.

Figure 9 on the preceding page depicts how this study uses
student self reports to generate different types of student inter-
action networks. Two students, A and B, communicate about
how to solve a problem in physics during class. Student A
says something which B remembers later on. In a data collec-
tion session that occurs after the interaction, B sits in front of
a computer and answers an online survey where he can check
different kinds of interactions. B remembers A for the inter-
action about problem solving (PS) in-class (IC). In network
representations of these choices, one link from B to A is gen-
erated in a network that describes PS student interactions and
another link in the network that describes IC student interac-
tions. The primary purpose of this study is to investigate how
educational researchers can develop an understanding of these
links between students.

The paper shows the development of nine other interac-
tion categories than PS and IC. The categories were created
by analyzing student written answers to open-ended surveys
using physics education research literature and socio-cultural
learning theory. The categories were formulated as statements
which students could use to characterize interaction they re-
ported having with other students. These statements were ad-
ministered as surveys on several different occasions during a
semester, producing networks of student interactions.
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Figure 10: The number of links in the problem solving, in-class, con-
cept discussion, and language and presentation networks. The num-
ber below each week is number of teaching units (1.5 hours) in the
preceding week. Thus, week 39 had one teaching unit, even if the
number 1 occurs beneath week 40. The Z-scores at the bottom show
the overlap between links of three categories compared with 1000
random versions of these networks. The significant region is marked
by the shaded grey area. In a week, networks have a high degree of
overlapping links, meaning students tend to name the same people in
these categories.
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Epilogue

The networks were analyzed using network theoretical mea-
sures. Figure 10 on the preceding page shows the result of one
of three different analyses. It shows that the activity with re-
gards to physics interaction in class as measured by the num-
ber of links, Nl , varies each week in correspondence with the
number of teaching modules the students had in the preced-
ing week. Notice that problem solving is the most prominent
of the physics categories, outranking for example concept dis-
cussion.

This observation is used to generate the hypothesis: If stu-
dent learning focused on activities emphasizing novel (from
the perspective of the student) use of other representational
forms than those pertaining to use of formulae, then the con-
cept discussion network would show more activity (more links)
than the problem solving network. This and two other hypothe-
ses based on two other observations are generated on the basis
analyses of student written answers that were given in a vali-
dation session held after the networks were collected.

The hypotheses are not answered in the paper. The purpose
of the paper is to show how a method for generating student
interaction networks has been created and that the resulting
networks can be used to generate meaningful hypotheses.

Epilogue

The paper is almost entirely focused on generating networks4

that correspond to actual interaction patterns between students.

4The networks can be found online here:
http/www.jbruun.org/om/studentNetworks

Thus, the primary focus of the paper is validity. It is meant
as a proof of existence, and therefore does not concern itself
explicitly with reliability issues. For example, given the same
student answers, other researchers might have reached other
coding categories or other classifications of the answers due to
the same codes. Adding more researchers and testing for inter-
coder reliability would be a simple way around this issue.

Given the networks, many of the calculations are completely
reproducible. Only the randomized calculations would yield
somewhat different Z-scores each time. This issue though is
resolvable by increasing the number of iterations on which to
base the Z-scores. This can be solved with increased compu-
tational power.

Finally, the paper makes no assumptions as to how gen-
eral the categories or resulting student interaction networks
are. However, the categories were tested by using them in a
different context: First year university students taking an in-
troductory physics course. This is described in the following
chapter.
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Time development of student interaction
networks

This chapter is an introduction followed by an outline of and
an epilogue to the second paper of the dissertation: Time De-
velopment of Early Social Networks: Link analysis and group
dynamics. The actual paper is included in Appendix 2.

The paper is based on university students’ answers to the
previously developed network survey (see the preceding chap-
ter). The students attended an introductory course in physics at
the University of Copenhagen. It is not a physics education re-
search paper but a physics paper. However, it can still be used
in answers to the research questions. The paper helps answer-
ing the theoretical sub question Q1c, because it yields results
about variations in network structure and show how to couple
student interaction networks to external variables (grade, gen-
der, and laboratory exercise class) relevant to social construc-
tivist an cognitive learning theories. It is also an answer to the
measurement question Q2a, because it shows that meaningful
data can be collected using the previously developed survey,
and it shows different ways of representing and analyzing the
data. Finally, it is an answer to all the sub questions in the
didactical question, since (1) student interaction networks are
shown to yield information about the processes by which stu-
dents organize themselves to learn physics, (2) student group

formation is coupled to a (crude) proxy for their physics com-
petencies (grade), and finally (3) the effects of how the intro-
ductory course is managed are visible in the variations in group
structure in student interaction networks.

The paper will be submitted to Physical Review E, be-
cause this journal “is interdisciplinary in scope” and focuses
on among other things on “many-body phenomena”. In the
context of physics, this paper is about many-body phenomena.
5

Outline of Paper II

This paper is meant as a contribution to the field of network
physics. The primary contribution is to supply, display, and
analyze a set of interaction networks which describe the early

5At the time of publication, this paper is undergoing revisions of language
and title as well as minor additions of analyses. To cite the paper as it
appears here use: Bruun, J. (2012). Time development of Early Social
Networks: Link analysis and group dynamics. Networks in physics educa-
tion research: A Theoretical, Methodological, and Didactical Explorative
Study (IND skriftserie vol. 28). Copenhagen: Department of Science Ed-
ucation.
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Time development of student interaction networks

evolution of a (social) network. The analyses uses both ex-
isting network research methods and develops a measure for
student segregation. For physicists studying networks one of
the interesting findings of the paper is that the network seems
to freeze over the course of measurement. Figure 11(a) shows
that the fraction of completely new links decreases over time,
and the function looks exponential. This may have impact on
computer models of network evolution.

The paper may contribute to educational research on first
year university students. First, the alluvial diagram in the top
of Figure 12 shows that student groups change between weeks.
This is indicated by the streamlines between the blocks repre-
senting the groups. Towards the end of the measurement pe-
riod, groups seem to be homogeneously composed according
to grade. This is indicated by the overall green colors. Allu-
vial diagrams make use of the PageRank centrality measure.
It is a measure of node’s relative importance in the network
developed by Page et al. (1999). In the next chapter, Paper
III describes how PageRank may apply to physics education
research.

The results shown in the alluvial diagram are interesting
when one takes into account that the head teacher of the lab-
oratory exercises had students rotate groups (of three) each
week. The alluvial diagram can be interpreted as an indica-
tor that this initiative may have contributed to a homogenous
distribution of student grades in groups. This homogeneous
distribution is also apparent in Figure 11(b), which shows that
students never segregate significantly according to grade.

However, Figure 11(b) shows that students segregate ac-
cording to laboratory class and to a lesser extent gender.
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Figure 11: Freezing and segregation in the interaction networks. (a)
The fraction of completely new links relative to the total number of
links, Ltot−Lree

Ltot
, seems to decrease exponentially. The number of

unique links for all weeks is 1214, which is about 4-6% of the to-
tal number of possible links in a directed network with 140-160. This
means the the decrease in completely new links is not due to a satura-
tion of network links. (b) Segregation Z-scores for gender, grade, and
lab class for each week. The shaded area indicates the non significant
region.

This emphasizes that laboratory and problem solving exercise
classes in this physics course are important structures affect-
ing how students behave. Thus, teaching-learning activities as
they unfold at these exercises classes may be very important
for students’ participation in communities of physics learners.

Finally, notice the network maps beneath the alluvial dia-
gram in Figure 12. These maps show between-group com-
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Outline of Paper II
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Figure 12: Top: Alluvial diagram for groupings of the four networks displayed in the paper’s Figure 2. The height of a block representing a
group is proportional to the accumulated PageRank (Page et al., 1999) of the group, and the lighter colors in each group indicate how much
PageRank is insignificantly clustered (Rosvall and Bergstrom, 2010). The thickness of the grey streamlines between groups in different weeks
indicate the initial and final PageRank the nodes making the transition from one group to another. Bottom: Flow maps of the same groups
shown in the alluvial diagram. Node sizes are proportional to the number of students in the group. Arrows are proportional to the information
flow between groups as calculated by Infomap. The total number of groups each week is 28, 28, 22, and 22, respectively. Groups are color
coded according to their mean grade. The histogram shows the distribution of grades for all groups in all networks.
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munication patterns for each week. The direction of an arrow
indicates that a group points to another. For example in the
map of course week three, four groups point at group G1. This
means that many students in other groups remember having
communicated with students from this group. If these inter-
actions signify learning processes, then this group could be a
target for a particular (new) method of solving problems. A
successful strategy would be one in which the method would
diffuse through the network to other groups through actions
involving negotiations of meaning centered on understanding
physics.

Epilogue

Some of the validity of the survey instrument is lost by using
it in a new context without analyzing a validation session as in
Paper I. However, some of it must be preserved, since it pro-
duces meaningful results in the context of this particular uni-
versity course. At least the problem solving category seems to
measure interactions between students engaging with problem
solving and laboratory exercises.

With regards to reliability the results in this paper are repro-
ducible given these particular student interaction networks and
the method. Infomap is a reliable algorithm, meaning that for
the networks examined it makes the same partitioning almost
every time. This is a strength of this particular grouping algo-
rithm compared with others (?). However, the bootstrap pro-
cedure used to generate the alluvial diagram shows that small
variations in the network would produce somewhat different

groups (a wording which is not used in the paper). In this re-
searcher’s view this is actually not a reliability issue, but more
one of validity: Are the groups found by a grouping algorithm
really the groups that exist? With regards to the segregation
scores, the results are as reliable as the grouping. Again there
will be a slight variation in the Z-scores, but with 104 calcula-
tions there is no significant variation.

The purpose of the next paper is to develop an understand-
ing of the meaning of links through an analysis of different
categories. Also, it relates grade, seen as a crude external
proxy measure for cognitive ability, to socio-cultural learn-
ing theory. The paper uses student interaction networks that
have been summed up over time. Thus, the student interac-
tion networks presented in the next chapter are social networks
with weighted links that have been established incrementally
through time.
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Relations between network and other attributes
This chapter is an introduction followed by an outline of

and an epilogue to the third paper of the dissertation: Talking
and learning physics: Predicting future grades from network
measures and FCI pre-test scores. The actual paper is included
as Appendix 3.

The paper presented in this section bridges individual stu-
dent performance with their engagement in a community of
physics students. It addresses the Theoretical sub question
Q1a by representing proxies for student cognitive abilities as
node attributes and student engagement as network centrality
scores. This analogy provides a basis for integrating cogni-
tivistic with socio-cultural learning theories, where learning
physics is both tied to social interactions and cognitive aspects.
This is why the paper is also linked to the Theoretical sub ques-
tion Q2b. This is very much tied to this dissertations view of
physics learning as a change in physics competency as defined
in Rapprochements: Networks, physics, and learning (p.25).
As such the networks in this paper yield information about the
processes of learning physics, and thus the paper is also an
answer to the Didactical sub question Q3a.

The paper has been reviewed by Physical Review Special
Topics - Physics Education Research (PRST-PER). The re-
views make it clear that while paper appears very technically
dense and needs significant revisions, it has the potential to

make an important contribution to the field. In our revision of
the paper, we will address the issues identified in the review
process. 6

Outline of Paper III

This paper contributes to the field of physics education re-
search by using social and academic network data as a novel
way of relating cognitive and sociocultural aspects of learn-
ing. In the paper links are understood as representing learning
processes as described previously. It examines three differ-
ent student interaction networks from an introductory physics
course and these networks relations to student grades in two
subsequent courses. The first student interaction network is
the problem solving network, which is generated as the sum
of the problem solving networks examined in Paper II. To be
more precise, in the problem solving network a link of strength
wi j is created from student i to student j, if student i has named
student j wi j times during the measurement period. The con-
cept discussion and in-class social communication networks
are created in the same manner. Figure 13 on page 61 shows

6After revisions, the paper has been published by PRST-PER. It can be lo-
cated here: http://link.aps.org/doi/10.1103/PhysRevSTPER.9.020109
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the in-class social network. The link strengths are indicated
both by thickness and gradient; thicker and more dark links
have a higher weight.

The grades of students are indicated by the legend at the bot-
tom left, and the force-based layout of the network shows that
the peripheral nodes seem more likely to be characterized by
lower grades, while the center nodes seem more likely to char-
acterized by higher grades. Quantifying this perceived pattern,
the paper develops target entropy as a measure of centrality for
individual students in a directed network, and in Figure 13 the
sizes of nodes are proportional target entropies. It turns out
that there is a highly significant correlation (p < 0.001) be-
tween the network position as measured by target entropy and
the sum of grades for the two subsequent courses. In Figure 14
on page 62, this is shown as a line between the node T - be-
longing to the in-class social communication network - and
the sum of grades (SoG) - in the middle of the network. The
number on the line, 0.38, indicates the strength of the correla-
tion, and the number in the orange circle, 97, indicates that the
correlation has 97 degrees of freedom.

Figure 14 shows all the highly significant correlations be-
tween attributes and network position measures for the three
student interaction networks. This type of network is called
a correlation network. From this researcher’s point of view,
the most important finding of this paper is that (1) the part of
the correlation network describing problem solving centrality
correlations can be overlaid on the top part of the in-class so-
cial centrality correlations, while (2) the concept discussion
network centrality can be overlaid the bottom part of the in-
class social network position correlations. This means that the

in-class social network seems to capture aspects of problem
solving as well as concept discussion interactions. The paper
suggests that the process of learning physics entails purely so-
cial interactions as well as academic interactions, in the sense
that the social interactions facilitate academic interactions.

Epilogue

The paper allows for an interpretation of the three link cate-
gories problem solving, concept discussion, and in-class social
communication as proxies for learning processes. However, it
does not reestablish the tight connection between theory, stu-
dent answers and survey categories developed in Paper I. This
is a validity issue; we can only surmise that students modify
ideas and practices, since no direct evidence - for example,
from a validation session (Paper I) - to support interpretation.

The results are reliable in the sense that they are repro-
ducible given the data and method. Bootstrapping relies on
random sampling of the networks. However, the bootstrap
models have been performed on the data a number of times
during the analysis, producing the same results.

The paper uses Force Concept Inventory data and grades as
proxies for student understanding of mechanics. While it pro-
duced meaningful results, these do not represent all important
aspects of student competencies in physics. The next paper
presents the argument that student writings about their under-
standing of a physical system can be represented in networks
of their writings. Further, this would represent an important
part of their competency with regards to doing physics.
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In class social communication network
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Figure 13: Sociogram of the in-class social network with an inset of the link weight distribution. Links are coded according to strength, with
light grey representing weak links and darker grey representing increasingly stronger links. Nodes are coded according to the sum of grades
as indicated at the left bottom. The size of nodes are proportional to target entropy. The lay-out has been determined by the Kamada-Kawai
force-based algorithm (Kamada and Kawai, 1989) also used previously.

61



Relations between network and other attributes

0.33

-0.32
0.43

0.58

-0.33

0.27 0.48

0.3
7 0.
45

0.42
0.57

0.42

0.90

0.
47

0.35

0.3
6

0.38

-0
.3

5

0.42

0.6
0

0.36

0.83

0.9
2

0.28

0.77

-0.32

0.31

-0
.3

5

0.51

0.88

0.78

0.34

0.
92

0.83

0.
85

0.30

Problem solving network

Concept discussion network

In class social communication network

97

97

97

97

97

97

97

84

93

93

93

93 84

106

106

106

SoG
GR Mech1

GR Mech1

GR Mech1

F CI P re

F CI P re

F CI P re

sin

sin

kin

kin

P R

P R

HH

T

T

Figure 14: Correlation network of measures that correlate to a highly significant level with SoG (p<0.001). Correlation coefficients are
included on the links and the number of degrees of freedom are shown in the nodes.

62



Analyzing student writings in physics

This chapter is an introduction followed by an outline of and
an epilogue to the third paper of the dissertation: Representing
cognitive schemata with networks of student free text answers
to conceptual problems: Justification and first steps towards a
method. The actual paper is included as Appendix 4.

As the only paper in the thesis, this one deals explicitly
with cognitive aspects of student competencies. It argues that
student writings can be represented in networks, called lin-
guistic association networks, describing how students coor-
dinate mental schemata to associate physics concepts. Thus,
it addresses the theoretical sub questions Q1a and Q1b, be-
cause linguistic association networks function as analogies for
mental structure: Nodes represent concepts and links ways of
coordinating concepts. It addresses the measurement ques-
tion by developing a design for capturing linguistic associa-
tion networks and by arguing that structural network measures,
like target entropy and search information, may inform re-
searchers about student competencies with regards to concep-
tual and phenomenological forms of representation. Finally,
it addresses the didactical sub question Q3b, because it shows
developments of students’ linguistic association networks over
a period of time.

The version of the paper submitted with this dissertation is

an early first draft. Major analyses lie ahead to substantiate
the arguments put forth in the paper. The task is to integrate
the results of network analyses with cognitive schema theory
to relate linguistic association networks or a related concept to
existing physics education research. 7

Outline of Paper IV

The central argument of this paper is divided into two parts.
First, if pre-linguistic structures - like image schemata and to
some extent phenomenological primitives - structure human
understanding and are represented in written language, then
written language in turn should hold some of that structure.
Second, networks of written language allow for a study of lan-
guage structure, so networks of written language may encap-
sulate some of the structure of human understanding.

The article describes a method that has students produce
written outputs. From this output, linguistic networks are gen-

7To cite this paper, use: Bruun, J. (2012). Representing cognitive schemata
with networks of student free text answers to conceptual problems: Justifi-
cation and first steps towards a method. Networks in physics education re-
search: A Theoretical, Methodological, and Didactical Explorative Study
(IND skriftserie vol. 28). Copenhagen: Department of Science Education.
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erated and analyzed. Student writings are collected using on-
line open-ended conceptual physics questions. These writings
are then treated as linguistic data that can be systematically al-
tered by what one could call linguistic reduction. While Figure
15 explains the data collection process, linguistic reductions
discussed in detail in the paper8. Linguistic reduction may in-
clude one or more of the following: Reducing all words to
their stem form (for example, waves is converted to wave, and
added to add), generating and implementing synonyms, and
removing common words (like that and is). A particular lin-
guistic reduction generates a linguistic network based on the
adjacency of the remaining words. As an example, consider
the phrase waves will meet (Figure 15) A linguistic reduction
that reduces waves to wave would generate three nodes and
two connections (wave→will, will→meet). A linguistic reduc-
tion that also removes the word will, would generate two nodes
and one connection (wave→meet).

In Paper IV, eight written answers to conceptual physics
questions by two different students are converted to linguistic
association networks. For each written answer, words are re-
duced to stem form. Keeping every word as nodes and basing
links on adjacency word adjacency generates eight linguistic
networks. Eight different networks are generated by removing
frequent Danish words from the answers and using the remain-
ing words as the basis of linguistic networks. The result eight
pairs of linguistic networks. Each pair is based on the same
text but processed with a different linguistic reduction.

8In the paper, the process is not termed linguistic reduction. It is described
under the heading: Generating linguistic networks and investigating them
with cognitive linguistics.
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Figure 15: Students read an open-ended question and answers it on-
line. They are asked not to discuss their answer with others. The
hypothesized mechanism is that while students are writing image
schemata are activated and used, resulting in a written text. The text is
converted to a network based on the methods described in the paper.
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Figure 16: Three figures comparing different structural aspects of net-
works of two students’ writings. The writings are from four separate
occasions. For each student, two different linguistic reductions are
analyzed. The difference between e.g. Thor I and Thor II is that fre-
quent words have been removed as nodes from the networks. In each
network, search information (b) and target entropy (c) have been cal-
culated for each node and averaged for each network.

These networks are then analyzed with network analysis.
Figure 16 shows the result of calculating three networks mea-
sures: the number of nodes (unique words or entities) in the
networks, the average search information, and the average tar-
get entropy (used in Paper I on student interaction networks).
The search information, target entropy, and the number of en-
tities characterize student associations. The paper argues that
these properties might be connected to student competencies
in future research.

As the figure shows, removing selected words have pro-
found impact on the network structure. While the first type of
network is a linguistic network, the paper introduces the term
linguistic association networks to describe the type of network
where frequent words are removed. The paper suggests that
linguistic association networks can be used to find traces of
different kinds of image schemata and these image schemata’s
connection to physics concepts. This should be done (1) by
identifying and keeping words that serve as traces for specific
image schemata (even if these words are frequent) or (2) by
acknowledging frequent words as signifiers for processes of
association, in which case the network analysis should include
different link types. The latter would be described as moving
frequent words to links.

Epilogue

Even if the paper is mostly an outline, there is one pressing
reliability issue to discuss. One could argue that linguistic as-
sociation networks are too dependent on how students chooses
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Analyzing student writings in physics

to use words on a particular day. Thus, it would be difficult
to derive lasting knowledge structures from them. At the same
time this is a validity issue, since it cannot be taken for granted
that the networks actually measure competencies in physics.

One way of addressing these two issues would be to relate
linguistic association networks to other ways of evaluating stu-
dent competencies. For example, the analyses in this study can
be compared with student grades and with a student positions
in student interaction networks, since the writings were col-
lected along with the student naming data of Paper I. If struc-
ture in linguistic association networks can be reliably coupled
to other ways of evaluating competency, then the reliability of
student wordings is not an issue for the applicability of linguis-
tic association networks.

The promise of this approach from a research perspective is
that the networks are easy to generate (students simply need
to write). Once a method is developed it can be applied to
many pieces of writing quickly. This allows a big corpus to
be analyzed quickly to see patterns in student understanding
as represented the networks. These patterns might then in turn
inform researchers about student understanding of physics.
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Conclusion
The present dissertation has described a PhD project of a

highly exploratory nature. The primary task was to conceptu-
alize a field within physics education research that integrates
network science with constructivist learning theories. As such,
the dissertation has delineated and laid first building blocks,
rather than continuing the work of other researchers in a well-
established field. Only a sparse research literature on the sub-
ject supported any claims about physics learning as repre-
sented in networks. It was a risky endeavor. There were no
guarantees that any of the research initiatives in the project
would yield meaningful results.

As an exploratory enterprise, this work investigated two
kinds of systems: Systems of social interactions and sys-
tems of cognitive structure. In system of social interactions,
students were represented in networks as nodes and differ-
ent kinds of interaction processes were represented as links.
A central finding was that these student interaction networks
comprise one possibility for formatively assessing the devel-
opment of students’ competencies. In this work, student in-
teraction networks were used (1) to predict future grades from
network positional advantage, (2) to find that a students struc-
tured their interactions about problem solving activities ac-
cording to laboratory class and gender rather than grade, and
(3) in the development of a novel research method that inte-

grates qualitative and quantitative methods to investigate stu-
dent interactions in physics education.

Student written answers to conceptual physics questions
where investigated as systems of cognitive structure. The stu-
dents’ answers were represented as linguistic association net-
works. In these networks nodes can represent either words
from physics or words that signify image schemata. Links be-
tween nodes signify word adjacency in the original text.

Section introduced a competency based understanding
learning. In the context of this work it involves elements
from both cognitivism and social constructivism. This means
that neither student interaction nor linguistic association net-
works as separate entities will capture students’ competencies
in physics. They need to be brought together in a combined
understanding.

The rapprochements between learning theories and network
theory in Rapprochements: Networks, physics, and learning
(p. 25) led to three overarching research questions: The theo-
retical, the measurement, and the didactical questions. Each of
these has its own sub questions to give more precise directions
to this research project. This chapter sums up how the present
dissertation has answered each of the overarching questions
and the sub questions.
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Answers to the theoretical question

The first overarching research question deals with the prob-
lem of aligning concepts from constructivist learning theories
(for example, engagement, mental schemata, and competen-
cies) with concepts from network science (for example nodes,
links, and community structure). The question reads:

How can the science of networks and theories of
social constructivist and cognitive learning inform
each other to investigate student learning in physics
classes?

• What parts of social constructivist theories and
cognitive theories can be represented in net-
works?

• Which analogies between the science of net-
works and learning theories are fruitful for
an understanding of what it means to learn
physics?

• How do variations in network structure, dy-
namics, and agency contribute to a social con-
structivist and cognitive learning perspectives?

On the one hand, network science has informed learning
theory by bridging cognitivist and socio-cultural aspects of
physics learning in a quantifiable way. This has revealed pat-
terns relevant to learning physics on a cognitive as well as on a
social level. These patterns are not recognizable without a net-
work model of the environment in which learning takes place.
Thus, network science may in the future serve to test, refine

and develop theory, although such an attempt has not been
made here.

On the other hand, Paper II suggests that network science
can also make use of concepts from learning theories. In net-
work science conflicting ideas about the nature of communi-
ties has resulted in the development of a variety of algorithms
that partition networks into groups. The ideas about the mean-
ing of nodes and links in different kinds of networks, which
are developed in (physics) educational research, may provide
researchers in network science with a different understand-
ing of the “philosophy” behind grouping algorithms. In par-
ticular, Paper II shows how the Infomap grouping algorithm
can be combined with information about gender, grades and
laboratory class to characterize groups of collaborating stu-
dents. Gender, grades and classroom dynamics as concepts
are treated extensively in learning theories.

This study has shown a correspondence between students
as represented by connections and students as represented by
grades and gender. Using the correspondences node↔ student
and link↔ interaction as a basis for an analogy, a community
found by a grouping algorithm might be interpreted as a com-
munity of practice characterized by forms of mutual engage-
ment, joint enterprises and shared practices. Further, the target
entropy measure might capture learning opportunities in a net-
work, and hide measure might capture the efficiency of student
communication. However, the analogy needs to be further in-
vestigated using a combination of qualitative and quantitative
methods. Finally, for a single student in the network, target
entropy, hide, and PageRank (measures of a node’s positional
advantage in the network) would correspond to a student’s par-
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Answers to the measurement question

ticipation in the learning environment. For student interaction
networks, this analogy between network and learning theory
seems to be fruitful.

The variations in student interaction network structure over
time show how students and perhaps communities of practice
respond to a changing teaching environment. For example,
the students in this study shifted between groups the first cou-
ple of weeks of their studies, but after some weeks the groups
seemed to stabilize. Also, some students become peripheral to
the corresponding student interaction networks, and in some
cases end up not represented in the networks. Many of these
students end up not passing the course. Also, These varia-
tions might indicate how communities of practice form and
dissolve in the context of for example higher physics educa-
tion. In the case of secondary physics education, variation in
interaction patterns seem more coupled to teaching and already
established patterns.

Within the cognitive realm, linguistic association networks
might be seen as samples of students’ conceptual ecologies.
If this is true then variations in network structure over the
course of a teaching period can indicate learning in physics.
Nodes in linguistic association networks represent concepts in
the sense that they consist of a label and a set of connections
to other connected labels. The links represent associations but
not necessarily propositions or causal relationships. Thus they
allow us to find out how many and what concepts a student
activates when answering a particular conceptual question in a
particular context, and also how the student connects different
concepts to explain the problem. Language plays an impor-
tant part in these networks. The key analogy proposed here is

between structures in linguistic association networks and im-
age schemata; general image schemata help coordinate physics
concepts, and to some degree this coordination is visible in lin-
guistic association networks.

Significant changes in student linguistic association net-
works might be coupled to accommodation of a difficult con-
cept over time. An increase of physics words is a crude indi-
cator of language development, but the network allows for a
more sophisticated analysis: If a concept takes over the posi-
tion in the network of another concept, then this might corre-
spond to a student participating more and more in a physics
learning community, thus using for example “mass” instead of
“weight” because of his/her alignment with the community.

Answers to the measurement
question

The second overarching research question points to the task of
finding ways of measuring student competencies in a quanti-
tative way using network theory. It is implicit that these ap-
proaches need to validly portray learning processes. The ques-
tion reads:

How can a network science approach be used to
quantify the state of student understanding and use
of physics?

• What methods for collecting data can be devel-
oped and how can the data be represented?
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• How can student levels of competency in
physics be understood in the context of net-
work representations?

The key finding here is that asking students with whom they
communicate about physics, is a viable way of collecting data
describing interactions in physics. Moreover,different inter-
action categories like problem solving and concept discussion
measure different aspects of student interaction with regards
to physics. These categories can be developed using mixed re-
search methods in an iterative design that involves both student
feedback and theoretical considerations. The categories serve
as different kinds of links in student interaction networks.

The data was collected by allotting time for students to
complete an online survey each week for an extended period
of time. A straightforward conversion of the data describ-
ing whom students remembered having communicated with,
makes it possible to represent student interaction networks
graphically using force-based layout algorithms. Researchers
can use these graphical representations to follow the develop-
ment of student interaction networks on a week-by-week basis.

The development of the survey was instrumental for collect-
ing valid student interaction network data. Even so, it cannot
be stressed enough that teachers, instructors and students all
needed to support the collection of these kinds of data. The
teacher and instructors were vital for coordination and student
engagement in data collection.

On the level of knowledge, linguistic association networks
were used to investigate student writings. Students wrote an-
swers to conceptual questions on several occasions thus form-

ing a corpus of interconnected terms, which these students as-
sociated with explaining physics. Text mining techniques were
used to prepare the corpus for network analysis by reducing
verbs and nouns to their stem form, by correcting spelling mis-
takes and by using synonyms to reduce the amount of differ-
ent words. In linguistic association networks words are repre-
sented by nodes and links between words are based on adja-
cency in the text.

Linguistic association networks as well as student interac-
tion networks were represented graphically using force-based
algorithms, which give an overview of network structures.
Network theory offers many different measures to character-
ize node positions, for example PageRank, target entropy and
hide. These measures have been represented in networks as
the size of nodes (the diameter). Demographic data on stu-
dents have been indicated by color and shape of nodes in stu-
dent interaction networks, and likewise word types has been
illustrated with color and shape in linguistic association net-
works.

Note that linguistic association networks and student inter-
action networks are not the only outcomes of this work. The
development of the survey instrument for collecting student
interaction data relied heavily on the use of networks of the
coding categories used to analyze student feedback on differ-
ent versions of the survey. These category networks not only
highlight the relative frequency of codes used, but also their
connections.

To discuss how competencies may be understood in the
context of network representations, consider the definition of
physics competency (p. ):
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The ability and will to act, alone and with others,
using curiosity, knowledge, skills, strategies, and
meta-knowledge as these apply to physics, in order
to negotiate meaning, to develop a distinct identity
within the field of physics, and to participate in rele-
vant decision making situations.

Together, student interaction networks and linguistic associ-
ation networks quantify interesting elements of this compe-
tency. It must be stressed, though, that this study does not
explicitly show, how the two types of networks may be inte-
grated. This is a task for future work.

Student interaction networks quantify the ability and will to
act with others in order to negotiate meaning and to develop
a distinct identity within the field of physics. Specifically, tar-
get entropy, hide, and PageRank as calculated on accumulated
student interaction networks of university student interactions
relating to problem solving, concept discussion, and in class
social interaction can be seen as quantifiable measures of this
part of the description of competency in physics. To make this
leap, nodes should be interpreted as students and links as pro-
cesses of transformation.

Linguistic association networks quantify the ability to work
alone using knowledge and skills as these apply to physics.
While knowledge is represented in the networks as the num-
ber of concepts and how they are structured in agglomerations,
skill is represented by target entropy as a measure of order in
the network and search information as a measure of the net-
works efficiency. Thus, as students become better at physics,
the corresponding linguistic association networks should show

an increase in the number of meaningful physics terms, an
increase of target entropy signifying that many concepts are
linked in many different ways and decrease of search infor-
mation signifying that the student has easy access to relevant
concepts relative to the size of the network.

Answers to the didactical question

The third and last overarching research question revolves
around how networks can be put to use in a didactical manner.
This is highly relevant, since evaluating teaching and learning
practices is at the heart of physics education research. The
question reads:

How can one describe the process of learning
physics from changes in relevant networks?

• What types of networks can be defined to
yield information about processes of learning
physics?

• How can the development of students’ physics
competencies in relation to their network prac-
tices be assessed?

• How can the effect of teaching practices on
student learning outcomes (improved compe-
tencies) be investigated using knowledge about
changes in networks?

The key finding for this question is that student interaction
networks show changes that describe how students react to
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changes in the learning environment. Secondary physics stu-
dent interaction networks showed correspondences between
network activity (measured as the number of links) and teach-
ing frequency but also between target entropy and hide of the
network and specific teaching activities, like laboratory exper-
iments. University student interaction networks showed the
effects of the didactical choice of predefining student work
groups within laboratory exercise classes and changing these
work groups each week: As a whole, student groups as found
by Infomap changed on a week-by-week basis, but seemed to
settle towards the end of the data collection. This reflects that
students did work together in the predefined work groups, but
also that they returned to earlier collaborators.

Student interaction networks comprise one possibility for
formatively assessing developments in students’ competencies
in physics, for example by continuously measuring students’
positions in the networks. However, since they rely on stu-
dent self reports, a cautionary note is in order: Researcher and
teachers took great effort to engage students and to make clear
that how students answered the survey had no impact on their
course grades. Thus, the study has not used these networks
for summative assessment. Investigating this possibility would
demand further research.

In principle, linguistic association networks collected over
time can be used to assess the development of a single stu-
dent’s or of a collection of students’ use of conceptual and
phenomenological forms of representation. However, much
is dependent on student familiarity with the particular format
used to elicit answers and with expressing themselves about
physics in writing. Like all other ways of expressing one self,

this particular way needs to be learned.
With regards to the links between teaching practices and stu-

dent learning outcomes, the answer is tentative but straightfor-
ward. Given some kind of variation in the teaching-learning
environment, changes in student interaction networks give in-
sight into how students reacted to the variation. For example,
when a secondary school physics class did laboratory exer-
cises, target entropy and search information spiked, indicating
high predictability and low communication efficiency in the
corresponding student interaction networks. This in turn pro-
duced the hypothesis, that students would not have improved
their competencies a lot with this kind of activity.

This work has not explicitly investigated the effects differ-
ent kinds of teaching activities might have on linguistic asso-
ciation networks. But a setup where students answer concep-
tual questions online on a frequent basis could be coupled with
controlled variation of teaching activities. This might reveal
changes in students’ competencies in physics as expressed by
linguistic association networks.

Reliability and validity issues

Reliability and validity issues have been discussed in epilogue
sections of Chapters -. As described in the beginning of this
chapter, this project has been an exploratory conceptualiza-
tion of an emerging field. The papers all have a proof-of-
concept/proof-of-existence quality; the question was rather if
this kind of work could be done validly than if it could be done
reliably.
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Be that as it may, the quantitative aspects of the project are
reproducible: Given the same data and the same methods of
analyses, other researchers should arrive at the same results.
Random sampling is part of the calculations, so one has to be
careful to include enough iterations that the results do not vary
much in new calculations.

The study has reliability issues at the points where this re-
searcher has made choices that affect the analyses. Here, an-
other researcher might have reached different results, even if
the raw data and the method was held constant. For example,
the thematic analysis employed in Paper I (outlined on page
51), might have yielded different coding categories or relative
importance of existing codes in the hands of other researchers.

In the sense that validity and reliability (and generalizability,
which is not discussed much in this work) are interconnected,
reliability issues have implications for how the link categories
developed in this work can be understood to represent inter-
actions in the real world. However, the methods have pro-
duced meaningful results. Thus, even if the understanding of
the links may not completely or in a detailed way correspond
to real world interactions, it captures elements of it.
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Prospects for further use of network analysis in
physics education research

The project has positioned networks as a way of connecting
didactics, learning theories and measurements as applied to
physics education. This dissertation has shown different ways
of using networks to see the effects of didactical choices, to
inform learning theories, and when finding methods for col-
lecting and analyzing complex data to describe learning pro-
cesses. This chapter suggests how networks may be used in
further developments in physics education research that con-
nects didactics, theory, and measurement.

Instead of positioning networks as an entity, consider Figure
17 where networks are integrated into links between the three
themes. The purpose of the figure is to indicate the major work
of this thesis: Moving networks from being something exter-
nal to physics education research into being a valuable part
of the field’s different research methodologies. The question
now is how different parts of physics education research may
use networks

Each of the links in Figure 17 have labels that are meant
to invite the reader to think about which directions future re-
search could go. The following paragraphs outline some of
these possibilities. The list of possible directions is not meant
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Figure 17: How networks can be integrated in research and didactical
considerations connecting the three main themes: Measurements, di-
dactics, and theory in the context of physics education research. The
arrows indicate that one theme informs the other using networks. Text
accompanying an arrow correspond to one of the directions future re-
search using networks could take.

in any way to be exhaustive, and neither are the general themes
serving as nodes in Figure 17. Labels and themes merely serve
as starting points for ideas, some of which are presented here.
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Networks to examine reactions to/impact of teaching-
learning environments. Designing a teaching-learning ac-
tivity can be seen as an iterative process. For a developer of
teaching-learning activities, it is interesting to know not only if
the students achieved the learning goals but also how students
acted while learning. Student interaction networks as exam-
ined in Papers I-III can be used to pry into student interactions
on a week-by-week basis. Depending on what the developer
wants to know about, self-reports and/or more objective mea-
sures (online posts, for example) may be desirable. Student
interaction networks show the developer how students com-
municate and/or perceive to have communicated. If teaching
was supposed to encourage discussion of concepts it would be
nice if this actually showed up in the corresponding student in-
teraction networks describing concept discussion. Also, iden-
tifying central and non-central students in different areas could
become important tools for both developers and teachers.

If student writings can be analyzed in a way derived from
the outline in Analyzing student writings in physics (p. 63),
then developers may use this as one tool for investigating the
impact of teaching activities and/or teaching environments on
students’ use representational forms pertaining to, in this case,
writing.

Teaching/learning environment changes for testing
network properties. A direction of methodological re-
search would be to see how a type of network that is rele-
vant to educational research responds to different teaching en-
vironments. An example of this would be to use this study’s
network survey at other universities or with other cohorts at

this university. There would be a continuous tension between
understanding network properties from the student cohort and
understanding the student cohort from network properties.

This tension can probably not be resolved completely, but
continuously comparing with other methods for describing a
cohort might aid such an endeavor. One example of a study for
testing the impact of teaching-learning environment changes
on network properties would be to change the way a laboratory
exercise is taught. Hypothesis 2 developed in Paper I stated:
Incorporating accountability between groups doing an experi-
ment, will increase communication efficiency and learning op-
portunities as measured by search information and target en-
tropy respectively. This will result in a better and more lasting
understanding of the subject matter. While the aim of that pa-
per was to develop but not test hypotheses, a study could be
undertaken to see if there was a difference in search informa-
tion and target entropy for networks describing different kinds
of laboratory exercises, for example between traditional labo-
ratory work and work that incorporates accountability between
laboratory groups.

Networks for measuring social/cognitive aspects of
learning. The major theoretical work of this thesis has been
to develop the notion of student interaction networks and of
linguistic association networks. While these can of course be
continuously refined and developed according to learning the-
oretical considerations, there are other possibilities. For exam-
ple:

• Analyses of video recordings to find shared models be-
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tween students. Here, nodes could be student gestures,
words, and actions as proposed by Bruun (2011). To
find meaningful models though, such a study should have
more detail than Bruun (2011), so one could see which
kinds of gestures, words, and actions follow each other.

• Analyses of interaction patterns between students and dif-
ferent artifacts, for example computers, a pen and paper
task, or museum exhibits. Again, this would require some
detail in the analysis.

Also, if network measurements are to have an impact on the-
ory, the reliability of some of the network representations have
to be further established. For example the category networks
in Paper I are based on coding made only by this researcher.
In future work more than one researcher should code to make
it possible to test for inter-coder reliability.

Impact of theory based choices on generated networks.
As noted in the description of Paper IV, which discusses lin-
guistic association networks, there is a lot of work in aligning
cognitive schema theory as applied to physics learning with
network operationalization. One of the reasons were that re-
moving a word consistently from student answer had not only
profound impact on the network, it also had deep theoretical
considerations. For example “wave” is not considered a com-
mon word in most contexts, but in a description of a physical
system involving a wave on a string, “wave” becomes quite
common. Removing it from the texts might be justifiable if
we want to reduce the complexity of the network. But then

the network may loose information that is valuable in charac-
terizing student knowledge structures as represented in these
networks. Conversely, the word “in” is rather common, and in
text mining analyses, it would normally be removed from the
corpus to reduce complexity. However, in an image schematic
approach to understand how students reach associations, such
a word might be very important as an indicator of for example
a container metaphor. Removing it from the network describ-
ing these associations may have an undesirable impact on the
interpretation of the network, if the point is to see how the
container metaphor is used to structure physics concepts.

This is just one particular kind of network in which theoret-
ical choices impact on generation and subsequent analyses. In
the case of student interaction networks, using another theoret-
ical framework than Communities of Practice would probably
have emphasized other kinds of interactions, just like different
foci within a theoretical framework would have led to other
networks.

Networks to investigate theoretical constructs in terms
of didactical analyses. This is one of two connections in
Figure 17, which this work has not investigated. This direction
of research would use networks as a link between theories of
learning and planning for teaching and learning. One possi-
ble direction is to model the possible learning outcomes of a
student by viewing a teaching-learning environment as a net-
work of activities. On the program level, the activities could
be courses in a program and the theoretical construct to model
would be a students learning trajectory in this program. On a
teaching sequence level, teaching and learning activities could
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be labeled with different forms of representation, and the mod-
eled construct could be some aspect of knowledge. However,
these thoughts are on an abstract level, and need further devel-
opment.

Networks for studying how learning theories apply to di-
dactics. This is the second type of connections in Figure 17
on page 75 not investigated by this work. The study of Pitts
and Spillane (2009) exemplifies how theories about leadership
can be represented in network surveys. A possible link to di-
dactics could be to investigate how a teacher’s position in such
a network related the teacher’s approaches to teaching. In an-
other but related direction, one could investigate how networks
of stakeholders within education policy affect teaching prac-
tices and the implementation of curriculum change. Thus, this
direction seems to involve political as well as educational is-
sues.

This delineation shows that methods involving networks of
different kinds hold an enormous potential for informing very
diverse fields within physics education research. It should also
show that it is reasonable to expect that networks also holds
potential for science educational research and educational re-
search in general. Hopefully, future research will fulfill and
expand upon this potential.
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Combining network science with communities of
practice to analyze learning processes:

Interpretation, structure, and development of
student networks

Jesper Bruun

Quantifying social learning processes may aid in the design of
teaching and learning situations by making hypotheses about changes
in social networks in a learning context testable. However the validity
of such quantifications necessitates a fruitful understanding of how
nodes, links and network dynamics can be understood in terms of
social networks in education. Here, such an understanding is devel-
oped using student responses, research literature and the theoretical
framework of Communities of Practice (CoP). This understanding is
then used to design and implement a mixed methods research design,
which seeks to integrate theoretical constructs from network theory
with CoP and student perceptions of different types of interactions.
The results of this design are first a series of networks describing the

development of student interaction over a period of time. Second,
an analysis of a validation session with the students lead to hypothe-
sis, which could be tested using the kinds of networks developed in
the paper. The method is developed for research designs aiming at
integrating learning theories with social network analysis.

Introduction

In science education many studies consider the design and im-
plementation of teaching and learning situations, for example,
in science teaching (Cobb et al., 2003; Tiberghien et al., 2009;
Tiberghien, 1994). Some of these studies are based some idea
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Introduction

of how students can use each other to learn in the context of
a classroom (Roth and Lawless, 2002; Osborne et al., 2004;
Lemke, 1990). However, the structure of social learning pro-
cesses as they unfold in the classroom are often hidden to the
researcher, which makes it difficult to explain how teaching
methods work and why they work like they do in the context
of a classroom. Documenting such learning processes may
help when designing new teaching and learning situations.

Recently, researchers have used social network analysis
(SNA) to investigate student relations in learning environ-
ments (Enriquez, 2010; Dawson, 2008, 2010; Brewe et al.,
2012; Goertzen et al., 2012). Social networks reveal pat-
terns of engagement in communities of learners, which can
then be related to other factors important for learning. For
example, students’ sense of community (Dawson, 2008), stu-
dent use of on-line (Dawson, 2010) and other resources for
communications (Enriquez, 2010), and student participation
in physics communities of learners at the tertiary level (Brewe
et al., 2012; Goertzen et al., 2012). Particularly, Goertzen et al.
(2012) asked students in a physics course on mechanics who
they talked with to learn physics. They did this three times
during the course to create social networks, and supplemented
this with in-depth interviews with two selected students. The
interviews revealed how the students felt they became part of
a physics learning community, and this was supported by the
network data, which revealed an increase in the number of con-
nections to other students. The studies reveal that SNA can be
a way of uncovering student interactions in connection with
learning, although Enriquez (2010) does caution us that stu-
dents’ importance in the network can change with the mode of

communication considered.
None of these studies have investigated how these social ed-

ucational networks change over time according to the learning
process. For example, Dawson (2008) extracted forum logs
where students answer each others posts and used the accu-
mulated posts as a basis for creating social networks. Enriquez
(2010) looked at different modes of communication, for exam-
ple, face to face conversations, e-mails and mobile phone net-
works from student self reports, but still without the time as-
pect. Brewe et al. (2012) relied on self reports on who students
work with on physics homework at a physics learning cen-
ter to generate a single network of student connections. Go-
ertzen et al. (2012) study the development of self reported con-
nections between students learning physics to investigate how
their personal (or ego) networks change over time. However,
Goertzen et al. did not study the whole network. Thus, this
particular aspect of social networks in educational research
does not seem to have been investigated much.

The time development of students’ social networks may
show how a classroom of students react to teaching and en-
vironment. Data which describes who the individual students
communicated with and what they communicated about can be
used to create networks. Such networks can show how much
the class communicates about, for example, relevant concepts
or particular problems, and they may also reveal group struc-
tures within the class. If a particular teaching method aims at
facilitating more student interactions of a particular kind, then
network analysis can be used as a tool to investigate how this
happens.

This article’s contribution is a mixed methods research de-
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sign (Johnson and Onwuegbuzie, 2004) applied to a physics
learning context. The design is similar to that of Pitts and
Spillane (2009), which can provide a quantitative interpreta-
tion of the structure and development of different types of so-
cial networks in education. Different categories of interaction
determine different types of networks, for example, interac-
tions concerning problem solving lead to a different network
than interactions concerning concept discussions. Knowing
how to interpret these two categories, provides means to inter-
pret the corresponding network structure and the development
of this structure over time.

In this paper, categories of interaction are developed itera-
tively using student answers, research about physics as a disci-
pline, and learning dimensions from communities of practice.
The result is a set of interaction categories which may describe
different aspects of the negotiation of meaning and other di-
mensions of learning (Wenger, 1998). Through a process of
analysis, validation and re-validation, the categories seem to
have become robust in terms of how they are perceived by stu-
dents. If the argument holds and the categories give a valid
interpretation of student interactions in terms of a community
of practice view, then the measures from network analysis of
the corresponding networks may be used to “add precision to
words, pictures, and narrative” (Johnson and Onwuegbuzie,
2004, p. 16). In other words, the quantitative part of network
analysis can support the qualitative findings of on-line open
questionnaires and vice versa.

A clearer understanding of how research in students’ social
networks has already contributed with findings in educational
research, is useful as a premise for the argument. This is the

topic of the next section, which develops an understanding of
how nodes, links and network dynamics can be understood in
social networks in education. This understanding is then used
to design and implement a mixed methods research design,
which incorporates in detail how students perceive different
types of interactions. The results of this design are first a series
of networks describing the development of student interaction
over a period of time. Second, from an analysis of a valida-
tion session with the students, a set of hypotheses which are
tested and used to generate new research questions for further
mixed studies of student learning processes as the progress in
a classroom context. The following section describes these
developments for the case at hand using calculation methods
from network science.

Research in students’ social
networks

Networks of student interactions can be generated in many
ways. To begin the discussion, consider Figure 1 which de-
picts how this study uses student self reports to generate dif-
ferent kinds of networks. This is meant merely as a point of
departure, to discuss how other studies have collected and then
analyzed data.

Imagine two students, A and B, communicating about how
to solve a problem in physics during class. Student A says
something which B remembers later on. At a later time in
a data collection session, B sits in front of a computer and
answers an online survey where he can check different kinds of
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interaction. B remembers A for the interaction about problem
solving (PS) in class (IC). In the network representation of the
data, a link from B to A is generated in a network of all the
PS interactions and another link in the network describing IC
interactions. The primary purpose of this study is to investigate
how educational researchers can develop an understanding of
these links between students.

In network terminology the representation of people in a
network are called nodes and the arrows between them are
called (directed) links (Costa et al., 2007). In general, nodes
represent entities of interest, for example, students, and links
are connections between these entities. Two nodes can be con-
nected, if one student names another as a friend or if one stu-
dent sends an e-mail to the other.What the network means and
how its structure can be interpreted is dependent on the under-
lying idea of what nodes and links are.

Recent studies applying social network analysis in educa-
tion have used different kinds of technology to establish net-
works of student interactions and bonds. Dawson (2008);
Macfadyen and Dawson (2010); Dawson et al. (2010); Daw-
son (2010) used discussion from posts to an online forum to
establish links between students. These studies mirror network
studies outside of the educational field, such as Kossinets and
Watts (2006) and Eagle et al. (2009), who use measurable be-
havior, like e-mail correspondence and digital proximity mea-
surements, to establish links between nodes.

Most network studies in education rely on students’ self
reports, asking students who they work with or know either
socially or academically (Brewe et al., 2009; Goertzen et al.,
2012; Forsman et al.; Enriquez, 2010; Brewe et al., 2012). The

A B

F=ma! Aha!

Interaction/communication
B

Please remember
interactions..

A

Problem 
Solving (PS)
In Class (IC)

Data collection session

A

B

PS

IC

Network representations

Figure 1: How networks are generated from student self reports in
this study. On the right, the circles with the letters A and B are called
nodes, and the arrows are called (directed) links.

danger of self reported interactions is that they can be biased in
number of ways. One bias is for over- or underreporting links
if this seems to put the reporter in a more favorable social posi-
tion (Liljeros et al., 2001; Liben-Nowell, 2005). Another bias
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is for fatigue effects, where respondents get exhausted from
answering the survey or they only give the “names they be-
lieve satisfies the request for information” (Pustejovsky and
Spillane, 2009). Section discusses how these biases relate to
this study. Finally, there is a bias for how respondents un-
derstand the question or questions (Pustejovsky and Spillane,
2009). Building a framework to analyze how respondents un-
derstand the survey prompts is one the primary concerns of
this paper.

Though biased, networks with different categories have of-
fered researchers some information about student perceptions
of interactions. Forsman (2011) asked university students to
report who they interacted with from the university. Further-
more, he asked them to distinguish between social and aca-
demic ties allowing him to gain information about how a par-
ticular student perceived a particular tie to another student.

This study continues this line of work in two ways. First,
the aim of the study is to elaborate on the academic category
by creating more detailed categories using student feedback,
physics learning theory, and a communities of practice per-
spective. Second, it extends the data collection process by
asking students to name collaborators at several data collec-
tion events during a semester.

In many studies utilizing networks in educational research,
the resulting networks are analyzed quantitatively using social
network analysis (Wasserman and Faust, 1994; Scott and Car-
rington, 2011), after which a qualitative framework is used for
interpretation (Enriquez, 2010; Brewe et al., 2012; Goertzen
et al., 2012). This study suggests a continuous iterative ap-
proach where student feedback is used to inform the questions,

and afterwards new student feedback is used to generate an
interpretation of the resulting networks. Finally, students are
confronted with the new interpretations. This approach is anal-
ogous to the work of Pitts and Spillane (2009) on leadership
at schools who used interviews and think aloud responses to
validate their School Staff Social Network Questionnaire.

McCormick et al. (2011) used a different approach to net-
works in education. They asked teachers and teacher educa-
tors to draw networks as they perceived them. Their initial
thoughts were to merge these drawings into network repre-
sentations, but they did not find this conversion to something
quantifiable very productive (McCormick et al., 2011, p. 87).
One reason was that the drawings included institutions and
abstract concepts, and thus it was not possible to find coher-
ent definitions of what nodes in these networks meant. An-
other reason was that it was not clear what kind of link the
researchers should infer from the lines between entities partic-
ipants had drawn. Thus, with these drawings they could not
standardize what nodes and links represented.

This lead them to another way of working with network
analysis. Instead of quantifying, they employed concepts from
social network analysis on which they pinned interview data.
They discussed at length what the meaning of nodes, links, and
properties derived on the basis of these, could be in networks.
They used drawings and interviews as examples throughout
their work.

One of McCormick et al. (2011) key arguments is that a link
in a network of learners does not signify merely flow of infor-
mation or a stable relation between students as represented by
nodes. When a link is related to learning, it signifies a trans-
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formation; an idea which is modified, a change in practice, or
of meaning making (McCormick et al., 2011, p.115). This in-
sight is important for this study, since we cannot assume that a
problem solving link from B to A signifies that they are friends
or work together often with regards to problem solving. Nei-
ther can we assume that information has been transferred along
the links as though they were pipelines. What we know is that
student B has had some kind of memorable interaction with
A, which may include for example, checking if the answer is
correct, which formulae to use and how to use them, or how to
go about solving problems of the kind they were solving.

Getting the correct answer to a problem can be seen as in-
formation transfer; it is difficult to argue that a student idea has
been transformed. Finding the right formula and using it the
correct way may not modify a student’s ideas about physics
in general, but it is possible that it signifies a change in prob-
lem solving practice. If the interaction in some way changed
the way student B and/or A go about solving problems, then it
would definitely be a change in praxis and possibly in the way
they make meaning of some area of physics.

The purpose of this study is not to investigate the details of
these interactions from an observer point of view. Rather, it
is to investigate how students view the interactions. Thus, in
this study, links are viewed as possible learning processes and
by having different types of links it seeks to separate different
kinds of learning processes.

Having an interpretation of how students view interactions
puts us in a position to interpret measures of the structure of a
network and of the development of networks. The following
section reviews such network measures based on two networks

from the first part of this study. This will make it possible to
interpret these measures from a learning perspective, which is
done in Section .

Measuring structure and development in
educational networks

In SNA studies the power or influence of a person is equated
with some centrality measure (Borgatti and Lopez-Kidwell,
2011). Power is to be understood broadly as the ability to influ-
ence the opinions and actions of others (Knoke, 2011). Cen-
trality as a measurable quantity gauges a person’s positional
advantage with regards to the network.

A focus on individual nodes in a network may point out in-
fluential students in the corresponding classroom, but it does
not characterize the whole network. Other measures gauge
how difficult or easy it is to navigate a network or how struc-
tured information flow is in the network Rosvall et al. (2005);
Sneppen et al. (2005). Such measures characterize the whole
network, and not only individual nodes.

If these structural numbers and changes in them can be in-
terpreted meaningfully with regards to learning, they can be
used to characterize learning situations involving a classroom
of students. The premise of this study is that such quantitative
characterizations may aid in the understanding of learning sit-
uations, when coupled with other ways of researching and un-
derstanding learning. Thus, although I now proceed to explain
these how these measures account for structure in a network,
the point is that they will be related to learning.

To begin answering these questions, Figure 2 shows two net-
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N=32 Nl=111
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Figure 2: Two networks from week 1 (a) and week 3 (b) of the pilot study, and values of network characterization measures (see text).
Boys are represented with rectangular nodes, girls with ellipses. The width of a node is proportional to the number of people naming the
corresponding student. The height of a node is proportional to the number of people being named by the student.
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works. The nodes are students and the links are self reported
interactions between students. The students were asked in four
consecutive weeks to name the students from class which they
could remember having communicated with about physics in
the preceding week. The two networks are from week 1 and 3
of this part of the study. A directed link is made from student
A to student B, if A indicated student B on a roster containing
all names.

The number of nodes, N, is not constant , and neither are
the names on the nodes. This reflects two things: sometimes
students are not at school for various reasons (e.g.. sickness),
and at the time of measurement, students could browse classes
and choose where they wanted to be. The number of links, Nl ,
can be interpreted as a measure of the activity level; it is the
number of times students name each other. This number may
vary from week to week in different categories due to differ-
ent teaching situations and simply differences in the amount of
time spent in the physics class room. In Figure 2, nodes (stu-
dents) are elliptical (girls) and rectangular (boys), and links
(namings) are shown as arrows.

As a first connection to learning theory, consider teaching
which offers few opportunities for cooperation. Students will
have few opportunities to learn from and scaffold each other.
Few opportunities would be reflected in fewer links in the cor-
responding network, if a link signifies one or more interac-
tions.

The structure of the network - how the students link - might
support learning more or less, even if the number of links is
roughly the same. Looking at the networks of self reported
student academic interactions in Figure 2, Week 1 (Figure 2

(a)) seems very different from the Week 3 (Figure 2 (b)), even
if the number of students and links are roughly the same. But
in Week 1, the boys (rectangular nodes) are isolated and only
connected to the rest of the network through Thor. If Gerda
had a good idea about solving a problem, and we imagine that
the idea in some form could travel along the links to reach
Terkel, it would have to pass through Thor. Whether or not
Terkel would benefit from the idea would depend on Thor’s
understanding of the idea, if Thor was able to convey the idea,
or even if Thor interacted with Terkel after he interacted with
Gerda. In network from Week 3, an idea traveling on links
have many other possibilities for reaching Terkel from Gerda.
It can go through Jorgen, Valdur, Hilda and Frida. It may still
be subject to some of the same problems as before, but there
would be a larger probability that some form of the idea would
reach Terkel. Terkel would then have the opportunity to con-
struct his own version of the idea. In this sense, the structure
of networks can support learning differently, although if the
number of links and number of students are roughly the same.

Network theory offers different ways of characterizing net-
work structure and dynamics with numbers (Costa et al.,
2007). A simple measure of the dynamics would be to ask how
many links, L, persist over time. For example, the links be-
tween Thor and Gislaug are present both in Week 1 and Week
3. It turns out that for the networks shown in Figure 2, 19 of
the links in Week 1, Lw1 , are also present as links in Week 3,
Lw3 . Using the ∩-sign to mark the number of intersecting links
between the two weeks, Lw1∩w3 = 19.

To find out whether or not a number of intersecting links are
significant, one can compare Lw1∩w3 with the same measure in
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randomized versions of the same networks. To randomize the
Week 1 network in Figure 2, take a pair of nodes with a link
between them, for example, Gro and Hildur. Then take another
pair with a link between them but no links to or from the other
two nodes, for example, Embla and Aud. Now, rewire the link
so Gro now points to Aud and Embla points to Hildur. Gro
and Embla both point to the same amount of people as before,
while Aud and Hildur has the same number of people pointing
at them as before. Doing this at random and enough times each
student ends up being connected to the same amount of peo-
ple, but the names of their connections are randomized. After
randomizing both networks, the number of intersecting links
can be computed again. Randomizing the networks a number
of times the Z-score Z = (Lw1∩w3 −

〈
Lw1∩w3

〉
r)/σr measure

how many standard deviations the the measured number of in-
tersecting links is from random the number of intersections
between randomized versions of the networks. For | Z |> 1.96
the difference from random is said to be significant (Maslov
et al., 2004).

Besides the number of links and the the number of intersect-
ing links, this study makes use of three different measures for
network structure. Two of them, called the hide, H, and the ac-
cess, A, measure how much information is needed on average
to find a node (A) or to be found as a node in a network (H), so
they are measures of communication efficiency (Rosvall et al.,
2005; Sneppen et al., 2005). The higher H and A scores the
more it difficult is to be located as nodes or to locate nodes.
The third, the target entropy, T , measures the predictability of
network communication in the network(Sneppen et al., 2005).
The two following paragraphs explains the details of each of

these measures for the interested reader.
To start investigating the structure of a network, consider the fol-

lowing. Say that you start at Thor (in the Week 1 network), and you
walk through the network following the links. If your “destination”
is Gudrun, go through Aud and Halldis takes two steps. These paths
are called the shortest paths or geodesics. 1 . Since Thor has 10
outgoing connections, and 2 of them will send you on a right path,
the probability of choosing one of these paths at random is 1

5 . From
Aud the probability is 1

5 , and from Halldis 1
4 of choosing Gudrun.

The total probability of choosing right is 1
5 (

1
5 + 1

4 ) =
9

100 . Taking
− log2(

9
100 ) = 3.47, you get the average number of questions you

would need to ask an hypothetical omniscient person to reach Gu-
drun from Thor 2. This is called the search information, Si j from i to
j (Sneppen et al., 2005). If you want to measure the average acces-
sibility, AT hor, from Thor to the rest of the network, simply average
the Si j’s over the nodes reachable from Thor; AT hor =

1
Nreach

∑l ST hor,l
(Sneppen et al., 2005; Bruun and Brewe, 2013). For a whole net-
work of i nodes, A = 1

N ∑i Ai. We could also ask the reverse ques-
tion, how easy is it to reach Thor? In that case, we get the hide;
HT hor =

1
Nreach

∑l Sl,Thor, and H = 1
N ∑i Hi. In non-directed networks,

H = A = S (Sneppen et al., 2005), but in directed networks, this is not
the case as seen in Figure 2 on page 7.3 You are able to access the net-
work from a node with outgoing connections, but if the node has no

1Other paths from Thor to Gudrun exist but these are usually ne-
glected in calculations because they would demand too much
computation.

2The similarity between log2(p) and number of questions is ex-
plained in detail in the Supplemental Material to Bruun and
Brewe’s paper (2013).

3Also, Rosvall et al. (2005) find that in non-directed and connected
networks, s = S

log2(N)
is constant for a given network structure,

and we take a = A
log2(N)

and h = H
log2(N)

to mean the same.
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incoming connections, the node is not accessible from the network.
Next, imagine that messages originate at nodes and travel on

links. If a message reaches a node, it is passed on through one
of its links. Thus nodes with a lot of incoming links will shoot
out many messages. Target entropy, Ti, measures the predictability
of message traffic 4 to a node i (Sneppen et al., 2005; Bruun and
Brewe, 2013). If node i has only one incoming connection, it is
certain where the next message comes from, and Ti = 0. If it has
two connections which in turn receive an equal amount of messages,
then the probability of getting a message from either node is 1

2 , and
Ti = − 1

2 log2(
1
2 )− 1

2 log2(
1
2 ) = 1. But if one of i’s connections has

more messages going through it (for example, because it belongs
to a more connected part of the network), then the probabilities are
skewed, and 0 < Ti < 1. Here, T = 1

Ns
∑i Ti characterize the overall

predictability of networks.
Recently target entropy and hide have been used to predict

student grades (Bruun and Brewe, 2013). Each node has a
T, A, and H score, and for the university students in Bruun
and Brewe’s study, target entropy in a network at one time
was positively correlated with grades received on subsequent
courses. Hide was negatively correlated with future grades.
Thus, these two measures seem to predict grades, although
Bruun and Brewe (2013) did not infer causality.

Finally, the networks have been plotted using the Kamada-
Kawai plotting algorithm (Kamada and Kawai, 1989). This
algorithm or algorithms like it - called force based algorithms
- are widely used in network literature since it gives a picture
of what nodes are close to each other. The algorithm treats the
network as a physical system of connected particles. In this

4Network literature uses the word traffic. In this paper, words like
interaction, activity, or naming would be more appropriate

analogy, links are springs with an ideal distance proportional
to the shortest path between two nodes. In a given layout, each
node is separated by a distance and for most nodes this dis-
tance will be different from the ideal distance. In analogy to a
physical system, this means that each spring contributes to the
combined energy of the system. The algorithm calculates the
coordinates of nodes which minimize this combined energy.

This means that if a group of nodes like the boys in Figure
2 share a lot of connections with each other, they are likely to
be placed close to each other in the layout. This is why forced
based algorithms like Kamada-Kawai is sometimes as a rough
indicator of group structure.

This section has only hinted at the relation between network
measurements and learning theories. To make this relation,
the next section develops an understanding of what links and
nodes resemble, and use this understanding to interpret tar-
get entropy, access, hide, and number of (intersecting) links in
terms of constructivist and socio-cultural learning theories.

Interpreting network properties with
socio-cultural learning theory

A self-reported link, where a student A has mentioned a stu-
dent, B, can have different qualities. It could be about leader-
ship (Pitts and Spillane, 2009; Pustejovsky and Spillane, 2009)
if the interaction held some sort of asymmetry, for example, if
A came to B for advice. It could also be a discussion of concep-
tual nature, which A remembers. It could be collaboration on a
problem set, where A and B scaffolded (Vygotsky, 1978) each
other, or some other interaction requiring mutual engagement
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Measure Symbol Description Reference

Number of nodes and
links

N,Nlinks The total number of different names/namings in a network
Wasserman and Faust (1994); Costa et al.

(2007)

Number of intersecting
links

Lgi∩g j The number of links present in both network gi and g j
Wasserman and Faust (1994)

Number of different
links

∆Lgig j The number of links present in gi but not in g j. Note that in
general: ∆Lgig j 6= ∆Lg jgi

Wasserman and Faust (1994)

target entropy T The predictability of messages in a network. A high T means
that on average it is difficult to predict where the next message

to a given node would come from.

Sneppen et al. (2005); Bruun and Brewe (2013)

Total Network access SA Starting at node i, Ai is the average number of questions you
would need to ask to locate another node reachable through
existing paths (geodesics). SA is the average of this quantity

over all nodes i in the network.

Sneppen et al. (2005); Bruun and Brewe (2013)

Total Network hide SH Ending at node i, Hi is the average number of questions you
would need to ask to locate this node through existing paths
(geodesics) in the network. SH is the average of this quantity

over all nodes i in the network.

Sneppen et al. (2005); Bruun and Brewe
(2013),

Plot lay-out The lay-out of a graph plotted with a force based algorithm
gives a rough indicator of network structure Kamada and Kawai (1989)

Table 1: The above measures can be used to understand different structural aspects of a network. Section explains the measures in more
detail.
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(Wenger, 1998). Whatever the quality, we can be sure that
from A’s perspective, something happened which triggered the
link.

It is also worth to consider, what aspects of a student is rep-
resented by a node in a network where students name who they
remember having interacted with. McCormick et al. (2011)
distinguishes between nodes as entities and nodes as relation-
ships. Expertise in their view can be something derived from
the individual or it can be something derived from the relation-
ships to and from that node (McCormick et al., 2011, p.113-
114). If there is no other information about the nodes than the
students named, nodes must be relationships. Further, since
the links are based on remembered interactions, we are in-
vestigating the dynamics on the network (Watts, 2003) where
“people do something.. and they are influenced by in this de-
cision by their neighbors” (McCormick et al., 2011, p. 89).
The network does not yield exact information about what stu-
dents have done, only that they have done something, and thus
acted.

McCormick et al. (2011) argue that links are processes of
transformation, specifically “interactions in which transactions
are central” (McCormick et al., 2011, p. 145), rather than
just channels through which information may flow. These pro-
cesses are seen as as “opportunities for meaning-making” (Mc-
Cormick et al., 2011, p. 145). This is in accordance with con-
structivist learning theories (Vygotsky, 1978; Wenger, 1998;
Von Glasersfeld, 1996; Gentner and Colhoun, 2010), in the
sense that knowledge is constructed from pre-existing knowl-
edge; transformation requires that something exists which can
be transformed. Furthermore Wenger (1998) argues that learn-

ing happens in a process of mutual engagement. If the links
represent processes that have occurred, the network may de-
scribes some aspect of the dynamics of a class of students, just
like nodes might represent aspects of student agency.

The details of these aspects depend on the reasons students
have for naming each other. For example, if a network is built
around namings based on communications regarding problem
solving, then the network as a whole describes dynamics re-
garding some generalized idea of problem solving. But we
need to identify student understandings of problem solving to
interpret the network structure. In this way establishing and
maintaining an understanding of what a single link means may
further the understanding of what the structure of links be-
tween nodes means.

The link intersection from week to week may tell us about
changes in interaction patterns over time. From a didactical
view point it is interesting to know if changes in teaching ac-
tivities also changes who students interact with or what stu-
dents interact about. If students always work with the same
people, the number of intersecting links from week to week
would be high, and it might signify the existence of perhaps
several closed communities of practice which may not share
repertoire, enterprise, or practice (Wenger, 1998).

In the pilot study students were asked to list their interac-
tions regarding physics and their social interactions. The ques-
tion as to how alike the two networks are can also be answered
with the intersection measure. For example, in week 3 the
physics interaction network (Nl = 118) and the social interac-
tion network (Nl = 340) share 39 links, which is 40 standard
deviation below the intersections between the random coun-
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terparts. Thus, the categories do not elicit the same kinds of
responses.

In order to interpret access, hide, and target entropy, assume
that a link represents an interaction between students where an
idea or practice has been either created or modified. An idea
could be for example, a model, a concept, or a general line of
thought, a practice how to solve a problem, how to represent
knowledge graphically, or how to talk about concepts. The
key assumption is that the idea or practice can spread through
links, because links are processes, but that the ideas are not
unaltered by the spreading.

We cannot know if a particular link, for example, the one
between Hilda and Thor on Figure 2 on page 7 (left), signifies
an idea or practice spread from Hilda to Thor, from Thor to
Hilda, was developed in collaboration, or if Hilda remembers
Thor for other reasons. However, Bruun and Brewe (2013)
did find a significant negative correlation between individual
students’ H and grades5. That is, if a student is generally well
hidden (has a high H) in the network of student interactions,
the tendency is that he or she will not get as good grades.

A and H might be related to learning in the sense that they
measure the effectiveness of communication in the classroom.
If the network structure allows ideas to spread and reach stu-
dents easily, then we may suspect that many students get to
work a lot with the ideas and practices of others. That is, low
values of A and H would signify more opportunities for learn-

5The article uses three naming categories to be developed for this study,
namely the problem solving, conceptual discussion, and in class communi-
cation categories. The negative correlation is between hide in the problem
solving network and grades in physics and math.

ing than high values would.
A low value of T would signify that many students get to

modify their ideas through a limited number of persons. In
terms of learning, a high value of T directly means that a
student has had interactions with many students who in turn
has had many interactions with other students. Thus, to use
metaphors for learning, there has been many opportunities
for acquiring knowledge or participating (Sfard, 1998), and
knowledge/practices have been shared through a lot of stu-
dents. With a low value of T , students generally do not engage
with many different students, and thus do not get to discuss
their ideas, concepts, and models with a lot of other students.
Again, Bruun and Brewe (2013) lends support to the benefit of
high T values for individual students6.

Finally, looking at drawings of the networks allows to in-
dicate how group structures can change (or not). If teaching
focuses on different students working with each other in differ-
ent weeks, then this should be visible in the networks because
different people would be closer together in different weeks.
Linking other student attributes to the network, for example,
by coloring nodes according to gender, will yield information
about how much students mix with regards to that attribute in
this particular network. Coloring with respect to grades, for
example, might tell us if students in general segregate, so that
students with good grades work together and students with bad
grades tend to work together.

Neither of network concepts discussed above have been de-
veloped sufficiently in educational research, so great care has

6This time the correlation is positive between T in the concept discussion
network and grades.
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Mixing methods in data collection and creation

to be taken when interpreting the results. In this study, these
interpretations are based on an iterative probing of students
via surveys and whole class sessions, which is described in the
following section.

Mixing methods in data collection
and creation

The design of this study is in some ways analogous to that of
Pitts and Spillane (2009), and lies within the mixed methods
paradigm as described by Johnson and Onwuegbuzie (2004).
In short, both this study and Pitts and Spillane (2009) are con-
cerned with the validity of the questionnaires used to quantify
human relations in networks. This study’s mixed methods de-
sign is outlined in Figure 3 and the details of the process and
arguments for specific design decisions follow this short de-
scription.

To create the first interaction networks and to elicit student
thoughts about collaboration in physics this study used stu-
dent written responses to an open-ended survey. (See Figure
4). Following Johnson and Onwuegbuzie (2004) Mixed Meth-
ods Process Model (MMPM), the purpose of this part of the
study was to elicit instances of what a network relation means
for students. Thus, students where prompted for the quali-
tative nature of the interactions they remembered as well as
for names of whom they remembered having had interactions
with. The data collection was analyzed using open coding to
reduce the complexity, and emerging patterns were identified
by displaying the codes and their interconnections as a net-

Figure 4: Screenshot of part of the first survey. The title reads Who do
you talk to about physics?. The text on the left reads: Check everyone
you remember collaborating with within the last week. In the text
to the left of the crossed out names reads: Check here, if you have
worked with any of these classmates! The final text reads: Give a
short description of what you did and where you were.

work of interrelated categories. This mix of qualitative (cod-
ing) and quantitative (network representation) focused mainly
on capturing as much of what students meant with an inter-
action while keeping researcher bias in the interpretation of
categories to a minimum.

In the next step in Figure 3, the analyzed data, Wenger’s
(1998) communities of practice framework , and Physics
& Science Education Research literature (Roth, 1995; Dolin
et al., 2001; Jacobsen, 2008; Lemke, 1990; Ogborn et al.,
1996) informed the categories extracted from student answers
to produce a set of final categories. This corresponds to a sec-
ond iteration in the MMPM, where the interpretation of data
leads to a new research question and purpose of research.

The final categories were worded as statements and admin-
istered to the same class in ten weeks during the course of
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Figure 3: Research design. In each of the survey measurements and the validation session, the researcher was present to answer student
questions. All sessions were coordinated with the teacher.

a semester. Each survey session was coordinated with the
teacher to fit the teaching plan, and the researcher was present
throughout most of the sessions to answer clarifying questions.

After the answering sessions, the teacher and researcher set
up a validation session as part of the teaching plan. 24 students
participated were present at the validation session. First stu-
dents answered an individual online survey asking them what
they meant when they indicated interactions in a given cate-
gory. Subsequently, they discussed their answers in groups of

3-5 writing down the differences and likenesses of their an-
swers.

The analysis of student answers where done in much the
same way as the initial answers, and so this corresponds to a
second iteration of the MMPM. After this iteration, the study
allowed for the construction of hypotheses about the collected
network data The data analysis involved calculations on net-
works and transforming network data to represent network de-
velopment. Finally this was used to create hypotheses which
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Mixing methods in data collection and creation

can be tested in new studies. This required the use of both
network data, of teaching plans, and the continuous use of the
analyses of student responses.

Notice that apart from the box “Final interaction categories
formulated as questions”, all other boxes involve sessions
where students where given time in class to work with the
questions from this study. This was possible because the class
teacher was convinced that students would benefit from par-
ticipating in the study and that the study would benefit from
the teachers cooperation. During the whole period outlined in
Figure 3, the teacher and researcher coordinated extensively to
fit sessions with teaching plans.

The coordination and attitude of the teacher also seemed
to convince students that the study was worthwhile for them
to participate. During the entire research period, students en-
gaged actively with the researcher to understand the questions
and seemingly did their best to answer them as honestly they
could.

First interaction networks and descriptions
of interactions

The purpose of this section is to explain how categories and
questions were designed from student answers to network sur-
veys. From initial student answers, categories were devel-
oped using a representational understanding of physics learn-
ing (Dolin et al., 2001) and a Communities of Practice (CoP)
learning dimensions (Wenger, 1998, pp. 231-236) perspective
to further develop categories.

The subjects of the study were a class of upper secondary

students engaged in a mid-level physics course. The teacher
was an experienced physics and mathematics teacher. Initially
the researcher gave a presentation of the study and was present
during most of the naming sessions to answer questions from
the students. In addition to the communication questions, stu-
dents answered conceptual physics questions with free text an-
swers to explain their thinking. The conceptual questions are
not treated in this study.

The box describes the students, the teacher, and the setup.
Using an online learning management platform7, students
used laptop computers and stationary computers located in the
classroom to answer two online questions. They were asked
to name with whom they remembered having communicated
physics with during the last week (Figure 4). Also, they were
asked to name with whom they remembered having communi-
cated with socially (Not shown, but analogous to Figure 4). In
addition, they were asked to elaborate on what they had com-
municated about.

For the two questions, the headlines were: “Who do you talk
with about physics?” (Figure 4) and “Who do you talk with so-
cially?”. These headlines were elaborated in the instructional
texts. In the instructional text accompanying the physics ques-
tion, students were told to list who they had collaborated with
in physics during the last week. In the text accompanying the
social question, students were told to list who they had talked
with.

The researcher was present as was the teacher and both an-
swered student questions about when to name some one. Stu-

7www.moodle.org
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First interaction networks and descriptions of interactions

Category Label Example

AC Affective towards collaborator “I really like working with Gunnlaug because we work in the same way”
AS At School “We were at school working with...”, “We sat in class working on...”, “We worked on the problem set we had

been given”
AtS Affective towards Subject “I did physics with Gunhild [..], we talked about how much we suck at physics”
C Specific Concept “We did a lab exercise on the density of water”

CH Chat (online) “Regnar and I talked physics on Facebook, where we helped each other with homework. ”
CU Conceptual Understanding “We discussed how to illustrate a serial connection.”

DP Doing Physics
(unspecified/field)

“Looked at something with potential difference. “, “Me and Thor worked together in one of the classes”

E Experiments “We did a lab exercise on the density of water”
G Collaboration in General “Generally, I work with the person sitting next to me.”
H Helped/Was Helped “I explained series and parallel connections to Yngvild”

HWA Home Work Assignment “.. but we also worked together on a hand-in assignment and on a regular homework assignment and on a

Moodle quiz or two on electricity.”
I Involving Other Students “We did a video recording, where we had to show an experiment [...] and then make questions for our

classmates to see if they had gotten all the information. ”
LMS Worked in LMS platform “We worked with potential differences in Moodle. “, “We did the Moodle quiz. ”
NA Not Available “I wasn’t at school last week”

NAS Not At School
Pr Discussed how to present Besides, Jorgen helped me with a presentation about voltage and current.
PS Problem Solving “I helped Gerda with some problems about resistors.”
RT Repetition/Preparation in

Connection with Test
“We practiced using formulae for a physics test”

SC Specific Computer Program “We used Logger Pro to record observations.“
SE Something Else “Were in group with Erika”
ST Specific Task “Halldis and I [...] found out how we could simulate an ampere meter and volt meter in a ’simulated’ circuit”.
TI Teacher Initiated
TP Teacher Presentation “We listened to the teacher going through something at the blackboard.”

Table 2: Categories, labels and examples of answers.
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Figure 5: This network of category shows the percentage of times each label was used in the coding procedure of the four surveys. Table (2)
has both the key to the abbreviations and examples of code use. The thickness of the link between AS (At School) and PS (Problem Solving)
signify how many times the two categories co-occur in the code to answers. The strong link between AS and PS, as indicated by the thick
line, signify that many of the reported interactions involve Problem Solving At School.
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Developing interaction categories

dents were told that any communication they could remem-
ber was important, even if they could not remember what they
communicated about. This also meant that out of school and in
school communication was important, as was the nature (e.g..
group, individual, or experimental work) of the communica-
tion.

The student answers were labeled with different category
labels as shown in Table 2 along with examples of how an-
swers were coded. These categories were formed on the basis
of a thematic analysis (Braun and Clarke, 2006) of student an-
swers.

To analyze the emergent patterns involving the coded cat-
egories, the categories and their interconnections were repre-
sented in a network (5). The category network in Figure 5
shows that from the student point of view, problem solving
and doing experiments are the primary activities they remem-
ber. They often (53% of the time) mention a Specific Con-
cept (labeled C) in connection with either Experiment or Prob-
lem Solving. Many times they are also unspecific with regards
to the subject as represented by category Doing Physics (DP,
35%). They primarily list that they do physics At School (72%
of the time) and rarely mentions specifically doing physics Not
At School (NAS, 1%).

Other striking features are the things which are not there or
are mentioned only marginally (<10% of the time). Specific
Tasks (ST) are rarely mentioned, and discussion of physics
concepts and language use is almost not present. The ques-
tion is, whether these categories are marginally represented or
absent because these things are not stressed in the classroom
or because students simply do not consider them important or

memorable. It is not possible at this point in the analysis to
answer that question.

Considering the categories used 30% or more of the time
would leave us with Problem Solving (PS, 73%), At School
(AS, 72%), Specific Concepts (C, 53%), Experiment (E, 50%),
Doing Physics (DP, 35%), and Learning Management System
(LMS, 30%). The LMS category shows that students remem-
ber doing activities (mainly problem solving) in the school’s
learning management system.

Developing interaction categories

The analysis of student answers resulted in the categories
shown as a network in Figure 5 on the facing page. The cen-
tral categories are also the most used categories. They are
intertwined with each other, in the sense that they co-appear
with this particular use of the coding of student answers. This
section interprets student categories and develops interaction
categories using

• physics learning as mastery of representational forms
(Dolin et al., 2001; Dolin, 2002) with language as a gate-
way into this scientific domain (Lemke, 1990; Ogborn
et al., 1996).

• a learning matrix (Wenger, 1998, p. 240) con-
sisting of four learning categories: negotiation of
meaning, design/emergent, local/global, and identifica-
tion/negotiability.

The interaction categories form the basis of interaction state-
ments checked by the students during data collection. Figure 6
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Figure 6: Starting with the most prominent categories from Figure (5), theoretical concepts from physics and science education research
inform and change the categories. For example, the Concept category is changed to the Concept Discussion category is now understood
through the lenses of a dialogical Lemke (1990) perspective and from the conceptual and phenomenological forms of representation (Dolin
et al., 2001). These changes are made for the categories in Section (). In the further analysis, Wengers learning categories (Wenger, 1998,
pp. 231-236) further inform the category. The Concept Discussion category, for instance, is now understood in terms of the Negotiation of
Meaning learning dimension as articulated by the Imagination mode of belonging (Wenger, 1998, pp. 175-178).
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Developing interaction categories

illustrates the process of development. The following sections
elaborate on the process of transforming categories through a
description of moves of change, defined as an action where we
use theoretical considerations to argue for the change.

The driver for making a move of change was to integrate
student categories with existing research, thus pinning them to
a theoretical and research based understanding of learning.

Informing prominent coding categories with physics
and science education research

The analysis begins with the most prominent coding cate-
gories. These categories appear many times in the coding of
student answers, and they appear central in the network shown
in Figure 58. Thus taking these as the starting point of the
analysis seems natural. From here, the analysis proceeds with
moves of change to modify the categories according to theo-
retical considerations. Physics and science education research
motivate each move of change.

The first move of change is to merge the Experimental (E)
category with the Problem Solving (PS) category. Jacobsen
(2008) argues that while experiments are usually seen in the
literature as a way of achieving cognitive, procedural, and
affective skills, they may fruitfully be seen as a way of en-
gaging with problem solving in physics. While students and

8Calculating the PageRank of each node in network in Figure 2, reveals that
SC are ST are more central than HWA. However, these codes are linked to
specific computer programs and tasks. It would introduce too many cate-
gories to introduce all the possible specific tasks and computer programs
students will engage with during the course of a semester, so we discard
these.

teachers might not see lab experiments as a way of solving a
problem, we can still give examples of problem solving which
would also be applicable to experiments. For example, many
physics experiments involve reading graphs, and performing
some kind of mathematical manipulation of data in addition to
knowing how to use equipment and to perform experimental
procedures.

Problem solving is usually seen as a central part of doing
physics. Here, problem solving is instead seen as one activ-
ity among many, which students may engage with to develop
models using representational forms. In this view what char-
acterizes problem solving is that students reach some sort of
answer to a problem. The representational forms (Roth, 1995;
Dolin et al., 2001; Dolin, 2002) students may explicitly use
to reach these answers are mathematical and experimental.
This means that when students use formulae, produce and read
graphs, or measure the change of some quantity by regulating
another, they are using the associated representational forms
to reach an answer to a problem. The merger of the PS and E
category are illustrated with the lines going from the gray PS
and E categories on Figure 6 to the white PS category. The the-
oretical considerations with regards to representational forms
are shown as the green shapes which the lines pass through.

Since the Learning Management System (LMS) reportedly
serves largely as a way for students to do problem solving,
it is assimilated into the PS category. The information about
whether students did pen and paper or digitally based problem
solving is lost through this move, keeping the number of cate-
gories down. Problem solving at this state may entail interac-
tions where different representational forms are in use: math-
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ematical, pictorial, experimental, and kinesthetic. However, it
should not contain phenomenological or conceptual forms of
representation.

The purpose of creating the Problem Solving category with-
out the Concept category is to recognize the literature suggest-
ing that sometimes students only learn to pick the right for-
mulae (Halloun and Hestenes, 1985a; Hestenes and Halloun,
1995; Halloun and Hestenes, 1985b). They are not encour-
aged to discuss physics concepts outside the narrow scope of
standard text book problems. Although many studies (Mazur,
1997; Hestenes, 2006) have shown that conceptual discussions
have a positive effect on student conceptual understanding, the
standard practice in many physics classrooms may not be in-
formed by these studies. Thus, the objective here is to keep
conceptual interactions separate from problem solving inter-
actions.

In Figure 5, the Concept node (C) is heavily tied to the Prob-
lem Solving (PS) and Experiments (E) nodes, because students
recalled a specific concept in connection with problem solv-
ing. This is illustrated by the dotted line from the gray C to the
white PS in Figure 6. However, recalling that you did a prob-
lem related to a parallel or series connection does mean that
you have discussed how current behaves in an electrical cir-
cuit. But the way students understand current influence how
they use the formulae as illustrated by Bruun (2011).

The move of change on the Concept category is to add Dis-
cussion, thus creating the Concept Discussion (CD) interaction
category. In terms representational forms, the phenomeno-
logical and conceptual representations are at play here. Phe-
nomenological refers to “putting words to what is immediately

perceptible” (Dolin, 2002, author’s translation), thus creating
a first set of concepts. Mastering the conceptual form of rep-
resentation for Dolin (2002) is associated with mastering the
use of the generalizations and relations between physical phe-
nomena developed by physicists.

This line of thinking is akin to the knowledge in pieces view
on conceptual understanding proposed by Andrea diSessa
(diSessa, 1993, 2002). diSessa identifies phenomenological
primitives (p-prims) as atomic knowledge bits which persons
use to make explanations of physical phenomena. He argues
that an expert understanding of some physics subject can be
described through the concept of a coordination class, where
p-prims have been honed to serve the purpose of contributing
to correct explanations of physics situations. The CD category
is meant to capture interactions between students, where they
are on the way towards an understanding of physics which lies
somewhere between novice and expert. The concept discus-
sion (CD) category entails phenomenological and conceptual
representational forms but also kinesthetic (in the form of ges-
tures) and pictorial (conceptual drawings) forms of represen-
tation. The part two forms of representation may play in in-
teractions of the kind captured by the categories Conceptual
Discussion and Problem Solving are illustrated in Figure 6 by
the dotted lines from the green shapes representing these rep-
resentational forms to categories.

Clearly, language plays a part of both the newly formed
Conceptual Discussion and Problem Solving categories. But
in in principle students can solve problems and discuss physics
concepts without using words which have specific meanings
in physics. Indeed, when learning, students sometimes refer to
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concepts by pointing, using words like “that thing” or every-
day concepts (Roth and McGinn, 1998). Indeed when bridg-
ing between everyday understanding and scientifically correct
ways of describing science, teachers may use metaphors and
analogies which intertwine every day words with scientific
concepts pointing out what the scientific concepts are (Og-
born et al., 1996). Furthermore, students continuously refine
their language to approximate the language of science (Lemke,
1990; Bruun, 2011). For students then, Doing Physics (DP)
is probably a combination of solving problems, understand-
ing concepts, and formulating things in a way consistent with
physics vocabulary. Since problem solving and concept dis-
cussion are already categories, the move of change on the DP
category is to transform it into the Language and presentation
(L+Pr) category. Presenting and talking physics involve all the
different forms of representation used in physics, since these
are arguable the representational forms physicists use to com-
municate.

The Help (H) category is problematic, because it provides a
reason for bias. As noted by some researchers (Liljeros et al.,
2001; Liben-Nowell, 2005), people tend to report interactions
which put them in a favorable light. Helping someone as op-
posed to being helped seems favorable, and eliminating this
category could reduce over or under reporting interactions,
thus giving a more true picture of the actual interactions. The
cost is that information about the interaction is lost, but even
if someone believes that he helped someone, it doesn’t mean
that he did not learn from the interaction. This is the reason
for eliminating the help category.

The category At School (AS) is large, and it is not surpris-

ing that many physics interactions happen at school. The Not
At School (NAS)category is only marginally present, which
could reflect that most interactions do not happen outside the
school context. The home work assignment category is ab-
sorbed into the Problem Solving and Learning and Presenta-
tion categories, and thus we lose information on student col-
laborations on home work assignments.

The three physics categories developed here, Problem Solv-
ing, Conceptual Discussion, and Learning and Presentation,
have crossovers between the forms of representation used. To
further separate them, the next step will be to inform them
with Wenger’s (1998) learning theoretical framework, specifi-
cally learning dimensions and modes of belonging. Wenger’s
framework serves as a way of incorporating McCormick et.
al’s (2011) thoughts of links as processes. For example, the
negotiation of meaning can be seen as a process consisting of
participation and reification.

Before entering the realm of communities of practice, we
have a set of intermediate categories, which consist of the
developed physics content related categories (Problem Solv-
ing, Conceptual Discussion, and Learning and Presentation),
the remaining categories from the analysis of student answers
(Affective towards Subject (AtS), Affective towards Collabora-
tor (AC), Teacher Initiated (TI), At School (AS), and Not At
School (NAS)), and two social categories representing Social
Interactions at School (SIS) and Social interactions Outside of
School (SOS) 9.

9The analysis leading to these two categories is not described here, but it is
analogous to the analysis of student answers to the initial physics survey.
At the same time as answering the physics survey, student answered a
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Wengerian categories

Communities of practice (Wenger, 1998) is a very broad the-
ory, and the different concepts in the theory hold many poten-
tial meanings. For example, Wenger describes communities
of practice in terms of mutual engagement, a joint enterprise
and a shared repertoire. However, even if mutual engagement
is described in terms of participation and reification, the two
“can be seamlessly interwoven”. Likewise, a joint enterprise
can exist “without being reified, discussed or stated as an enter-
prise”. This makes the theory hard to operationalize, without
leaving out some of the potential meanings embedded in his
concepts.

In terms of communities of practice, this study is concerned
primarily with learning dimensions. Wenger lists four learning
dimensions Wenger (1998, chapter 10), and describes them
in terms of dualities; as two parts which are intertwined in
such a way one cannot exist without the other and each part
holds different perspectives. These learning dimensions are
negotiation of meaning (engagement/reification), identifica-
tion/negotiability, designed/emergent, and local/global.

Here, the physics content related categories are seen de-
scribing negotiation of meaning. Behind these lie the reifi-
cations which students use to participate in the communities
they are part of in their studies. When students engage with
each other it is through reifications like problem sets, lab ex-
ercise manuals, computer programs, text books, notes (both
their own and the teacher’s) and even ways of speaking about
physics. These are the reifications around which students can

social survey.

participate in physics.
Wenger also develops three different modes of belonging -

engagement, imagination, and alignment - which can be used
to characterize a learning dimension. Negotiating meaning
in terms of engagement describes how students use and de-
velop practices when they engage in problem solving with
each other. It is not only problem solving practices, but also
how concepts and language applies to problem solving.

This is different from concept discussion, where students
imagine how different concepts work. In terms of negotiation
of meaning, they engage with each other to discuss the nature
of concepts and interaction of concepts. For example, Bruun
(2011) shows two students arguing from different models of
electricity about the ranking of light bulb intensity in a specific
electric circuit. They use different explanatory models, and
their models influence how they discuss concepts. They use
the available materials (computers, pen, worksheets) through-
out the discussion, but only to enact their explanations about
electricity. In short, they use their imagination to negotiate
meaning.

Communications about how to present things right or how
to use the language of physics in the correct way amount to
aligning communication with the styles and discourses of a
larger physics community. Distinguishing in words between
weight and mass can be very important in a discussion about
how a pendulum moves on the Moon (Bruun, 2008) or when
solving a problem about it.

So far Problem Solving has been linked to engagement,
Concept Discussion to imagination, and Language and Pre-
sentation to alignment. At the same time, it is clear that prob-
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lem solving can entail both conceptual discussions and align-
ing language, and the same goes for the other two categories.
However, by listing the categories as explicitly different, stu-
dents could reflect upon how they perceived their physics in-
teractions.

The two small categories, Affective towards Subject (AtS)
and Affective towards Collaborator (AC) are difficult to in-
terpret, because they are so small. Also, the few AC state-
ments students do provide, do not really characterize the pro-
cess. They take the form of an assessment of the other person.
Student evaluation of peers is beyond the scope of this study
because (1) it is a potential source of mischief between stu-
dents and (2) this study is about processes, and only tangen-
tially about relations. However, since collaborating with peers
might be part of a teaching situation, and we are interested in
student communications about teaching, the move of change
on AC is to convert it to Affective towards Teaching (AT). The
AT category thus entails student opinions about teaching and
teaching activities.

Communications about students’ affection towards teaching
seems like a way to negotiate identity in the class room. Ar-
guably, the subject relevant categories may capture some of
the identity of students, but talking about teaching is another
layer. It positions students with respect to teaching, and may
also engage students in reflections about their own learning
practices. Thus, the category may articulate the identifica-
tion/negotiability learning dimension with respect to imagina-
tion.

Students affection towards teaching is a meta layer com-
pared to the “pure” physics subject interaction categories, and

it may reflect parts of their capacity beliefs (Andersen et al.,
2004) and motivation. For instance, if they do not feel that
group work stimulates their learning, they may communicate
concerns about teaching at times where group work is in focus.

As illustrated in Table 2, students may feel strongly about
physics as a subject. When communicating about their affec-
tion towards physics as a subject, they may refer to situations
where they actually did physics. So it is a reflection of how
it is to do physics at this moment, how it was to do physics at
some point. In this understanding communication entailing af-
fection towards physics, some kind of engagement is implied,
while alignment and imagination are downplayed.

Communication about affective issues regarding the subject
of physics as seen from an alignment perspective would im-
ply power relations. As seen from an imagination perspective,
students might communicate about affective issues regarding
their future dispositions. Thus, the understandings of the affec-
tive categories are tentative. For now, they belong to the identi-
fication/negotiability learning dimension and the engagement
(Affective towards Subject) and imagination (Affective towards
Teaching) modes of belonging.

The Teacher Initiated (TI) category was only used to de-
scribe one student comment out of all student comments in
four weeks. Still, student interactions could be broadly viewed
as either teacher initiated or student initiated. Clearly, when
students work together in a laboratory exercise, the teacher has
initiated this even if he may not have designed the composi-
tion of the groups. On the other hand, student might be given
free time during class to work on problems, or they might help
each other with home work on their own initiative. Thus, the
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Mixing methods in data collection and creation

Teacher Initiated category splits into two categories, Teacher
Initiated and Student Initiated (SI).

This partitioning can be described by the designed/emergent
dimension, and student initiated communication corresponds
to the engagement mode of belonging. It is quite clearly
“situated improvisation within a regime of accountability”
(Wenger, 1998, p. 240). Likewise, teacher initiated commu-
nications is nicely described by the alignment, as it implies
coordination, feedback, and renegotiation.

The At School (AS) category could intuitively be split into
a Not at School (NAS) category and the At School category.
However, since students answer that they do not communicate
a lot outside of school, it makes more sense to make the divi-
sion between In Class (IC) and Not In Class (NIC). This divi-
sion reflects that some times communication might take place
in other types of context than in the classroom; it is meant to
reflect Wenger’s dual concept of local/global. For Wenger, the
global is made up of many localities, here the global is oper-
ationalized by adding Not In Class. A communication taking
place outside a school context let students expand the area in
which they apply their knowledge. At school, students prob-
ably align their communication to the standards enforced by
the teacher. Communication about physics not at school may
signify a deeper engagement in the communities in the physics
class.

As seen in Figure 2, the networks describing physics com-
munication/collaboration can change, and as noted in the leg-
end, some of this change might be rooted in purely social cir-
cumstances. Therefore, this study includes the categories So-
cial interaction In School (SIS) and Social interaction Outside

of School (SOS).
The interpretation of categories developed here is of course

tentative. However, they define a means to develop the state-
ments presented to students in the weekly surveys. The next
section describes this development.

Survey statements from categories

The analysis of the previous section and the resulting cate-
gories formed the basis for the second survey instrument ad-
ministered to the students of the class. Table 3 lists a transla-
tion of the questions along with the categories they address in
the order in which they were presented to students.

As noted by Pustejovsky and Spillane (2009) network sur-
veys may be subject to biases just as normal surveys are. One
task is to formulate the categories as presented to students in
a way which minimizes biases. Participants might be cogni-
tively primed by the wording of a question to answer in a cer-
tain way.

A guiding assumption was that if students were to rank their
experiences with others or if they were prompted to select the
ones they preferred working with, then the answers would be
biased. For example, a bias might be towards students nam-
ing their friends rather than the ones they actually remembered
communicating with about physics. But since students were to
answer the survey week after week, students might make deals
with each other (If you rank me high, then I’ll rank you high).

This is the reason the survey uses the word “communicate”
rather than “work with” or “collaborate”. A student who feels
that (s)he is working alone, will not indicate working with oth-
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Survey statements from categories

# Category Code Category description (translated from Danish)
1 Problem solving PS We communicated about how to solve a task in physics. (How to perform

calculations, what formulas you need, how to read graphs and the like).
2 Conceptual

understanding
CD We communicated about understanding one or more physics concepts. (What

current is, what the normal force is, how radioactivity works, and the like).
3 Language,

presentation, form
Pr+L We communicated about how to use the language of physics, or how to present

physics. (How you say things right, how you properly write a report, how you
structure a report).

4 Affective towards
teaching

AT We exchanged opinions about what we think about the teaching methods. (What
you think about the way the teacher teaches, about group work, and the like).

5 Affective towards
subject

AtS We exchanged opinions about what we think about the subject. (Whether or not it is
exciting, boring, difficult, or easy).

6 Local physical
setting

IC We worked together during class, at a “homework café”, or similar

7 Global physical
setting

NIC We worked together outside of class. (At one of your homes, after school hours at
school, during recess)

8 Designed
collaboration

TI We were put together by the teacher. (Teacher-made groups, work with your
neighbor, etcetera.)

9 Emergent
collaboration

SI We chose to collaborate ourselves. (You chose your own groups, chose to
collaborate during a class, etcetera)

10 Local social
interaction

SIS We talked in school about something other than subjects in school.

11 Global social
interaction

SOS We talked outside of school about something different than subjects in school.

Table 3: A list of the 11 questions the students answered 9 times during 16 weeks in the fall semester.
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Networks from survey describing learning dimensions

ers, even if the student asked someone for help or helped some-
one. However (s)he might be more likely to list having “com-
municated” with someone. The same kind of reasoning lies
behind “exchange opinion” in stead of “argue” or “discuss”.
Discussing might have positive connotations excluding other
types of opinion exchange, while argue is typically negatively
connotated. This means that this survey takes communication
as a proxy for interaction.

Pustejovsky and Spillane’s analysis of question-order ef-
fects also show that listing a category which produces many
namings first is preferable to listing it after a category which
produces many namings. Since the primary student category
was Problem Solving, this category was listed first. Thus the
survey prompts for names within a category which should pro-
duce the most namings. Pustejovsky and Spillane investigated
two categories of the same nature, whereas this study utilized
multiple categories in different groups. 11 categories of nam-
ing will probably be a severe cognitive load for many partici-
pants, and placing the IC category midway through the physics
related categories may give more names at a time where stu-
dents are getting fatigued.

Networks from survey describing
learning dimensions

This section describes the network structure and development
in terms of the theory developed in this paper so far. How-
ever, the understanding of the nature of links and nodes devel-
oped so far may not sufficiently to explain the phenomena the

networks display. The validation session described previously,
will help to hypothesize about the phenomena described in this
section.

In the networks, each node corresponds to a student’s
choices within each category. The networks have been con-
structed so that all students who have named or been named in
one category at least at one time during data collection are rep-
resented by a node. Links within a given network represent the
namings students have made each week. Students have been
asked to name other students whom they remember having had
interactions with in the preceding seven days.

Nine surveys from weeks 35 to 46 formed the basis of 97
different networks. This is too many networks to be feasibly
portrayed in a paper. Instead, they are available online10. Fig-
ure 7 shows two drawings of one of the networks as it appears
online. It is possible to investigate all networks in this study.

Looking at the networks online, Problem Solving (PS)
seems to have the most links, which would signify that a lot
of the activity in class is about solving physics problems.
Also, the In Class (IC) network is very active in this way.
But the social networks, Social interactions In/Outside School
(SIS/SOS) show far more activity than either of the PS and
IC categories. Also, at a glance the Teacher Initiated (TI) net-
works are hardly networks: They only have a couple active
nodes.

The Kamada-Kawai lay-out algorithm (Kamada and Kawai,
1989) used to display the networks can be used as a coarse
grained way of identifying structure in the network. Looking

10www.jbruun.org/studentNetworks
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Figure 7: Two drawings of one of the networks available online. The networks can be found here:
http://www.jbruun.org/om/studentNetworks/. The width of a node is proportional to the number of times the student has been named
(indegree) while the height is proportional to the number of names the students has provided (outdegree). In the left drawing, orange nodes
are girls, and green nodes are boys. To the right, nodes have been colored according to the grade from a test in week 44: Red nodes have low
grades and more yellow nodes correspond to high achieving students.
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Networks from survey describing learning dimensions

at the networks (see Figure 7), you intuitively see that students
seem to be segregated with respect to gender but not with re-
spect to grade.

Displaying the networks like this is be informative, but it is
difficult to keep track of the many features they exhibit. For
this reason the measures developed in Section (Figure 2 and
Table 1) are now examined and compared with selected infor-
mation from the teacher’s plan for teaching.

In this plan, the teacher lists the general subject (e.g..
“sound and music”), the specific topic of the week (e.g..
“standing waves on a string”), and the teaching activities (e.g..
“experimenting with resonant frequencies of a string”). The
teaching plan also includes the dates for the teaching unit,
making it possible to extract how many physics classes the
students had in a given week.

Figure 8 shows how the number of links, Nl , vary in the
Problem Solving (PS), In Class (IC), Concept Discussion
(CD), and Learning and Presentation (L+Pr) networks. Be-
low the weeks the number of teaching units in the preceding
week is shown. Weeks 40, 43, and 46, where the students had
only one or zero classes, show dips in the number of links.
During the fall break students were not at school and very few
answered the survey. The variation in Nl seems to be roughly
consistent with the number of teaching units in the preceding
weeks. However, week 44 has less links than week 45, even if
week 43 had three teaching units and week 44 had two. Thus,
other factors might help explain the number of links, for ex-
ample, what day of week students answered, or what kinds of
teaching activities they engaged with during class.
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Figure 8: The number of PS, IC, CD, and L+Pr links. Teaching
did not allow data collection in week 36 and 39, while week 37 and
38 are inseparable due to a technical error. The number below each
week is number of teaching units in the preceding week. Thus, week
39 had one teaching unit. The Z-scores at the bottom shows the over-
lap between links of three of the categories compared with 1000 ran-
dom versions of the network. The significant region is marked by the
shaded gray area.
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The networks for the rest of the physics categories follow
the same trends, although they all have a lower amount of
links each week than the Problem Solving networks. The so-
cial networks have a lot more links (often around 2-300 links
compared with max 86 for Problem Solving) signifying that
social interactions are much more prevalent for these students
than physics interactions. The In Class category mostly has
an amount of links comparable with the Problem Solving net-
work, while the Not In Class network is consistently has fewer
links.

Figure 8 also shows Z-scores for overlapping links, for ex-

ample, Zweek35
LPS∩CD

=
Lw35

PS∩CD−〈Lw35
PS∩CD〉r

σw35
r

. The amount of overlapping
links between each of these categories are significantly higher
than we would expect randomly11, meaning that students of-
ten name each other in multiple categories. Thus, there an
overlap between PS and In Class (IC), which we would ex-
pect from the initial student answer, but also between Problem
Solving/Concept Discussion and Concept Discussion/In Class.
Although not shown here, this is also true for the overlap be-
tween the other categories.

The Lgi∩g j measure can also be used to find the number of
new, reestablished and predicted links. For example, the in-
tersection LICS

w40∩w41
is the number of links in In Class Social

11The networks were randomized by repeatedly selecting two pairs of of con-
nected nodes (A,B) and (C,D) with no interconnecting links and switching
the links so the new connections become (A,C) and (B,D) (Maslov et al.,
2004). In this work, each network was rewired 10 times the number of
connections in the network. After rewiring each network, the overlapping
connections were counted, the Z-scores are based on 1000 of such itera-
tions.

networks from both weeks 40 and 41. Subtracting this number
from the total number of links in ICS week 41 yields the new
links compared with the week before, Lnew. In a similar man-
ner, we can ask how many links are in the network of week 41
and week 35, Lpred , taking week 35 as a predictor. Also we can
ask how many links in week 41 are in any one of the preced-
ing weeks, that is the number of links which are reestablished,
Lree. Figure 9 shows the these three measures normalized to
the total number of links in a weeks network for six different
categories.

Notice that Problem Solving, In Class and Student Initiated
in the first row of Figure 9 communication links follow roughly
the same pattern. The Concept Discussion and Learning and
Presentation categories are not shown, because they follow
roughly the same pattern from week 41: New links comprise
the largest fraction, followed by reestablished and predicted
links. From this week, the number of predicted links seem to
stabilize around 30% while the other two vary more.

This picture is contrasted by the In Class Social (and the Not
In Class Social, not shown), where 70% of future links can be
predicted from week 35. Moreover, the fraction of reestab-
lished links tends towards 1.0, and the variation in new links is
around 30-40%. Thus the picture here is the reverse.

Finally, the affective networks are erratic, although the num-
ber of predicted links are always low. However, there seem to
be a shift in the fraction of new links from week 41 to week 42
and onwards in both of these types of networks. The starting
from a low fraction of new links, the networks tend towards
having a higher fraction of new links each week. There is
a difference between the Affective towards Subject (AtS) and
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Networks from survey describing learning dimensions
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Figure 9: For a week, new links, Lnew, are in the network for that week, but not in the preceding week’s network. Reestablished links, Lree, are
in the network of a week and in at least one of the preceding weeks’ network. Predicted links are the links which are present in the network of
week 35 (not shown) and in the network for a week. The figures show the fraction of new (Lnew), reestablished (Lree), and predicted (Lpred)
links relative to the total number of links that week (Nl). In the In Class Social network for week 41, 90% of the links are present in either of
weeks 35-40. Around 70% of the links in week 41 are also in week 35, and around 20% of the links are new compared with week 40.
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Affective towards Teaching (AT) networks in week 46, where
Lree rises from 50% to 70% in AtS network and drops from
60% to 50% in the AT network. However, the erratic nature
of the plots makes it difficult to discern patterns for these net-
works.

The different link patterns show a connection between Stu-
dent Initiated, Problem Solving, and In Class, which is consis-
tent with the student answers. In the context of the developed
framework, it could be taken as an indicator that student en-
gagement with physics emerges from interactions locally in
class. It is the students’ reaction to the teaching activities for
which the teacher designs.

Figure 10 shows how the Z-scores for target entropy, and
hide in the Problem Solving, Concept Discussion and Lan-
guage and Presentation networks. In the first three weeks of
the study, the target entropy in the Problem Solving network
is significantly lower than randomly expected, meaning which
could be interpreted with students having less learning oppor-
tunities in these networks (Section ). This is most prominent
in week 41, but notice that Language and Presentation is also
significantly lower in week 3738, and Concept Discussion is
significantly lower in week 41.

Interestingly, the most prominent deviations in target en-
tropy from random happen in connection with experiments for
Problem Solving and a homework assignment for Language
and Presentation. Perhaps these two activities trigger students
communicating only with a select few other students thus not
facilitating many diverse interactions. These highly prominent
features are matched with high levels of hide, which in turn
signifies that the communication in the network is less effec-
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Figure 10: The target entropy (a) and hide (b) Z-score variation from
week to week. The codes for activities at the bottom are Problem
Solving (PS), Student Presentation (Pr), Reading (R), Student Ex-
periments (E), Home Work Assignment (HWA), Teacher Presentation
(TP), Kinesthetic Exercise (KinEx), and Reading for Test (RT).

tive than randomly expected.

Validation of category questions
and hypotheses

It is possible to interpret patterns in network measures with re-
spect to teaching and learning. However, a more thorough un-
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Validation of category questions and hypotheses

derstanding of how students perceive their remembered com-
munication is needed to validate the meaning of the interaction
patterns. This understanding may in turn be used to hypothe-
size about why these patterns emerge.

To achieve this understanding, students participated in a 1½
hour validation session. Here, students first responded to an
individual free-text on-line questionnaire. Later, they worked
in groups of 3-5 to discuss their answers. In total, 24 stu-
dents where present for the validation session. The following
two sections analyze these two parts of the validation session,
Section combines the theoretical framework, the networks,
and the validation session analysis to generate three hypothe-
ses based on the results shown in Figures 8-10.

Individual part

In the individual part of the session, students sat in class each
with a laptop computer and answered a questionnaire. The
questionnaire consisted of four free-text questions. In each
question the students were reminded of a group of the cate-
gories (e.g.. #1-3 in Table 3). Then the text prompted them to
elaborate on when they had checked such a link.

For #1-3 and #4-5, the survey asked them for examples of
situations which made them check a link. For #6-7 and #8-
9, they were asked if they had experienced any doubts when
choosing whether to check or not check such a link. They
were not asked to elaborate on #10-11, the social categories.

The purpose of the individual answers was to elicit first hand
student responses. Such responses are not un-biased, since
the students are influenced by the context and communities

of which they are part. But they are not influenced by group
discussion, and thus serve as a representation of what the in-
dividual student thinks at that particular moment. In this way,
the individual answers are first hand.

Students used the free text format in primarily two differ-
ent ways. The first way was to separate their answer into the
number of categories they considered. For example:

“If we in a class have solved problems together
and talked about which formulae and so on to use.
2. I don’t think I have experienced checking this. I
guess it is because the teacher explains it very thor-
oughly in class, so that we know it and do not have
to discuss it.” - Gunhild

The second way of answering was more narrative:

“It was a day in November, actually the day before
the physics test. Jorgen and I sat in Jorgen’s parents’
basement. We went through a physics compendium
to be ready for the test. As we reached the subject
of atoms and photons, we didn’t understand much,
so we communicated about how to work with the
problems, and how to understand them...” - Valdur

The first type of answer was coded as two separate answers.
This means that Problem Solving (PS) and Use of Formulae
(UF) would be noted to co-occur, while Not Relevant (NR)
and Teacher Presentation (TP) would also co-occur. However,
PS and NR would not co-occur in this answer. In the second,
PS, UF, Specific Concept (C), and Problems Understanding
(PU) would be listed to co-occur.
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Figure 11: Category networks based on codes of individual student
answers in the validation session. The categories are linked if they co-
occurred in an answer more than once. Percentages are normalized to
the number of answers in the four groups of categories.

Coding students answers for the four groups of categories
(#1-3, #4-5,#6-7, and #8-9) made it possible to create four cat-
egory networks (as in Figure 5). Figure 11 shows four cat-
egory networks of coded student answers. The initial cate-
gories shown in Table 2 and Figure 5 served as a basis for the
new categories, but additions were needed for a fuller picture.
The Use of Formulae (UF) category is one example, as are
codes representing negative and positive answers in the affec-
tive categories (Affective towards Collaborator (AC), Affective
towards Subject (AtS), Affective towards Teaching (AT)). The
category networks in Figure 11 are for the three physics link
categories (a), the affective link categories (b), the local/global
link categories (c), and designed/emergent categories (d).

The Physics Link Categories validation category network
(Figure11 (a)) shows that problem solving is linked to At
School (AS). There is a small link from At School to Not At
School (NAS), reflecting a couple of students adding that they
have also indicated situations where the communication was
outside school. Problem Solving is also heavily linked to Use
Of Formulae (UF). This is not surprising since it is part of the
category description, but it may be surprising that other parts
of the description are not mentioned.

Conceptual Understanding (CU), Language (L) and Pre-
sentation (Pr) are also present, but notice that they are all
linked to the Not Relevant (NR) category. This category de-
picts whenever a student indicates that they rarely use the cat-
egory, or when they say that discussing concepts is not relevant
because the teacher has already explained them.

In the coding, language and presentation are separate. Lan-
guage codes statements like “I have discussed the difference
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Validation of category questions and hypotheses

between words as they are used in math and in physics” (Jor-
gen). Presentation codes statements like “Since we had an
answer book, we also tried to figure out how to present the
results to satisfy [teacher]” (Valdur).

The Problems Understanding (PU) category appears central
in the network. This means that students relatively often make
a connection between communicating with others and having
problems understanding something. For example, Gro writes:
“Talking with someone else about a problem you do not un-
derstand, may imply that you hear the problem formulated in a
different way and thus understand it differently. This may help
you solve the problem.”

In the Local/Global Link Categories network (Figure 11(c))
describing how students view the difference between In Class
(IC) and Not In Class (NIC) categories, the IC and NIC nodes
both link to No Doubt (ND). In 24% of the 34 answers for this
group, students explicitly listed that they had no doubts as to
when they checked IC or NIC. Students described more what
they meant with IC and NIC than describing any doubts.

Disregarding the weak link between IC and NIC (they co-
occur twice), NIC is further connected only to Home Work As-
signment (HWA) and Not At School (NAS). This means that
students do not explicitly mention problem solving while not
being in class. However, they mention other things as part of
communicating outside of the classroom; Online Chat (CH),
During Recess (Re), and Not At School (NAS). In Class is
further connected to Problem Solving, Homework Café (HC),
Teacher Initiated (TI), and At School (AS). In sum, students
do not seem to have any doubts as to what IC and NIC entails.

When viewing each student answer, it seems that they do not

have any doubts when distinguishing between Student Initi-
ated (SI) and Teacher Initiated (TI) communication. However,
notice on Figure 11(d) that both SI and TI are connected to
Work With Neighbor (WN), indicating that students might dis-
agree on a central point. As Sune writes: #[I list TI] when we
got the instruction to ’work with your neighbor”’. But Hildur
writes: “I often choose to work with the person I am sitting
next to.” Frida explains, “I sometimes have doubts, when you
are working with your neighbor. I do not think you can always
say that you have chosen the person yourself.” It seems that
for some students the separation is clear cut, but others think
very carefully when answering this question.

For many students the question of who initiated the inter-
action is not relevant (NR). This is not to say that they do not
care, the code merely reflect that students write that the teacher
rarely puts them in groups. If they are to work in groups, they
are free to choose them themselves, and some of the students
might see this as SI even if the teacher gives the instruction to
work with others.

The Affective Link Categories network consists of two dis-
connected components, when we disregard links of weight
1. The two components correspond to the Affective towards
Subject (AtS) and Affective towards Teaching (AT) categories.
Students mostly seem to exchange opinions about the subject
matter, when they are introduced to New Material (NM). Also,
some students associate negative connotations (as represented
by the node AtS- in the network) with these exchanges of opin-
ion: “This comes up mostly by itself (for example, when we
are doing homework). For example, [I would say]: ’This sub-
ject is mega hard - I do not understand it.”’- Frida. Another
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student remarks that they often talk about their opinions to-
ward the subject when a there is an upcoming test.

The Affective towards Teaching (AT) category is discon-
nected from other categories in the network. In the coding,
Affective towards Teaching appears along with any other cate-
gory maximum one time. In a network with only link weights
higher than 1, AT becomes disconnected. However, AT co-
appears once with 10 different categories, reflecting that stu-
dents have many different associations with Affective towards
Teaching. When students differentiate between positive affec-
tion (AT+) and negative affection (AT-), they sometimes link it
to Teacher Presentation (TP).

In five out of the 34 answers, students explicitly mention
that they rarely or never use this category. Notice that it is
connected to the AT+ node, which could indicate that students
find affective talk about teaching irrelevant to communicate
about, when they are satisfied with the teaching.

Group discussions

As the students finished the individual survey they were put
together in groups of 3-5. This gave a total of five group an-
swers They went to another room where they were given the
task to discuss, compare and contrast their answers to the indi-
vidual part and note key likenesses and differences in an online
survey. The point of this part of the session was to elicit an-
swers which individual students might not have thought of and
to highlight agreement/disagreement between students.

For the Problem Solving category, the group answers can
elaborate on the individual category networks. Only Group

1 had a discussion about whether problem solving entailed
experiments. Frida mentioned that problem solving was also
when you did experiments, but the other people in the group
had not made this connection. Whether students in the class
generally link problem solving as described in the questions
with experiments, is an open question.

In Group 2, Gudrun and Valdur argued that the Concept
Discussion category entails to discuss what the different vari-
ables in a formula mean, while Regnar and Yngvild believe
that the category entails discussions about the meaning of a
physics concept, like current or normal force. The “meaning
of variables in a formula” seems more connected to problem
solving than “conceptual discussions about concepts”, which
seems more philosophical. Or as Hildegunn, Gislaug, Stian,
and Jorgen (Group 3) writes: “It is more when we have doubts
in connection with concepts and more theoretical things, rather
than problem solving”. For this group, concept discussions are
theoretical, where as problem solving is not.

Students rarely seem to have felt a need for checking the
Language and Presentation category. They argue that they
rarely are to hand in lab reports, and if they are, they talk to
the teacher about how to present things. In Valdur’s experi-
ence, though, students do communicate about about language
and presentation before tests.

With regards to the affective categories, one group offers an
explanation for why these might not be checked as much as the
physics related categories: “We are very bad at remembering
having talked about this (Affective towards Teaching) or who
we talked to about it, because it is often in a context where we
just mention it and then move on with the discussion” - Group
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3. Interestingly, one group writes that they do not use the Af-
fective towards Teaching category often, because it they are
satisfied, but that “it can be used when we have group work.”
If the statement of Group 3 is significant for the whole class,
then the affective networks do not reliably capture affective
communication.

The Affective towards Subject (AtS) category is linked to
change and something which can happen outside the class-
room for two groups: “This is often used , when we begin
a new subject and round off another. Apart from this, we also
use it when we discuss the subject outside the physics classes”
Thor, Hjoerdis, Gro, Embla, Gerda. Group 3 links the Affec-
tive towards Subject category to communications when they
are reading for a test, because “there is a little more pressure
to be able to know the subject in the tests”. Again this group
points out that they are less likely to remember these commu-
nications than physics related communications.

The difference between the In Class (IC) and Not In Class
(NIC) categories seem fairly clear. Sune, Terkel, Hildur, and
Gunnlaug define In Class “as when you work in a school re-
lated context, where there is a teacher present.” Not In Class
is when “you work together in an context where there is not
a representative form the school present.” The answers from
other groups are consistent with this definition, although it
seems a bit fuzzy if communication during recess is catego-
rized as IC or NIC interactions. Interestingly, three groups
explicitly mention that NIC interactions mostly happen via on-
line or mobile tools.

The students seem to agree that the teacher rarely puts them
in groups. For the students the distinction between Student

Initiated (SI) and Teacher Initiated (TI) groups is whether the
teacher explicitly decide the groups: “We would check this
(TI), if the teacher made the groups for an experiment or such,
but we have never checked it, because it has never happened -
Hildegunn, Gislaug, Stian, Jorgen ”.

Hypotheses derived from validation, pilot,
and learning theory

Figures 8-10 give rise to three hypotheses. Each figure stimu-
lates some kind of question about why they look as they look.
The developed framework can be used to generate an explana-
tion and a prediction.

Hypothesis 1 Figure 8 shows more activity in Problem
Solving than in Concept Discussion, which in turn has more
activity than Learning and Presentation. The analysis has
shown that this is because students connect doing physics with
problem solving, specifically with using formulae. Physics ed-
ucation research emphasizes that other representational forms
and developing language are important for a more full under-
standing of physics (e.g. Dolin et al., 2001). In the sense of
communities of practice as developed for this study, Concept
Discussion could focus the mode of imagination, letting stu-
dents explore different modes of representation. Thus a hy-
pothesis to test would be:

If student learning focused on activities emphasizing novel
(from the perspective of the student) use of other representa-
tional forms than those pertaining to use of formulae, then the
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Concept Discussion network would be more than the Problem
Solving network.

This could be tested by creating teaching units emphasiz-
ing the phenomenological and conceptual forms of represen-
tations in activities rather than mathematical symbolic forms.
It would give useful information for understanding teaching
and learning situations.

Hypothesis 2 In Figure 9 the In Class Social network stu-
dents communication patterns seem much more fixed than in
the Problem Solving, In Class, Student Initiated networks. The
question is why these social interactions are so different and if
they can be used in a positive way in connection with teaching.

A straightforward interpretation of both networks and the
validation analysis is that of physics communication for these
students is mostly centered around solving problems in class.
Even without an analysis of student social relations, it seems
fair to assume that this situation is very different from how they
interact socially. A further interpretation of the data in Figure
9 could be that these students do see a discrepancy between
being social and doing physics. But if they are more willing to
communicate if they view the situation as social, then perhaps
physics teaching could benefit from integrating social aspects
in teaching and learning activities. Thus the hypothesis is:

Integrating social activities in physics teaching and learn-
ing activities throughout a school year will create a like-
ness between the behavior of social interaction networks and
physics interaction networks. This would have a positive effect
on students’ communicating about physics outside a school
context and on their motivation to do physics.

This key problem here is to find a way of integrating social
activities with physics teaching and learning activities which is
beneficial to student learning outcomes. Notice that the time
aspect includes a whole school year. This is to indicate that
changes in social networks might only be seen in longitudinal
studies. The implications would relate to scientific literacy;
if physics communication becomes part of students’ everyday
lives they could be expected to increase their scientific literacy.

Hypothesis 3 In Figure 10, the target entropy is low and
hide Search Information is high, when there are experiments in
the preceding week. The activities in the form of the number
of links, Nl , are also high for these weeks, but later weeks
show the same amount of activity without the pattern in target
entropy and hide Search Information.

The analysis shows, that students form groups themselves
when doing experiments, and if they do no not communicate
much outside the group (note that this hypothesis can be tested
with the current data) this could lead to networks with high
level of predictability (low target entropy) and low communi-
cation efficiency (high hide Search Information). However, if
students did not isolate themselves in their groups, more con-
nections would be made outside each group, signifying more
learning opportunities and higher communication efficiency.
Thus the hypothesis is:

Incorporating accountability between groups doing an ex-
periment, will increase communication efficiency and learn-
ing opportunities as measured by Search Information and tar-
get entropy respectively. This will result in a better and more
lasting understanding of the subject matter.
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This could be tested by comparing communication patterns
for a class when throughout a year when they did experiments.
Varying between an accountability format and a non account-
ability format would then give rise to a number of networks,
representing communication patterns for the weeks were stu-
dents did experiments. For the hypothesis to hold researchers
should see a higher target entropy and lower Search Informa-
tion in the networks describing the accountability exercises.
The last sentence is included to show how this way of using
networks could be incorporated with other ways of describing
learning situations. Of course, what a better and more lasting
understanding entails would have to be defined.

Suggestions for use and further
development of survey and study

The purpose of the study was to develop a method which can
be used to integrate network theory with educational theory.
The study shows that it is possible to design such a framework,
which can be used to create hypotheses to explain why we see
patterns in networks describing learning situations.

One way of using this framework in the context of physics
education would be to try out different teaching formats and
see how students respond to these. For example, a task could
be to design a teaching exercise which resulted in more and
more efficient conceptual discussion. Coupling the framework
developed here with other data (for example, observations of
class room interactions) might then be used to connect learn-
ing outcomes with network data. Comparing different classes

doing the same exercise may then show us quantitative differ-
ences which say more about the learning outcome than con-
ventional pre-test post-test research designs.

In another approach, these kinds of network data - based on
student self-reports of communication events - may be related
to other kinds of network data, for instance, networks based on
digitally measured proximity or self-reports on who students
prefer working with. If self-reports of communication events
tell us about who students remember having communicated
with, proximity measures may indicate who they could possi-
bly have communicated with. Coupling this paper’s communi-
cation links with self reports on preferences would then tell us
how much collaboration with preferred partners, the teaching
situation allows for.

In future developments of the method and survey, it seems
that some changes in the amount and meaning of categories are
in order. For example, the affective categories were rarely used
by the students in this study, and if the explanation for this is
that they simply forget having communicated about affective
issues, then there may not be much of a point to ask them
about this. On the other hand, leaving out categories reduces
the amount of information we can gain from network data.
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Time Development of Early Social Networks: Link analysis and group dynamics
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University of Copenhagen, Department of Science Education

Empirical data of early network history are rare. Students beginning their studies at a university with
no or few prior connections to each other offer a unique opportunity to investigate the formation and early
development of social networks. During a nine week introductory physics course, first year physics students
were asked to name who they had communicated with about problem solving in physics during the preceding
week. The student namings were used to produce networks of student interaction for several weeks, which are
shown along with these students’ grades and gender. Changes in the weekly number of links are investigated
to show that while roughly half of all links change from week to week, students also reestablish a growing
number of links as they progress through their first weeks of study. To investigate how students group,
Infomap is used to establish groups. Further, student group flow is examined using alluvial diagrams,
showing that many students jump between group each week., Finally, a segregation measure is developed
which shows that students structure themselves according to gender and laboratory exercise groups and not
according to end-of-course grade. The results show the behavior of an early social-educational network, and
may have implications for theoretical network models and physics education.

I. INTRODUCTION

The formation and evolution of (social) networks has been
modeled by many researchers, who have have investigated theo-
retical models of mechanisms for producing networks resembling
empirical networks [1–5]. However, longitudinal network data is
rare [6], and for the most part it is difficult getting access to
network data from a time t0, where the network does not exist.

Students beginning at a university with few or no prior con-
nections to each other, are in a new situation, and will probably
make new connections with other students as part of their stud-
ies. Many of them will also become socially involved, which also
involves making new connections to other students. As the stu-

dents become both academically and socially involved they may
change the way they are connected, and this might happen on
a short time scale, perhaps daily or weekly. Thus, investigat-
ing high resolution network data from such students may offer
insights as to how a network forms from scratch.

If students beginning their studies do not know the other stu-
dents, we could expect them to try out many different possibili-
ties for interaction. Some of these interactions are deemed worth
while by the student, and might continue each week. Another
prediction would be that they do not interact much at all, but
work alone, and yet another prediction would be that the high
performing students would become central, because of word of
mouth (i.e. as a student you would hear about student X who is
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a high performing student, and then you would try to commu-
nicate with him to understand the subject better). These early
patterns of interactions in social networks are largely unknown
from an empirical point of view.

This study investigates these early patterns of interactions be-
tween approximately 170 students enrolled in an introductory
mechanics course at the University of Copenhagen. Students
report which interactions they remember in different categories
(see Figure 1) related to physics learning and social communica-
tion. Naming another student naturally involves a direction, so
the networks are directed. Self-reported measures are notorious
for being biased [2, 7], but unlike an objective measure, they can
tell us what students are interacting about. Also, using e-mails,
phone calls, or digital proximity as proxies for social ties, may
be misleading in its own right. For example, it has been found
[8] that people remember their friends rather than remember-
ing everyone they are near to as measured by digital means. In
contrast, asking students who they remember having communi-
cated with about some subject (in this work physics and social
interactions), does indicate what the interaction was about. In
this work we try to minimize bias [7, 9, 10] by only asking about
remembered interactions and not asking students to rank these
relations in any way.

To gain understanding of the processes underlying the forma-
tion and evolution of social networks, researchers have related
network measures to non network node properties. For example,
for university students the the probability of making new social
connections has been tied to the number of classes taken together
[6]. Also in a twenty year long study, people with increasing body
mass index (BMI) tend to cluster together [11]. Thus relating
the calculations we can perform on networks to the socially rele-
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Figure 1: Students interacted when studying and subsequently reported
the interactions they remembered via an online survey. Each remembered

interaction becomes link in a network.



3

vant variables leads to knowledge of the social processes relevant
to network formation.

One process occurring in social networks is the tendency for
similar nodes to connect or be connected, referred to as ho-
mophily [6]. However, in many networks, nodes group together
in clusters (or modules) where all nodes are not necessarily di-
rectly connected. In these groups information presumable flows
more easily, and even if the probability for a single node to asso-
ciate with similar nodes is high, mere chance could mean some
connections would be to non-similar people, thus diminishing the
similarity within the group.

Recently, the Infomap algorithm [12] has been used to find
clusters and the structure between clusters in networks, employ-
ing a information flow based perspective on grouping. Since the
links in this study represent student communication, this per-
spective seems appropriate. Also, Infomap has been shown to
perform well on directed networks compared to other grouping
algorithms [13], and changes of Infomap groupings of different
networks with overlapping nodes can easily be visualized with
alluvial diagrams[14]. Thus, Infomap might help find relevant
groups of students interacting with each other.

Such groupings allow researchers to ask how students struc-
ture themselves during the first time at university. To quantify
how students structure themselves in groups this paper develops
a measure of segregation based on Kullback-Leibler divergence
[15]. This measure is applied to each group to see how far these
groups were from the whole cohort’s distribution of grade, gen-
der, and class number. Further, by giving each group’s segrega-
tion a weight proportional with the number of students in it, the
segregation for the whole network can be calculated. Thus, the
segregation measures of how each group and the whole network is

structured according to an attribute, compared with the cohort’s
distribution.

After explaining the background for data collection (Section
II), this work shows empirical networks of self-reported interac-
tion networks from an introductory physics course at the Uni-
versity of Copenhagen (Section III). Here it is shown that link
patterns change from week to week but that many links are
reestablished later on. Further, in Section IV an alluvial diagram
shows how students jump between groups but that groups seem
to stabilize at the end of the measurement. Finally, the segrega-
tion measure is developed in Section V, and in Section VI used
with groups found with Infomap to show that students do not
structure themselves according to grade but primarily according
to their laboratory exercise groups, and somewhat according to
gender. This is followed by a conclusion in Section VII.

II. BACKGROUND

A. Cohort and context

Students were allotted time during the obligatory weekly lab-
oratory exercises to fill out online self-report surveys. Typically,
students would fill out the survey at some time during the lab
exercise, while some chose to fill it out at home. They were en-
couraged to fill out the survey at the beginning of a lab class, but
some fitted in the survey when a natural break came in their lab
activities. Students where told that their answers would be con-
fidential and could not be used by their instructors/lecturers to
identify them as individuals. Students not wishing to participate
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where allowed not to. The university uses a single laboratory for
the introductory mechanics course, and students are divided into
seven lab classes each of which have a weekly 3-hour time slot
to do the lab exercises and also work together in problem solv-
ing sessions with a tutor to guide them. These are spread out
throughout the week, so student responses are collected through-
out the entire week.

Mostly, we can assume that a student answered the survey at
the same of week from one week to the other. That is, if student
A answers the survey on a Tuesday afternoon one week, chances
are that student A answers the survey on the following Tuesday
again. However, students were allowed to switch lab exercise
hours, if for some reason they were not able to make it to the
scheduled one. Thus, there is some fuzziness with regards to
when student answers are recorded.

The measurements where done during a course in introductory
mechanics and special relativity in a Danish University. Students
are primarily ethnic Danes. The majority of students are physics
majors who have just started their studies. Some major in other
disciplines (for example mathematics), but are allowed to choose
this physics course as part of their study plans.

B. Description of survey and data collection

The online survey was divided into two each week; an aca-
demic part and a social part. The academic part consisted of
9 interaction categories, while the social part consisted of 3 in-
teraction categories. The categories where developed through a
mixed methods pilot project prior to data collection [16], and in

this study we only examine the category pertaining to communi-
cation concerning problem solving. A weekly format was chosen
based on [8] who found the greatest correspondence between self
reported networks and digitally measured proximity networks if
the interactions were reported within a week.

Students where given a login to a learning management sys-
tem, where they could locate the survey each week. For each
interaction category, students marked each of the students they
remembered having had interactions with. Names of possible
students (all students enrolled in the course) where given in a
roster[9]. The researcher was present throughout most data col-
lection sessions, and students where invited to ask if they had
doubts on how to answer the survey. The researcher emphasized
repeatedly that they should mention only the people they re-
membered, that their answers where anonymous, and that there
was no implicit ranking of their friends.

III. RESULTING NETWORKS

The introductory course has a duration of nine weeks, but
there are only seven networks, four of which are displayed in
Figure 2. Due to initial confusion about how to respond, many
students did not answer the first two surveys, so they were pooled
together, representing course week 1 and 2. Further, due to
a technical error, course week 6 data was not recorded. The
networks do not seem to indicate a lot of segregation according
to grades. The non-passing students (red and orange nodes) seem
to move from being well integrated in the network to be placed in
the periphery in week 5 and most red nodes are gone in week 9.
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Figure 2: Four networks from different weeks. The density ρ ≈ 0.02 for
each network. Color codes represent end-of-course grades: -3 and 0 are
failed. The histograms show how many students with a particular grade
are present in the network compared with the total number of students

getting a grade. Girls are represented as circles, boys as squares. The total
number of of nodes in the networks are 161, 152, 154, and 139 respectively.

This may be explained by the way structure of the course, where
students are continuously solving problems and getting grades.
Thus, students who do poorly might simply have left the course.
On the other hand, they might be pursuing the course but are
neither participating in the survey nor being named by others.

Turning to the structure of the networks, they seem evolve
from a compact to a more stringy nature. This may signify stu-
dents tendency to form groups which are connected by bridges
[17, 18] as proposed by social network analysis. However, there
may also be effects from the survey participation; the number of
students naming at least one other student is respectively 124,
115, 98, and 83 for the four networks. This might be due to
student fatigue with respect to the survey [10], to an increased
workload on the students towards the end of the course, to stu-
dent drop out or to a combination of the three.

Figure 3(a) show how the total number of links, Ltot change
from week to week. The dip in course week 7 corresponds to the
traditional Fall Break in most Danish educational institutions.
However, it is peculiar, since this is an intensive course with no
scheduled fall break. However, this would explain both the dip
and the slow recovery in course week 8: In week 7 a larger number
of students would be absent thus not answering the survey. In
week 8 few people would list having had physics interactions with
these students.

There are a considerable amount of new links, Lnew, each week
compared with the preceding week. Roughly half of the links
each week are new compared to the preceding week. However, the
number of re-established links, Lree, comprise a larger and larger
fraction of the total. For a week, the number of re-established
links are the number of links in the network which are present in
one of the preceding networks.
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Figure 3: (a) Number of total, new, and reestablished links. New links,
Lnew, calculated based on the preceding week. Lree is the number of links in
a given week which are also present in at least one of the preceding weeks.
Ltot = 160 for week 2 (not shown). (b) The fraction of completely new
links relative to the total number of links, Ltot−Lree

Ltot
, seems to decrease

exponentially. The number of unique links for all weeks is 1214, which is
about 4-6% of the total number of possible links in a directed network with
140-160. This means the the decrease in completely new links is not due to
a saturation of the network links.

Together, the variations in Lnew and Lree may be used to form
a hypothesis to explain how bonds are created during the early
stages of this particular student network’s history: Students try
working with a lot of different collaborators. As they do this,
they find out who they want to work with and return to them
again. This is supported by Figure 3(b), where the fraction of

completely new links, Ltot−Lree

Ltot
, is shown to decrease over time.

IV. GROUP FLOW

Figure 4 shows the alluvial diagram [14] for student groups
in the four networks displayed in Figure 2. The height of each
is box proportional to the accumulated PageRank of the group.
The color of the boxes mark what range the group mean grade
falls in. Though there does not seem to be a connection between
group mean grade and accumulated PageRank, the group mean
grades seem to become more homogeneously distributed among
the groups in the diagram in course week 9 compared with the
preceding weeks.

The stream lines between each column indicates shifts in
PageRank from one week to the other. Some groups seem sta-
ble throughout the course, but many changes happen between
weeks. However, there are fewer stream lines between week 5
and 9 (38) than between the other weeks (46 and 51 respec-
tively), which indicates that groups seem to stabilize somewhat
over time. However, on a week to week basis groups seem to
change a lot, especially in the beginning of the course.

Most boxes have a light and dark shade. The light shade indi-
cates the accumulated PageRank of the students which are not
significantly (90% confidence) attached to the group in question
as found by a bootstrapping procedure [14]. This indicates that
the students which these light shaded boxes represent could not
be reliable assigned to the group in question in a bootstrap world
of the network.

Network maps are also shown in Figure 4. These map show
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Figure 4: Top: Alluvial diagram for groupings of the four networks displayed in Figure 2. Each column in the diagram account for approximately 80% of
the total PageRank corresponding to around 70% of the students in the network for the corresponding course week. The height of a block representing a
group is proportional to the accumulated PageRank of the group, and the lighter colors in each group indicate how much PageRank is insignificantly

clustered. Finally, the thickness of the gray streamlines between groups in different weeks indicate the initial and final PageRank the nodes making the
transition from one group to another. Bottom: Flow maps of the same groups shown in the alluvial diagram. Node sizes are proportional to the number of
students in the group. Arrows are proportional to the information flow between groups as calculated by Infomap. The total number of groups each week is

28,28,22,22, respectively. Groups are color coded according to their mean grade. The histogram shows the distribution of grades for all groups.
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groups of students as nodes with sizes proportional to the number
of students in each group. They are again color coded according
to the mean grade of the group, showing that there does not
seem to be a clear cut relation between the number of people in
the group and the group mean grade.

The arrows indicate probability flow which we can relate to
how much students in one group name students in another group.
Since these namings indicate communication about problem solv-
ing, these arrows might indicate which groups are important for
how problem solving behavior is spread in the network. As such
they might be used to identify groups to help or influence when
teaching introductory physics.

PageRank is an interesting measure for many networks, but
here we can note that it would probably be more interesting if
the stream lines and height of boxes represented actual students.
Then we would be able to see more clearly which students move,
what their attributes are, and how this affects group composition.
We would also be able to see clearly, which students are difficult
to assign into groups. Thus, in future work, it might be beneficial
to change the interpretation of sizes in the alluvial diagram.

V. STUDENT SEGREGATION

To quantify, how students with different attributes segregate,
assume an attribute with n possible values. For example gender
would have n = 2. A grouping algorithm now creates a group-
ing M with Ng different groups. Choosing a node at random in
the network, the probability of choosing a girl is qgirl =

Ngirl

N .
However, groups potentially have other distributions of boys and

girls, so in the i′th group, pigirl =
Ni

girl

mi
students

. In an information

theoretical approach [15], the surprisal [19] is δigirl = log2(
pigirl
qgirl

).
For the whole group, our expectation of surprisal for the i′th
group is Di = pigirllog2(

pigirl
qgirl

) + piboylog2(
piboy
qboy

). This is an in-
stance of Kullback-Leibler divergence [15]. Treating the groups
as independent sub-systems, the total weighted segregation for
this particular grouping M is D(M) =

∑
i
mi

students

N Di.
In general, an attribute may have more possible values. If a

student may only take one of these values, probability distribu-
tions {pij} and {qj} can be defined so that:

Dseg(M) =
1

Ns

∑

i∈M
mi(

n∑

j=1

pij log2(
pij
qj

)) (1)

where Ns =
∑
mi is the total number of students in the group-

ing. The range of Dmix(M) can be estimated as follows: If
pij = qjfor all j in all groups mi, Dmin

seg (M) = 0. For perfect
segregation, where for each group pj = δlj for the l′th of the n
categories the segregation is Dmax

seg = −∑n
j=1 qj log2(qj)[20].

Here, the segregations according to different attributes are cal-
culated: Gender (n = 2), grade (n = 7), and lab class (n = 7). To
see how different the segregations are from a random distribution
of gender, grade, or lab class, the attributes are resampled, while
keeping the module structure M . It corresponds to changing the
distribution, {pij}, in each group at random, while keeping the
prior distribution, {qi}. This resampling is done a number of
times (here, 104) and each time Dr

seg(M), is calculated. Finally,
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week. The shaded area indicates the non significant region.

the Z-score, Z =
Dseg(M)−〈Dr

seg(M)〉
σr

, is calculated. Thus, the
results will show the deviation from random variations.

VI. SEGREGATION RESULTS

The results of the calculations for the whole network segrega-
tion from week to week during the course are shown in Figure5
(a). The expected distribution {qi} is calculated from the stu-
dent present in the network. The first week shows no significant
segregation or non-segregation. During the following weeks, stu-
dents segregate significantly according to lab classes and to a
lesser degree according to gender.

While there is significant segregation according to gender and
lab class , students do not segregate or mix near perfectly. If
students segregated perfectly, calculations show that the Z-scores
would be around 20 for gender and around 40 for grade and
lab class. If they did not segregate at all, that is if Dseg = 0
corresponding to perfect mixing, the Z-scores would be around
-2 for gender and -4 for grade and lab class. Thus, groups do
not consist for example of students from only one lab class but
of clusters of students from different classes.

VII. CONCLUSIONS

This study examined the early stages of network formation
based on student reports of who they remember having commu-
nicated with about problem solving in physics. Seven networks
made from weekly reports these types of communication in an
introductory physics course were analyzed. In these networks
less and less low performing students are represented, but the re-
maining students do not to segregate according to end-of-course
grade.
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The link analysis showed that roughly half of the links in a
week were new compared with the preceding week. However, as
the weeks go by, students communicate with former communi-
cation partners, which is indicated by the relative decrease in
total links. Group flow patterns were were examined. Stream
lines in alluvial diagrams show that while some groups seem sta-
ble throughout the different weeks, students seem to flow exten-
sively between groups. Also, the alluvial diagram revealed that
many students could not be significantly clustered together in
groups. Finally, student segregation was analyzed using a di-
vergence measure, called the segregation, which was applied to
groups found with the Infomap grouping algorithm. This anal-
ysis showed that students segregate significantly compared to
according to lab class number and to lesser extent gender, but
not according to grade. It was also shown how individual groups
found by Infomap could be analyzed.

The overall picture painted by these analyzes is one where
students try out many different possibilities for collaboration the
first weeks but gradually settles to communicate with the same

people. Some find study partners based on lab/problem solving
classes and to some extend gender, with which they continuously
collaborate or reconnect with during the course. However, it is
generally difficult for infomap to find assign these students to
only one group. Further research could use the results from the
link analysis to constrain models of network development. An-
other direction would be to further investigate Infomap group-
ings. Since Infomap yields information about which alternative
groups it could find using bootstrap worlds, these groups could
also be investigated with the segregation measure. As a final
note, these results also have value for physics education research.
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Talking and learning physics: Predicting future grades from network measures and FCI
pre-test scores

Jesper Bruun & Eric Brewe

The role of student interactions in learning situations is a foundation of socio-cultural learning
theory, and Social Network Analysis can be used to quantify student relations. We discuss how
self-reported student interactions can be viewed as processes of meaning making. Subsequently, we
interpret three network centrality measures Hide, Target Entropy, and PageRank in terms of interac-
tions among enrolled students in an introductory mechanics course at the University of Copenhagen.
We calculate network centrality measures on self-reported student interaction networks in three cat-
egories Problem Solving (PS), Concept Discussion (CD) and In Class Social communication (ICS)
in the introductory mechanics course. Correlating these measures with the sum of grades of two
subsequent courses, we find that significant correlation patterns of the PS and CD networks can
be matched with significant correlation patterns in the ICS network. Using hierarchical linear re-
gression, we find that a linear model which adds the network measures hide and target entropy
calculated on the ICS network significantly improves the base model using only the FCI pre-test
scores from the beginning of the semester. Though, we cannot infer causality from these data, our
results show that social interactions in class are intertwined with academic interactions, which we
interpret as a natural part of learning physics.

I. INTRODUCTION

The role of social interactions in learning is well estab-
lished and has been a foundation of learning theory [1–3].
Within Physics Education Research (PER), studies using
Network Analysis of student interactions in the learning of
physics are emerging [4, 5]. We continue this vein of work,
and extend it by using self-reported student interactions as
one variable in a model to predict students’ grades at the

University of Copenhagen in a subsequent block of their
physics and mathematics course. In order to model students’
grades in the block of physics and mathematics courses we
surveyed students at the University of Copenhagen weekly,
asking about their interactions in three areas, Problem Solv-
ing, Conceptual Discussion, and In Class Social interactions.
In order to analyze these networked data, we need to con-
ceptualize the underlying assumptions about networks and
how these data can be interpreted. Our analysis then utilizes
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centrality measures, which describe the position a student
occupies within a network, to predict students’ grades in
university physics courses. We argue that this networked
perspective has unique potential for quantitative analysis of
learning as a social phenomena.

This study of a Danish introductory physics course at the
University of Copenhagen was undertaken to investigate the
roles social interactions play in learning physics. This study
employs Network Analysis, which has been used in PER
to show the growth of student-student interactions in Mod-
eling Instruction [6], and to identify the roles that gender
and ethnicity play in an informal network of students in a
Physics Learning Center [5]. Bodin recently used Network
Analysis to document changes in student epistemic networks
after engaging in the numerical modeling of a physics prob-
lem [4]. This study differs from the others in that it uses
Network Analysis to predict students grades within a sub-
sequent course.

Network Analysis is a collection of analytic techniques
which can be used to visualize, quantify and test hypothe-
ses based on relationships between entities within a network.
Networks are composed of nodes, links and the attributes of
the nodes. In our study, the students in the introductory
physics classes are the social entities we are studying, thus
they are the nodes within the network. These students have
attributes, or individual characteristics which we can use
to help describe the entities. The students have been been
given a weekly eleven question survey that asked them to
select the names of students with whom they interacted in
a variety of contexts. The responses to these questions indi-

cate an interaction between students, which in this study is
the linkage between the nodes.We collected attribute data
including Force Concept Inventory Pre scores and grades in
the first block of the introductory physics course. The col-
lection of nodes, links and the attributes of the nodes are
the constituent parts of any network, thus in our study the
students, along with the interactions they reported and the
attribute data we collected constitute the networks.

Network perspectives on data are unique in that data is
primarily relational, thus we conceptualize students as sit-
uated within the learning context which includes physics
classes but also other interactional and social settings. As
network analysis is relatively new in physics education re-
search, it is worthwhile to consider how data are collected,
and how we interpret the meaning of these data. Further,
the interpretation of the meaning of a link is an ongoing de-
bate among Social Network Analysis researchers [7]. In the
following sections we describe two theoretical perspectives
which are employed during the interpretation of the data
we have collected.

II. THEORETICAL FRAMEWORK

We are undertaking an analysis of learning that is de-
pendent on the interactions of individuals within a network
of learners. Underlying this analysis is a situated or par-
ticipationist framework of learning [8, 9]. This theoretical
framework avers that learning is an ongoing process of trans-
forming participation [10–12] , and has roots in Vygotskian
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theory [1]. Vygotskian theory holds that learning and de-
velopment, especially development of language, are so inter-
related that they should not be considered independently.
Thus, studying learning should be a study of the interac-
tions a student is involved in. While Vygotsky primarily
used clinical interviews or student-teacher interactions, oth-
ers extended the analysis to interactions in naturalistic set-
tings to help account for the contextual or situated nature
of interactions [13, 14]. Rogoff, Matusov and White [12]
describe the central premise of the participationist perspec-
tive on learning as, “the idea that learning and develop-
ment occur as people participate in the sociocultural activ-
ities of their community, transforming their understanding,
roles and responsibilities as they participate.” The partic-
ipationist perspective on learning is particularly salient to
this study as we are investigating how the interactions that
students engage in within and around the physics class are
predictors of their success in a subsequent pair of classes.
Although we do not know the exact content or nature of
the interactions, we presume that the conversations are not
strictly about physics, but enrollment in an introductory
physics course is the feature that is common across these
students, so we also assume that physics is the subject of
some of the interactions.

III. THEORY: NETWORK MEANING AND
STRUCTURE

The analysis of social networks developed from quanti-
tative sociology beginning in the 1920s [15] as a way of
investigating the structure within social groups. Two pri-
mary approaches to analyzing social networks have been
used. The first is to look at the overall structure of a social
network, for example investigating what groups and com-
munities the network reveal [7]. We have taken a second
approach which is to look at the structure of interactions
within a network, focusing not on the network but on the
position of entities within the network. This approach, fo-
cusing on the entities and their positions, has been used by
Brewe et al. [5], to investigate participation in a network of
physics learners, by Dawson [16] to investigate sense of com-
munity. One primary approach to investigating the position
of entities within a network is to investigate the positional
advantage or constraint that an entity experiences due to
that entity’s centrality within the network; this is done by
quantifying the adjacency of that entity within the network.
Common adjacency-based centrality measures include de-
gree and closeness which we utilize in our analysis and de-
scribe in detail in section IIIA. Other centrality measures
are probabilistic, but still describe the relative importance
of an actor within a network. We utilize three such central-
ity measures, PageRank, Target Entropy and Hide, which
we describe in section III B.

Network Analysis is built on a basic assumption that in-
terconnected entities influence each other. The interpreta-
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tion of any network measure or property rests on how we
conceptualize the meaning of links and nodes. This basic
understanding of a network shapes how we interpret cen-
trality measures, node attributes, and correlations between
them. In Social Network Analysis a flow metaphor and a
girder metaphor describe two ways of viewing networks [7].
In the flow metaphor, links are viewed as pipes through
which resources can flow. In the girder metaphor, links are
relations that tie nodes together, “creating a structure ...
around which the rest of the social system is draped” [7, p.
45]. These two metaphors are also recognized in network
physics as links representing movement patterns and links
as pairwise relationships Rosvall and Bergstrom [17].

As an alternative to the flow and the girder (relational)
metaphors, McCormick et. al introduce the notion of a link
representing a process of meaning making[18] [3, p. 115],
and this interpretation best applies to our study. We asked
students to recall interactions, so links do not necessarily
represent any flow of resources or information; instead, the
links represent that the student has identified a relationship
with another student. Relations tell us about the choices
students make and thus give us insight into the interac-
tions students value and remember [19]. In this process
of meaning making, advice and ideas flow back and forth
between students. If a student explains physics to another
student, from a constructivist perspective that information
is not simply transferred. Instead, a learner of physics will
always construct, refine, or retain his/her own knowledge
based on the interaction. Thus, we consider links to be in-
teractions, during which students exchange and modify their

ideas, and so we adopt McCormick et al’s view of a network
as a vehicle for meaning making.

A. Combinatoric binary centrality measures

Network theory offers many different centrality measures,
all of which will have different interpretations in our frame-
work. In this section we briefly explain the combinatoric
binary centrality measures we use in this study. The mea-
sures are combinatoric, because they rely on counting the
number of ways nodes are connected, and they are binary,
because a link either exists or it does not, and therefore link
weights are disregarded. Throughout this section we refer
to Figure 1to illustrate the different centrality measures. In
the next section, we will describe and interpret probabilistic
measures, which do take weights into account.

1. Degree

The degree of a node is defined as the number of other
nodes that are connected to it. For example, the degree of
node C in Figure 1 is 3. Often degree is split into indegree
and outdegree. Indegree is the number of links coming into
a node and outdegree is the number of links going out of a
node. Node C has an indegree of 3 and an outdegree of 2.
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A

E
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F

C D

G

path
 le

ngth
 = 1

Figure 1. Example binary network for use in Section IIIA. All
links are directional, and thinner,blue arrows show the geodesic
distance from all other nodes to C.

2. Geodesic Distance

The geodesic distance is not used in this study directly,
but is used in the calculation of closeness. Geodesic distance
is the shortest path between any two nodes. In Figure 1,

the geodesic distance between nodes B and C is 2, because
no matter whether the path is B-A-C or B-E-C there are
two links between B and C. If no shortest path exists, the
geodesic distance is the size of the network, dli = N [20].

3. Closeness

The closeness, or closeness centrality, of node i is defined
as the inverse of the average geodesic distance from i to ev-
ery other node in the network [19, 21]. In directed networks,
in-closeness considers geodesics which end at i, whereas out-
closeness considers geodesics starting at i. The formal defi-
nition of in-closeness, shown in Eq. 1 is:

Ci
in =

N − 1∑
l 6=i dli

(1)

Thus, a high incloseness centrality means that the node
is reachable in few steps. This implies that if an idea exists
somewhere in the network, some version of it might reach a
node with high incloseness after a few interactions. So stu-
dents with high incloseness may have greater access to ideas,
while students with high outcloseness may have greater in-
fluence. As an example, we calculate the closeness of node C
in Figure 1. Three paths have d = 1, two paths have d = 2,
and one path has d = 3. The average geodesic distance from
any given node in the network to C is 〈d〉 = 5

3 , which means
that the closeness of C is 3

5 , C = 6
1+1+1+2+2+3 = 3

5 . While
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closeness gives a good estimate of how easily a student in
our network can be reached, it does not address the weights
of any link. In order to handle weighted links, we turn to
measures of centrality based on probabilities.

B. Probabilistic centrality measures

When we sum up the number of interactions students re-
ported during different weeks (see section IVA2 on page 11),
it becomes possible that student i mentioned student j more
than one time. As a result, the link between student i and
student j becomes weighted. The weighting of links between
students leads to probabilistic interpretations of centrality
and thus to more sophisticated calculations of centrality.
To interpret probabilistic network measures, we have intro-
duced a hypothetical student asker. [22] We imagine the
student asker starting at a randomly selected student in our
network. He asks this student to name one other student.
The basic mechanism is now that the student asker goes to
the named student and repeats the process. Thus, the fre-
quency of the student asker showing up at any node in the
network is based on the responses students give during data
collection. The results may not resemble what the students
actually would say in a real situation, but the notion of a
student asker is useful as a tool for explaining and giving
meaning to different centrality measures. As we explain dif-
ferent centrality measures, we will add additional rules for
the student asker.

1. Strength

In networks such as ours where student A can mention
student C in multiple weeks, the links between nodes can
be weighted (see section IVA2 on page 11). Strength is
a measure of the weight of the link and is similar to the
degree of a node. Often two types of strength are considered,
instrength and outstrength. Instrength is the sum of the
weighted links coming into a node and outstrength is the
sum of the weighted links going out from a node. In Fig. 2,
the instrength of C is 4, while the outstrength is 4. From the
perspective of the student asker, the ratio of the instrength
of a link to the outstrength gives the probability for i naming
j when asked for a name by the hypothetical student asker.
That is, p(j|i) =

wij

siout
. In Fig.2, p(C | A) = 2

3 . This is the
probability of getting the name C when we are asking A.

2. PageRank

PageRank is an algorithm conveying the general idea that
a node gains importance with the links to the node and
distributes importance with the links from the node. Thus
PageRank incorporates both local connections and global
position; it pays to have heavy weight links to important
people.

To calculate the PageRank, we let the student asker move
about the network based on the probabilities associated with
each link. Thus, in Figure 2, if the student asker is at C,
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PR ≈ 0.22PR ≈ 0.30PR ≈ 0.03

PR ≈ 0.11PR ≈ 0.11

PR ≈ 0.03

PR ≈ 0.20

A

E

B

F

C D

G

w=1, p=1

w=3, p=3/4

w=1, p=1

w=1, 
p=1

w=1, p=1/2

w=2, p=2/3

w=2, p=2/3

w=1, 
p=1/

3

w=1, 
p=1/

2

w=1, p=1/4

w=1, p=1/3

Figure 2. Example weighted network illustrating PageRank and
Strength. In this diagram each link shows the weight and the
probability of following the link. Inside each node, we show the
PageRank, PR, based on a jumping probability of 15%.

he will to D with a probability p = 3
4 and to E with p = 1

4 .
In general, when he asks student i for a name he gets the
name of student j with a probability of p(i | j) =

wji

sout
j

.

The asker keeps asking and going around the network many
times. The percentage of time he spends at node i is the
PageRank of node i, PRi. In order to avoid the student
asker getting ’stuck’ in a loop, Brin and Page [23, 24] intro-
duced a jumping probability, 1− α. Before asking the next
student, the asker first determines whether to jump or to
follow links. If he jumps, he chooses a student at random
to ask. Otherwise he asks the next student, gets a name
of a neighboring student, and follows the link to that stu-
dent. With the introduction of the jumping probability, the
student asker does not get stuck, and we can calculate the
PageRank of each node in a fair manner. The PageRank
rises with the number and weight of incoming links, and
each student adds to neighbors’ PageRank by naming them;
a node gains importance with the links to the node and
distributes importance with the links from the node.

The mathematical definition is:

PRi =
1− α
N

+ α
∑

j∈kin

p(i | j)PRj (2)

Here, α is the probability that the asker uses a link to
navigate the network, PRj is the PageRank of node j, and
p(i | j) is the probability of j naming i if asked. In the
original paper by Brin and Page [23] , p(i | j) = 1/L(j),
where L(j) is the number of links on web-page j, here, p(i |
j) =

wji

sout
j

.

To exemplify the PageRank we assume a jump probability
of 15% in Figure 2.Students A and B have the lowest PageR-
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ank (∼ 0.03), while C has the highest (∼ 0.3). Node E has a
higher degree than node D, but, because of the strong link
C → D, D (∼ 0.22) inherits enough of C’s PageRank to
slightly outrank E (∼ 0.20). Thus PageRank includes not
only the centrality of a single node, but also the centrality
of the nodes that are directly adjacent to the node.

3. Target Entropy

Target entropy is a centrality measure based on the flow of
information through a network. Target entropy gauges the
predictability of the traffic around a node in a network [25]
based on the assumption that nodes produce and disperse
messages, which is consistent with a flow picture of the net-
work. Thus, the target entropy is a centrality measure that
presumes that when messages pass through a node that node
is more ’important’. The formal definition is [21, 25, 26]

Ti = −
∑

j∈kin

cij log(cij). (3)

In equation3, the term cij is the number of ’messages’
targeted at i though node j divided by the total number of
’messages’ which can reach node . Imagine that each node
in the network sends one message. Then for node i, the
term cij is calculated by summing the number of messages
incoming to a node i (through node j) and dividing by the
number of nodes that are connected to i via geodesics, which

TE=0

TE=1.38

c=1/6

c=(1+½)/6

c=
(1+

1+
1+

½)/
6

A

E

B

F

C D

G

c=
1

Figure 3. Example weighted network illustrating Target En-
tropy. The blue lines indicate the shortest path between all nodes
and node C.

is denoted Mi. If, as is often the case, a message can arrive
at node i from multiple shortest paths (gp), it is said to have
a degeneracy, and then the weight of each path is 1

gp
, thus
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the term cij is:

cij =

∑
p

1
gp

Mi
,

where p is summed over all the paths which reach i though
j. In Figure 3, the target entropy of node A is TA = 0,
because the number of messages that end at node A is 1,
and the number of ’messengers’ connected to node A is also
1. For node C, messages arrive from adjacent students A,
D, and E. However, the messages could have originated
from any of the 6 other students, thus the term cCX varies.
This means that cCE =

1+1+1+ 1
2

6 = 7
12 , cCD = 1

6 , and

cCA =
1+ 1

2

6 = 1
4 and the total target entropy for node C is,

TC = 1.38.
Since we employ an interaction picture rather than a flow

of information picture, we need to reinterpret the cij ’s. In-
teracting with many different people increases target en-
tropy. The target entropy will be further increased if they in
turn interact with many people who remember them. Thus,
if a student is part of a network neighborhood where people
are involved in many interactions and remember their inter-
actions, that student will end up with a high target entropy.

4. Search Information

While the PageRank views centrality from the whole net-
work perspective, and target entropy views centrality from
a node perspective. Search Information and Hide, a vari-

A

E

B

F

C D

G

w=1, p=1

w=3, p=3/4

w=1, p=1

w=1, 
p=1

w=1, p=1/2

w=2, p=2/3

w=2, p=2/3

w=1, 
p=1/

3

w=1, 
p=1/

2

w=1, p=1/2

w=1, p=1/3

Figure 4. Example weighted network illustrating Search Infor-
mation. Following the blue arrow, the search information from
B to G is −log( 2

3
1
2
) = log(3). Following the two red arrows, we

get SB→C = − log2( 1
3

2
3

+ 2
3

1
2
) = log( 9

5
).

ant on Search Information, describe how easily a node can
be found within a network. In our study, we do not uti-
lize search information directly, but instead use a centrality
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measure, Hide, that depends on the calculation of search in-
formation. In general, the search information from a node i
to a node j is (adapted from [25]):

Si→j = −log2
(∑

sp

[∏ wlk

soutl

])
.

The calculation and interpretation of search information
is best accomplished based on a student asker. In Figure
4, imagine the student asker asking his way from student
B to student G, separated by student E. Disregarding the
weights for a moment, B and E each have two outgoing
connections. Only one of B’s connections end up at E and
only one of E’s connections end up at G. If both A and
C mention a name at random, then the probability for the
student asker ending at B from A is p = 1

22 . Instead of
choosing randomly, the student asker now wishes to ask if he
is on the right path if he chooses a given node. If we assume
that B and E both know the route to G from their respective
positions, then the student asker can be sure to reach G
with −log2(p) = 2 questions. This is the information cost
for reaching G from B seen from the student asker, if we
disregard the weights. Including weights, the probability of
taking the correct path from B is changed to 2

3 , yielding a
probability of p = 1

3 , and a corresponding information cost
of log2(3). Of course, if more than one path exists from one
node to another, each contributes to the probability, making
the information cost lower.

5. Hide

Hide describes, on average, how many steps the student
asker must take to find student i from all other nodes. It is
defined by the equation:

Hi =
1

N − 1

∑

j∈G
Sj→i. (4)

In the interaction picture the interpretation of hide is
straight forward. With a high hide, a student has not par-
ticipated in many interactions which other students remem-
ber. The interactions the first student has participated in
may only be one out of many interactions, while students
with a low hide have participated in so many meaningful
interactions that they are easy to find.

IV. METHODS

This study took place at University of Copenhagen
with approximately 170 students taking their first physics
courses. The semester at this university is split in two
blocks. In the first block students take two courses, an
introductory mechanics course and an introductory math-
ematics course. In the second block, students take another
two courses, an advanced mechanics course named Rotations
and Oscillations and a linear algebra course. The physics
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course in each block includes two weekly lectures with all
170 students, two weekly problem solving sessions and one
weekly lab session. Students were broken into seven cohorts
of 30 students and took the problem solving sessions and
lab sessions with the same cohort. Six of the seven cohorts
of students are physics majors, and the seventh is a cohort
of math majors. The majority of students complete both
blocks of the introductory physics course. FCI and network
data were collected during the first block. These data were
used to predict the sum of the math and physics grades in
the second block.

A. Data Collection

The data collected for this study include student surveys
as well as attribute data for individual students. Figure
5summarizes the timeline of data collection across the two
blocks of the semester.

1. Survey data

Each week during the first block, students were asked to
answer two online network surveys. Both surveys were ad-
ministered during the lab section of the course. In each
survey, students were allowed to select names from a drop-
down menu which included the names of all students enrolled
in the physics course. There was no limit on the number of
names that could be selected. All surveys were administered

in Danish, so questions have been translated for this paper.
Three questions were selected for this study and were part
of a larger survey. In Table I, questions 1.1 and 1.2 probe for
problem solving and conceptual discussion interactions re-
spectively, while question 2.1 probes for social interactions.
We focus on student interactions with regards to Problem
Solving, discussion of physics concepts, social interactions
during classes, and social interactions outside of classes. The
two first interaction networks, Problem Solving and Concept
Discussion, reflect academic student interactions which are
related to success in physics courses, while the third reflects
social engagement in physics classes ? ]. The student inter-
actions in each network form the basis for calculating dif-
ferent centrality measures. It should be noted that because
these are self-reported interactions, it is possible that stu-
dents were biased toward listing their friendsLiben-Nowell
[27], Liljeros et al. [28], Marsden [29]. Three efforts to re-
duce this bias were used: first, the surveys were anonymous
for everybody but the researchers, second, the questions do
not imply that interactions should be ranked, and third, the
formulation of the questions do not imply one student seek-
ing advice with another. See Table I.

2. Transforming survey data to networks

The survey data were used to construct three networks
each week, one based on the responses to each question 1.1,
1.2 2.1. For each week we construct a Problem Solving net-
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Exam 1 Exam 2

Exam 1 Exam 2

Exam

Exam

Online physics problems (MP) Online physics problems (MP)
Approval of lab experiment reports

September October November December January

Weekly online network surveys (ONS) during lab exercises Bi-weekly ONS during lab exercises

Block 1 Block 2

Research activity Research activity
Introductory Mechanics and Relativity 
assessment activities

Mechanics: Rotation and Oscillations 
assessment activities

Introductory Math  assessment activities Linear Algebra assessment activities

FCI FCI 

Weekly pen & paper assignments Weekly pen & paper assignments

/Approval of lab log books

Figure 5. Timeline of assessment activities during the first two blocks along with the research activity relevant to this study. The
FCI assessments and the approvals of lab log books/reports are not part of the grade.

work, a Concept Discussion network, an in-class discussion
network. The network for a single week is directed and un-
weighted. The direction of a link, lij , is from student i to
student j, if i names j. It is unweighted, meaning that all

existing links have weight lij = 1. In order to make data
analysis manageable, the weekly networks were summed to
create three networks that include the responses from all
weeks. This means that the links between students are now
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Survey Category Question (translated from Danish)
1.1 Problem Solving We communicated about how to solve a task in physics. (How to perform calculations, what

formulas are needed, how to read graphs and the like).
1.2 Concept Discussion We communicated about understanding one or more physics concepts. (What current is,

what the normal force is, how radioactivity works, and the like).
2.1 In Class Social We communicated socially in connection with a lecture, problem solving session, or lab

exercise.

Table I. Survey categories for naming. Each week, students chose who they have had interactions with in each category. Categories
in bold are the ones we work with in this study.

weighted links with the maximum weight between node i
and node j in any network weight lij = 9. Because some
students did not attend every lab meeting, they did not
complete the survey each week and thus not all students are
included in each week. By summing the weekly networks we
have created what we feel is a more stable and representative
network.

B. Attribute data

Though networked perspectives on data assume that the
data is relational and interdependent, each actor within a
network has characteristics, or attributes, which are inde-
pendent of the other actors. These can be used in conjunc-
tion with networked measures to predict outcomes. In this
study we used two attributes, pre-instruction Force Concept
Inventory scores (FCIPre) and physics grades in the first

course block (GRMech1). These attributes have been shown
to be predictive of student grades in physics [30]. These
data were provided by the physics department.

1. Force Concept Inventory Pre Score

The Force Concept Inventory [31] was administered as a
pre/post test in the first block of the course. We used the
FCI pre score attained during the first week of the first block
of the course as a predictive measure in the sum of grades
in the second block of the course.
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2. Grades

In the Danish system, grades are numeric values which
range from -3 to 12. We use the numeric grades in two
ways. First, we use the mechanics grade in the first block
as an attribute which is used as a baseline predictor in the
linear modeling component of the study; the possible range
is [-3,12]. Second, we use the sum of the physics and math
grades (SoG) in the second block as the dependent vari-
able in the linear modeling part of the study. Because this
is a sum of two grades, the possible range for this grade
is [−6, 24]. The Sum of Grades variable is only available
for students enrolled in both the Rotations and Oscillations
course and the Linear Algebra Course.

C. Summary of variables

This study made use of a large number of variables,
which include centrality measures, attributes, as well as
the dependent variable, grades in the second block. Table
IIsummarizes the variables used in this study.

D. Correlations

The initial analysis of each network was to create a Pear-
son’s r correlation matrix including each of the centrality

measures, the attributes, and the outcome variable, sum of
grades in the second block. Initially, these correlations were
carried out on all 12 networks, but the three networks for
Problem Solving (PS), Concept Discussion (CD), and In
Class Social (ICS) communication showed the highest cor-
relations with network measures. Because not all students
participated in each network, each of the three networks
include differing numbers of students. Further, students
who were named in a category at some point during the
two blocks of data collection, but did not name any other
student during the first block were removed from the anal-
ysis. The number of removed students where NPS = 25,
NCD = 43, and NICS = 40. All analyses were carried out
in the R environment primarily with the iGraph package
[20] for analyzing network data. As with all network statis-
tics, the independence of measures assumption was violated
and thus all statistics were calculated using bootstrap meth-
ods, which are incorporated in the boot package of R [32].
These correlation matrices were used to help identify cen-
trality measures which held the greatest promise for predict-
ing SoG, so all correlations with p ≥ 0.001 were eliminated.
This left five centrality measures as candidates to construct
linear models for predicting SoG in the second block.

E. Hierarchical multiple regression on sum of grades.

We used hierarchical multiple regression to create mod-
els with the Sum of Grades SoG in the second block as the
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Centrality Measures Symbol Attributes Symbol Grade Variable Symbol
Instrength sin FCI Pre FCIPre Sum of Grades in Block 2 SoG

Indegree kin Mechanics Grade in Block 1 GRMech1

PageRank PR

Hide H
Target Entropy T

Table II. Summary of centrality measures, attributes and grade variables used in this study

dependent variable. The centrality measures and the at-
tributes serve as independent variables within each of the
three networks considered. Hierarchical multiple regression
is a regression technique used to generate and compare the
predictive models for a continuous dependent variable using
different sets of independent variables. Typically, indepen-
dent variables are entered in a specific order according to log-
ical or theoretical considerations. In this study we entered
variables in order of decreasing correlation with the SoG
variable. A new predictive model is created with each new
independent variable (or pair of variables) entered. These
models are then compared using an F-test for the differences
between correlations as described by Tabachnick and Fidell
[33]. Again, the analyses were carried out in the R statis-
tical programming language. In addition, all models were
compared with the a regression model using the mechanics
grade in block 1. This comparison provided us a baseline
which is interpreted as , “Does the regression model using
centrality measures do as good of a job predicting the SoG
as the grades in a previous block of the course?”

V. RESULTS: CENTRALITIES AND FUTURE
GRADES

The results can be grouped in three sections. Global net-
work features give a first impression of the data, and show
some of the differences between the three networks . The
second section shows correlations between attributes, cen-
trality measures and the grades from the first block. In the
third section, we evaluate the the predictive power of dif-
ferent linear combinations of attributes and centrality mea-
sures.

A. Global network features

Figure 6 shows sociograms of the three different networks.
The layout has been determined by applying a force based
plotting algorithm [34] to the Problem Solving (PS) net-
work. This network contains the largest number of students
in our study (NPS = 152). In the subsequent networks, the
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positions of nodes remain constant. The Concept Discus-
sion (CD) and In Class Social (ICS) networks have fewer
nodes than the PS network (NCD = 134, NICS = 136),
since not all students answered the questions pertaining to
these two networks. The sizes of nodes are proportional to
the centrality measure showing the highest correlation with
the Sum of Grades (SoG). We represent the SoG with col-
ors; the low achievers are red, high achievers are dark green.
White nodes represent students for whom we do not have
SoG data. The link weights are represented with a gray scal-
ing, where weaker links are lighter and thinner than stronger
links. The maximum weight is 9, corresponding to a student
naming another student for the total 9 weeks. The insets
are link weight distributions, on a semi logarithmic scale.

Looking at the PS network which is the basis for our
three plots, we notice that high achieving students (dark
green and light green nodes) tend to be nested within inner
clusters, while low achievers (orange and red) tend to be
in the periphery. While it is difficult to see differences in
PageRank in the PS network, we notice that in the CD and
ICS networks, the green nodes tend to be larger than the
red and orange nodes. This mean that there is a tendency
for nodes with high Target Entropy to be high achievers.
In each of the three sociograms an almost separate cluster
of white nodes exists at the top left. This cluster of nodes
represents students in the cohort of math majors, who did
not enroll in the second block of physics, so a SoG is not
available. The cluster of math students are separate, with
few ties linking them to the main cluster, indicating that
they mostly did not interact with the physics students.

B. Centrality and attribute correlations

With two different attribute variables, five centralities,
and one outcome variable for each network, we have 84 pos-
sible correlations. In order to show the correlations graph-
ically, identify significant correlations, and report differing
degrees of freedom with each variable, we use a correlation
network [34]. Correlation networks are diagrams which show
the correlations between various measures. In a correlation
network two measures are connected if they are correlated
and the strength of the link is proportional to the strength
of the correlation. Figure 7 shows the correlation network
for the measures in our study, picking out only significant
correlations. The measures for each network are color coded,
and the value in each node represents the number of degrees
of freedom in the correlation. The value of the correlation
coefficients are represented on the links. We have adjusted
the lay out manually, so for each variable the distance from
the measures to the SoG is ranked. This means that since
GrMech1 shows the highest correlation in each of the three
distinct networks, it is closest to the SoG in the drawing.

The GrMech1 score correlates with the SoG with r ≈ 0.6,
reflecting that performance in the first block is a strong pre-
dictor of performance in the classes in the subsequent block.
The FCI pre-test score, (FCIPre), correlates with the SoG
with a coefficient of r ≈ 0.42. In each network,FCIPre also
correlates with the GrMech1 score, which is no surprise.
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1. Problem Solving Network Correlations

In the PS network, only two network measures, PageR-
ank and Hide, correlated significantly with SoG. The Hide,
(H), correlates negatively with the SoG, with a coefficient
r = −0.32 indicating that the more difficult a student is
to find within the Problem Solving network the lower the
grades in the subsequent block of courses. The PageRank,
(PR), correlates with a high-level of significance with both
the SoG and with the GrMech1, indicating that students
who are more central in the Problem Solving network also
tend to have higher grades in the second block of courses.

2. Concept Discussion Network Correlations

In the CD network, three network measures, Indegree,
Instrength and Target Entropy, correlate with SoG. One
feature we find interesting is that in the Concept Discussion
network, two centrality measures, Instrength and Indegree,
are both about how others view the student. This indicates
that a student that is memorable to other students tends to
have a higher grade in subsequent courses. Finally, we note
that the target entropy has a slightly higher correlation with
the SoG (r = 0.45) than does FCIPre (r = 0.42).

3. In Class Social Network

In the ICS Network, PageRank, Instrength, Indegree,
and Target Entropy correlate with the SoG with relatively
similar strength. (r = 0.35 − 0.38). The ICS network has
similar centrality features as the other networks: H has a
negative correlation with SoG, and again the Instrength and
Indegree are positively correlated with SoG. One interpre-
tation of this is that students who are identified by other
students as participating in social interactions in the class-
room setting tend to earn higher grades and students who
are not easily found engaging in social interactions within
the In Class Social network tend to earn lower grades.

C. Hierarchical Multiple Regression Models

In each of the three networks, the GRMech1 score shows
the highest correlation with SoG. This result is unsurpris-
ing, as grade in previous physics course is an excellent pre-
dictor of grade in a subsequent physics course. Thus we cre-
ated models using GRMech1 as a benchmark, and we search
for models using networked variables with equivalent pre-
dictive power. Since most of the measures correlate signifi-
cantly with the GRMech1 attribute, we do not expect that
adding centrality measures or FCI test-scores to a GRMech1

model will increase it’s predictive power significantly. In-
stead, we use hierarchical multiple regression [35]. The re-
sults, including R2, F-tests, and ∆-values are listed in Tables
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III, IV, and V.

1. Problem Solving Network Modeling

The attribute, FCIPre correlated most highly with the
SoG in the Problem Solving network, so FCIPre was used
to create the base model. As seen in Table III this base
model was significantly different than a constant only model.
When PageRank was added and a new model was created,
an F-test indicated that this model was significantly dif-
ferent than the FCIPre only model. However, the delta
in Table III, indicates that the model with FCIPre and
PageRank only improves prediction of SoG by 1.52 stan-
dard deviations, thus we consider the model with FCIPre

only as the best predictive model. When compared with
a model that includes the grades in the first block of the
course, the model with FCIPre is 1.95 standard deviations
worse than the grade-based model, which suggests that a
model with FCIPre only is close to being significantly worse
than a model with the physics grade in the first block. Fi-
nally, adding all three attributes which significantly corre-
lated with SoG, FCIPre, PageRank and H did not further
improve the prediction of SoG.

2. Concept Discussion Network Modeling

In the Concept Discussion network, the target entropy,
(T ), was the attribute most highly correlated with the SoG.
Thus T was used to create the base model, as seen in Table
IV. This base model improved the prediction of SoG in the
second block. In this network, FCIPre was added and a
second model was created. An F-test indicated that this
model was not significantly different than the model with T
only. The difference in prediction of SoG indicates that the
model with T and FCIPre improves prediction of SoG by
1.49 standard deviations. Thus the best predictive model
is the model with T only. When compared with a model
that includes the grades in the first block of the course, the
model with T only is 1.33 standard deviations worse than
the grade-based model, which suggests that a model with
T only is not significantly different than a model with the
physics grade in the first block.

3. In Class Social Network Modeling

In the In Class Social network, FCIPre was the attribute
most highly correlated with the SoG, so it was used to cre-
ate the base model, as seen in Table V. This base model
improved the prediction of SoG in the second block. In
this network, T was added and a second model was cre-
ated. An F-test indicated that this model was significantly
different than the model with FCIPre only. The difference



21

Model Variables R2[95%CI] F-tests ∆

PSF FCIPre 0.18[0.04− 0.31] F (1, 97) = 21.6∗∗∗ NA
PSFP FCIPre, PR 0.29[0.12− 0.43] F (2, 96) = 18.4∗∗∗

FF/FP (132, 132) = 0.66∗
1.52

PSFPH FCIPre, PR,H 0.28[0.12− 0.41] F (3, 95) = 12, 3∗∗∗

FFG/FPH(132, 132) = 0.91

1.59

PSG GRMech1 0.34[0.18− 0.48] F (1, 106) = 53.7∗∗∗

FF/G(132, 151) = 0.35∗∗∗
−1.95(∗)

Table III. Comparison of linear models in the Problem Solving network. ∗ = p < 0.05, ∗∗∗ = p < 0.001

Model Variables R2[95%CI] F-tests ∆
CDT T 0.20[0.07− 0.33] F(1,93) = 23.7∗∗∗ NA
CDTF T, FCIPre 0.30[0.13− 0.44] F (2, 83) = 17.7∗∗∗

FT/TF (133, 114) = 0.75
1.49

CDTFP T, FCIPre, PR 0.30[0.12− 0.43] F (3, 82) = 11.7∗∗∗

FT/TFP (133, 114) =
0.76

1.49

CDG GRMech1 0.32[0.16− 0.47] F (1, 93) = 43.8∗∗∗

FT/G(133, 132) =
0.52∗∗∗

−1.33

Table IV. Comparison of linear models in the Concept Discussion network. ∗∗∗ = p < 0.001

in prediction of SoG indicates that the model with T and
FCIPre improves prediction of SoG by 1.69 standard devi-
ations. However when both T and H are added the third
model improves prediction of SoG by 2.33 standard devia-
tions over the base model. In this network, the best model
includes not only FCIPre but also the networked attributes

T and H. The results of the linear modeling in this net-
work are interesting in that when compared with a model
that includes the grades in the first block of the course, the
best model with ICSFTH is 0.10 standard deviations better
than the grade-based model, which suggests that a model
with FCIPre, T , and H predicts the SoG as well as a model
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with the physics grade in the first block.

VI. DISCUSSION: UNDERLYING STRUCTURES

A. Understanding relations among networks through
correlations

We argue that the three networks are distinct; the Prob-
lem Solving (PS) and Concept Discussion (CD) networks
measure different aspects of student interactions, while the
ICS network seems to measure the combination of PS and
CD. The structure of the correlation network in Figure 7
indicates that in the PS network PageRank (PR) and Hide
(H) correlate with equal strength with the Sum of Grades
(SoG) and significantly with each other. However, from the
CD network In-Strength (sin), In-Degree (kin), and Tar-
get Entropy (T ) correlate with roughly equal strength with
SoG, and to a high degree with each other. In the ICS
network, all measures are present and show the same struc-
ture as in each of the other two networks: PR and H are
related and sin,kin, and T are related. Furthermore PR is
related to the sin,kin, T collection of variables. Thus, the
three networks give information about different aspects of
student interaction.

1. Problem Solving Network Correlations

Being easy to locate (low H) in the PS network tends to
be associated with academic success. We infer that students
who are easy to find, are students who are proficient with
physics and share their knowledge with others in a mem-
orable way. High H students may not be proficient with
physics or their contributions to Problem Solving interac-
tions are not memorable to other students. The way this
study is constructed, a student has to be recognized by an-
other student as memorable to get a link, and this reflects
the term mutual engagement proposed by WengerWenger
[2]. The named student engaged with the other students in
problem solving practices; in a process of meaning making
McCormick et al. [3]. He or she might have been mentioned
for good or bad, although if he or she never added to the
meaning making process of others, it is difficult to under-
stand why other students would continue naming him or
her.

Adding to this view, we can also imagine high H students
as the ones who do not engage in the problem solving prac-
tices of the physics student community, we can imagine that
he/she will simply not have access to other students’ prob-
lem solving strategies or to worked out solutions to prob-
lems. On the other hand, the positive correlation between
PR and SoG indicates that if others in general recognize you
as a collaborator, (i.e. someone who participates in the prac-
tices of the class), then you are more likely to gain experience
with others’ problem solving strategies. From a Vygotskian
[1] point of view, this may indicate that students can help
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Model Variables R2[95%CI] F-tests ∆
ICSF FCIPre 0.18[0.02− 0.31] F (1, 89) = 19.1∗∗∗ NA
ICSFT FCIPre, T 0.29[0.13− 0.42] F (2, 88) = 17.9∗∗∗

FF/FT (117, 117) =
0.54∗∗∗

1.69

ICSFTH FCIPre,T,H 0.35[0.18− 0.49] F(3,87) = 15.3∗∗∗

FF/FTH(117,117) = 0.39∗∗∗
2.33∗

ICSG GRMech1 0.35[0.19− 0.51] F (1, 97) =
53.2∗∗∗FFTH/G(117, 134) =

0.79

0.10

Table V. Comparison of linear models in the In Class Social Communication network. ∗ = p < 0.05, ∗∗∗ = p < 0.001

each other succeed through interactions within a zone of
proximal development. Using the vocabulary of Wenger[2],
students may develop a shared repertoire, to which the pe-
ripheral students have limited access, because they do not
engage with others. Of course, some students will not need
the shared repertoire of other students, if they are able to
decode the language of teachers and text books by them-
selves. But at least some students seem to develop their
problem solving skills in math and physics (as measured by
the exams) through problem solving interactions with other
students.

2. Concept Discussion Network Correlations

The high correlation between sin,kin, and T in the CD
network indicate that, to some extent, they measure the
same thing. But they do show different correlation strengths
and patterns. For example sin correlates with GRMech1 and
less with T than kin, and kin correlates less with SoG than
T .

It is not surprising that T and kin are related since T relies
on the number and distribution of shortest paths to a node.
A high kin will in itself contribute to a large T . The fact that
T correlates better with SoG than kin, shows that taking the
whole network into account does seem to make a difference.
From a participationist view point, being in a part of the
network where ideas and concepts are discussed (and where
these discussions are remembered) by many students has a
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positive impact on later grades.
While strong connections as represented by the Instrength

also seem to have an impact, using the whole network per-
spective with T has slightly more predictive power when it
comes to Sum of Grades.[36] In our interpretation, we can
associate being in a part of the network, where ideas are fre-
quently discussed by many students with academic achieve-
ment. In that part of the network students have the chance
to put forth ideas to others, use physics vocabulary actively,
and critically examine others’ arguments. Apparently, these
are qualities we can associate with good grades. Again, we
see the links as proxies for students engaging mutually with
each other in meaning making processes.

3. In Class Social Network Correlations

Perhaps the most surprising result is that engaging in non-
content related social interactions at a lecture, a problem
solving session, or laboratory exercise is connected to stu-
dents’ physics understanding or ability to solve problems.
It is not clear what mechanism relates a socially memorable
(central) student in class to good grades. This is seen in the
In Class Social network. Examining the results from the In
Class Social network from a participationist perspective, we
might conclude that the practice of physics is not strictly
about discussing concepts and solving problems, but also
about engaging with others in social realms. It seems reason-
able to propose that the ’off-topic’, social interactions that

students engage in during class time is an important com-
ponent in the overall engagement in physics and a compo-
nent of building a community around the practice of physics.
These results suggest two important questions : 1. To what
extent is the social engagement necessary? and 2. Does the
social engagement lead to on-topic engagement or does the
on-topic engagement lead to social engagement?

B. Linear modeling

It is interesting that the network with the most predictive
power is the In Class Social network. The linear model which
combines FCIPre with T and H predicts SoG significantly
better than FCIPre or any of the proposed network mea-
sures alone. This was not the case with the PS and CD net-
works, where the best models were the models with one mea-
sure, FCIpre and T respectively. In the ICS network one
interpretation of the linear model is that FCIPrefunctions
as a measure of the individuals understanding of physics,
while T and H seem to measure different aspects of stu-
dent participation in learning activities. This model seems
like a hybrid of the models which best predicted SoG in the
PS and CD networks. This hybrid interpretation is simi-
larly reflected in the correlation network, shown in Figure 7.
Seen in this way, the ICS network could serve as a proxy for
the PS and the CD networks, which preserves some of the
features of both Problem Solving and Concept Discussion.

The linear model for the ICS network allows us to con-
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sider that students engage in social interactions, both when
solving problems and when discussing concepts (something
which may or may not happen at the same time). Thus,
when we ask students to name who they remember commu-
nicating with socially in the classroom context, it is not sur-
prising that students include the names of people who they
engaged with during both PS and CD activities. That is,
we suspect that if you remember working together to solve a
problem or discussing a physics concept, you also remember
communicating socially. This may indicate that engaging in
social interactions and disciplinary interactions are not eas-
ily seen as separate. They may interact or share a common,
more general, underlying predictive variable. This line of
thinking supports current research which combines classical
cognitive thinking with socio-cultural theory.

C. Limitations of the study and further developments

One obvious limitation is that the study is situated in a
Danish university and considers only physics majors. Repli-
cation of this study at different universities and in different
cultural contexts would improve the generalizability of these
results. Further, the study considers only the class of one
particular year.

Additionally, we have to consider the validity of the survey
itself. The validity issues are that we cannot be sure that
students answer truthfully, and we cannot know why they
chose as they did. They may even have talked about who

they should name, because they wanted to give an accurate
account of their actions. This goes against the premise that
they only list students who they remember having talked to.

There are also limitations with regards to the network
structure. Since we only use within course student-student
interaction, we miss out on the impact of lecturers, teachers,
and interactions outside the course. Finally, since not all
students answered all surveys, we have an incomplete data
set from which to create the networks, and this may be a
serious source of error [37].

Linear models involving network measures account for
some of the variance in the data. However, the rationale for
using linear models is mostly one of convenience. Many of
the techniques for handling quantitative data in PER stud-
ies have been imported from sociological statistics. Further
research could look in to the possibility that other func-
tional forms are relevant to predict non-network variables
from network variables.

VII. CONCLUSION:

With this study we have undertaken an analysis of net-
worked measures with student grades. We find that corre-
lations (0.3 < r ≤ 0.45,p < 0.001) exist between network
centrality measures for students at one point in time and
their grades at a later point in time. The measures yielding
the highest correlations are all probabilistic measures taking
the whole network into account.
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The In Class Social network correlation network can be
seen as a hybrid of the Problem Solving (PS) and Concept
Discussion (CD) correlation networks, as it seems that the
ICS captures both problem solving and concept discussion
interactions in addition to social interactions.

With the ICS network data, we can create a linear model
with FCIPre , target entropy, and hide as variables from the
first block of students’ study course to predict the sum of
grades of the courses in the next block of classes. This model
is significantly better at predicting grades than a model us-
ing only FCIPre.

We argue that social interactions seem to correlate posi-
tively with physics learning at least for some students. The
counter-argument claiming that there are other underlying
variables responsible for both network positions and grades
need to incorporate how these variables affect both social

interactions and grades in the context. We would like to in-
vestigate mechanisms for becoming central in academic (PS
and CD) and social (ICS) networks and to further investi-
gate attributes which are to correlated students’ academic
success as measures by grades.
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Representing cognitive schemata with networks of
student free text answers to conceptual problems:
Justification and first steps towards a method

Jesper Bruun

Basic cognitive structures such as image schemata or p-prims may
be vital in coordinating our phenomenological experience of being in
the world, and may thus form a link between language and the abil-
ity to do, for example, physics. The purpose of this paper is (1) to
make a theoretical link between networks of student writings about
how students believe a physical system behaves and students’ cogni-
tive schemata related to that system, and (2) outline the first steps in
a method for analyzing the such networks. Student written answers
to open-ended online conceptual questions are converted to linguistic
networks describing how students associate between terms. Anal-
ysis of linguistic network structure coupled with cognitive schema
theoretical considerations is then used to suggest that networks from
student writing can represent some degree of physics understanding.
For example, if nodes represent concepts relevant to physics problems

and links represent processes of association between concept, signi-
fying the use of an image schema. Finally, the paper outlines three
issues which later research should resolve before linguistic networks
become useful for understanding physics learning.

1 Introduction

The link between cognitive ability of physics students and how
students perform, collaborate, and think about physics is a well
established field of research which among other things draws
on cognitive schema theory (Derry, 1996). It studies learning
in physics as a form of acquisition of knowledge (Sfard, 1998),
where knowledge - or rather knowledge structures - are repre-
sented using concept maps (Novak and Cañas, 2008), men-

1



tal models (Gilbert and Boulter, 2000), hypothetico-deductive
reasoning schemes (Lawson, 2003), or mental schemata.

One type of schemata investigated by cognitive schema the-
ories are basic structures like image schemata (Johnson, 1987)
and p-prims (diSessa, 1993). These are considered irreducible
mental units that help structure our actions or sense of mech-
anism. Image schemata, in particular, are hypothetical prelin-
guistic structures that form the basis of conceptual metaphors
used in language. Moreover, these basic cognitive structures
are vital in coordinating our phenomenological experience of
being in the world (Derry, 1996), and may thus form a link be-
tween language and the ability to do, for example, physics.
As the basic building blocks, basic cognitive structures are
combined to form more complex cognitive schemata like men-
tal models (Derry, 1996) and coordination classes (diSessa,
2002).

Image schemata, p-prims, and higher level structures have
been accessed through, for example, clinical interviews
(diSessa, 1993), video observation of student interactions
(Roth and Lawless, 2002), and student writing (Hein, 1999).
Recently, studies in physics education research has shown that
networks can be used to gauge the coherency of student knowl-
edge structures (Koponen and Pehkonen, 2010) and the devel-
opment of student epistemic framing (Bodin, 2012). These
two studies show that networks offer a way of visualizing and
analyzing data, which may reveal hidden structures in that
data.

These studies offer insight into particular students’ under-
standing and use of physics. However, Bodin (2012) focuses
on students epistemic framing of problems in physics, while

Koponen and Pehkonen (2010) investigates how students link
a predefined set of concepts. They do not consider how stu-
dents use natural language in connection with physics con-
cepts. If natural language as expressed in writing is connected
to embodied mental structures as proposed by image schema
theory (Lakoff, 1987, 1993; Lakoff and Johnson, 1980; Roth
and Lawless, 2002; Johnson, 1987), then patterns that network
analysis of natural language can reveal may be linked to stu-
dents’ ways of understanding and use of physics.

The purpose of this paper is (1) to make a theoretical link
between networks of student writings about how they believe a
physical system behaves and students’ cognitive schemata re-
lated to that system, and (2) outline the first steps in a method
for analyzing the such networks. The theoretical link is pro-
posed in Section 2, while the following two sections outlines
a method for collecting (Section 3) and analyzing (Section 4)
networks of student writing. Section 5 discusses some of the
issues further research needs to resolve if linguistic networks
are to be useful tools for understanding physics learning.

2 Linking cognitive schemata to
networks

The idea of coupling image schemata, p-prims, or as termed
by Derry (1996), memory objects, to networks stems from
the way the authors have presented the coordination these
schemata. For example, Johnson (1987, pp. 109-111) uses
the work of Gentner and Gentner (1983) as an example of how
image schemata provide metaphorical constraints on reason-
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ing, and the analogical models he refers to are depicted as
networks (graphs) by Gentner and Gentner (1983). diSessa
(2002) speaks of coordination classes as a particular way in
which p-prims can be structured with respect to cuing, and
this is accompanied by a drawing of graphs. Derry (1996)
conceptualizes mental models as “particular organizations of
memory objects that constitute a specific event interpretation.”
Since networks constitute a way of organizing entities (nodes)
with constraining relations (links) (Costa et al., 2007; Snep-
pen, 2012), it seems natural to think about the coordination of
memory objects in terms of networks.

The benefit of describing image schemata as networks
would be to achieve a quantitative understanding of how image
schemata work to constrain meaning - in this case in physics.
For this to happen, nodes and links need to be defined con-
sistently and based in some kind of theoretical understanding.
This would allow researchers to interpret the results of net-
work analysis in a meaningful way to produce hypotheses that
can be tested quantitatively.

To lend meaning to nodes and links in networks, consider
how Johnson (1987) argues that our embodied understanding
of the world is represented in the metaphorical projections we
use in language. Johnson (1987) describes understanding as
being in the world, as our “bodily capacities and skills, our
values, our moods and attitudes, our entire cultural tradition,
the way in which we are bound up with a linguistic commu-
nity, our aesthetic sensibilities, and so forth” (Johnson, 1987,
p. 102). 1 If image schemata structure all these very different

1This relation between understanding and a way of being in the worlds is

things, it is no wonder that they also permeate our languages.
The link between networks and cognitive schema theory inves-
tigated here is through written language. In principle, it could
be any representation of language and even body language in
the form of gestures, facial expressions and actions could be
considered.

While Lakoff and Johnson (Lakoff, 1987; Lakoff and John-
son, 1980; Johnson, 1987) are interested in embodiment, lan-
guage, culture etc. in general, diSessa (2002; 1983; 1993)
is interested in a sense of mechanism in physics and how
this is coordinated through phenomenological primitives (p-
prims). While p-prims seem to be much like image schemata
in that they are irreducible units that coordinate understand-
ing, p-prims are targeted at physics rather than everyday life.
However, students engaging with physics may use both im-
age schemata, p-prims and other mental structures to structure
their understanding.

This work is concerned with the connection between of em-
bodiment, language, culture, and physics. When a student
writes about physics, he will use both physics words and non-
physics words to explain what he means. According to image
schema theory many of the non-physics words will be markers
of a coordinating image schema (Johnson, 1987). For exam-
ple, in English, “gone a long way” is an indicator of the path
schema (Johnson, 1987, p. 115).

In a simple linguistic network (Masucci and Rodgers, 2006)
mapping of writing, all the words in the preceding phrase

reminiscent of the German concept of Bildung (Klafki, 1996), which is the
basis of a competency based view of what it means learn science (Dolin
et al., 2003). This link is noted but not further pursued here.
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could be represented as nodes. Adopting the view that a con-
cept “is a perceived regularity in events or objects, or records
of events or objects, designated by a label” (Novak and Cañas,
2008), then nodes in these linguistic networks are not concepts
per default.

However nodes may represent some kind of entities beyond
mere words. The conjecture of this paper is that working with
networks offer a way of converting the entities in the form of
nodes to links in the form of processes. The idea of nodes as
entities comes from Ogborn et al. (1996), who use the term
entities to describe the things science teachers use to build ex-
planations. The idea links as processes stem from McCormick
et al. (2011), who use links as processes to inter human en-
gagement as interaction processes involving meaning making.
Here, the links are viewed as intra human (Vygotsky, 1978)
processes, specifically processes of association. That is, when
a student writes an explanation, he will associate in a manner
constrained by, for example, image schemata and p-prims, be-
tween the concepts available. This association process should
then constitute some level of his understanding of physics.

The purpose of the rest of the paper is to outline how physics
understanding in the sense described here may be captured, if
only partially, by networks of student writings in physics. The
questions students answer are physics questions; the describe
how real physical objects would behave. “Wave” is not used
as an abstract metaphor like “a wave of silence”, it is used to
describe the observable phenomenon that is a wave on a string.
Still, thinking about waves on a string and describing them,
should invoke image schemata and p-prims.

3 Using online questions to capture
student writing for linguistic
networks

The data used in Section 4 have been collected by following a
physics class of upper secondary students for sixteen weeks
during a fall semester. On several occasions students have
been asked to write answers to conceptual questions, but in
this paper only the answers from two students are treated in
terms of network analysis. Moreover, this study only investi-
gates one question, although the analysis investigates student
answers to this question from four different occasions.

Figure 1 shows how linguistic networks have been made in
this study. Students were given time in class to answer a ques-
tion. The question was formulated to make students explain
what would happen to the system in a given situation. Upon
seeing a figure accompanying the question text and reading
the text, the hypothesis is that students activate different rele-
vant image schemata to coordinate their understanding of the
physics in the system. The students then use these coordi-
nations to produce a text, which is recorded by the computer
(and stored in a Learning Management System). In terms of
representational forms, students express themselves using con-
ceptual and phenomenological forms (Roth, 1995) to explain
their understanding. Finally, the text is converted to a network
as explained in Section 4.

The question used in this study, is depicted in Figure 2. It
was developed in collaboration with the class’ physics teacher.
The curriculum centered around waves during the time of data
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Data collection session

What happens
when...?

Data collection session Network representations

The waves will meet in
the middle and therefore 
the disturbance will
decrease, but..

Idea of waves
Path schema

Scale schema
?

appear

phenomenon
call

interference

say

wave
meet

eachother
amplitude

give

point
equal

single
add

together
that is

6

cm 4
jump
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swing

exactly
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stand

Figure 1: Students read an open-ended question online and answers it online. They have access to books, pen & paper, but are asked not
to discuss their answer with others. The hypothesized mechanism is that while students are writing image schemata are activated and used,
resulting in a written text. Finally, the text is converted to a network based on the methods described in the paper.

collection. At the time of the first student answer, students had
just engaged with waves on a string. Thus it seemed appropri-
ate to ask the students to write about a system that they could
understand in terms of a string.

The students answered the question on four different occa-
sions. There were two reasons for this. The first reason was to
see if students changed their ways of engaging with the ques-
tion as they progressed through the teaching plan. The second

reason was to compare the networks of student answers to see
either traces of learning or variations due to different formula-
tions of an answer.

The reason for formulating the question in an open-ended
manner was to bring about as many associations as possible,
while not restricting the students to a predefined set of con-
cepts. The danger in such an approach is that some students
will not make the connection to the problem or will not risk
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?

Figure 2: Supporting drawing following the question that were administered to the students. The question text read: “Here you see a drawing
of two people moving a jump rope up and down. The drawing should give you an impression of what is going on, but the form of the jump
rope on the drawing may not resemble its form in the real world. Explain what happens in the middle of the rope.”

making wrong statements when writing. Some of the students
write this explicitly. As one student writes: “I have no idea”
(Hildur). Or as another student explains: “I was not in class
when we were taught about waves, so I do not know” (Helle).
However, the two students in this study did come up with pre-
dictions and explanations for them.

This way of collecting data does not try to control the learn-
ing situation as an experiment, but rather seeks to incorpo-
rate research design with teaching as it takes place in a typ-
ical learning situation, which in this case happens to be Dan-

ish. The idea is that the resulting research is developed in
close connection with the object of study, teaching and learn-
ing physics. In a research perspective, this makes it more dif-
ficult to attain data of a sufficient quality.

One of the difficulties is that physics teaching at the sec-
ondary level is usually centered around problem solving, pre-
sentations by the teacher and the students, and laboratory exer-
cises. Newer teaching practices like peer instruction (Mazur,
2009) and modeling (Hestenes, 2006), advocate learning ac-
tivities where students verbalize their thoughts or collectively
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work on problems, thus developing shared models in a com-
munity of learners. Even so, students in physics classes rarely
get to write about how they believe a physics system behaves.
Writing in physics education is often associated with writing a
lab report or writing down short arguments between equations.
Thus, a researcher can not assume that students are used to the
form of representation that students need to use to provide the
study with data. Students will need practice to comfortably
write out their thoughts.

Another difficulty for this particular research design is that
students might grow bored or fatigued with answering the
same question again and again. Although students were
reminded that they might have changed their opinions or
thoughts during data collection, some students expressed that
they felt they had already answered the question and thus did
not see the point in answering it again. The two students in this
study answered the survey four times, although the answers do
seem to reflect some of the difficulties listed above.

4 Generating linguistic networks
and investigating them with
cognitive linguistics

The process of creating a linguistic network from a piece of
writing involves techniques derived from text mining (Feld-
man and Sanger, 2007) and linguistic network analysis (Ma-
succi and Rodgers, 2009; Masucci et al., 2011; Masucci and
Rodgers, 2006). This paragraph describes the procedure used

for the texts of this study. The procedure utilized the R
programming environment2 with the tm package (Feinerer
et al., 2008) for text mining purposes, and the iGraph pack-
age (Csardi and Nepusz, 2006) for network analysis.

First, the words in the raw text were reduced to their stem
form. This means the words like “waves”, “the wave”, and
“the waves” would be reduced to “wave”. The verb “to wave”
and derived forms (“(he) waves”,”waved”, “waving”) were re-
duced to “to wave”. Thus even if a verb or noun share a com-
mon stem, they are kept as separate entities. Furthermore,
some synonyms, which was considered obvious, were em-
ployed. For example the conversion of “(they are) equal” and
“(they are) the same” to just one phrase: “(they are) equal”.
While it is possible to train computer programs to do these
processes, for the purposes of this study, it was done manually
by search an replace. The final text mining step before convert-
ing to the non-reduced networks was to remove punctuation,
white space, and convert upper case to lower case.

Linguistic networks are made on the basis of adjacency in
texts (Masucci and Rodgers, 2006). For example, the phrase
“waves will meet” (Figure 1) will result in three nodes and two
connections (“wave”→”will”, “will”→”meet”). In this work,
if “wave” and “will” are adjacent n times a link of strength
n is created between the two words. The results are directed
networks, which can be analyzed using network measures like
the number of nodes (here entities), the search information -
a measure of navigability in a network (Rosvall et al., 2005)
- and the target entropy - a measure of the predictability of a

2http://www.r-project.org/

7



der

vil

forekomme

det

faenomen

vi

kalde

interferens

sige

at

naar

de

to

boelge
moede

hinanden
den

amplitude

har

paa

et

give

punkt

vaere

lig

enkelt

laegge

sammen

altsaa
hvis

ene

6

cm

i

en anden

hvor
4

sjippe

tov

10

person

svinge

praecis

maade

staa

(a)

forekomme

faenomen

kalde

interferens

sige

boelge

moede

hinanden

amplitude

give

punkt
lig

enkelt

laegge

sammen
altsaa

6

cm

4

sjippe

tov

10personsvinge

praecis

maade

staa

(b)

Figure 3: Two linguistic networks based on reduction of terms to their stem. (a) shows the network with no stop words removed. (b) shows the
network where common Danish words have been removed. The grey nodes are entities that the author connects with physics in this context.
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network Sneppen et al. (2005).
The verb to be is usually connected to propositions in lan-

guage and metaphors (A is B). Thus it might be a way of
“propositionalizing” image schemata. Removing this word
from a text might reveal structures that were not there before
for two reasons. First of all, if is is a common word, then
it will have a large amount of connections, thus dominating
the picture and obscuring other connections between words
that might be more significant. Second, removing is might
let the image schematic coordinations behind the text come to
the forefront. In general, removing the common words corre-
sponds to transforming them into links. Thus, in a linguistic
association networks, image schemata structure physics rele-
vant entities because they are links (and the propositional is
becomes one way in which image schemata can structure enti-
ties). Since all common words are removed here, the analysis
makes the crude assumption that common words are generally
linked to image schemata, while non-common words are not
or to a lesser degree. What it then revealed is the way all the
activated image schemata structure the physics relevant enti-
ties. The price for this maneuver is that image schemata are
not distinguishable.

Removing the common words leaves roughly half the words
as entities in each of the networks. This is shown in Figure
4(a), where the number of unique entities in the networks are
shown. The number of entities show a lot of variation accord-
ing to both the two students and the answer number. How-
ever for each type of network, the search information (Fig-
ure 4(b)) is much more constant for each type of network. It
shows a clear ranking both of the students (Thor’s networks

have higher SA’s than Gro’s), and also that the reduced net-
works - the networks without common words - have a lower
per path search information than the non-reduced networks.
This means that on average it is easier to navigate to a reach-
able node in the reduced networks, and this can not be ex-
plained just by there being fewer entities in these networks3.
It can be explained by the fact that the words removed are used
in many different connections, and thus will have many con-
nections in the network. Thus, navigating through them is dif-
ficult. In the same way, image schemata are used in a variety of
connections, so even if it was known what image schema was
in use, it would be hard to know what it was used for. In the
reduced network, if the entities represent concepts, and links
represent processes of associations then a low search infor-
mation would signify an efficient mental structure, with many
association paths connecting concepts. This might correspond
to many ways to reach an meaningful answer.

The target entropy (Figure 4(c)) is difficult to interpret from
these graphs. It is a measure of predictability, and both of
Thor’s networks start with a high target entropy (low pre-
dictability). They reach a minimum at the third answers be-
coming more predictable, only to rise at the end. A low target
entropy means that as seen from a given node, it is easy to
predict where the next message comes from (Sneppen et al.,
2005). If messages are analogous to associations in these net-
works, then a low target entropy would mean that the associa-
tions follow a set path. For example, a string of words would
not contribute to the target entropy, because it would be com-

3For example Thor’s non-reduced network 4 has fewer entities than his re-
duced network 3, but a higher SA
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Figure 4: Three graphs comparing different structural aspects of networks of two students’ writings. (a) The number of unique words, or
entities, present in the networks. (b) The average per path search information, that is the number of yes/no questions needed to navigate from
a given node to another node using an existing path. (c) The average target entropy, that is the predictability of the network. A low target
entropy signifies a high predictability.

pletely predictable where it ended. A network showing a high
target entropy would signify that many entities are reachable
from many places. If the entities represent physics concepts
and links represent association processes, this would signify
that a student could associate between many concepts when
answering a conceptual question.

It is tempting to say that the good student’s reduced net-
works are characterized by a large number of entities, a low

search information, and a high target entropy. This would
require that such networks could be coupled to the general
physics competency of the student, for example, the students
ability to use physics in different situations alone and with oth-
ers. The next section outlines some of the issues that further
research needs to address to make such a connection.
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5 Further development of the
connection between cognitive
schemata and linguistic
association networks

The development of networks to represent how image
schemata structure physics knowledge needs to address the
following issues.

• Investigate how it affects the structure and interpretation
of the network to convert words associated with different
kinds of image schema to links (for example, by remov-
ing them from the text).

• Find out if and how it is possible to reliably identify
meaningful words with regards to specific physics prob-
lems.

• Compare linguistic association networks to other ways of
evaluating student competency in the context of research
and teaching practice.

The first bullet anticipates that some image schematic mark-
ers are better viewed as processes of association in terms of
networks - meaning that they should become link (and per-
haps different types of links). However some might not be.
The links schema (Johnson, 1987, p. 117-119) seems like
an obvious candidate to be viewed as an association process,
marked by words like “and”, “but”, “or”, and “if-then” (John-
son, 1987) - but it could also be “the same”. The scale schema

(Johnson, 1987, 121-124) is a candidate for a schema that
might not be well represented as a link in these networks as
they apply to physics. The reason is that the markers would
overlap with markers that could resemble relationships be-
tween physics quantities where it is important to know, which
way the scale goes; whether something is larger or smaller
than something else, and how much larger or smaller, can be
important distinctions in physics. This could be solved by hav-
ing different types of links, for example, a larger than smaller
than type of link.

The second bullet calls attention to the fact that language
is a dynamic entity in itself. Language changes as it is used.
Thus student may refer to something as “that thing” mean-
ing, for example, the wavelength of a wave. The question
is, what kinds of words should be represented in the network
as words with a physics-related meaning. Distinguishing be-
tween words with a defined meaning in physics and the use of
more common words to describe such meanings might give in-
sight into the development of language. Maybe one would be
able to see how common words transform over time to physics
words, changing both the term and it’s connections with other
terms.

The final and perhaps most pressing issue is to establish the
extent to which linguistic association networks are useful for
evaluating student competencies. This can be done in a num-
ber of ways, for example, by relating student linguistic associ-
ation networks to students’ use of other representational forms
as one can investigate them by means of, for example, video
observation, analysis of other types of products, or interviews
of different kinds.
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6 Summing up

This paper has proposed to represent pre-linguistic mental
structures called image schemata as nodes or links in linguistic
association networks. Specific words can function as markers
of image schemata and it is suggested that they could signify
association processes when represented in linguistic associa-
tion networks. Physics terms in linguistic association networks
represent concepts since they represent some perceived regu-
larity. Such a projection of image schemata and physics con-
cepts may capture important aspects of how students under-
stand physical systems in specific situations.
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