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Introduction

Marianne Achiam and Carl Winsløw

Department of Science Education, University of Copenhagen

Introduction

This book presents the products of a doctoral course held in Helsingør, Den-
mark in August 2014. The course was entitled Mathematics and Science:
The relationships and disconnections between research and education, and
involved the participants in a series of discussions and reflections about
the intricacies of those relationships. Although the teaching and dissemi-
nation of mathematics, physics, biology, chemistry and other sciences in
educational institutions is fundamentally based on the research disciplines
that give them their name, the connections and disconnections between the
research disciplines and those of teaching are never trivial. The complex
process by which science (including mathematics) knowledge, values and
practices are apprehended from their place of production - the domain of
scientific research - and deconstructed and reconstructed in order to be-
come teachable in the domain of education is known as didactic transpo-
sition. Understanding this process and the phenomena related to it is the
fundament of the research programme entitled the Anthropological Theory
of the Didactical (or simply ATD) and was the focus of this course.

ATD proceeds from the observation that didactic transposition is in-
evitable and indeed, necessary, in any kind of educational undertaking.
However, the process is regulated by a number of factors, not all of which
correspond to didactic intents. On one hand, the role of school is not sim-
ply to transmit as large a portion of the scientific disciplines as accurately
as possible, but to form citizens who can function in today’s and not least
tomorrow’s societies. On the other hand, the distance between ‘living sci-
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ence’ and ‘school science’ is not always explained by this basic role, but
simply by the distance among research institutions and schools, as when the
school discipline perpetuates the teaching of knowledge which has become
more or less obsolete in scientific research and, eventually (sometimes even
quicker!) also in society. Thus, didactic transposition carries with it the risk
of delay (Quessada & Clément 2007), the introduction of notions in iso-
lation from their origin and thus concealment of the ‘true’ functioning of
science (Brousseau 1997/2002a), or ultimately, pathological substitutions
(Chevallard 1991). These phenomena have implications for variety of ed-
ucational contexts; from teacher education (Winsløw 2013) to the design
of teaching-learning sequences (Levrini & Fantini 2013), quality of text-
books (Quessada & Clément 2007) and development of museum exhibits
(Mortensen 2010).

In sum, didactic transposition must remain ‘alive’ and alert to new po-
tentials of interactions between ‘science in the making’ and, more broadly,
‘science in society’ on the one hand, and the teaching and dissemination
of science in schools and museums on the other. The societal and insti-
tutional conditions for maintaining these links differ from one society to
another, and so an international perspective can also help to identify possi-
bilities and obstacles in a particular society. It is the role of ATD to frame
and structure inquiries into didactic transposition phenomena, and to con-
tribute to explaining them. ATD thus provided the overarching conceptual
and theoretical scaffolding of the doctoral course.

We initially had 17 participants from six countries, representing almost
as many research fields. The course was arranged over five days of inten-
sive work (Appendix A), including lectures, workshops, participant pre-
sentations, and intensive feedback sessions. Prior to the course, the partici-
pants were requested to read a number of basic texts (listed in Appendix B),
and on the basis of these readings, to formulate a five-page paper outlining
their own research and how they proposed to use the theoretical frameworks
given in the readings in their own work.

During the course itself, the participants presented their ideas and ac-
tively participated in the discussions and reflections to further develop their
proposal, under the supervision of the course teachers and guest lecturers.

Finally, participants were required to submit a revised and expanded
ten-page version of their initial paper on the use of the theoretical frame-
work in their own research, based on the course discussions and reflections
and on the feedback from the course teachers. This aspect of the course was
further strengthened by the revision of the texts after the course through a
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peer review process (with the course participants acting as peers). A total
of fourteen participants went on to complete the course and produce pa-
pers that subsequently underwent peer review and revision. We are happy
to present these fourteen papers in the following sections of this booklet.

The course benefited from the presence of several international schol-
ars, including Professor Marianna Bosch from Ramon Llull University,
Spain, Professor Tetsuo Isozaki from Hiroshima University, Japan, and As-
sociate Professor Niklas Gericke from Karlstad University, Sweden. These
scholars have worked with the phenomena of didactic transposition in var-
ious ways in their research, and contributed their unique insights to the dis-
cussions in the course through a series of lectures, workshops, and intensive
feedback sessions.

To them, as well as to all seventeen course participants, we extend our
sincere thanks for having worked so constructively with us. To the partici-
pants: we are confident that you will be pleased with the results of your ef-
forts as presented here, and that you will take the projects you commenced
here on towards complete studies and eventually, journal papers.
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A Schedule of the course

Day 1 (Monday, August 18, 2014)
9:00-10:00 Welcome and introduction to the course

10:00-11:00 Didactic transposition as a key research tool. Lecture by
Marianna Bosch

11:00-12:00 Why to use the didactic transposition theory. Lecture by
Niklas Gericke

13:00-16:00 Participant presentations by Kaj Østergaard, Yukiko Asami-
Johannson, Heather Bort, David Johnston, and Aerin Benavides

16:15-17:45 Seminar led by Marianna Bosch and Niklas Gericke

Day 2 (Tuesday, August 19, 2014)
9:00-10:00 Group work led by Niklas Gericke

10:00-11:00 Studying exhibit design as a case of didactic transposi-
tion. Lecture by Marianne Achiam

11:00-12:00 Klein’s double continuity and the institutional contin-
gency of knowledge. Lecture by Carl Winsløw

13:00-16:00 Participant presentations by Søren Witzel Clausen, John
Andersen, Britta Jessen, Louise Meier Carlsen, Dyana Wijayanti,
and Kerstin Bäckman

16:15-17:45 Seminar led by Marianne Achiam and Carl Winsløw

Day 3 (Wednesday, August 20, 2014)
9:00-10:00 Teachers’ knowledge and its relation to scientific know-

ledge. Lecture by Tetsuo Isozakie

10:00-11:00 From REM to didactic infrastructures and teacher educa-
tion. Lecture by Marianna Bosch
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11:00-12:00 Group work led by Niklas Gericke

13:00-14:00 Seminar led by Tetsuo Isozaki and Marianna Bosch

14:30-17:45 Excursion to the Maritime Museum and Kronborg Castle

Day 4 (Thursday, August 21, 2014)
9:00-10:00 Science versus school science. Lecture by Niklas Gericke

10:00-11:00 Constraints and conditions for didactic transposition in
museums. Lecture by Marianne Achiam

11:00-12:00 Group work led by Tetsuo Isozaki

13:00-16:00 Participant presentations by Klaus Rasmussen, Gary Williams,
Steen Grode, Radka Stepánková, Nadia Azrou and Miguel Perez

16:15-17:45 Seminar led by Marianne Achiam and Niklas Gericke

Day 5 (Friday, August 22, 2014)
9:00-10:00 Group work led by Marianna Bosch

10:00-11:00 Professional and scientific knowledge: In-service cases
from Japan school science. Lecture by Tetsuo Isozaki

11:00-12:00 The interaction between research and teaching in univer-
sity institutions. Lecture by Carl Winsløw

13:00-14:00 Seminar led by Tetsuo Isozaki and Carl Winsløw

14:00-14:30 Closing and assignments



x Achiam & Winsløw

B Course readings

1. Achiam, M., & Marandino, M. (2014). A framework for understanding
the conditions of science representation and dissemination in museums.
Museum Management and Curatorship, 29(1), 66-82. (Excerpt)

2. Bosch, M., & Gascón, J. (2006). Twenty-five years of the didactic
transposition. ICMI Bulletin, 58, 51-65.
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Designing mathematics lessons using a Japanese
problem solving oriented lesson structure - A
Swedish case study

Yukiko Asami-Johansson

University of Gävle, Sweden

Abstract. This paper reports a case study of a lesson “Introduc-
tion of algebra” where a Japanese lesson plan, based on the “Prob-
lem solving oriented” approach was adapted in a lower secondary
school in Sweden. The analysis based on the Anthropological
theory of didactics explains the mathematical and didactical or-
ganisation of the implicated lesson. In this paper, it is also exam-
ined how the discrepancy between the Japanese and the Swedish
curricula influence the adaptation of Japanese lesson plans to a
Swedish classroom. The study showed that the epistemologically
well-structured Japanese curricula in Geometry limited the adap-
tation of lessons plans in Geometry. Such limitations were less ob-
vious in Algebra.

Introduction

Teaching methods, centred on problem solving, so called “structured prob-
lem solving” has been developed in Japan with an emphasis on making
the students active participants in the mathematics lessons, without losing
the focus on the mathematical content (Stigler & Hiebert 1999). Generally,
the didactical technique of this approach is to start up the lesson by pre-
senting problems that can be solved by varying methods and later having a
whole-class discussion on the settlement options. Kazuhiko Souma devel-
oped “The problem solving oriented” approach (Souma 1997) (shortened to
PSO; the author’s translation; “Mondaikaiketsu no jugyou”, in Japanese).
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It is a variation of Japanese structured problem solving, where teachers
emphasize the process of mathematical thinking and also focus on how to
enhance the students’ attitude towards engaging in mathematical activities.
The PSO approach has a quite specific routine:

1. State a problem in a way to incite a guess or immediate observations
on part of the students.

2. Let all students state a guess or hypothesis.
3. Discuss the viability of guesses and let students motivate their guesses.
4. Let students, individually or in groups, work on the problem, or, per-

haps, on a derived reformulation or a sub-problem.
5. Let students present their solution in class and discuss the different

solution techniques.
6. Turn to the textbook for an outline of the theory.

The points where PSO differs from other structured problem solving ap-
proaches is the emphasis on having students making conjectures or guesses.
Souma stresses the need for open–closedness in the design of appropriate
tasks; the student response – the answers – should be predictable but give
rise to variation of the methods. The PSO methodology also contains ele-
ments for establishing motivation, a didactical contract (Brousseau 1997),
as a necessary condition for establishing a successful discourse.

From 2010 to 2011, I carried out classroom observations in a lower sec-
ondary school in Sweden, where the teacher applied lesson plans accord-
ing to PSO’s basic lesson structure. One practical reason for choosing to
employ Souma’s PSO approach, among several variations of the Japanese
structured problem solving approaches, was that it supplied a lot of material
ready to use in lessons. Souma has written and edited a number of practical
books, including textbooks (2012), in which he proposes lesson plans using
the PSO approach and which also contain collections of problems, suitable
for the different sections to work with. His second book, “The problem
solving oriented approach” has reached its 13th edition since 1997 and his
task collection is now the 9th edition since 2000. This means PSO is quite
successful with regards to publishing books on mathematics education in
Japan. The fact suggests that teachers in service in Japan actively use the
PSO approach. Also, as I mentioned above, PSO has very clear basic struc-
ture which is quite easy to follow even for Swedish teachers.

In a case study that covered the introduction of negative numbers, I dis-
cussed how the PSO approach influences the students’ attitudes towards
participation in lessons (Asami-Johansson 2012). In this long-term empir-
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ical study, I found that Souma’s lesson plans in geometry were difficult to
adapt to our Swedish lessons, while the sections on arithmetic and introduc-
tion of algebra were comparatively easier to work with. One could assume
that it was due to the discrepancy between the Japanese curriculum, which
the PSO lessons largely follow, and the Swedish counterpart.

The aims of this paper are twofold. First, to report a case study of a les-
son in “Introduction of algebra” and estimate the mathematical and didac-
tical organisations of the PSO adapted lesson. Subsequently, I will describe
the students’ activities during a lesson and how they become encouraged to
inquire the knowledge of algebra. The second aim is to find out to what ex-
tent the discrepancy of Japanese and Swedish curricula influence the adap-
tation of Souma’s lesson plans and to show what kind of epistemological
difficulties that rise when one try to adapt Japanese lesson plans in Sweden.

Theoretical Framework

The didactical transposition theory

Chevallard developed the concept of didactical transposition – the content
of the knowledge adapted for the purpose to be taught within a given in-
stitution. It means that transposition from scholarly knowledge (Bosch &
Gascón 2006), which was produced in the community of mathematicians,
into the knowledge for teaching, for different levels within the teaching
system. Bosch & Gascón (2006) illustrated the steps of didactical trans-
position process through different institutions as Scholarly knowledge →
Knowledge to be taught→ Taught knowledge→ Learned, available know-
ledge (ibid, p. 56). The “knowledge to be taught” is, designed by institu-
tions, which Chevallard calls noosphere – sphere of those who think (Greek
word, noos – mind), which is a non-structured set of experts, who have a
big influence within the education system, like educators, curriculum de-
velopers, politicians, text book authors and so on (Chevallard 1992b). The
“taught knowledge” is created by the institution of the teachers’ praxis. The
“learned, available knowledge” is the knowledge formed by the learners in
the classroom.

The anthropological theory of didactics

Chevallard’s anthropological attempt to study the mathematical knowledge
in an institutional context extended into “the anthropological theory of
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didactics” (ATD) (Bosch & Gascón 2006). There, mathematics learning
is modelled as the construction within social institutions of praxeologies
(ibid). A praxeology supplies both methods for the solution of a domain of
problems (praxis) and a framework (the logos) for the discourse regarding
those methods and their relations to a more general setting. A praxeology
describing mathematical knowledge is also called mathematical organisa-
tions (MO) (Barbé et al. 2006). The praxis can be described by the set of
tasks and techniques, which is applied to solve the tasks. The logos consti-
tute of a technology, which justifies the technology and a theory, which in
turn, justifies the technology. A didactical organisation (DO) is a praxeol-
ogy developed by teachers to organise the work of achieving an appropriate
mathematical organisation (ibid) and consists also of tasks, techniques, a
technology and a theory.

The act of the didactical transposition

Japanese curriculum

Japanese teachers in lower secondary school (grade seven to nine, students’
ages are between 13 to 15) are supposed to refer and mind “The Commen-
tary to the Course of Study” (“Gakushu shido yoryo kaisetsu” in Japanese,
Ministry of Education, Culture, Sports, Science and Technology, shortened
to MEXT, 2008). There, the goal and significance of learning the domains
are described in detail. In the domain “Numbers and Expressions”, the goal
is to cultivate students’ ability to the use of algebraic expressions to rep-
resent constituting relations between quantities. The understanding of such
representations with expressions, together with skills calculating with alge-
braic expressions is also stressed.

The focus in the description of the domain “Geometrical Figures” is
about training students’ skills of observation and their skills in making
correct proofs. The content of “Geometrical Figures” for grade 8 consists
of: 1. parallel lines and angles, 2. property of polygons, 3. congruence of
polygons, 4. mathematical assumption, 5. necessity and significance of us-
ing proof, 6. properties of triangles and parallelogram, 7. reading a proof
and finding out a new property. “The students begin by studying to de-
duce mathematical proof coherently and logically by studying the property
of parallel lines and vertical angles” (ibid, 92). The intention of the first
paragraph is that, through learning the properties of vertical angles, parallel
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lines and transversal lines and corresponding angles, students will be able
to draw the conclusion of properties of alternate angles and vice versa.

The commentary explains that it is a core mathematical strategy to rea-
son on things using previous knowledge, for instance – the triangles an-
gle sum – to deduce corresponding result on the sum of polygons’ inner
angles. The goal the paragraph Congruence of polygons is to deepen the
students’ perception of geometrical figures, by understanding the notion of
congruence of polygons. One starts from the “conditions of congruence of
triangles”. In this way, one develops the students’ abilities of logical think-
ing and their ability to express their reasoning. The significance of under-
standing congruence of polygons and triangles is emphasized. Similarly,
the necessity of proofs and methods for proofs is stressed. Considering the
basic properties of triangles and parallelograms by studying conditions for
congruence is also emphasized (ibid, p. 93).

Geometry to be taught

The Commentary shows clearly that the focus is on deductive proofs, where
one should learn to apply previously established theorems. Miyakawa
(2014) has made a study on the use of mathematical proofs in school geom-
etry for lower secondary schools. There, he discussed the Japanese know-
ledge to be taught in the domain of mathematical proofs and discussed why
some part of it is present in the curriculum and others parts are not, using
the notion of an ecology of mathematical praxeologies (Chevallard 1992b,
Bosch & Gascón 2006). Miyakawa points out that there are two character-
istics in geometry to be taught; first, that it emphasizes generality, second,
that one works with a “quasi axiomatic” geometry (2013).

Miyakawa explains that the treatment is usually general, where one set
out to prove various universal propositions. In the Commentary for the
Course of study, the definition of proof is stated as “a method to clarify
that a proposition is always possible to be applied without any exception”.
The phenomenon of emphasizing generality is notable within the domain
of proofs (ibid, p. 350).

The second issue “quasi axiomatic geometry” is about the system of
geometry. Miyakawa means that, similar to the axiomatic system of Eu-
clid’s Elements, the system of Japanese school geometry is roughly (that is
why the term quasi is used) axiomatic. The quasi axiomatic geometry is a
specific theory within the regional praxeology of geometry constructed in
lower secondary school. It is a simplified version of Euclid’s geometry for
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use in the school mathematics. This theory contains deductively approved
theorems, which are also approved one by one, and derived from a few
accepted axioms (ibid, p. 350).

Regarding the geometry to be taught in the Swedish lower secondary
school, presented in the curriculum from 1994 (Skolverket 1994), no de-
scriptions for learning axiomatic proof is found. To learn and state geomet-
rical theorems and to implement deductive proofs of such theorems is not
required in lower secondary school. This discrepancy constituted the main
limitation for us, in our attempt to adapt Souma’s lesson plans in geometry
in Swedish mathematics lessons.

Knowledge to be taught in arithmetic and algebra

On the other hand, the connections, between different sectors in arithmetic
and algebra in the Course of study, are not as strong as in geometry. A de-
ductive proof is not obligatory in arithmetic and algebra: one does not start
from the Peano axioms and the definition of the order of natural numbers,
to prove that the number two is greater than one. Such statements are al-
ready generally accepted for cultural reason. Theory based on axioms and
deductive proofs is not indispensable for the fitness of the mathematical
praxeologies constructed in arithmetic and algebra.

That the sectors in the Japanese arithmetic and algebra are less explic-
itly connected reflects on the sequence of Souma’s lesson plans. Hence,
we could adapt the lesson plans from arithmetic and algebra comparatively
easier than those from geometry. There are many more commonalities be-
tween the Japanese and Swedish course of study in arithmetic and algebra.
Both include an extension of the number concept to the negative numbers
and rational numbers and respect for acquisition of basic skills of arith-
metic operations with symbolic expressions. Both curricula treat the use of
algebraic equations as a powerful tool for modeling. Both use identities be-
tween algebraic expressions for stating arithmetic laws and formulas and,
similarly, to state equivalences, as in the cancellation laws for equations.

A case study in Swedish classroom

Praxeology in Souma’s lesson plan

In Souma’s lesson plans for grade seven, the section of “Introduction of
variables” is located in the chapter “Algebraic expressions” (Kunimune &
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Souma 2009). The goal of the chapter is “to express quantities and the re-
lations between different quantities simply, clearly, and generally by using
algebraic expressions” (ibid, p. 26). The focus of this section is to introduce
modelling using variables, before starting to train students’ skills of solving
problems with linear equations. The weight is put on making the students
realise the convenience of using formulas; for instance, the formula for the
area of a triangle. The goal of the lesson is described as “to let the students
understand the significance of using variables instead of numbers” and “to
develop students’ ability to explain their thinking process to each other with
the use of images/figures and formulas” (ibid, p. 27). To realise that goal,
the task is formulated so that the students should generate a formula that
determines the total number of stones in a square. Firstly, one needs to find
a solution (in several different ways) for the case of 5 stones on each side.
Later, the students use the same arguments for the case of 20 stones on the
each side. These activities will lead to the finding and statement of a for-
mula in the variable n, defined as the total number of n stones one side of
the square.

The task in the lesson plan is posed as follows: “We will make a square
putting stones as the picture below. If one of the sides consists of 5 stones,
how many stones are used in total?” (ibid, p. 27) (See Figure 1.1)

Fig. 1.1: Illustration of the task; “How many stones are used in total?”

The lesson plan assumes students might find out the following methods
(see Figure 1.2) to determine the number of the stones (ibid, p. 28):
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Fig. 1.2: Illustration of students’ possible solutions.

When the students have suggested those techniques, the teacher states
a next task: “If one of the sides consists of 20 stones, how many stones are
used in total?”, “If one of the sides consists of n stones, how many stones
are used in total?”.

The goal here is, letting the students to notice that it is possible to
apply the same set of methods to determine this task. According to the
figures above, the techniques (τ), of the lesson plan suggests the follow-
ing expressions for the result: τ1 : (n · 4)− (1 · 4),τ2 : (n− 1) · 4,τ3 :
(n ·n)− (n−2)2,τ4 : (n−2) ·4+4. The distributive law can then be used
to solve the sub-task to show equality of these expressions.

The technologies (θ), which are not explicitly mentioned in the lesson
plan (except the θ1“figures”) but are noticeable, which are: θ1: the use of
figures, θ2: the additive and inclusion-exclusion laws for the cardinality of
sets, θ3: the distributive law, θ4: the squaring law for the cardinality of a
squared set.

The theory (Θ), which justifies those technologies are: Θ1: arithmetic
operations and Θ2: algebraic expressions, and Θ3: cardinality of sets.

When we planned the lesson of introduction of algebra for the grade
8, we had the aim to illuminate the concept of modelling, using variables,
and to develop students’ skills to explain the process of their reasoning
by using figures and formulas. In a sense, we adopted the lesson plan as
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it was from Souma, without adding additional techniques or technologies.
Two lessons were implemented for the introduction of algebra. One lesson
using the lesson plan mentioned above and another lesson that compared
different algebraic expressions, in order to find out which expressions are
actually identical. Thereafter we started to implement lessons on modelling
with linear equations. We followed the sequence of Souma’s lesson plan for
the sector “Algebraic expressions” for the domain “Algebra” in our lessons.

The lesson

This is a lesson we have initiated as the introduction of algebra to the class
of grade 8. The data collection method I applied in this study is classroom
observation with video recordings and written protocols. In total 18 stu-
dents attended this lesson. They have learned to solve basic linear equa-
tions like 2x+ x = 15 at grade 7. The teacher starts the lesson by writing
the word “general solution” on the whiteboard. She asks the class if any-
one has heard the word “general solution” before. A student answers it may
mean “something common”. The teacher states that it means “a solution,
which is applicable for all values”. Then she draws the first figure of the
square with stones and asks the class what kind of figure she has drawn.
A student answers “a square” and another student “four equal sides”. Then
the teacher asks how many stones totally are in the picture. Nirma immedi-
ately answers it is 20. But when Alex answers shortly after it is 16, Nirma
corrects her conjecture to 16 as well. When the teacher asks Nirma why she
thought it was 20, she answers:

Nirma: Well, you said, 5 stones on each side. And there are 4 sides, then
20. I was little too quick.

Teacher: Ok, I understand exactly how you thought. (turns to the class) Do
you understand how Nirma thought? . . . Alex? Why did you think it
was 16?

Alex: (Points at the squarer) 4 stones on the bottom . . . then disappears [He
means actually “shifts”] one stone on each side

T: You mean. . . (circles first, the four stones on the bottom, then all the
other sides) here? [see figure 1.2, nr. 2]

In this episode, Nirma notices that something must be done to calculate the
total number of the stones. It does not work with simply using 5 times 4.
She understood it as soon as Alex started to explain. The teacher states the
main task for today. Nirma wants to explain.
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Nirma: One takes away one stone from each corner.
T: You mean these? (circles the stones on each corner) [see figure 1.2, nr.

4]
Nirma: Yes, then three stones from the two sides . . . six stones . . . and an-

other six stones from another two sides. 4 + 6 + 6. 16 stones.

Here, Nimra suggested actually τ4 : (5− 2) · 4+ 4. She has probably
focused on the number 4 and the total number 16 and automatically counted
the rest 12. She might somehow have associated 6 as a factor of 12, than 3,
then added two 3s and made 6. The teacher later modified her expression
to 3+3+3+4 and furthermore to 3 ·4+4 through asking Nimra and the
class. Vincent suggested 2 ·5+2 ·3. It is not shown in Souma’s lesson plan,
so we call it τ5 : 2n+ 2(n− 2). It is a variation of the τ1 : (n · 4)− (1 · 4).
Oliver’s idea is τ2 : (n−1) ·4, which is same solution Alex described in the
beginning.

Now the teacher steers the lesson to the next step. The students are sup-
posed to work in pair and consider the ways to determine the total number
of the stones when there are 20 on each side. The teacher gives the students
several minutes and walks around between the groups. She listens to the
different groups discuss and asks some groups to present their solutions.
Vincent and Umit have found τ2 : (n− 1) · 4 and write directly 19 · 4 (see
figure 1.3a). Muhannad and Bint have chosen τ5 : 2n+2(n−2). They write
a square with “20” by the two horizontal sides and 18 by the vertical sides
(see figure 1.3b). Nimra and Rachel use τ1 : (n · 4)− (1 · 4). They write a
square with “20” on all sides and added “– 4 corners” (see figure 1.4a).
Oliver and Magda have found τ2 : (n−1) ·4. They write on the whiteboard
(20− 1) · 4 (see figure 1.4b) which shows the process of their solution di-
rectly.
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(a) Vincent and Umit’s solution.
(b) Muhannad and Bint’s solu-
tion.

(a) Nirma and Rachel’s solution. (b) Oliver and Magda’s solution.

Then the teacher asks the class in which way one can express the total
number of dots using n.

T: For instance, if the n is one million, how we can express the total num-
ber of the stones?

Ahmed: One million times 999,998.

T: Ok, you mean this one (points Muhannad and Bint’s solution 2 ·20+2 ·
18) [see figure 1.3b]? Anyone else?

Oliver: If we use our example, it will be n minus 1, times 4.

T: (writes down (n−1) ·4 below Oliver’s solution (20−1) ·4). Is that cor-
rect (asks the class)? Put in 5 in n and see if it will be 16 (points the
formula). Is (n− 1) · 4 must be as it looks like? Can we move 4 to in
front of (n−1)?
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Students: We can bend the place.

T: Really? Ok. (writes (n−1) ·4 = 4(n−1)).

Ahmed’s answer shows that he has an idea to show how the technique
works. But he has not really understood to express his reasoning correctly.
On the other hand, Oliver has already seen how the technique works. There-
after, the teacher takes up Vincent and Umit’s solution 19 · 4. She asks the
class to consider how it could be expressed using n. Vincent explains that
19 came from 20− 1. The class establishes that 20− 1 can be expressed
also n− 1, then this solution is also 4 · (n− 1). Then the teacher asks the
class to express Muhannad and Bint’s solution, 20+ 20+ 18+ 18 and the
students confirm that it will be expressed 2n+2(n−2) = 4n−4, as well as
Nimra and Rachel’s expression.

It might still be that not everyone in the classroom has grasped the al-
gebraic operations. However, the intention of this lesson was to connect the
different techniques τ1, τ2, τ3 and τ4 in a common technological discourse.
Three of the four proposed techniques; τ1: (n · 4)− (1 · 4), τ2: (n− 1) · 4
and τ4: (n−2) ·4+4, were suggested by the students. These techniques are
technically justified by the technologies the use of figures, θ2: the additive
and inclusion-exclusion laws for the cardinality of sets, θ3: the distributive
law.

Conclusion

The Japanese curriculum provides a relatively detailed fundament for the
large mathematical (and also didactical) organisations, at least in compar-
ison to the Swedish curriculum proposed by government-level agencies.
As a consequence, the transposition from the knowledge to be taught to the
taught knowledge shows less variation in Japan. This precondition of a large
and integrated mathematical organisation makes it hard to adapt Souma’s
lesson plans in geometry in Swedish mathematics lessons.

One significant finding from the analysis of the empirical study is the
power of the tasks. The task looked quite simple but not so apparent to be
able to guess correct answer directly. It also generates several techniques,
which was justified by several technologies and gave an opportunity for the
students to explain their reasoning.

The other finding is the power of the guessing technique. Nirma’s case
shows that, the guessing moment played an important role to initiate the
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didactical process and thereby giving her an opportunity to participate in
the lesson.
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Teaching mathematics and difficulties with
proof at undergraduate level
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Abstract. This paper presents our work in progress, which is about
the difficulties of university students with proof and proving in
a course of Complex Analysis. We analyse students’ productions
through tests administered during a third year Complex Analysis
course in an outstanding, selective School of Engineering in Al-
geria. The analysis uses the tools of the anthropological didactic
theory to evaluate the teaching of mathematics.

Introduction

Mathematic proof activity is one of the problems that face students at all
levels, at the university level; research has documented that many students
still struggle with proof regarding many aspects (Harel & Sowder 1998,
Weber 2001, Moore 1994, Selden & Selden 2003, 2007a, Dreyfus 1999,
Pedemonte 2007). The situation in Algerian universities doesn’t provide an
exception for this question, at the undergraduate level; proof and proving
becomes not only a recurrent activity for students, but also the only means
for students’ evaluation. Moreover, it has been reported by many teachers
that this might be one of the principal causes of students failing in math-
ematics which led to the disaffection towards mathematics and engineers
disciplines for many years.

Our analysis, in this paper, would show how the institutional choices
have been set regarding teaching and learning proof and how do they affect
the proving ability of students at the undergraduate level.
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We use for this purpose analysis of students’ copies for given tests with
some chosen questions emphasising on the anthropological didactic theory
elements.

Proof at university level

Proof is the essence of mathematics at tertiary level, if we don’t prove, it is
just not mathematics. Mathematical activity goes beyond formulas and cal-
culations; it’s all about constructing objects, results and even conjectures.
The transition to proof at tertiary level occurs at many levels, students’ con-
ception of proof does not correspond do what they are required to produce
at the university level (Selden & Selden 2007a, Harel & Sowder 2007, We-
ber 2006). They are first faced with the unclear and inexplicable necessity
to prove, then, they confuse argumentation with proof (Balcheff 1999, Du-
val 1995, Douek 1999, Thurston 1994, Boero et al. 1996) and assume a
proof to be one of some situations like: verifying a property for some ex-
amples, giving a diagram or a graph, a proof is true if given in a book or by a
teacher. The objectives and the focus is not the same as in school mathemat-
ics, as pointed out by Winsløw (2008). Proofs with university mathematics
are different from those made at school, they are more precise, concise, and
more formal, they are also more complex; moreover, they require a deep
larger knowledge base (Selden 2010). The didactic contract changes from
school to university, “from describing to defining, from convincing to prov-
ing in a logical manner based on definitions” (Tall 1991, p. 20). The log-
ical formal language using quantifiers and implications along with logical
connectives in definitions, theorems and results is a major obstacle to stu-
dents (Epp 2003, Selden & Selden 2007a). University teachers, who know
a little about mathematics courses in high school, assume that students are
familiar with this language (Clark & Lorvic 2009, pp. 763-764). Students
are required to have more autonomy and flexibility between mathematical
registers (e.g., algebraic, graphical, or natural language); some results can
serve as partial results on a path toward an important theorem (Larson as
cited in Selden (2010)). Students need to have meta-mathematical know-
ledge and establish links between concepts. “Sometimes, a proof requires
not only applying directly a theorem in a particular case, but also to adapt
or even to transform a theorem before recognizing and/or using it (Guzman
et al. 1998).”
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Proof in the curriculum

Let’s first set an overview of proof teaching from elementary school to the
university level (in Algeria) to examine the whole process which is close to
some countries’ one. In elementary school, children do not get (or rarely)
any idea about argumentation, they always trust the teacher who has the last
word (the correct answer). In middle school (or lower secondary), proof
activity appears first in geometry (angles, triangles...). Even if students en-
counter proof for the first time at this level, they do not seem to pay at-
tention to what really a proof is or what does this proving process teach.
During the next years (four to five) till the end of high secondary level,
proof doesn’t appear at all in mathematics activity as it did in geometry.
When students reach the university and if they choose mathematics or any
engineer’s discipline they have to deal with proof every day. This creates a
non suitable situation for the students to learn proof. Not only students do
not know what a proof is and what are they required to do when they are
asked ‘prove that...’, but they lack many important skills that allow them to
do well with their proofs, unfortunately many of these skills are not taught
to them.

Theoretical framework

We will use in our analysis the didactic transposition theory. It’s the whole
process made to any knowledge to be ready taught to students. The pro-
cess begins with a selection, by some scholars and other people concerned
about teaching and learning of some specific information related to some
discipline called scholarly knowledge, then the knowledge to be taught is
designed in curricula and institutions programmes, the taught knowledge
is the effective practices, subjects and activities taught in classrooms, and
finally the learnt knowledge is the one the students got at the end of the
learning process. In doing so, any knowledge is allowed to be ‘taught’ and
transposed to another situation that is concrete and applicable to be used by
learners. In our case, we’ll discuss the teaching of mathematics regarding
the teaching of proof and proving activity. It’s not a mathematical content
per se, but we’ll examine where (in which case of the previous steps) it is
introduced and how during the university level. Our analysis will be also
supported by the anthropological didactic theory of Chevallard. In order to
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study the institution practices related to an object of knowledge, Cheval-
lard proposes modeling the mathematical activity into ‘praxeology’ as an
organisation into different steps.

It consists of the four following elements: [T,τ , θ, Θ ] where:

• T is a task that is introduced by any order like: show, prove;
• τ is a technique which is the way or means to realise, accomplish or

solve the task ;
• θ is a technology which is the discourse explaining and justifying the

use of the previous technique τ;
• Θ is a theory which is the technology of technology θ, it’s the main

source of the principles supporting the justification of the technology.

[T, τ] is called the pratical block of the praxeology which stands for the
doing-how or the practical knowledge, and [θ, Θ] is called the theoretical
block which stands for the theoretical knowledge.

Teaching proof

When considering research about proof and proving in undergraduate level,
it’s not hard to see the constant position that presents this activity as an ob-
stacle for students regardless the culture, the country or the mathematical
contents, which might be translated as a meagre learned knowledge of stu-
dents about how to make proofs and about what a proof is. Looking back at
some steps in the didactic transposition process, merely ‘taught knowledge’
and ‘knowledge to be taught’; we can see many mathematical concepts and
contents in books and teachers’ courses. Teaching mathematics is reduced
to a classical and traditional exposition of definitions, theorems and their
proofs. These proofs are more presented as evidence or reason that these
results have been proved, that is to be trustful and taken for granted, rather
to teach proofs and show some examples about proving process. The fo-
cus in teaching mathematics at the undergraduate level is more about the
concepts, their understanding and their uses; these aspects are more em-
phasized during proofs given by teachers. A clear difficulty with this model
of mathematics called definition-theorem-proof (DTP) is that it doesn’t ex-
plain the source of the question (Thurston 1994). Another aspect that might
act as a veil to see in depth the core activity of proof and proving is the high
level of formalism in mathematics at the university level. Algerian teaching
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at this level that occurs in French has inherited the Bourbaki aspect of writ-
ing mathematics whose strong focus is on propositional logical symbols.
With this kind of teaching, students learn that mathematics’ statements, re-
sults and especially proofs are reduced to a set of syntactic rules more than
what could be expressed behind, as ideas and links. An additional difficulty
for students is to unpack the logic of mathematical statements to be able to
make proofs (Selden & Selden 1995). But proof is more about substance,
conjectures, discovery ideas and communicating insights than about the for-
mal shape (Thurston 1994). At the university level, students are supposed
not only to be engaged with proving, but also to construct proofs using
theorems, definitions, and multiple other results and techniques (Winsløw
2008), in other words, the theoretical block should be assumed by them.

Research findings indicate the need for teaching proofs and proving
process (Dean 1996, Hanna 1989, Mariotti 2006, Moore 1994, Selden &
Selden 2007b) that would provide students with a clear conception of a
proof and proving process, and how it should be done and written. Many
researchers (Hanna 1989) question the way proof is presented by math-
ematics teaching and propose other ways that show both the exploratory-
discovery and structural sides of the proving process focusing on discussing
the arguments more than on the formal side. Contrarily to what most math-
ematics teachers assume, mathematical thinking does not automatically
emerge from a study of mathematics (Burton 1984). As cited in (Dean
1996), they (proofs) do not provide insight into the logic of the discov-
ery. The question is not, what is the connection between concepts shown in
the proof, but rather, how does one come to make the conjecture in the first
place, or how does one then construct the proof, or how does one come to
understand the proof.... The actual history of proof conflicts with the pre-
sentation of a proof as an ahistorical certainty that is typical of classroom
presentations. Richards (1991).

Complex analysis course

The complex analysis course that supports our study is a course for students
of third year, either are mathematics majors or engineers. The course whose
description will be detailed is for engineers students in a high competitive
school in Algeria. It’s a school preparation of three years, after this period,
students will leave to another school in which they will choose some spe-
ciality. Students are selected by an exam at the entrance to the school in
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the first year; only a limited number are accepted to maintain a quality of
education and organization. The programmes in the school are all covered,
and the exams are of a good level, more time and organisation is devoted to
exercises sessions. All these elements are about to indicate that the students
are hard workers, whose prerequisites are complete and possible difficulties
are not a result of unfinished programmes or low achievers students.

The course is rich gathering contents in algebra, geometry and basic
analysis along with topology. I was one of the two teachers who taught it,
during the exercises sessions. The course curriculum is covered during 28
weeks with two course sessions (one hour and a half for each) and two
exercises sessions (one hour and a half for each) per week. It’s important
to notice at this level that the course contents are too many to cover in a
short time, which indicates a quantitative approach rather than a qualitative
one of the constitution, this situation doesn’t help for learning and teach-
ing proofs. The time is mostly devoted to present contents definitions, re-
sults and theorems, the objectives are more about ‘explaining’ the concepts
and the theorems than working and practicing in proving other results. The
courses are given in a magisterial way where the teacher writes and ex-
plains, no much time is devoted to questions, and particularly proofs are
exposed just after the theorems. Knowing that they will never get proving a
theorem in their exams questions, students do not read again these proofs.
The exercises’ sessions are about solving some exercises given generally
ahead of time to the students. Teachers expect students to ‘try’ to solve
them and then expose their successful or unsuccessful attempts. Not all the
exercises are solved in a formal way, some of the proofs are explained, main
ideas and plan are shown, and finally tiny details that seem obvious are left
to the students along with the final proof text, that are rarely checked later.

Methodology

Our study examines the written personal proof texts of the students. We
have given four tests (in French) for the students every two months during
the academic year. We have chosen to give each test just before an official
exam (there are four exams), to be sure that students have revised, worked
and mastered the contents in question. Each test contains three questions
and lasts thirty minutes. Students had to respond on the test sheet where a
blank of some lines has been left under each question. To help students not
giving blank sheets in case they are stuck, which is not helpful for our study,
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finally we added a notice in the sheet inviting students to give a reason or a
remark in case they don’t know the response or are stuck, making clear that
this test is meant to know more their difficulties to overcome them rather
than judging them. The analysis will use the anthropology theories tool and
will be focused on how proofs presented in the teaching affects students’
ones.

A-priori analysis

We’ll examine the test 3, and analyse only the first exercise along with two
interesting students’ productions.

Exercice 1:
Let f (z) = z+1,z 6= 0 a holomorphic function. Let γ be the upper
half circle of the unit circle. Calculate

∫
γ

f (z)dz.

The exercise is about calculating an integral, along a familiar path which
is the upper half of the unit circle, of a holomorphic function. Students are
required to use the integral on a closed path theorem along with the pa-
rameterisation of the half circle which requires knowledge in both algebra
and geometry. This kind of exercises is very usual to the students who are
very familiar with calculating integral using a suitable parameterisation.
Therefore, this exercise uses a technical knowledge already mastered by
the students. Besides a clear understanding of the results about calculating
an integral through a closed path, we expect students not only to calculate
formally the integral but also to give the necessary justification that sustain
their ideas and claim.

A-posteriori analysis

Among almost one hundred students (98), only 52 students calculated cor-
rectly the integral and gave the final result which is iπ. The rest of the
students whose answers are wrong, 29 one calculated the integral using a
new closed path in order to use Cauchy integral formula and 17 students
made varied mistakes about the chosen angle of parameterisation and the
primitive function. Let’s recall the Cauchy’s integral formula.

Theorem (Cauchy’s Integral Formula): Let γ be a simple, closed, posi-
tively oriented contour. If f is analytic in some simply connected domain S
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containing γ and Z0 is any point inside γ, then f (z0) =
1

2iπ
∫

γ

f (z)
z−z0

dz. Which

is the same as giving the integral value
∫

γ

f (z)
z−z0

= 2iπ f (z0).
Most of the students who used this formula, although impossible to use

as the path is open, considered the path closed by adding to the half circle
the segment [-1,1].

Then, transforming the function to be f (z) = z2+1
z , they denote the nu-

merator by h(z) to obtain the same form as the theorem’s one h(z)
z−0 such that

the function h is holomorphic in the whole domain delimited by γ, then the
integral formula follows:

∫
γ

f (z)dz = 2iπh(0) = 2iπ.
These students used a technique that is supported by a theorem that

cannot be applied in this case. It’s a difficulty at the theoretical block. The
misuse of the theorem tells about how and what the students remember
about the theorem. They remember this theorem more by the formula of the
integral and the function form to be integrated more than by the conditions
within which this theorem should be used.

Fig. 2.1: Production 1

In this production, the student works the form of the function to make
it look as the one used by the theorem f unction

z−criticalz0
, then she gives the two

possible results according to the position of the critical point (which is cor-
rect). But, even though she denotes the critical point by 0, she writes z in
the conditions to refer to 0. We think that she meant 0 and didn’t pay atten-
tion to this mistake. However, the response doesn’t give the final value of
the integral as the student doesn’t decide which case the question is about.
Moreover as the path is not indicated, we might think that the students either
assumes it close or didn’t care about it which means that she doesn’t know
the conditions of the theorem. This response seems to be more reciting a
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theorem than applying it. The student shows that she knows the theorem to
apply, but not mastering it fails to let her know how to apply it.

Fig. 2.2: Production 2

In this response, the student shows a new considered close path (the up-
per half circle along with the segment) rather than the given one, which is
a change of the exercise’s hypothesis, she made this change certainly to be
able to apply the theorem. For this student, the conditions of the theorem
are clear. Denoting by h the numerator function (as stated in the theorem
formula) and considering 0 as to be the critical point, she gathers the princi-
ple elements of Cauchy’s formula. Then, the students remarks that because
0 is not in γ, she can finally find the result 2iπ. This last step is not clear
for us, the students gives a conditions that is not stated in the theorem, be-
sides it’s not clear what γ stands for, is it the upper half circle or the closed
path (with the segment) showed in the picture. According to the theorem,
if the critical point is not in the domain, the integral value is 0. If this is
the situation the student refers to, she should give 0, but the result given
suppose that the point is included in the domain, two opposite facts that do
not explain what the student meant by saying that 0 is not in γ. We suppose
that, by adding the segment to the path and 0 becomes on the path edge, the
student gave a very unusual situation which is neither treated by Cauchy,
neither taught by the course programme (the students know it already), this
pushed probably the student to confuse the cases of the theorem.

Conclusion

These two productions show problems at the theoretical block of the an-
thropological theory elements. This problem leads to mistake the practical



26 Nadia Azrou

block. A wrong technique is used because students mistake the theorem to
use. Remembering and memorizing a theorem by its final result and failing
to state the conditions first, suggests a wrong technique. On another hand,
teaching a theorem doesn’t go till mastering its use, students show that they
know which theorem they might use by reciting it like they remember it (not
necessarily mathematically), not complete, without questioning its condi-
tions. This kind of teaching, at the university level, might reflect a choice
that does not match with proof and proving activity where students are re-
quired to adapt the theorem to a new situation and establish the possible
solutions or cases after deep understanding. It also indicates how the stu-
dents do in mathematics by findings tricks (even not available) that would
make the situation sound true, which tells about their poor meta-knowledge
(or a culture) about mathematics and especially about proof that is not taken
into consideration in the didactic transposition. Learning proofs doesn’t oc-
cur by learning mathematics contents; it’s about developing skills related
to many components as (concepts understanding, mastery of mathematical
language, strategic knowledge, meta-mathematical knowledge, mastery of
different registers and techniques), but not limited to these. Proofs as pre-
sented in books and by teachers, already ready in their final version, are
shown to support a validity of a result. The teaching doesn’t tell how these
proofs have been constructed, developed and validated, and how results
have been conjectured. Moreover, the process of constructing proofs (ex-
ploratory phase, argumentation phase, text writing phase, Arzarello (2000))
is nowhere revealed to the students, to let them see that proofs are not lin-
early made and written. The didactic transposition along with the teaching
of proving process need more work and research to be adapted and shaped
in order to overcome students’ difficulties with proof.
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Teaching and learning of shapes in preschool
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Abstract. This study is about the teaching and learning of mathe-
matical phenomena in preschool. Drawing from the Theory of Di-
dactic Situations, the concepts ‘milieu’, ‘didactic’ and ‘a-didactic’
situations are illustrated in a play situation oriented towards teach-
able moments. An analysis of the didactic transposition is used to
investigate the process that takes place when the knowledge to be
taught is applied to the preschool. The findings show the teach-
ing design that is carried out in didactic and a-didactic situations;
a design that is examined from the perspective of mathematical
praxeology.

Background

As a child’s early learning in mathematics is essential for further learning
processes, education in preschool is a contentious issue. Research on early
mathematics shows two strong approaches to education in the preschool.
The first is an informal approach based on play, where the idea is that chil-
dren learn mathematics through play (Bishop 1992). In the second and more
formal approach, the teacher chooses the content in advance and plans the
learning situations together with the necessary instructions (Claessens &
Engel 2013, Clements & Sarama 2009, Ginsburg & Amit 2008).

In this study, a third approach is suggested that is carefully planned
and goal-oriented and makes use of play. The approach to play and the
content used in teaching and learning are inspired by Brousseau (2002b)
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and involve the concepts ‘milieu’ and ‘didactic’ and ‘a-didactic’ situa-
tions. This consists of a play-based approach and the content is carefully
planned by the teacher in advance. Furthermore, the environment, ma-
nipulatives/material and questions are taken into consideration when the
preschool teacher plans the milieu.

The central problematique of the paper is to examine the didactic trans-
position of knowledge to be taught in preschool teaching, i.e. the specific
knowledge to be taught and the taught knowledge. Here I take the teachers’
actions into consideration and evaluate them in terms of didactic praxe-
ology and the resulting mathematics praxeology (Bosch & Gascón 2006,
Chevallard 1992a). The aim is to study how preschool teachers make use
of play in education and how the knowledge to be taught is transformed
into taught knowledge in the preschool context.

Theoretical frame

Teacher’ teaching and children’s learning

When preschool teachers design their teaching, play is an important aspect
(Ginsburg & Amit 2008). The potential of play in teaching has great impor-
tance because it is integrated into the learning process. In play children can
think hypothetically and follow rules. They can participate and develop in
play and games with more or less formalized rules that have to be followed.
In play children can predict, guess, estimate or assume what might happen.
They can also explore numbers, shapes, dimensions and positions.

The Theory of Didactic Situations, TDS (Brousseau 2002b), also stresses
play and games as important in the mathematical learning milieu. Brousseau
argues that the teaching should be carefully planned (engineering) and
based on what the children are expected to learn. The central TDS con-
cepts used in this study are milieu and didactic and a-didactic situations.
The milieu should be carefully planned and rich and consist of enough suit-
able material for the children to solve the set problems through their own
play. The manipulatives are artefacts that support children’s solutions. The
milieu in preschool situations is less strongly structured than in other school
forms with older children.

Didactic situations, like planned play, include phases when the teacher
is active and the children listen. They also include moments of joint reflec-
tion and children working on their own. In the design of didactic situations
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the teacher constructs a milieu in which children have to act and engage in
order to solve a given problem. Such engagement is similar to that experi-
enced by children when playing a game, which is to understand the rules
and seek winning strategies. The situations also work without too much
intervention from the teacher and are called a-didactic situations. Children
receive feedback from the milieu, although the teacher has to ensure that all
children have sufficient opportunity to solve the problem, which means that
the teacher sometimes has to change the rules of the game. When teach-
ers plan didactic situations in preschool their use of teaching materials or
manipulatives are important aspects of the milieu. Here, the questions and
materials/manipulatives are tools that support children’s discernment of a
specific feature or content.

Knowledge to be taught

Shape is part of geometry and children encounter different kinds of shapes
daily but need to become aware of similarities and differences between
shapes to understand their environment. Children’s ideas and knowledge
about shape are part of their spatial thinking. Van-Hiele (1959) describes
different levels of children’s geometric thinking and identifies the first level
as the visual level. This means that children have an early experience of
an object when they see its structure or form. At this level of their spatial
thinking children assess figures or shapes that belong to the same category.
For example, a rectangle could be a door or a table. The second level is the
descriptive level. At this level children examine the properties of the shapes,
rather than their appearance. Children can verbally describe that triangles
have three corners and three sides and that a circle is round. This means
that at this descriptive level language is a major factor. The third level is the
deductive level and means that children are able to formulate definitions for
shapes like triangles and rectangles.

According to the Swedish Curriculum for the Preschool (The Swedish
National Agency for Education 2010) teachers should give children oppor-
tunities to develop their understanding of shapes, location and direction.
They should have chances to develop their ability to investigate, reflect
over and test different solutions to problems raised by themselves and oth-
ers, and also develop their ability to distinguish, express, examine and use
mathematical concepts and their interrelationships.

Children interpret the environment by building, designing and con-
structing using a variety of shapes. For example, Clements & Sarama
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(2009) emphasize that children develop their spatial thinking by explor-
ing the shapes and features of the different materials they use. Children
can recognize and create patterns with different shapes in play. Van-Hiele
(1959) argues that children develop their spatial thinking through play, and
that this can be carefully planned by the teacher. Spatial thinking can also
occur in spontaneous play.

Claessens & Engel (2013) highlight the importance of early mathemati-
cal knowledge and skills, because mathematics predicts other content areas
such as language. They also suggest that if children focus on mathematical
content in the early years of schooling it will benefit their future learning.
The authors maintain that teachers’ instructions are necessary for children’s
outcomes in mathematics. Clements & Sarama (2009) argue that teaching
and learning take place in a context, and that teachers need to understand
mathematics and have a specific goal with their teaching. Teachers also
need to know how children think and learn about maths, and how best to
support children’s learning. They argue that a set of instructional activities
in mathematics can help children along their developmental path (ibid.).

Didactic transposition

The process of didactic transposition (Chevallard 1992a, Bosch & Gascón
2006) consists of different steps (Fig. 3.1).

Fig. 3.1: The process of didatic transposition (after Bosch & Gascón
(2006))
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Teachers need to transform the knowledge goals stated in the curricu-
lum into didactic knowledge; the knowledge to be taught. How, then, can a
knowledge of shapes be taught in preschool?

Play is the context for the didactic transposition of teaching and learn-
ing mathematics in preschool, i.e. the taught knowledge. The knowledge
that is available for children to learn depends on children’s earlier experi-
ences, how the teacher designs and didactifies the content and whether the
situation is teachable.

Chevallard (1992a) describes mathematical praxeology as mathemat-
ical and didactical organization and the result of the construction in the
process. The knowledge needed includes the theory, techniques and tech-
nology to solve a given task. The praxeology is affected by culture and in-
teraction in the preschool. The intent in this paper is to understand how the
knowledge to be taught is transformed into taught knowledge. How know-
ledge is taught in the preschool context is supported by the reference model
together with the presented praxeology.

Methodology

The research methodology organizes the relationship between the know-
ledge to be taught in the curriculum and the knowledge that is taught in
preschool. Here, the focus is on teaching and learning in didactic situa-
tions in preschool. I use the didactic transposition (Bosch & Gascón 2006,
Chevallard 1992a) as a tool with which to examine “the subject matter” in
an example of a mathematical activity in preschool. The reference model
in this study is based on experiences of scholarly knowledge and noo-
sphere, such as the national curriculum and research on mathematics in the
preschool years. It shows that praxis (know how) involves play that gives
children an opportunity to observe and examine the various properties of
shapes and to describe them in words. The logo is knowledge about shapes.
Research has shown that preschool children’s spatial thinking begins with
the discernment of figures and shapes and their experiences of positioning
and locating culturally conveyed concepts.

In the analysis, praxeology is used to understand the knowledge about
shapes in preschool and how the knowledge taught is designed and carried
out. A praxeology consists of a task and a technique, or “know-how”, to
solve the task. It also includes technology and theory “knowledge” (Bosch
& Gascón 2006, Chevallard 1992a). The praxeology is affected by the cul-
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ture in the preschool. The set task is to stack all the differently shaped
blocks. The techniques used are positioning and stacking of the blocks.
The technology involves figures and composite images. The theory is two-
and three dimensional figures. Observations from video recordings are the
main data in the analysis. Video is used because it facilitates observations
of a situation from different perspectives and at different times. The video
recordings are transcribed. From the data, one learning situation/episode
from one preschool is selected and analyzed using TDS and didactic trans-
position. The preschool teacher’s intention is that the activity will stimulate
the children to play, help them to look for winning strategies and thereby
learn the intended content. The questions formulated to support the plan-
ning are: How does the teaching design support children’s spatial think-
ing and discernment? What should the children learn about the shapes?
Which questions should I ask the children? Which task is important? How
can I help the children to discern and describe the shapes? What kind of
techniques should I use? How will the activity motivate the children to ex-
plore and look for other strategies? The intended learning outcome is that
in their play the children will discern the differences and similarities be-
tween the shapes and the importance of specific shapes when stacking. The
children’s expressions and actions during the a-didactic situations are fo-
cused on in the analysis. The data drawn from a larger study in Sweden
(Bäckman 2015) and the children are 4 years of age. The teaching mate-
rial/manipulatives are differently shaped wooden building blocks. One par-
ticular child as the subject in an a-didactic situation commonly found in the
preschool, which is one child playing with artefacts.

Findings

In the didactic situation the knowledge to be taught is about shapes. Ac-
cording to the preschool curriculum (The Swedish National Agency for Ed-
ucation 2010), children should have opportunities to distinguish shapes and
examine their interrelationships. Children should also use mathematics to
investigate, reflect on and test different solutions. The teacher has planned
a didactic situation and the knowledge taught concerns shapes and their
similarities and differences.
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Milieu

The TDS planning consists of a careful analysis of the content and the con-
struction of questions that will help the children to solve the set problem.
When planning the task, the preschool teacher considers which material
should be used to support the children’s learning of shapes. In the example
chosen here, she selects differently shaped wooden building blocks. The
milieu, including the play, the task, questions, reflection and material, gives
the children the opportunity to discern different shapes and features when
they reflect together in the didactic situation and to solve the problem in the
a-didactic situation.

Didactic situation

The teacher gathers six children together in a circle. She has hidden differ-
ently shaped wooden building blocks in a cloth bag, which is also placed in
the circle. The teacher lets one child at a time choose a block from the bag,
which they then reflect on together by responding to questions like: How
many corners does each block have? Do any of the blocks have a rounded
side? How many sides does the block have? Are they the same length? The
children answer the questions.

In this didactic situation the teacher leads the game by using planned
questions to scaffold the children to direct their focus to specific features.
She gives each child an opportunity to feel, turn and twist the chosen block
and to imaging and reflect on its features without looking at it. After these
reflections the child put the block in the middle of the circle so that the
children can continue the reflection together. The teacher gives the differ-
ent blocks names, such as “cube” and “cylinder”. When all the differently
shaped blocks have been placed in the middle of the circle the teacher asks
the children questions about their similarities and differences, which they
then reflect on and reason together.

The next step is when the teacher presents the task: Try to build with
all blocks! Can all the blocks be put on top of each other? Can you solve
the problem? She tells the children that they can build with all the blocks to
try to solve the problem. In this didactic situation the teacher ask questions
about the blocks’ features. The teacher focuses on the characteristics of
the different shapes and reflects on them with the children. The children
are given an opportunity to discern and reason about the similarities and
differences of the shapes. After the reflection the teacher gives the children
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a task to perform and indicates techniques that could help them to solve the
set problem.

A-didactic situation

It is early morning in a Swedish preschool and Erik, 4, is playing with
building blocks in the hall. One of the preschool teachers is standing beside
him talking to a parent. Erik doesn’t seem to pay any attention to the con-
versation between the adults. He is building with blocks that have different
shapes.

Erik quickly builds a high stack of eight blocks. The blocks con-
sist of seven cubes in three different sizes, as well as a tetrahedron.
Every second block is a small cube and every second is a larger
cube. On top is one tetrahedron. Erik starts then building a lower
construction, consisting of six half-cylinders. He is totally focused
on the construction and is trying different ways of placing the half
cylinders. He seems to aim at building both horizontally and verti-
cally. When the blocks fall down he solves this problem by twisting
and turning the blocks, perhaps in order to find a sustainable way
of placing them on top of each other. At the same time, there also
seems to be a desire for symmetry in the building work. He starts
with a half cylinder and builds towers with identical half cylinders
on each side of the half cylinder in the centre. When the blocks are
in place, and they haven’t fallen down, he picks up a tetrahedron
and puts it on top.

Erik explores the shapes by placing them on and next to the other blocks
in different ways. He distinguishes the qualities and features of the various
blocks as he twists and turns them. The episode shows that the discernment
of critical aspects of the geometric shapes and characteristics takes place in
a context. He seems to have an idea or intent with the construction, and ex-
periences how the differently shaped blocks can or cannot be stacked. Erik
concentrates on his construction work, and sometimes looks up to check his
surroundings. It appears as though he has goals in mind with his building
work and is not unduly disturbed by the adults talking to each other beside
him. Erik continues building his construction:

Erik points to two cubes in the tall tower and says,
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E: "It’s over and it’s over."

Then he points to the two top blocks and says,

E:"Those should be removed."

He takes the top two blocks from the highest tower and places them on the
floor. He then picks up a pyramid from the floor and places it on top of the
tall tower. He looks at the tall tower and says,

E: "There you go."

The positioning seems important to Erik and his building appears to give
him an idea of the similarities and differences between blocks. He does not
talk about the shapes or the features, but looks very busy when building
the construction. He is both interested in and motivated to work on the
given task and, as instructed by the teacher, uses all the blocks. The winning
strategies in this game are to determine which blocks can be stacked on top
of each other and to use all the blocks in the construction. The boy has
to find out which critical aspects in the shapes that make the blocks as
sustainable buildings.

Didactic and mathematical praxeology

In the analysis of the milieu with didactic and a-didactic situations, the
knowledge to be taught is shapes and the teacher has carefully planned how
she can direct the children’s attention to specific features and how to didac-
tify the content using building blocks. The didactic transposition from the
knowledge to be taught to taught knowledge is from ideas about geometry
and more specific knowledge about shapes to knowledge about shape in the
preschool (The Swedish National Agency for Education 2010). The teacher
has planned which questions she can ask and how play can be used to help
the children discover the shapes’ specific features. A praxeology consists
of tasks, techniques, technologies and theories (Chevallard 1992a, Bosch
& Gascón 2006).

The knowledge taught is different shapes and their specific features and
the aim of the task is to encourage the children to explore and reflect on
different shapes. The technique concerns how the children use the building
blocks in constructions. The child in the presented observation investigates,
reflects on and tests different possible solutions to problems encountered in
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the construction work. He does this by remaining totally focused on the
task in hand and working on his own. The technique he uses is the same as
that suggested by the teacher. The technology and theory explain and jus-
tify the used technique to solve the actual problem. The design, with play
and the milieu with didactic and a-didactic situations and concrete material,
is based on the teacher’s assumption of how children develop their under-
standing of shapes and how this is done. The design, ideas and assumptions
that make up the praxeology form the “theory”.

Discussion and conclusions

The findings illustrate the transposition and the relation between the know-
ledge to be taught and the taught knowledge. The preschool teacher designs
and uses the milieu to direct children’s attention to the similarities and dif-
ferences of shapes. She formulates a task with the goal that the child should
use all the blocks in the construction and thereby explore their different
shapes. The questions asked aim to encourage the children’s exploration of
and reflection on the different features of the shapes. The teacher’s careful
planning and the taught knowledge seem to support the children’s discern-
ment in the way that Claessens & Engel (2013), Clements & Sarama (2009)
and Ginsburg & Amit (2008) highlight as important. The authors argue that
teachers’ instructions are necessary for children’s outcomes in mathemat-
ics. The outcomes in the planned situation are that children should be given
opportunities to discern and describe shapes and use all blocks in the con-
struction.

According to TDS (Brousseau 2002b) the teacher has to design a prob-
lem situation in which children should discover possible solutions with the
material. The designed situation with specific material should guide the
children’s explorations and reflections without the need for a teacher to be
present. In an a-didactic situation the possible solution and winning strategy
is that the children use all the blocks and discern the positions and locations
of the various shapes. In a didactic situation the children are given an op-
portunity to describe their actions, but in the a-didactic situation the boy is
quiet. This paper stress that the boy discerns the shapes as a result of his ac-
tions, which reflects the well known fact that young children express their
knowledge through their actions.

The knowledge to be taught and the differences and similarities be-
tween the shapes are, in the didactic situation, transformed into steps with
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tasks and techniques that give children opportunities to observe and ex-
amine the properties of shapes. In the didactic situation they discern and
describe shapes.

The teacher uses play in didactic and a-didactic situations. Play is a
common context in Scandinavian preschool teaching, and teachers usually
want children to explore, reflect on and test different solutions to problems
in their play. She begins the teaching with a game in which she invites the
children to pick one block at a time from a cloth bag and feel, twist, turn and
reflect on the features of each block. The children have an opportunity to fo-
cus and reflect individually and together. According to Clements & Sarama
(2009), children develop their spatial thinking by exploring shapes and the
features and qualities of different materials. When children are given oppor-
tunities to feel shapes and twist and turn them, as in the planned didactic
situation with the blocks, the teacher is able to support their spatial think-
ing. When reflecting together, children have a chance to reason and argue
and describe what they have observed. Van-Hiele (1959) argues that chil-
dren develop their spatial thinking through play that is carefully planned by
the teacher and that geometric thinking can also occur in spontaneous play.
The presented situation with the building blocks includes both carefully
planned play and spontaneous play.

The theory of didactic situations (Brousseau 2002b) is complex, and
in this paper consideration is given to the concepts of ‘milieu’ and ‘didac-
tic’ and ‘a-didactic’ situations in relation to the preschool institution and
culture. The milieu concerns the play, the questions, the task and the tech-
niques. The given observation shows that when the boy builds a tower with
the blocks the teacher is able to observe his actions when standing beside
him. Play situations like this are common in preschool and allow the teacher
to observe and ask questions about the construction. On the other hand, in
the a-didactic situation children can play and explore and learn about differ-
ent shapes. These visual and bodily experiences can form the basis for fur-
ther teaching and learning about the similarities and differences of shapes
at a more descriptive level. On the one hand, spontaneous play can have a
mathematical content and make use of materials like building blocks so that
children can discern shapes and their various features. On the other hand,
the learning opportunities increase if the teacher asks questions that make
children reflect on the content, and according to Ginsburg & Amit (2008)
teachers planning and the use of teachable moment promote learning. Play
with both didactic and a-didactic forms is beneficial for teaching/learning
in preschool settings.
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Conclusion

The approach to play and the teaching and learning content is inspired
by Brousseau (2002b) and makes use of the concepts ‘milieu’ and ‘di-
dactic’ and ‘a-didactic’ situations. This means that a play-based approach
that is carefully planned by the teacher in advance can promote children’s
learning. Furthermore, materials and questions are taken into consideration
when the preschool teacher plans the milieu. The findings show the didac-
tic transposition from the knowledge to be taught to the taught knowledge.
Teacher’s knowledge of the content and how to didactify in didactic situa-
tions seems to be important. Children’s play can be understood as a-didactic
situation if they continue to work on the construction and try to solve the
problem themselves.
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of elementary outdoor science lessons taught by
explore teachers receiving environmental
education training in North Carolina
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Abstract. We live in an era of critical global biodiversity losses
(Dirzo et al. 2014) and childhood experiences in nature are rec-
ommended to encourage strategic behaviour (Chawla & Cushing
2007) to help prevent devastating impacts of projected environ-
mental changes. Science learning outdoors has been shown to ben-
efit learners (Dillion et al. 2006, Wals et al. 2014) but science
knowledge alone does not lead to enlightened behaviour (Slingsby
& Barker 2003). I seek to examine and understand North Carolina
(NC) elementary school teachers’ (n = 6) outdoor science teaching
using Didactic Transposition as a theoretical framework to better
understand their meanings of knowledge construction. This qual-
itative study will examine how elementary school citizen science
lessons are posited in relation to broader more meaningful schol-
arly knowledge and who the agents are that de-construct this schol-
arly knowledge and build teachable knowledge for young people
(ages 5-12). This study may address teachers’ lack of success in
implementing outdoor science lessons for children in the United
States, which should include critical thinking for environmentally
sustainable action, and allow us to better understand teachers’
meanings of learning to transpose scholarly knowledge to teach-
able knowledge for use in science fieldwork at the elementary
school level.
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Introduction

Life as we know it on planet Earth is currently undergoing destructive
change, and as scientists Dirzo, R., Young, H., Galetti, M., Ceballos, G.,
Isaac, N., & Collen, B., (Dirzo et al. 2014) described it, we are fully im-
mersed in the sixth mass extinction on the planet, in the current Anthro-
pocene era, and committing critical ‘defaunation’ on a global scale. Dirzo,
et al. use the term ‘defaunation’ to “... denote the loss of both species and
populations of wildlife, as well as local declines in abundance of individu-
als, [and this] needs to be considered in the same sense as deforestation...”
(p. 401). This phenomena is under-recognized according to Dirzo, et al.
Without scientific knowledge, and knowledge of wildlife, how will chil-
dren today who have been described by Richard Louv (2006) in his book,
Last Child in the Woods, as suffering from ‘nature deficiency’, truly know
what there is that needs saving, the science behind the causes for destructive
change, and be environmentally literate before it is gone?

As Chawla & Cushing (2007) reported in their article Education for
Strategic Environmental Behavior an important antecedent for taking ac-
tion for the environment is experiences in nature as a child, mentioned by
80% of respondents in large studies. A common theme throughout research
on this topic is the importance of role models. Both time outdoors and a role
model could be provided if the elementary school teacher were to designate
an area of the schoolyard (Wals et al. 2014) in which to teach science by
using the natural world as a platform for learning, as a tool for teaching, in-
cluding environmental education. Wals, et al., recommend a ‘convergence’
of science and environmental education. I argue using the live natural world
as a teaching tool for environmental education can make a huge difference
in addressing fundamental changes needed in society. Authentic science
instruction outdoors to foster understanding of urgent and highly complex
environmental issues increases the quality of science education for elemen-
tary age children. This is needed at a time in their life when such instruction
makes a difference.

I propose qualitative descriptive case studies of teachers (n=6) partici-
pating in the citizen science and environmental education program Project
EXPLORE (Experiences Promoting Learning Outdoors for Research and
Education). EXPLORE is an outreach program to local schools designed
and implemented by The North Carolina Arboretum. Participating teachers
teach science outdoors, including Environmental Education in the lessons,
on a regular basis as they collect data for citizen science programs in their
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schoolyard. Environmental Education for these children teaches them how
to investigate and learn about their environment, and how to make informed
decisions about how to take care of it1. These citizen science programs
address the need for scientific data on current climate change and defau-
nation trends (Dirzo et al. 2014). Knowing what meanings they make of
their learning and knowledge construction will help the field understand
how better to move science outside for children, using The North Carolina
Arboretum program as a model. Arboretum educators (some are North Car-
olina EE Certified) in this study could provide an example of a program that
has trained teachers to teach outdoors and this could be used as a model
of concrete methods for teachers to use in teaching science outdoors by
participating in citizen science. Teachers may need concrete references of
outstanding practices in order to enact a convergence of environmental edu-
cation and science education while teaching science lessons in the outdoors.
Describing examples of outstanding EXPLORE lessons can help the field
establish evaluation criteria. Evaluating the quality of an elementary out-
door science lesson2 is especially challenging. The Association for Science
Education Outdoor Science Working Group (2011) included an important
issue arising in their seminars—the ability to evaluate the quality of outdoor
science lessons. “It is crucial to develop success criteria to enable teachers
to evaluate the quality of their fieldwork3...” (p. 10). The purpose of this
study is to describe Project EXPLORE and explore teacher meanings of
learning. As part of this examination “Didactic Transposition” (Bosch &
Gascón 2006, p. 53) will be used as a reference framework for the de-
scription of public elementary school teachers’ classroom outdoor science

1 EE lessons here indicates teaching activities that should provide hands-on,
interactive experiences for the audience and should support the definition
of environmental education (http://www.eenorthcarolina.org/about-us–what-is-
ee.html)—Environmental education (EE) is defined as education that teaches
children and adults how to learn about and investigate their environment, and
to make intelligent, informed decisions about how they can take care of it
(http://www.naaee.net/what-is-ee).

2 Elementary outdoor science lesson here indicates all science educational activi-
ties from kindergarten through grade 5, for students ages 5-12, which take place
outside the classroom and make use of the outdoor natural and built environ-
ments.

3 Fieldwork here indicates all educational activities from early years through to
post-16, which take place outside the classroom and make use of the outdoor
natural and built environments.
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lessons used by teachers participating in The North Carolina Arboretum’s
Project EXPLORE.

Tal & Morag (2009) found it is more difficult to teach science outdoors
than to teach indoors for participants in their study of preservice teachers.
While research supports the benefits of learning elementary science through
outdoor lessons (Rickinson et al. 2004), findings in a recent study by Car-
rier et al. (2013) in North Carolina revealed that despite elementary school
support, teachers find it very difficult to utilize outdoor activities for sci-
ence instruction. Teachers in their study felt traditional [indoor] methods
were a more efficient way of meeting heavy science content demands. Tal
& Morag (2009) discovered that one of the major obstacles teachers face
to teaching outdoors in nature is insufficient preparation for teaching in the
outdoors.

The North Carolina Arboretum state Certified Environmental Educator
prepares and supports teachers with expertise and materials in Project EX-
PLORE, and follows up on teachers with twice annual visits to take their
class out to collect schoolyard ecosystem and citizen science data. North
Carolina was the first state in the United States (US) to offer professional
development to Environmental Educators through a state EE certification
program (see http://www.eenorthcarolina.org/index.asp). EE certified edu-
cators teaching in North Carolina school systems are referred to as formal
educators (and there are relatively few of them). These formal educators
are trained to teach outdoors and to use the natural world as a platform for
student learning as part of their EE professional development program. EE
certified educators at the Arboretum are referred to as informal educators.
The North Carolina Arboretum educators often adapt EE lessons to teach
science to specific age groups in or out of schools and align their lessons
with state required curriculum standards.

All three of the citizen science projects that teacher participants in
Project EXPLORE can choose to participate in have an environmental com-
ponent to data collection and analysis. The citizen science project eBird
tracks bird populations and species ranges and data can show biodiver-
sity gain or loss as well as population increase or decline. This data can
show bird habitat shift due to changing climate as well. The citizen sci-
ence Project Squirrel tracks populations and species range for squirrels.
Data from Project Squirrel can show biodiversity gain or loss as well as
species population increase or decline. Biodiversity losses and species pop-
ulation declines are now referred to as defaunation (Dirzo et al. 2014). Na-
ture’s Notebook data are collected on trees in Project EXPLORE, and can

http://www.eenorthcarolina.org/index.asp
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show changes in the dates each year that trees in each class’s study area
sprout leaves, bloom and when they loose their leaves. Scientists, by com-
paring data year to year, can discern and compare dates of seasonal changes
from year to year, as well as how changes in season’s dates affect different
species of trees in different ways. This data also tracks different effects of
season’s dates in different geographic locations.

Some teachers design their own data uploading sheets for their students
and all supervise their own lessons outdoors, except when Arboretum ed-
ucators are visiting. Adaptations of teachable knowledge at the elemen-
tary school level by EE educators and teachers in schools is a process of
taking science knowledge from a prepared EE lesson, from public school
curriculum or textbooks, citizen science programs, or directly from scien-
tific research, and de-constructing this knowledge to then transform it into
a teachable form for young children ages 5-12. “Deconstruction and a re-
building of the different components of knowledge with the aim of making
it teachable” (Achiam, from Chevallard (1991)), called ‘didactic transposi-
tion’, begins “far away from school, in the choice of the bodies of know-
ledge that have to be transmitted” (Bosch & Gascón 2006, p. 53). However,
the theory of Didactic Transposition posits that different actors participate
in this transpositive work, including teachers. Teachers can enact Didactic
Transposition on their own and I propose to examine and describe EX-
PLORE teachers’ act of doing this as reflected in their elementary outdoor
science lessons that I observe and in their reflections from interviews. Thus
Didactic Transposition will serve as an analytical framework to help me
examine and describe the element of knowledge construction in the ele-
mentary outdoor science lessons in my proposed study.

Using Didactic Transposition as a framework for analysis of EXPLORE
outdoor lessons with a focus on citizen science broadens the span of rec-
ognized agents of determination of the contents to be taught. A range of
agents, from policy makers to the teachers of the lesson, are actors along
the way who affected the content of the lesson observed. “Researchers of-
ten took for granted the specific delimitiation [established boundaries] of
[lessons’] contents that is given by scholarly or educational institutions”
(Bosch & Gascón 2006, p. 61).

But using Didactic Transposition as a framework for analysis, I as a
researcher would not take established boundaries for lessons for granted;
it forces a broader view of the complexity of how knowledge becomes
a teachable lesson through transposition. This encourages me as the re-
searcher to look at whether or not the taught knowledge has lost the ratio-
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nale behind it after the transposition process. One danger in transposition
is that school instruction may ignore the questions that motivated the cre-
ation of knowledge. An example of this would be if in my study of citizen
science projects outdoors I were to find that the data is not being discussed
by the class or examined and analysed after data collection. In such a case
the teacher’s instruction would ignore the larger questions being posed by
the scientists who will be using the data the class collected. Students would
then be left to figure out bigger scientific ideas, or make improvisational
extrapolations of knowledge from the scientific data.

A danger of improvisational extrapolations of knowledge is that they
may ignore the validity field of models of instruction (Bosch & Gascón
2006). In practice elementary school students are taught that anything
above a pH of 7 is base, and anything below a pH of 7 is acid, and that
a pH of 7 is neutral. They are also taught that a pH of 7 is optimal, or nor-
mal, for drinking water. Students may go down to the stream and test the
pH of the water and find that it has a pH 6.5, or is acidic. While a pH of 7
may not be optimal (normal, historical) for the specific stream ecosystem,
the students may think the stream is ‘too’ acidic because their point of ref-
erence is what is normal for drinking water for them. There is a restricted
field of validity to what they were taught was a normal pH of 7, for drinking
water. Without learning broader knowledge that is valid in a variety of cir-
cumstances, something present in the natural world, they may be left with a
misconception and assume that a stream pH of 6.5 is not optimal, or normal
for the stream, when scientific evidence may support otherwise

In the United States we have the added danger that science instruction
after transposition is irresponsible due to teachers’ limited content know-
ledge (Borko 2004), or invalid altogether. An extreme example of this in the
US schools is teaching creationism as a scientific alternative to the theory
of evolution. Responsible instruction goes beyond offering valid science
knowledge; it endows students with tools to think, encouraging their rea-
soning with learned knowledge (Chevallard 2004).

Theoretical framework

Knowledge transformation in the science education process

The theory of Didactic Transposition (Chevallard 1991) although originat-
ing in mathematics, has been extended to other disciplines. An important
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assumption of this theory is that we cannot limit analysis of any didactic
situation to how the learner learns, we must consider the process which
takes an object of knowledge and makes it into an object to be taught (see
Figure 4.1), that is, teacher knowledge. It is a process of deconstruction
and rebuilding, Didactic Transposition (Mortensen 2010). Teachers have
been shown to be essential to improving education in our schools (Borko
2004) and can make a huge positive difference through enacting Didactic
Transposition at the classroom level as Didactic Transposition is part of the
teaching process whether acknowledged as such or not (Winsløw 2007).

Fig. 4.1: This is my graphic representation of Didactic Transposition using
the epistemological model by Chevallard (1991), adapted from Winsløw in
the Encyclopaedia of Mathematics Education-Article ID: 313227- Chapter
ID: 48, showing the cyclical process of education, including the creation,
teaching and learning of knowledge. Here Didactic Transposition is an al-
ternative epistemology with knowledge existing independently outside of
the knower (Kang & Kilpatrick 1992). In this view, Didactic Transposi-
tion does not violate much of the constructivist epistemological position
on learning (Bosch & Gascón 2006), which is shown in this graphic repre-
sentation as ‘learnt knowledge’ ‘research’ and the generation of ‘scholarly
knowledge’.
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In the Didactic Transposition theoretical model, knowledge is consi-
dered a changing reality embodied in human practices in the process of
education. There exists a gap between research and what is taught, espe-
cially between university research and what is taught below the university
level (Winsløw & Madsen 2008). There are many different actors that take
part in this transformative work, de-constructing and building knowledge
into a teachable form. Teachers take part in what Winsløw (2007) describes
as internal didactic transposition. Realized teaching practices may depend
upon the teacher, or upon strong didactical traditions within their school
systems, can be based upon their curriculum, and thus can cause a funda-
mental “incoherence” between knowledge at the university level and school
curriculum, through no fault of the teacher. But, scholarly knowledge has to
be transposed to the classroom context and for the child (Chevallard 1999),
and a teacher can potentially bridge the aforementioned knowledge gap.

Knowledge transformation from EE instruction to the outdoor science
lesson

The North Carolina Arboretum EE certified instructor in charge of Project
EXPLORE identified one of the objectives for the program was to help local
elementary school students improve their end of year science standardized
test scores. Another goal of the program is improving environmental lit-
eracy through the hands-on experiences of conducting citizen science data
collection on school grounds. The authentic science questions pursued by
these citizen science programs become an authentic science activity for stu-
dents, increasing direct links from educational to scholarly knowledge. The
chosen citizen science projects involve students in actual scientific ques-
tions about habitat loss, environmental hazards, species loss, populations
decline, as well as about seasonal and climate shifts over time. The North
Carolina Arboretum carefully chose these three citizen science programs
(eBird, Project Squirrel, and Nature’s Notebook) to offer teachers programs
to choose from that could be easily adapted for all grades (K-12). The
Arboretum developed data collection sheets with pictures for children as
young as kindergarten age to use tally marks for sightings of animals, to
identify weather conditions, and to identify characteristics of the habitats
needed for these animals to survive. Arboretum EE twice annual presenta-
tions to schools as part of Project EXPLORE include adapted EE lessons
and materials.
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Adaptation of the activity of teaching science outdoors to fit specifically
to each school is required of both the teacher and the Arboretum educa-
tor. They select local areas that would be better habitats for citizen science
project data collection. For example, if one teacher chose Project Squirrel,
the science lesson would be conducted in an area where the trees on the
school grounds best supply squirrels with what they need to survive. Ar-
boretum educators design valid descriptive sentences or engaging true sto-
ries for each animal, tree or plant that exist on the school grounds; choose
a picture of the trees or plants for students’ Arboretum field guides; as well
as further develop their own knowledge about the local place. For example,
the Arboretum educator and the teacher will walk the school grounds on the
first visit by the Arboretum to the school, before deciding where it is best to
have children collect citizen science data. In one case a teacher chose a wild
overgrown area to collect data in, but the Arboretum educator suggested a
grove of trees that supplied things squirrels like to eat instead in which to
search for squirrels. In this way the lesson the teacher planned in one area
was adapted in alignment with the scientific knowledge the Arboretum ed-
ucator shared with her. My study of this innovative professional develop-
ment program could help us define references for Didactic Transposition in
such a context. There are many merits to teachers connecting their lesson
to scholarly knowledge, as the lesson is authentic scientific data collection
to be used by scientists nationally. And by enacting the process of select-
ing knowledge and constructing a custom lesson in collaboration with the
Arboretum educator for their ecological area in order to teach the citizen a
science lesson, each teacher may be better able to instruct their students as
to the rationale behind these lesson adaptations. Thus, by doing so teachers
may be able to improve their own teaching.

Method

As part of a qualitative case study method design (Creswell & Clark 2011),
I plan to observe and describe public elementary school classroom teach-
ers’ (n = 6) meanings of learning to teach outdoor science lessons using
a method of analysis derived from the theoretical framework of Didactic
Transposition. To better understand and describe lessons I will explore if
and how the lessons include a broader more meaningful scientific process
and valid scholarly scientific knowledge. Who are the agents along the way
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that provide this deeper meaning to the lesson and perhaps bring the stu-
dents closer to the actual research and scholarly knowledge?

One of the limitations of this study will be that I will be conducting the
study alone. I will be influenced in my observations and analysis by my
personal context and experience. I am both a North Carolina certified Envi-
ronmental Educator, and experienced in teaching outdoor science lessons at
the elementary school level. My use of Didactic Transposition as a frame-
work for analysis is new to me and perhaps new to the field of science
education in the United States, so I will have few similar models or refer-
ences to guide me. I will need to determine how to best describe lessons,
and materials used in the lessons, using this framework for analysis. I will
also have limited time and resources.

I may be able to conduct as many as six case studies, and be able to
observe up to six science outdoor lessons for each participant (this is obser-
vation of a 15 minute or so data collection period outdoors with preparation
in the classroom beforehand and follow up afterwards in the classroom). I
will conduct at least one interview with as many of the 15 public elemen-
tary school teachers participating in EXPLORE as is possible (this depends
upon school district support for my research). Due to time constraints I will
only be able to analyse limited amounts of data from a few participants.
In order to better understand the teachers’ meanings of their teaching of
lessons in practice, I will conduct short interviews asking for teacher re-
flections after each observation. I will describe lessons with the Didactic
Transposition theoretical framework in mind (see Table 4.1) in my obser-
vation notes, and will research the scholarly knowledge behind the lessons
tracing back from research or theory to the actual observed lesson, asking
the teacher to retrace their own lesson preparation process, to determine the
transposition ‘track’, and the part various actors played in transposition.

In order to discern how the teacher enacted Didactic Transposition, I
will have to have read the original lesson plan, observe how the teacher
deviated from the plan, know where it came from, interview the teacher, and
do some research on the original intent of the lesson plan the teacher used
as a guide, or the source the teacher used as a guide for writing the lesson.
I will also examine through teacher reflection where they feel their prior
knowledge came from. I think this is a very important part of observing and
interviewing if I am to use Didactic Transposition as a reference framework.
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Table 4.1: Observation of Didactic Transposition in Outdoor Science
Lessons

Discussion

This study will help formulate a reference model for Didactic Transposition
more specific to this context of teaching science outdoors through the use of
citizen science projects in the United States, in the public schools system.
Although success criteria for quality outdoors science lessons are needed
(The Association for Science Education Outdoor Science Working Group
2011), this study will be descriptive rather than evaluative in nature. By
looking not only at teacher meanings of their experiences as learners, but by
looking at their meanings behind the way the Arboretum and they construct
teachable knowledge as well; we expand the description of outdoor science
lessons to include a broader more meaningful science process in the lesson.
This study, while not explicitly evaluating Project EXPLORE or teacher
participants’ outdoor science teaching, could help us better understand how
to develop an evaluation of such a program.

A detailed description of Didactic Transposition at all levels of this in-
novative teacher education program, Project EXPLORE, should help us to
better understand not only teacher meanings of learning, but their reasoning
for inclusion of research and scholarly knowledge at the teacher level, even
when curriculum has been scripted and predetermined as is done in many
urban schools in the United States (Milner 2013). To improve education by
educating teachers (Borko 2004), we need to better understand how teach-
ers learn to use scholarly knowledge in their teachable knowledge. Project
EXPLORE is a system of teacher education that fosters expansive trans-
formation in teachers, and promotes teaching science outdoors to counter
‘nature deficiency disorder’ (Louv 2006). In the end if the system overall
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does not promote teaching science outdoors or environmental education,
teachers can show us how they do it. Our world will be affected by de-
structive environmental change in the next generation, and children today
if taught could care, and be able to know how to find a way to address these
challenges as adults (Dirzo et al. 2014) in ways yet unknown.
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Abstract. There are many challenges when using technology in
the teaching of mathematics ranging from redesign of traditional
tasks to developing new teaching techniques. However there is
some evidence that the implementation of technology in teaching
can enrich the learning of mathematics in middle and higher lev-
els of mathematics education by giving the students the tools to
skip otherwise time consuming calculations. Many of these pos-
itive examples contain a very carefully planned teaching course
with carefully designed activities but with continuously develop-
ment of tasks designs, activities and evaluation forms. Therefore
it seems natural to combine technology rich teaching with lesson
study which has a strong and successful history in the development
of and research on actual teaching in schools.

Introduction

The initial research question is: How to improve (develop, evolve, progress,
sustain, etc.) spontaneous didactic praxeologies to integrate technology in
the teaching of algebra (or mathematics) with technology?

Research on “spontaneous” technology use has demonstrated that teach-
ers manage student work with technologies in very different ways, even
within the same subject and teaching environment, with similarly varied re-
sults (Doerr & Zangor 2000, Lagrange & Erdogan 2009, Monaghan 2004,
Sensevy et al. 2005). The use of CAS (computer algebra systems) in lower
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secondary school is very mixed and very dependent on the individual teach-
ers’ views on mathematical learning and teaching e.g. a teacher often using
whole-class discussion of what is happening on the screen with the goal of
enhancing the collective technological genesis finds interaction in the class-
room very important and sees ICT as a means to stimulate this. (Drijvers
et al. 2009).

Research experiments with CAS technology has been found to encour-
age the use of general mathematical reasoning processes and to improve
student learning and interests: “It allows for generating, testing, and im-
proving conjectures, it allows for developing awareness and intuition, it
leads students to explore their own conjectures, it provides non-judgmental
feedback and it develops the learner’s confidence.” (Kieran & Saldanha
2008). But how to get these results without the researcher being the con-
trolling factor?

In Japan “a teacher as a professional is required to experience sustained
professional development to improve their teaching and students’ learning”
(Isozaki & Isozaki 2011). To aid the teachers in this endeavour the teachers
engage in lesson study which in Japan can be dated back to the beginning
of the 19’th century. “Lesson study functions as a means of enabling teach-
ers to develop and study their own teaching practices” (Isoda et al. 2007)
and helps the teachers develop, experiment or do research on teaching but
also get input from other educators in their area and share their projects.
Hence it seems logical to try and use the main features of lesson study to
address some of the challenges in teaching-with-CAS and linking theory
and practice.

Theoretical framework

In the anthropological theory of the didactics, practices in any given situa-
tion can be described as praxeologies which again can be described by type
of task, the techniques, the technology and the theory. The tasks can be of
didactical nature: How to teach fractions to a 4’th grade? Or more theore-
tical: When I use 1.000 steps to go to work how big a portion of the daily
recommended 10.000 steps have I done walking to and from work? The
techniques are the approaches in which the task is tackled. The technology
is the discourse for the explanation and justification of the techniques used
to solve the task. The theory provides a basis for the technology i.e. the
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explanation and justifications used and if desired so can be considered as a
technology of a technology.

Instrumental orchestration

Furthermore in order to describe the use of CAS in the classroom I adopt the
metaphorical notions of instrumental orchestration introduced by Trouche
back in 2004. Instrumental orchestration is defined as: given a mathemati-
cal task the teacher’s intention and systematic organisation and use of vari-
ous artefacts in order to guide students instrumental genesis (Drijvers et al.
2009). Instrumental orchestration has three parts: a didactical configura-
tion, an exploitation mode and a didactical performance. The didactical
configuration is the substantial frame and arrangement of the materialistic
objects involved. This can be the technological tools but also the tasks. The
exploitation mode of a didactical configuration is the teachers’ decision to
the way s/he introduces the tasks, the approaches used to work on the tasks,
the performance of the artefacts and techniques to be developed or refined
by the students. The didactical performance is the teachers’ impromptu de-
cisions in the didactical configuration on how to play the elements of the
didactical configuration and the exploitation mode e.g. the teachers’ spon-
taneous decision to bring forward a student result or problem for the entire
class to consider on the smart board or similar. Hence the instrumental or-
chestration model is two layered. Not only does it focus on enhancing the
students’ instrumental genesis but also the teachers since the students and
the teacher often do not share the exact same artefacts.

CAS based teaching

There are many challenges and obstacles when involved in CAS based
teaching both for the teacher and for the students.

The following list of challenges and obstacles for CAS based learning is
composed based on Drijvers (2012), Drijvers (2004) and Lagrange (2005).

Problems for the teachers: general confusion and fear of CAS, redesign
of tasks in order to pose fruitful questions to the students, use of new teach-
ing techniques, new didactical contract between by-hand work and machine
work, and between numerical-graph methods and algebraic methods, ap-
plying pedagogical knowledge to a new teaching environment. The teach-
ers limiting themselves to the theoretical framework due to integration of
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digital tools in mathematics education, integration of CAS techniques into
teachers own content knowledge, CAS being inflexible with notation and
syntax and other instrumentation difficulties, the mathematics becomes too
far from the official mathematics i.e. the official curriculum, instructional
activities requires time and cannot be rushed, evaluation of the students is
difficult due to the lack of link between what students write on the screen
and their mental tackle of the tasks.

When considering our theoretical framework there seems to be chal-
lenges in every box: didactical configuration, exploitation mode and didac-
tical performance, mathematical or didactical organization: tasks, the tech-
niques, the technology and the theory. Thus there are much more research
to be done and new knowledge to be acquired.

Problems for the students: lack of link between what students write on
the screen and students mental tackle of the tasks, students perception that
CAS already contains all the algebra, procedures are not transparent and
CAS therefore becomes a black box, generalization without gain of con-
tent knowledge, CAS as a micro-world not real-world, paper and pencil
or mental mathematics, linking of a concept to closely to the correspond-
ing technique. One example of this is a group of students used to solving
equations with calculators are struggling with a pen-and-paper assignment:
make one equation from the following in which y does not appear: y = a−z
and x2 + y2 = 10. One student answers “I don’t know how to do it without
calculator” but ends up solving the posed problem anyway because he can
explain what he would have done with the calculator and understand how
the calculator operates. Other students are not able to make the same tran-
sition because they don’t know how the calculator works with the input in
order to produce the output. (Drijvers 2003)

The above mentioned research articles where mostly based on the stu-
dents performances and lessons had been planned by the researchers. One
concluded that thorough introduction to students concerning the commands
involved in the CAS programme and letting students spend time at home
tackling the tasks using CAS where very beneficial for the success of
the lessons. Studies more general conclude that the teachers’ technolog-
ical knowledge, content knowledge and pedagogical knowledge revolved
around CAS are crucial and give this a new name: Technological Pedago-
gical Content Knowledge (TPACK).

However more things need to be said: Since the integration of CAS
in teaching modifies the mathematical praxeological techniques it also
changes the types of tasks to be taught and the praxoelogical technology
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and theory. I.e. the knowledge to be taught has changed. But what has ap-
peared/are appearing? Thus it also becomes a problem of didactical trans-
position and therefore new productions are required.

Lesson study

It’s origin in Japan

In this section I will give a brief introduction to lesson study which has
recently been adopted by other countries. Lesson study in Japan is “an im-
portant part of Japanese teachers’ continuing professional development”
(Isozaki 2013) but also “foster the learning or professional community in
and between schools” (Isozaki 2013).

Lesson study appears in different settings with different compositors
and different facilitators but they all have joint commonalities. A lesson
study has three parts: the preparation, the research lesson and the reflective
meeting.

The preparation can be done with a group of teachers or an individual
teacher with advisor and consists of two parts. The first part starts with
defining and discussing a research question or goal for the research lesson.
There after the conduct of the research lesson is planned. This is carefully
done with focuses such as: the type of lesson, the content, the focus, the
teaching material, the practical activities, predictions about the students’
difficulties and how to help them, how to assess the students’ performance,
etc. The second part involves the finale development and adjustments in
order for the planned research lesson to fit the specific class and then writing
down the lesson plan.

The second part: the research lesson is a lesson where the lesson plan is
tested in a classroom with participating students and data collected. During
the research lesson observations of the students’ interaction and work will
be carried out by other teachers and invited guests for example university
professors. Also the research lesson can be recorded.

The reflective meeting is held shortly afterwards with all previously in-
volved peopled present. The reflective meeting is focused on assessing the
research question or the goal for the research lesson but also elements of
both the mathematical and the didactical praxeology. Discussions of the re-
flective meeting will be written down in the finale report which will also
contain notes for improving various aspects of the lesson.
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A fourth part of lesson study can be added but is not always present:
sharing the results. This can be done either locally at the school on a bul-
letin, as part of a book or in conferences devoted to sharing lesson study
reports.

Example of standard lesson plan template taken from Isozaki (2013):

Implementation of lesson study in the US

In Japan lesson study is well integrated both in the teacher’s education but
also in the environment around the teachers. The teachers therefore have a
well established knowledge of and the ability to use lesson study in their
professional development.
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Hence adapting the Japanese lesson study is not problem free and there
are many challenges.

The following list of challenges one can encounter when trying to facil-
itate lesson study is taken from an empirical study that explored the feasi-
bility of lesson study in the US. There where foreseen challenges but also
new more prominent obstacles occurred during the implementation.

The, by the researchers, foreseen challenges for the teachers was “find-
ing the time and interest for lesson study”, “overcoming the fear of mak-
ing one’s teaching public”, “finding ways of creating a curricular common
ground for joint lesson planning” and “overcoming the knowledge limita-
tion many groups are likely to encounter”.

However during the implementation of lesson study more fundamental
challenges occurred: “posing rich, researchable questions”, “designing a
classroom experiment”, “specifying the type of evidence to be collected”
and “interpreting and generalizing results”. For example a group of teachers
struggling to specify the type of evidence to be collected: (Fernandez 2002)

T1: I want to look at the questions from the beginning to end.
T4: But what are you studying.
T5: What about their questions?
T3: What aspect are you studying?

The problems such as “finding the time and interest for lesson study”,
“overcoming the fear of making one’s teaching public”, “finding ways of
creating a curricular common ground for joint lesson planning” where over-
come by the prospect of the benefit of lesson study. The rest and more se-
vere problems such as “overcoming the knowledge limitation many groups
are likely to encounter”, “posing rich, researchable questions”, “designing
a classroom experiment”, “specifying the type of evidence to be collected”
and “interpreting and generalizing results” where tackled coincidentally by
having teachers in the working groups that had been educated in Japan and
therefore took on a mentor role in the working group. An example of this
is a group of teachers struggled to interpret and generalize the results from
the research lesson. One of the Japanese teachers explains: “When I teach,
I always look to see the solution method that the majority of students use.
I believe this method is probably what they have learned from their mathe-
matics education up to that point. Since most students in this lesson counted
the boxes on the grid paper, that’s probably their level of understanding of
area. That may be something you need to approach differently for students
to learn better skills to solve this problem.” (Fernandez 2002).
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Tackling CAS based teaching with lesson study

I theorize that many of the present challenges teachers and students en-
counter in CAS based teaching can be reduced with the use of lesson study
with a special focus on the preparation part especially the lesson plan. How-
ever new obstacles are likely to surface.

Often when doing lesson studies the working groups have a standard
lesson plan template to work with and from. Even though the standard les-
son plan template leaves room for the teachers own designs and focuses to
come forward the standard lesson plan template is not designed to deal with
much of the praxoelogical didactical or mathematical theory block, since
this is considered already known. With this in mind and since the content
of the praxeological theory and practice blocks both mathematical and di-
dactical are changing when implementing CAS based teaching I propose
that the current lesson plan templates should be rethought and redesigned.

In order to aid the teachers I propose that the lesson plan template starts
with a section focussing first on the mathematical praxeology containing
both the practice and the theory block for the knowledge actually taught in
the lesson. For example a section on quadratic equations starting with the
definition, the notions involved and different types of quadratic equations
followed by a list of smaller results approachable for students and proofs or
verifications thereof. Second a subsection focusing on the CAS praxeology
containing a list of CAS techniques (commands) intended for the students
to use working with the tasks later described in the lesson plan. Succeeded
by an explanation of the praxoelogical CAS technology and theory for the
tasks (How the chosen CAS works with the techniques, what is the output
of the commands, the syntax and the restrictions of the CAS, how do we
define a variable? How does the program store the variable? etc.).

Secondly I propose a section focusing on the didactical praxeology. For
instance it could first consist of a praxeological practice block with de-
scriptions of the different types of orchestration intended to be used dur-
ing the research lesson: technical-demo, explain-the-screen, link-screen-
board, discuss-the-screen, spot-and-show and sherpa-at-work. Followed by
a description of the praxeological technology and theory justifying the dis-
course of the didactical techniques such as minimising the gap between on
screen mathematics and mental mathematics, reducing the black box per-
ception by the students, minimising the risk of generalization without gain
of content knowledge.
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This redesign of the lesson study template can help set a focus on the
lack of knowledge centred around teaching with CAS and help the teachers
in the lesson study working group focus and deal with the new praxeologies
required one step at a time. Despite the new composition of the lesson plan
template this does not instantly help the teachers since they will still need
to attain a lot of new knowledge. Also the preparation part of lesson study
will now take a lot longer time.

A way to tackle this time-consuming knowledge quest and reduce the
timeframe for the preparation step can be done in several ways. One is to do
the composition of the lesson study working group with a blended team to
make sure that a person with for example CAS expertise is present. Another
more resource-demanding is a start-up lesson study CAS based teaching
seminar where the different aspects of the didactical and mathematical and
CAS praxologies around CAS based teaching is presented. This can easily
be done if the region already is hosting a lesson study conference.

Also we need again to look at Japan where often in lesson studies
‘knowledgeable other’ (a university professor or similar) is involved in parts
of the lesson study. This use of mentors is very resource-demanding but
can with the aid of today’s modern society be done using the internet and
thereby reducing some of the costs. Involving a person with academic con-
tent knowledge in the preparation mode might help the teachers to quickly
master the mathematical praxeology and get an overview of the involved
content knowledge. Also the person with academic content knowledge can
point the teachers in the direction of fruitful question for the students to
examine.

Some teachers are reluctant to use CAS in their teaching some on the
grounds that it is an entire new world to them and they therefore have inade-
quate knowledge not just on how to use the technology themselves but also
how to use it in their teaching for more than just fun for the students. Being
involved in a lesson study one way or the other the teachers could bene-
fit. If they are part of the lesson study working group the teachers might
be helped by their colleagues or simply reading the lesson study reports or
attending a research lesson and the reflective meeting can be a start.

Later on in the fourth part of the lesson study if the lesson study report is
being shared other teachers could benefit from the new acquired knowledge
in a manner of practical experiences that new teachers can use in their own
classroom.

Many teachers feel the pressure from the community in order to use
technology in their teaching and having lesson study projects focusing on
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CAS circulating on schools and teaching communities would give other
teachers examples of well thought thorough lesson plans and the consider-
ations needed in order to make a successful lesson plan.

The lesson study format could also be a very productive tool in ap-
proaching and determining the new occurring mathematical and didactical
praxeology for researchers, mathematicians involved in education, policy-
makers, textbooks authors, etc. in cooperation with teachers.

Deficit of lesson study for CAS based teaching

Though lesson studies bring forth a suggestion on dealing with many as-
pects of the challenges and obstacles with CAS based teaching they do not
tackle all challenges and also create new hurdles.

One of the more prominent obstacles is time since lesson studies are
only for a single or two lessons and is not traditionally meant to consider
the students outside the classroom. However in order for the students to be
comfortable with the CAS tool it is beneficial for the students to work at
home sitting on their own trying and exploring different commands while
working on assignments.

Another challenge is the lack of generalization since the lesson study
working group has a specific class of students in mind and therefore also a
specific constellation of artefacts such as the classrooms environment with
computers, monitors and screens. This can limit the adaptation of the lesson
plan to other schools with different classroom environments.
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Abstract. This paper represents a part of a PhD project and will
put emphasis on eight lower secondary Geography teachers, and
how their Pedagogical Content Knowledge might influence their
internal didactical transposition of the topic of weather formation
and climate change. There are conducted semi-structured interview
with the teachers. An analysis of the results implicates that there is
a connection between the teachers’ topic specific Pedagogical Con-
tent Knowledge, especially their subject matter knowledge, their
educational profile, and how the internal didactic transposition is
carried out.

Geography profession in the Danish school

Geography is a minor subject in the Danish Lower secondary school. The
subject is one of the natural sciences subjects along with: Math, Biology,
Physics/Chemistry and Science/Technology. In the Scandinavian countries
the discipline of Geography is placed at different Faculties and has differ-
ent content dimensions (EUGEO 2004, Molin 2006). In Denmark in the
lower secondary school it consists of both Physical Geography and Human
Geography, unlike in higher secondary school, where the subject is called
Natural Geography mainly focusing on Physical Geography. Therefore in
the lower secondary school Geography can be characterized as an interdis-
ciplinary subject (Møller 2001) containing elements from different scien-
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tific disciplines: natural science, social science and humanities. It opens up
a very varied terminology and a variety of teaching methods with the abil-
ity to motivate students. (eg. Heer et al. (2002), Ehlers & Volkers (2008),
Mikkelsen & Sætre (2010)).

In addition, parts of the content in Geography is more or less reflected
in Wolfgang Klafki’s´ epoch typical key issues (e.g. Feierabend & Eilks
(2010), Møller (2001)). Insight into these key issues can be expected to
be of great relevance to the problems that students later in life are going
to hear about and maybe work with. But working with these complex ge-
ographic content areas requires varied didactics and a detailed technical
language that serves both cognitive and affective elements (Slater 1994,
Nielsen 2000), and that the teacher is able to work with Socio Scientific
Issues (Rattcliffe & Reiss 2006) in a qualified way.

Looking at the teachers´ formal qualifications, understood as educa-
tional background, there is in Denmark a significant difference between
lower secondary school teachers and high school teachers. To teach phys-
ical geography in high school, you must have a University degree either
in the subject of Geography or Geology. In the Lower secondary school,
there has so far been no requirement that Geography teachers´ should have
a formal education to teach lower secondary Geography. In the context of
the new school reform (Ministry of Education 2014) it is however required
that the teachers in the coming years must have a specialisation from a
Teacher College in their teaching subject or have acquired equivalent qual-
ifications. At present approximately 2/3 of the Geography teachers have
those acquired competencies (Uni-C 2013).

Weather formation, climate change and geography

In the case of the subject Geography, the topic of weather formation and
climate change is quite central in the curriculum of the Danish lower sec-
ondary School. In the last 10-15 years the public, politicians, NGO´s and
scientists´ have increasingly emphasized the importance of students’ insight
into weather formation and climate change. All those different agents might
be part of the external didactic transposition (Winsløv 2006, Borsch & Llull
2014), and that is probably the reason why the topic of weather formation
and climate change has become an even more central part of the curriculum
of Geography. You might go a step further, and say that the topic of weather
formation and climate change have caught those agents interest, while it has



6 Geography teachers’ pedagogical content knowledge... 63

become a vital question to keep a kind of status quo to the modern western
life style.

In many ways, weather formation and climate change is a very exit-
ing topic, not only of vital interest to the society, but also a key topic in
Geography containing aspects from both Physical Geography and Cultural
Geography. Furthermore the topic might be seen as quit essential, while it is
about the interaction between mankind and nature. On one hand, mankind
are influencing the global temperature by the emission of greenhouse gasses
e.g. CO2 and CH4. On the other hand, mankind are also under influence of
natural oscillations in the global climate caused e.g. by sunspots and the in-
teraction of the Earth and the Suns´ tracks being of very different timescales
(11 - 100.000 years).

And for the reason of that, becoming one the epochal key issues to the
society, it should therefore be a part of the curriculum, according to Wolf-
gang Klafki (Møller 2001). From a motivational point of view, Rattcliffe
& Reiss (2006) argues that students are very interested in working with so
called Socio Scientific Issues (SSI) with emphasis on contemporary issues
presented in the news and with science content that are relevant to students’
lives. The topic of weather formation and climate change fulfil all of these
aspects.

Pedagogical Content Knowledge (PCK)

International research shows that the teacher is the single most important
factor in relation to strengthen students´ learning (Hattie 2008). Hence it
is interesting to study Geography teachers´ teaching professionalism in the
sense of Pedagogical Content Knowledge (PCK). Lee Shulman (1986) was
the first to use the concept of PCK were he pointed out that teachers´ con-
tent knowledge consisted of three categories: subject matter content know-
ledge, pedagogical content knowledge and curricula knowledge (Shulman
1986). Since Shulman the concept of PCK has been developed being an
overall emergent concept that integrates three knowledge areas: Subject
Matter Knowledge (SMK), Pedagogical Knowledge (PK) and Knowledge
of Context (KofC) (e.g. Van-Driel et al. (2014), Abell (2007), Magnusson
et al. (1999)) see figure 6.1. In this study PCK is used as an overarching an-
alytical framework to study Geography teachers´ teaching professionalism.
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Fig. 6.1: Pedagogical Content Knowledge (after: Abell (2007), Magnusson
et al. (1999)).

It is implicit in both Lee Shulman´s and Sandra Abell´s understanding
of PCK, that it is a personal knowledge which the teacher holds - strongly
connected to the teachers´ formal education and personal experiences. But
it can both be developed individually as well as in professional collegiate
communities (Van-Driel & Berry 2012).

Didactic transposition

The process of transforming a sudden content of scientific knowledge, ac-
cumulated and refined over the years, into something the students actually
learn, is a long and hard process - difficult to describe and analyse. In the re-
cent years some authors have used the concept of didactic transposition as a
framework for describing and analysing this process (e.g. Winsløv (2006),
Borsch & Llull (2014)).

Here, the didactic transposition as a process separated into four differ-
ent stages called: 1) scholary scientific knowledge, 2) scientific knowledge
to be taught, 3) taught scientific knowledge, and 4) learned knowledge, see
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figure 6.2. This illustration shows that the scientific knowledge, which con-
sists of scientific concepts, theories and models goes through a transfor-
mation where different actors, based on what they think is important and
valuable, select parts of the scientific content to be passed through the edu-
cational system. On the other hand, what student, teachers and other actors
of the society think is important and valuable knowledge may also influence
what the scientific establishment find important to study. In figure 6.2, this
double-process is indicated with a double-arrow. The process of selecting
scientific knowledge for the curriculum, called scientific knowledge to be
taught, is called the external didactic transposition. The processes of trans-
forming the curriculum into actually classroom teaching (taught scientific
knowledge) and transforming this into learned knowledge is called internal
didactic transposition (Winsløv 2006, Borsch & Llull 2014).

Fig. 6.2: The bold arrow indicates the analytic focus of didactic transposi-
tion in this study (after: Borsch & Llull (2014)).

To understand the didactic transposition it is highly relevant to study
teachers´ PCK. Therefore this study will put emphasis on the characteris-
tics of eight Danish Geography teachers´ PCK according to the topic of
weather formation and climate changes (the content dimension) and how it
might influence the teachers´ ability to implement the internal transposition
from the knowledge to be taught to the taught knowledge. This process is
indicated with the bold arrow in figure 6.2.
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The “Noosphere” and climate change

In the didactical transposition model in figure 6.2, the “Noosphere” con-
sist of different actors doing the transpositive work (Borsch & Llull 2014).
Teaching Geography, climate change has become central in the curriculum
of the Danish lower secondary School. In the last 10-15 years the policy
level, NGO´s and scientist have increasingly emphasized climate change as
an important topic (e.g. IPCC (2013), Hayhoe et al. (2011), Andersson &
Wallin (2000)). All those different actors might be part of the Noosphere
in the external didactic transposition (Winsløv 2006, Borsch & Llull 2014).
Having this in mind, this is probably one of the reasons why the topic has
become a central part in the Danish curriculum of Geography. Going a step
further back climate change might have catched those actors interest, while
it is of vital interest to the modern society trying to reduce the impacts´
from the climate change and maybe keep a kind of status quo to the present
way of living.

Aim and research question

What is of primary interest in this paper is the analysis of the teachers´
internal transposition of the curriculum of weather formation and climate
change to taught knowledge, and what might influence this. The Noosphere
is of secondary relevance while it constitutes the knowledge to be processed
in the internal transformation between the knowledge to be taught and the
taught knowledge. Therefore it is the aim of this study to explore what may
have significance for Geography teachers´ internal didactic transposition in
relation to the topic of weather formation and climate change.

Methodology

There have been conducted semi-structured interviews (Cohen et al. 2010,
Kvale 1997) with eight Geography teachers at lower secondary school,
coming from four different schools. The schools are geographically evenly
distributed, so they represent towns and schools of different sizes in the
Region of Middle Jutland. They also represent schools with children from
different socio-economic background (Larsen 2013). In addition, all four
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schools are participating in the QUEST project1, which have made inter-
ventions to promote science teacher collaboration to improve the science
teaching.

The eight interviews were conducted during the spring of 2014. Be-
fore the first interview, an interview-guide was developed concerning four
different items which were: background information, PCK concerning cli-
mate changes, general development of the Geography teachers own PCK,
The specific influence of the QUEST project on the PCK. Before the start
of each interview, the guide was passed on to the teachers´, so they were
informed about the questions. They were also informed about the purpose
of research and promised full anonymity. The interviews were transcribed
and different categories were developed through an iterative process read-
ing the data. From this material, central statements according to purpose of
this study were selected - these can be seen in table 6.1.

Results

In table 6.1, a short description of the involved schools and teachers can
be seen in the two first columns. In the last column, statements from the
interviews emphasising the teachers’ thoughts about potential factors that
affect the didactic transposition in relation to the topic of climate change,
are shown.

Discussion

As can be seen from table 6.1, only Karen and Rasmus have not taken
Geography as a subject from Teacher College. Grete and Henrik (school
A), Nellie (school B) and Michael and Rasmus (School D) have more than
one science subject from Teacher College, and therefore presumably rather
strong science profiles. On the contrary Annette (school B) and Karen and
Erik (school C) have some more humanistic orientated academic profiles.

Several of the teachers mention the importance of “the book” when
being a new teacher (Grete, Henrik, Nellie and Erik), some of them thinking
of the Geography book from the College others thinking of the Geography
book for their students. Whether it is the first or second type of books, the

1 See: www.questprojekt.dk

www.questprojekt.dk
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Table 6.1: The schools (A-D) and associated informants together with se-
lected statements from the interviews
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writers and editors of Geographic literature might have a great influence
on new teachers´ didactical transposition. All these Geographic textbooks
are based on the curriculum of Geography in either lower secondary school
or the teacher education. The writers and editors of textbooks then become
parts of the so called Noosphere in the process of didactic transformation.

On the other hand Grete and Henrik (school A), and Michael (school
D) are expressing confidence to their own judgement about what is of rele-
vance teaching the topic of climate change. It is also of relevance to study
the collegial aspect of didactic transposition, where several of the teach-
ers´ mention the importance of collegial interaction as being of importance
to their didactical transposition. Eric, as the only one mentions teacher
trainees as being important asking “annoying question”. These questions
make him reflect about his own practice in the classroom.

Nellie, Annette and Karen all having different academic profiles also
express that the subject of Geography have a huge curriculum, and parts of
the curriculum will be downgraded when teaching. Especially the physical
part of weather formation having low priority teaching the topic of weather
formation and climate change. According to Annette and Nellie they like
to teach in a more discursive manner with focus on Human Geography
and might leave the more “heavy science part” of the curriculum to other
colleagues. Erik too (school C) has a discursive approach to the students
learning. This focus might influence the students´ learning outcomes. On
one hand the students might become citizens having action competences.
This implied as students being able to express their points of view according
to Socio Scientific Issues (Rattcliffe & Reiss 2006). On the other hand, their
students may have a lack of scientific knowledge to make proper scientific
based argumentations on such questions.

In the case of Grete and Henrik (school A) and Michael and Rasmus
(school D) their subject matter knowledge is high and the story of internal
transposition of the curriculum of climate change into taught knowledge, is
different. All of them cover all parts of the curriculum connected to climate
change trying to have a great deal of variation in their teaching methods.
During the interviews they emphasise that they give ordinary Geography
lessons with presentations and hand-on activities, combined with student
centred project work.

In case of Karen (school C) the Subject Matter Knowledge is espe-
cially low, which highly influences her internal didactic transposition and
therefore her ability to teach the topic of weather formation and climate
change in a satisfactory manner. She neither poses the complex Subject
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Matter Knowledge or Pedagogical Knowledge of the topic. This may affect
the students´ learning outcome.

Conclusion

This preliminary study of eight Geography teachers’ PCK and their internal
didactic transposition according to the topic of weather formation and cli-
mate changes shows some characteristic results. The rather complex topic
contains both elements from Physical and Human Geography, but teachers
with an affinity for Human Geography and a humanity profile leaves out el-
ements from the Physical Geography which they find difficult to deal with.
It seems as though the cooperation and stronger science SMK on school
A and D, promote another internal didactic transposition, with emphasis
on greater variation in content and didactics in the geography lessons. This
kind of close collegial cooperation is in focus in the large scale develop-
ment project QUEST focusing on in-service science teachers´ cooperation.
It might be an idea to involve pre-service teachers in such actions.

This small-scale project can only give some preliminary ideas about
the connection between Geography teachers PCK and the internal didactic
transposition. To have some more reliable results there is a need for a large-
scale project.

In the spring of 2015 this PhD project will study the PCK in-action
where the internal transposition will be observed during the Geography
teachers´ lessons in the topic of climate change. It might give another,
more precise and nuanced, picture, than these statements from the teach-
ers´ themselves.
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Abstract. This paper presents a study organising the teaching of
exponential functions in an attempt to re-establish a connection be-
tween research and education (or school mathematics) based on the
anthropological theory of the didactics (ATD). The teaching aims
at students developing new knowledge like scholarly knowledge,
which is developed from open-ended questions and is justified by
mathematical argumentation. The design is based on research and
study activities and requirements for upper secondary mathematics
in Denmark. In this study the emphasis is put on the media-milieu
dialectics and how this can be orchestrated in a fruitful manner.
The study shows improvements in student’s relation to proofs and
the student’s ability to read and write mathematics.

Disconnection in the teaching of exponential functions

It has been pointed out that Danish high school does not treat exponential
functions rigorously and that there is no raison d’être given to the notion ax

where x ∈ R (Winsløw 2013, p. 5). The curriculum phrases requirements
for the working with exponential functions as: “students should be able to
[...] use relations between variables for modelling purposes of data, predict
how the modelled system evolves and be able to discuss how good the model
fits with the system” and further the students should work with “equations
describing [...] exponential relations between variables [...]” (Ministry of
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Education 2013a). There are no explicit requirements regarding real num-
ber exponents. The ministerial guidelines for teaching the curriculum says
that “it can be an advantage to put focus on [...] arithmetic rules for cal-
culation with exponents while working with exponential relations [...]” and
further it is suggested at the introduction phase of the course to look at:
“
√

2,10100 - how to explain what these symbols stands for?” (Ministry of
Education 2013b, pp. 5-7). In the last sentence there is an opening for in-
troducing real number exponents but the sections ends by saying it should
be done through experiments and games – not in the rigorous manner as
treated in the capstone courses described in (Winsløw 2013). Most text-
books present rules for calculating with exponents based on the definitions
of an and a

1
n and natural numbers. It is noted that this can be extended

to the n ∈ R, but it is too advanced to give the details in the book or it
is calculated using CAS-tools (Winsløw 2013). Some books do not even
treat the extension with a single word (Clausen et al. 2010, p. 67f). More-
over there is a disconnection in the content between scholarly knowledge
and school mathematics regarding exponential functions. This mean, that
there are theoretical elements and reasoning in the treatment of exponential
functions high school students do not develop.

Looking at a widely used textbook one finds an introduction of the no-
tion f (x) = ax and f (x) = b · ax and the possible graphic representations,
then the book presents how the coefficients a and b are calculated from co-
ordinates of two points on the graph and after that two examples on how to
use the formulas are given. Next, the doubling constant is presented graphi-
cally, how to calculate it and examples are explained. All examples are fol-
lowed by suggested exercises where students are supposed to copy the tech-
niques as they are presented in the examples (Clausen et al. 2010). These
pages covers the requirements of the curriculum mentioned above though
it might not bring reasoning for the techniques to the students.

Another important difference is how mathematical knowledge is devel-
oped among students in secondary school and how mathematics is devel-
oped by mathematicians concerning the study process and the reasoning
behind the newly developed techniques or answers in the two institutional
settings (Bosch et al. 2005) and (Winsløw & Madsen 2008). In scholarly
mathematics questions serves as generators that drives the development of
new knowledge in terms of praxeologies;

“Doing mathematics consists in trying to solve a problematic ques-
tion using previously available techniques and theoretical elements
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in order to elaborate new ways of doing, new explanations and new
justifications of these ways of doing.” (Bosch et al. 2005, p. 5).

Research like activities are proposed as ideals for how students should
work with school mathematics (Winsløw & Madsen 2008, p. 1). At the
same time it is reported that it is not the questions research and education
shares at university level but it is the production of answers, as a teacher
points out: “we are after them thinking about what are the problems in-
volved in this task (...) just they explore this problematique we feel they
have achieved a lot.” (Winsløw & Madsen 2008, p. 6). The aim of the study
of this paper was for the students would develop new praxeologies covering
the techniques from curriculum based on (for the students) open questions
using their existing praxeological equipment. This is not an original idea
but the orchestrating of the activity and the creation of a suitable milieu in
order to create the process described by the Herbartian schema is new.

Therefor the research question of this study was how to design teaching
for upper secondary mathematics ensuring the students potential of devel-
oping praxeologies as answers to questions – including the raisons d´être
of the praxeologies?

Teaching design based on students’ study process

To design teaching fulfilling this, tools from the ATD were used. In this sec-
tion study and research activities (SRA) are presented as a design tool for
teaching build on questions, the dialectics of media and milieu and didactic
moments that characterises the different activities during the didactic pro-
cess. Firstly the ATD perception of a teaching and learning process is given.
ATD characterises the teaching and learning process by so called Herbar-
tian schema. The process requires a question Q to be studied by a group X
assisted by another group Y. The groups can consist of only one element.
X, Y and Q form a didactic system, which develops the answer A♥, where
♥ denotes that it is the answer developed by the specific didactic system.
The development of an answer happens when the system interacts with a
milieu M, which consists of existing answers or praxeologies Ai� and other
resources (the work of others). X and Y can act as part of the milieu. The
semi-developed Herbartian schema represents the study process:

[S(X ;Y ;Q)→M] ↪→ A♥
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This study process leads to the development of a raisons d´être of the prax-
eology, even if the praxeology is considered in a decontextualized way
(Kidron et al. 2014, p. 157). The process described by the Herbartian
schema is dynamics of the design tool given below.

The inspiration for the teaching design is taken from the idea of study
and research paths (SRP). These start with a generative question Q0 real and
understandable to the students and strong enough to lead to derived ques-
tion Qi, Q′i, Q′′i and so forth. The studying of all these questions should lead
to the development of a set of praxeologies covering a body of knowledge,
or in terms of ATD an intended mathematical organisation (Barquero et al.
2007) and (Barbé 2005). New mathematical praxeologies are developed as
it is described above through answering new questions through adjusting
existing praxeologies and by studying the works of others.

It is crucial in SRA that students do engage themselves in the process of
studying the work of others being books, web sides, videos on the internet
and likewise. The research process covers reorganisation of the pieces of
knowledge and techniques found in the media consulted in the study pro-
cess in order to (partly) answer the question at stake. The latter corresponds
to the students acting with a milieu in the sense of the Theory of Didactic
Situations (Winsløv 2006, p. 135f) and (Kidron et al. 2014, p. 157). The
working process of the students can then be characterised by what have
been called the dialectics of media and milieu (Barquero et al. 2007) and
often X, computers and internet can function both as media and milieu in
these processes (Kidron et al. 2014, p. 159). To further this process in the
particular study a “resource room” were proposed to the students at the be-
ginning of each question. This was simply a list of web sides with text,
illustrations, video links and pages in different textbooks.

Because of the constraints and conditions for this study; namely the stu-
dents should be able to present their work at an oral exam, they should be
able to find the exponential function through two given points and be able to
talk about characteristics of exponential growth and the doubling constant.
The generating questions Q cover previously established praxeologies and
are not open in the sense of study and research paths (see for instance (Bar-
quero et al. 2007)). In this study, there do exist an optimal combination of
pre-established techniques for solving the questions not known to the stu-
dents. This is the difference between SRA and SRP. The SRA are related to
the paradigm of visiting monuments and SRP are related to what Cheval-
lard denotes the paradigm of questioning the world (Chevallard 2012). The
study process of the study of this paper is to some extend similar to the one
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of SRP’s from the perspective of the students. Different papers presenting
realised SRP (Barquero et al. 2010) and (Garciá & Higuares 2005) points
out that there is still research to do on the realisations in order to secure
the full theoretical potentials being activated in these activities. This paper
attempts to give one possible answer to (part of) this challenge.

One can argue that there are similarities between working with open
questions – especially in the case of study and research paths – and inquiry
based mathematics education. It was not an explicit intention for the design
to be IBME, but the theoretical relations are given in (Artigue & Blomhøj
2013) and (Winsløw et al. 2013). The last paper noting the importance of
the study process and that inquiry cannot stand alone.

How the activity is managed in the classroom is described by the no-
tion of the moments of didactic organisations. According to ATD there are
six moments of the didactic process: the moment of first encounter, the
exploratory moment, the technical moment, technical-theoretical moment,
the institutionalisation moment and the evaluation moment (Barbé 2005).
First encounter means the first encounter with the organisation (MO), which
can be in the form of a task or question that belonging to the organisation.
The moment of exploration covers the development of techniques, which
can solve the task. This can be modification of existing techniques or the
studying of new ones or a combination of both. The technical moment
explores further what the technique can answer and is strongly related to
the technical-theoretical moment which is the students development of the
discourse regarding the explored techniques belonging to the organisation.
The moment of institutionalisation seek to elaborate on the answer found
and what it is. This moment is strongly linked to the moment of evalua-
tion, where the value of the developed praxeology is checked. It is further
concluded that “a ‘complete realisation of the six moments of the didactic
process must give rise to the creation of a MO that goes beyond the simple
resolution of a single mathematical task” (Barbé 2005, p. 239). In the next
section a presentation of how this is carried out is given.

How is the teaching managed in the class room

The study was conducted in a class of 24 students at first year of upper
secondary school in Denmark (15-16 year old students) studying language
and social sciences (i.e. not interested in mathematics, and at the lowest
level C). The author is both the researcher behind the design and the regular
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mathematics teacher of the class. The teaching was conducted in the spring
2014 and colleagues (mathematics teachers) were recording and observing
the teaching.

The teaching was organised as group work. The class was divided into
8 groups of three or four students. The criteria for being in the same group,
was the teachers expectation that the students in each group had approxi-
mately the same praxeological equipment. The reason for this is a wish for
the student to develop new praxeologies as answers to the open question
developed from their existing praxeologies, i.e. maximize the potentials in
the study process for each student according to the media-milieu dialectics
described above. This means that in the first encounter with the organisa-
tion formulated as an open question the students in the group activates to
some extend the same praxeologies. A single group member is not likely
to give the solution of the problem to the group. Instead the entire group
must study some media and reconstruct the content of the media to create
the praxeology, which answers the question.

The number of groups was chosen, so that no student would be alone
in her group if one other student were missing. And presumably at least
one student would be able to generate an idea to answer the open question
from media or existing praxeologies. The groups had 5 or 7 minutes per
question for first exploration. After these few minutes every group must
present their preliminary thoughts in writing on the whiteboard. The board
was divided into eight spaces and each group should be able to present their
entire solution in this small space without erasing anything. It was always
the group with the poorest praxeological equipment, which started, and it
ended with the best equipped. This ideally should ensure that the students
were presenting their thoughts without comparing themselves to a better
solution – since solutions were presented according to ascending quality. It
was not allowed to say that one group had done the same as the previous
one, since often two groups presenting the same strategy emphasised dif-
ferent elements or reasoned differently. All of this was crucial parts of the
media-milieu dialectics and assisted the development of mathematical lan-
guage among students. The groups were working in the technical moment
when showing what answers to the question certain techniques could give
them. Some groups were even able to discuss reasons why they had chosen
different techniques compared to previous groups and were therefore in the
beginning of the technological-theoretical moment.

When all groups had presented their thoughts the teacher organised a
discussion and comparison of the solutions suggested, asking the class to
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formulate these. Since the time schedule was tight the students most often
would not have completed the answer to the question and the class agreed
which method seemed the most promising and pursued this, or if no group
had given a reasonable method a derived question was posed by the teacher
according to the a priori analysis. Evaluating the preliminary answers as the
sum of techniques and the technology presented by the group was part of
the institutionalisation moment of the MO at stake in the particular ques-
tion. In the context of media and milieu this moment adds to the process
that students in the class served as media to each other. When students
were questioning the new ideas posed by classmates they actually formu-
lated a Qi’ assisting the development of A♥. This dynamic of generating
questions to explore new techniques and develop new technologies for the
mathematical organisation of exponential functions were the intention of
the teaching design.

Homework between lessons were not reading a number of pages in a
book but writing a thematic report. A thematic report is a written produc-
tion presenting a body of knowledge covering theoretical presentations and
resolution of different tasks or type of tasks. The reports are used as syn-
opsis for the oral exam (Ministry of Education 2013b). Writing these re-
ports further served as technical moment for the teaching of the MO. They
were based on each group work but also new elements brought into light
in the whiteboard presentations of the other groups. This meant that after
the sharing sessions each group adjusted their answers by testing strategies
presented by the other groups. This might call for students to further study
their own notes or media and reconstruct it as new answers. Or simply, the
group had to adjust their answer with respect to questions and ambiguities,
which became clear during the presentations and class discussions.

The groups presented their homework writings on the whiteboard in
the next lesson, which served as further evaluation of their work. Finally,
the students handed in the reports, which were corrected by the teacher.
The outline for the report was to make a more rigorous presentation of
the exponential functions and the techniques related to solving problems
involving these, exemplified by the questions solved during lessons.

A SRA on the exponential function

In the following some of the questions used for the SRA are presented.
Most students knew (or were able to recall) from lower secondary how
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to calculate the amount of money on a bank account with annual rate of
interest of 4 %. The students used the formula Kn = K0 · (1+ r)n. This is a
discrete form of the exponential function y = b ·ax, where a = 1+r,b = K0,
f (x) = Kn and x = n.

The intention of the design was that the students enlarged their prax-
eological equipment on the notion of exponential functions not being re-
stricted to bank accounts, but to give them the ability of modelling much
more different setups. Implicitly the intention was for the students to see
the need of proofs and see those as exact arguments. These aims are not
explicit in the curriculum but it is said that the “students should be able to
carry out simple mathematical reasoning” (Ministry of Education 2013a).
More important was the potential of developing a technological-theoretical
dimension of the techniques in order to connect the secondary teaching of
mathematics with the scholarly development of mathematical knowledge.
The first question posed to the students was the following one:

Q1: Grandparents starts a saving account for their newborn grand-
child by putting 5000 dkk. on an account at an annual rate of inter-
est of 2.5%. Bank regulations say that the amount of money cannot
exceed 50,000 dkr. Will that be a problem if the money is being
paid to the child at its 21st birthday?

The students were supposed to predict the amount of money after 21 years
using their knowledge from lower secondary. Some students were assumed
to choose to calculate the amount of money by calculating K21, others to
use the graphical representation to find the corresponding y value to x = 21.
Others again could use a somehow iterative method multiplying 5000 by
1.25 and continue doing that 21 times. This moment of first encounter with
the MO of exponential functions as it is described in curriculum and guide-
lines is an example of giving the students the potential of re-encounter the
type of task: “calculate K21 when given K0 = 5000 and r = 2.5

100 ”. For other
students it called for studying media again. Next the following question is
posed:

Q2: At the neighbours the grandparents also created an account for
their grandchild starting at 5000 dkk. After 10 years the amount of
money has grown to 5947.22 dkk. How much money do the two
children have on the respectively accounts after 18 years?

The students could partly answer the question using praxeologies from
lower secondary, using CAS-tools or not. Since they might recognise
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K0,K10 and n=10. From this they could formulate an equation, which could
be solved taking the 10th root on both sides. Their calculators were able
to perform this if they knew how to use them. Most likely the students had
to study the textbook examples and recognise the coordinates of the two
points given in the text and calculate a. From this the rate of interest was
deduced. This meant that the solution to this question called for a combi-
nation of techniques and the discourse regarding the combination of these,
which led to the development of a technological level of a new praxeology.
Q2 was an example of a question the students not were supposed to answer
during the first 5 or 7 minutes. Hypothesis and arguments for combination
of techniques were expected but not a complete answer. Finally the stu-
dents had two saving models and they were supposed to use the previous
established technique to calculate the amount of money on the accounts to
compare the models.

Q2 was followed by asking the students how they could be certain that
the formulas a =x2−x1

√
y2
y1

and b = y1
ax1 gave them the model they were

looking for. This led to another study and research process developing their
mathematical reasoning using existing arithmetic techniques in new con-
text.

In a following lesson the students were asked how long it takes before
the amount of money is doubled on the account. This calls for the students
to use the technique T2 =

log2
loga , which is a requirement for mathematics at

this level though logarithms are not required (Ministry of Education 2013b,
p. 5). The textbook says “On a calculator there are two useful buttons, log
and ln. These are two functions, which can be used on the positive num-
bers. [...] Logarithms were earlier an important technical tool for making
calculations. Now they are replaced with calculators except from special
usages” (Clausen et al. 2010). This means students are given no reasoning
for the technique. The design offers the potential of the students to explore
some of the reasoning behind this technique.

An entire analysis of the design requires a praxeological analysis of the
classroom observation and the written reports compared to the a priori anal-
ysis (for how this can be done see for instance (Jessen & Winsløw 2011)
and (Barquero et al. 2007)). Comparing these tree diagrams will show what
praxeologies have been developed and how the potentials of the design were
explored. Though some findings are given below.
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Findings

The study of this paper was carried out after a pilot design on the re-
encounter with linear functions. This meant that students did not question
the sharing of responsibilities in the class meaning who provide answers,
questions and who institutionalise and evaluate the answers elaborated by
the students.

When asked for reasons for the formula a =x2−x1
√

y2
y1

, the students did
not question a proof as the way to argue in mathematics. Not all groups
did provide equally rigorous version of proofs. Some groups could point
to the proof but only carry out parts of the reasoning and therefore they
used the other group presentations as media for further study for their writ-
ten reports. Without explicitly asking for a proof for the doubling constant
several groups presented the definition of log10x and used this for proving
the doubling constant, a “quadruple constant” and “eight times constant”
(translated by the author from the students writings). These self-invented
techniques were used to characterise the growth of an exponential function
for a > 1. This work went beyond curriculum and was closer to schol-
arly development of mathematical praxeologies than usual teaching. Not
all groups were able to deliver this and some of the first groups did not in-
clude the proof of T2 in their written reports. They only used the technique
correctly and phrased that it could be proved using the rules for calculating
with logarithms.

An even more clear advantage of this teaching design was that the stu-
dents improved their writing and reading of mathematics. In the beginning
it was very hard for the students to figure out what writings were needed on
the board. They thought that it depended on the teacher, and if the teacher
got the point it was good enough. But as the students started the written
reports they saw the need of understanding ideas and methods presented by
other groups. This meant that they asked the other groups to elaborate on
their presentations, put more details on a sketch of a graph or write more
details in proofs on the board. This again affected the student’s ability to
talk mathematics. In the end, students combined notes with what they read
or saw online or read in textbooks in order to complete their written the-
matic reports. As a result of this teaching the reports were formulated in a
more mathematically correct way and at the same time more independent
of the media used by the students.

Students were asked to put in writing their thoughts on the teaching.
This showed that they felt they “did a lot of mathematics during every les-
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son”, that “they taught each other instead of being taught by the teacher”
(not a positive comment from all of them), they said they had to participate
- nothing was served to them. Finally student found it boring listening to
all 8 presentations. The author agree that there is a dilemma that the design
is time consuming but it seems important that every group experience the
moment of institutionalisation and evaluation of their developed praxeolo-
gies.

Concluding remarks

Since the design is based on a monumentalistic presentation of the know-
ledge to be taught given by curriculum, ministerial guidelines and textbooks
there are parallels to what Chevallard have named the teaching paradigm
of visiting monuments (Chevallard 2012). Conversely the design aims at
students questioning and studying of these pre-established pieces of know-
ledge. The students did generate good questions such as the prolonging of
the doubling constant as part of the characteristics of the growth of the
function. In this case some connection between research and education is
established. And just as important they all achieved the intended techniques
for solving problems involving the exponential function.

Still to be investigated further is how we can support the generating
of derived questions through the media-milieu dialectics in feasible teach-
ing designs. But also the advantages of students developing a written and
spoken language of mathematics.





8

Addressing the tension between constructivist
theories of learning and inquiry practice in
science education through didactic transposition

Dave Liam Johnston
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Abstract. The current climate of science education reform in the
United States is driven by policy which aligns strongly with a con-
structivist theory of learning. Constructivism supports an inquiry-
based approach to the teaching of science content, which is demon-
strated in the learning standards in the Common Core State Stan-
dards and Next Generation Science Standards. However, in an ed-
ucation context in which quantitative standardized test scores are
highly valued, many science teachers encounter dissonance be-
tween their constructivist oriented theories of learning and their
daily pedagogical practices. I propose didactic transposition as a
theoretical framework that can be used to examine this dissonance
and identify the ways in which science content is transformed from
teacher knowledge to teacher practice.

Introduction

The current climate of science education reform favors educational ap-
proaches that support constructivist theories of learning. This trend is con-
sistent with the decline of positivism in science education in the 1970’s and
1980’s, which led to the popularity of Piagetian and Vygotskian theories
of constructivist learning (Tobin & Tippins 1993). This shift away from
“teacher as transmitter of knowledge” and towards “teacher as facilitator of
learning” saw the rise of inquiry based instructional strategies that are often
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associated with constructivist theories of learning (Gallagher 1993). How-
ever, given the “epistemological anarchy” created by the numerous types of
constructivism (Geelan 1997), many unclearly defined, the nebulous work-
ing definitions of inquiry-based practices, and the lack of explicit instruc-
tional modelling in teacher education, it is no wonder that science teachers
struggle with aligning constructivist theories of learning with their every-
day practice (Klein 2001, Windschitl 2002).

Inquiry-based science education is sometimes conflated with “construc-
tivist practices”, as if they are one in the same. In the United States, the push
for inquiry-based instruction within the Next Generation Science Standards
(Next Generation Science Standards 2013) and the Common Core State
Standards (Common Core State Standards 2010) draws up on construc-
tivist theories of learning. However, without explicit descriptions of what
inquiry-based practices science teachers should use nor how they are related
to constructivism as a theory of learning, teachers often create learning en-
vironments directly opposed to that from which they draw. The changing
school climate, being influenced by policy reform, creates shifts in practice,
creates a tension between theory and practice (Russell, 1993) and brings
about classroom situations in which teachers adopt “constructivist prac-
tice” without understanding constructivism as it relates to learning (Russell
1993, Shaw & Etchberger 1993).

Driven by the need to better support science teachers as they begin to
implement constructivist practices in their classrooms, teacher education,
as a discipline, needs to recognize that such teachers are learners similar to
the students in their classroom (Kirschner et al. 2006, Russell 1993, Shaw
& Etchberger 1993). Similar to how students must acquire, integrate, and
apply information, teachers as learners must do the same in order to better
implement teaching practices that truly align with constructivist theories of
learning (Gallagher 1993). Teacher education programs should, therefore,
prepare teachers in a constructivist manner similar to that of which they
espouse (Klein 2001). These concerns are particularly applicable given that
there is a line of research that criticizes constructivism as an appropriate
learning strategy outright (Good et al. 1993, Kirschner et al. 2006, Nola
1998). It is in this context that I propose didactic transposition as a po-
tential approach for teacher educators to take in order to explicitly support
novice science teachers as they attempt to reconcile dissonant beliefs about
constructivist learning and science teacher practice. Looking at this prob-
lem through the lens of didactic transposition, one can identify the places
within the transpositive process in which teachers are making deliberate
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choices about which concepts to teach and the instructional strategies they
select to teach those concepts, with the goal being towards alignment be-
tween learning theory and pedagogical practices.

Framing literature

Constructivism in Education

Constructivism as a theory of learning generally traces its roots back to two
individuals: Piaget, who articulated a cognitive or process-oriented view on
learning, and Vygotsky, who advocated a socially-mediated view on learn-
ing. Those who subscribe to a Piagetian perspective would argue that the
acquisition of knowledge is moderated by the ability to adapt to new in-
formation and to organize new information according to existing schema
in order to assimilate that knowledge into the learner’s world view (Piaget
1972). In contrast, those who subscribe to a Vygotskian perspective would
argue that the acquisition of knowledge is socially mediated and is partic-
ularly effective when a “more knowledgeable other” can help facilitate the
process for the learner (Vygotsky 1978). It is from these two perspectives
that the various constructivist orientations have emerged.

Regardless of the particular orientation of constructivism to which one
subscribes, there are several fundamental understandings that are common
across constructivism as a theory of learning. Windschitl (1997) identifies
six core components of constructivism, including: teachers providing stu-
dents with opportunities to engage with new material before instruction;
students having multiple opportunities to engage in problem-based activi-
ties; and students having options as to how they express what they have
learned. From a practical perspective, constructivist pedagogy requires tak-
ing into account that learners bring experiences with them that affect their
understanding (Tobin & Tippins 1993).

Of particular interest to a didactic transposition approach to teacher ed-
ucation could potentially be radical constructivism. This constructivist ori-
entation is similar to a Piagetian cognitive constructivist stance, but empha-
sizes that the individual learner is responsible for constructing knowledge
by linking their pre-existing schema to their context, in order to draw mean-
ing from new knowledge (Von-Glasserfeld 1993). From a radical construc-
tivist perspective, knowledge cannot be viewed as a commodity to be trans-
ferred from teacher to learner, as the learner’s interpretations about newly
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encountered content are drawn from his or her past experiences (Betten-
court 1993). Radical constructivism is focused on the externally influenced
construction of knowledge within a larger social context.

Inquiry-Based Instruction

Inquiry-based instruction has been promoted as a pedagogical approach
that aligns well with traditional scientific approaches. However, the term
inquiry-based instruction is often confusing to teachers, particularly given
the many definitions associated with the term. Coburn (2000) suggests that
one possible explanation for this confusion is the fact that inquiry, as de-
fined by the U.S. National Science Education Standards describes inquiry
in two ways: the teaching of science and the doing of science. He then de-
scribes numerous examples of inquiry in the current literature, including
structured inquiry, guided inquiry, and open inquiry, each representing a
very different pedagogical approach. Coburn goes on to suggest that this
confusion is a possible contributing factor as to why some teachers fail to
implement inquiry-based practice into their classroom.

In reality, inquiry is hardly a new concept in education. Dewey (1938)
discusses the definition and role of inquiry in learning. Dewey specifically
references the importance of knowledge transformation for learners and
this serves as a fundamental aspect of his conceptualization of inquiry. To
modern academics, inquiry-based instruction is sometimes conflated with
problem-based learning, which arose from medical education. Problem-
based education holds several tenets that are similar to inquiry: students
holding responsibility for their own learning, a foundation in the peda-
gogical - as opposed to didactic - curriculum (Savery 2006). However,
problem-based learning is an example of one type of inquiry-based in-
structional approach. In this case, learners are expected to solve real-world
problems through collaborative, reflective learning exercises intended to
draw forth analysis that will be helpful in similar real-world experiences
(Savery 2006). These characteristics could be included in all inquiry-based
practices, but are not necessary for a pedagogical strategy to be considered
inquiry-based.

So the question begs – What is inquiry-based instruction in science
education? For the definition of this term for my purposes, I draw from
the work of Minner et al. (2009). In a comprehensive literature review
of inquiry-based science instruction, they identified six characteristics of
inquiry-based instruction:
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(1) Learners are engaged by scientifically oriented questions;
(2) Learners give priority to evidence, which allows them to develop and

evaluate explanations that address scientifically oriented questions;
(3) Learners formulate explanations from evidence to address scientifically

oriented questions;
(4) Learners evaluated their explanations in light of alternative explana-

tions, particularly those reflecting scientific understanding;
(5) Learners communicate and justify their proposed explanations;
(6) Learners design and conduct investigations

It is instructional approaches that include these characters that are con-
sidered to be inquiry-based for the purposes of this essay. Lord & Ork-
wiszewksi (2006) give examples of what this does and does not look like in
a science classroom. Foremost in their discussion is the “cookbook method
of lab instruction”, in which students follow a prescribed set of instructions
in a laboratory setting. According to Lord & Orkwiszewski, this is an exam-
ple of a common practice that is not inquiry-based. Using Minner, Levy, &
Century’s criteria, it would appear to fail to be inquiry, particularly seeming
to violate criterion 6, by not allowing student to design their own investi-
gations. To contrast this, Lord & Orkwiszewski describe a lesson where
students work in small, cooperative learning teams to identify examples
of a scientific concept. These students were then given items and asked to
design a way to test a question around that concept using those items. Stu-
dents followed through by designing and conducting the experiment and
then analysing the results. This, according to Lord & Orkwiszewski, would
represent an inquiry-approach and, using the Minner, Levy, & Century’s
criteria, appear to do so. However, despite the apparent benefits for student
learning (Lord & Orkwiszewksi 2006), many teachers continue to use the
“cookbook method of lab instruction”. The question becomes, why?

Didactic Transposition

The process of didactic transposition was originated by Chevallard (1985)
in the field of mathematics education. It describes the process in which in-
formation is transformed from its origin, through its use, and ultimately
to the teaching of the concept. Of particular note is the fact that there are
numerous participants in the transpositive work, as the information is trans-
ported through various iterations from the institution in which it originated
to the educational facility in which it is taught. As information progresses
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across this continuum, individuals at each step offer their unique interpreta-
tion on the information, which ultimately shapes the understanding that the
next participant will have (Bosch 2014). Bosch (2014) offers a diagram of
the “journey” that information takes, which demonstrates the cyclical na-
ture of the transposition, as learnt knowledge ultimately informs scholarly
knowledge (See Figure 8.1).

Fig. 8.1: Process of didactic transposition (Bosch 2014).

Another concept related to the model of didactic transposition, praxe-
ology, recognizes that all knowledge has multiple related parts: practical
knowledge and theoretical knowledge. For the purposes of this paper, there
are two types of knowledge being discussed: science disciplinary know-
ledge and science didactic disciplinary knowledge. When framed praxe-
ologically, the former consists of science concepts and facts (theoretical
knowledge) and the practical applications of those concepts and facts (prac-
tical knowledge). On the other hand, when framed praxeologically, the lat-
ter consists of the science concepts and facts included in the noosphere
(theoretical knowledge) and the practical applications of how to teach those
concepts and facts (practical knowledge). From a DT framework, science
teachers would be responsible for both aspects of knowledge as they deter-
mined how to best teach science concepts to their students.

Related to this concept is what has been described as a ‘double tran-
sition’ of knowledge, where a learner must not only negotiate the transi-
tion of knowledge from one context to another, but also from an academic
to practical purpose (Winsløw 2013). This second transition is a common
area of concern for novice teachers, as they struggle to put their content
knowledge into practical purpose (Winsløw 2013). Could it be from this
transition, from theory to practice, that novice science teachers fail to align
constructivist theories of learning with inquiry-based practices? Given that
inquiry is often poorly conceptualized and/or defined as a construct within
the field of science education (Crowther 2005), it could stand that science
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educators are unsure as how to identify appropriate inquiry based practices
that align with the content that they are teaching.

One could easily draw a connection between the idea of knowledge
transformation from a didactic transposition lens and constructivism as a
learning theory with that of Dewey’s understanding of inquiry. Dewey dis-
cusses the concept of controlled inquiry, which is the way in which people
create structure of ideas during learning. Dewey discusses how people use
controlled inquiry in both scientific learning, as well as in everyday ‘com-
mon sense’ (Baskerville & Myers 2004). Is Dewey discussing a form of
praxeology in relation to the construction of knowledge in inquiry-based
science education?

Bridging the gap between constructivism and inquiry

Constructivism and Inquiry Teaching

In both the Common Core State Standards (CCSS) and the Next Generation
Science Standards (NGSS), learning standards are supplemented with stu-
dent action-oriented objectives which describe how students can go about
meeting the learning standard. While these objectives are not mandated and
serve primarily as suggestions for teachers who are planning lessons, many
times teacher rely upon them in order to visualize what students might
be doing during a particular lesson. In many cases, these objectives are
inquiry-oriented in nature (Common Core State Standards 2010, Next Gen-
eration Science Standards 2013). For example, in the NGSS, to meet the
learning standard about natural selection and adaptations, students must be
able to “Construct an explanation based on evidence for how natural se-
lection leads to adaptation of populations” (Next Generation Science Stan-
dards 2013).

Running counter intuitively to this notion of constructivist oriented
teaching, current education reform efforts focus on the use of standardized
testing approaches to measure student understanding. These approaches
privilege rote memorization and traditional positivist approaches to teach-
ing through transmission model instruction (Sacks 2000). It is no wonder
that teachers who hold constructivist oriented theories of learning struggle
to implement standards which seemingly conflict with an inquiry approach
to pedagogy.
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Didactic Transposition as a Mediator

Didactic Transposition offers an interesting approach to the study of this
dissonance between theory and practice in science teachers. One could
view the transformation of content knowledge (CK) to pedagogical content
knowledge (PCK) as a form of didactic transposition. Shulman (1986) dis-
cussed how content knowledge is distinct from pedagogical content know-
ledge. According to Shulman, CK refers to the specific pieces of infor-
mation within their content expertise that a teacher knows. For example,
a biology teacher’s understanding of the biological mechanisms that lead
to natural selection would constitute a portion of her content knowledge.
Contrastingly, PCK represents an understanding of how to teach particu-
lar content knowledge. For example, the biology teacher’s understanding
of how to best teach natural selection content would constitute a portion of
her pedagogical content knowledge.

With regard to a didactic transpositive framework, CK would be the
teacher’s disciplinary knowledge, whereas PCK would be the teacher’s di-
dactic disciplinary knowledge. Indeed, given that PCK is often considered
to be the result of a learned process (Smith et al. 2013), the connection
between didactic disciplinary knowledge and the transpositive process be-
tween boxes 2 & 3 in the DT framework (see Figure 8.1) is particularly
relevant. It is this process that is internalized within an individual, as it is
the process in which an individual teacher determines the knowledge from
the noosphere that will be taught in their classroom and how they will teach
it.

In science education, it has been suggested that dissonance between
disciplinary knowledge and didactic disciplinary knolwedge is, at least par-
tially, caused by a difficulty in capturing and understanding PCK (Loughran
et al. 2004). By utilizing a didactic transpositive framework, a focus would
be placed on the transformation of knowledge from a theoretical purpose to
a practical purpose. This explicit focus on the transformation of knowledge
would, potentially, allow PCK (or didactic disciplinary knowledge) to be
more readily identified and, therefore, could be a vital step in alleviating
this dissonance. One possible concern is the previously mentioned poorly
defined terms of inquiry. Likely, a specific definition of inquiry, such as
Minner et al. (2009) six learner focused characteristics, would be used as
criteria to determine if inquiry is, indeed, being practiced in the classroom.
It is through this lens that I suggest approaching further investigation of
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constructivist learning theory and inquiry based instruction for secondary
science teachers.

Implications for Research

To address this question, one must identify that the alignment of learning
theory with pedagogical practice is the transpositive process represented as
the arrows between the 2nd and 3rd boxes in Bosch (2014) Process of Di-
dactic Transposition continuum (see Figure 8.1). In this transpositive pro-
cess, teachers are identifying which information from the noosphere will
be taught in their classroom. This transpositive work is focused not just on
learning or doing, but a combination of both. Specifically, it is not just fo-
cused on the content knowledge (CK) or pedagogical knowledge (PK), but
on the pedagogical content knowledge (PCK), as teachers determine which
knowledge is most effectively taught using inquiry-based instruction.

It is important to recognize that Bosch’s continuum represents a lin-
ear ‘journey’ that information makes as it progresses through the contin-
uum. That is, information must travel through the noosphere in order to be
transposed from scholarly knowledge into knowledge to be taught. A mod-
ified version of this continuum suggests that information can be shaped and
transposed at all steps in the process (Gericke 2014). That is to say, it would
be important to recognize that a teacher’s understanding of scholarly know-
ledge of a scientific concept could influence the knowledge to be taught in
their classroom, despite the effect that the noosphere might have on that
knowledge. Similarly, it should be expected to see that learnt knowledge
(i.e. how students perform on academic examinations) would heavily in-
fluence a teacher’s decision about what knowledge is taught and how that
knowledge is being taught to students.

To examine this question, I recommend an empirical study in which
several case studies of teachers who have been identified as holding con-
structivist theories of learning and who successfully implement inquiry-
based instruction in their classroom are examined using a didactic transpo-
sition theoretical framework. Analysis would focus on an examination of
the ways in which information is transposed as it teachers identify scientific
concepts from the noosphere to the knowledge to be taught by the teach-
ers. For the purposes of this study, the noosphere would represent the na-
tional and state level science standards, the Common Core State Standards,
and individual school teaching policy with regard to the science curricu-
lum. What types of information are being selected by the teachers? Around
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which content are teachers choosing to implement inquiry-based practices?
How are teachers identifying and explaining the decision making process
as they transpose information? Implications can be drawn between learning
theory, academic research on pedagogical practices, and didactic transpo-
sition in science education. Additionally, recommendations may be made
about teacher preparation practices in order to better prepare teachers to
engage in thoughtful transposition as they reconcile constructivist learning
theory with inquiry-based pedagogical practices in the science classroom.
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Abstract. In this paper we unpack some of the critical issues when
supporting teachers in the appropriate and effective use of the af-
fordances provided by ICT in mathematics classrooms. Our find-
ings suggest that the integration of ICT may need to be accompa-
nied by resources that could aid the teacher in the process of trans-
forming ICT into effective instruments for teaching and learning.

Introduction

The difficulties associated with the integration of ICT in teachers everyday
practice is still an unresolved issue (Cuban et al. 2001, Hew & Brush 2007).
Even if the affordances of well-designed ICT could meaningfully and ben-
eficially transform instruction, this is far from automatic, and a significant
teacher professional development investment must be made (Trouche &
Drijvers 2014). But a significant problem is that we don’t know what teach-
ers learn from professional development or how it actually changes their
pedagogy, we just know what they think about professional development
(Lawless & Pellegrino 2007).

This paper contributes to research by unpacking some of the critical
issues when supporting teachers in the appropriate and effective use of the
affordances provided by ICT in mathematics classrooms.
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Theoretical perspective

In this section we present an outline of the theories that we have used in
this work. A key concept is the notion of praxeologies (Chevallard 2007)
and the notion of instrumental genesis (Trouche 2004).

Praxeologies

The Anthropological Theory of Didactic (ATD) proposes a conceptualiza-
tion of a body of knowledge, a praxeology, as consisting of two inseparable
blocks, the praxis and the logos. The praxis block refers to the kind of given
tasks that you aim to study and the different techniques used to face these
problematic tasks. The logos block provides a discourse that is structured in
two levels with the purpose to justify the praxis. The first level of the logos
is technology, which provides a discourse about the technique. A techno-
logical element around a type of tasks could appear as a description of the
different techniques associated with the task or as a description of proper-
ties of the task itself. The second level of the logos is theory, which provides
a more general discourse that serves as explanation and justification of the
technology itself (Chevallard 2007).

The notion of praxeologies can be applied to any form of human ac-
tivity. Including teacher’s practice in term of didactic praxeologies (Barbé
et al. 2006). In this sense, teaching is a didactic type of task that teachers can
solve by using a set of available resources, both external resources (curricu-
lum, textbooks, tests, ICT-tools, colleagues, manipulatives, etc.) and teach-
ers’ internal resources. Furthermore, the teachers didactical praxeologies
do not only condition and constrain the mathematical praxeologies that are
made available in the classroom. They may also be a constraining factor for
teachers enacting new pedagogical approaches and practices. Existing di-
dactical praxeologies are likely to influence how teachers implement differ-
ent ICT tools in their classrooms as teachers may be reluctant to alter or de-
viate from well-established teaching routines (Drijvers et al. 2010, Guskey
2002). Furthermore, the teachers didactical techniques may not necessar-
ily be applicable in ICT supported environments in a straightforward way.
Thus, a successful integration of ICT might therefore require the teachers to
enhance their techniques in order to make use of the full potential of ICT to
support students in the learning of mathematics (Drijvers et al. 2010). The
instrumental approach described in the next section provides a framework
to address this complex issue.
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The instrumental genesis

A tenet in the instrumental approach is the fundamental distinction between
an artifact and an instrument. The artifact refers to the object, material or
abstract, that is used as a tool. The instrument refers both to the object and
to the techniques and the thinking that the user develops while using the tool
in order to make the tool a functional extension of the body. The instrument
is build from the artifact in a complex process, called instrumental genesis
that is dependent on both the users praxeologies and the properties of the
tool (Trouche 2004).

Although difficult to separate, the instrumental genesis can be consi-
dered as a bidirectional movement targeting both the user and the artifact.
Instrumentation is the movement where the artifact itself modifies the be-
havior by allowing different forms of activities afforded by the tool. The
other movement, called instrumentalization, is a process of differentiation
directed towards the artifacts themselves where different users may develop
different understandings on how to use the tool (Trouche 2004).

Furthermore, within the process of instrumental genesis the notion of
instrumental orchestration is used to describe how teachers use different
strategies to regulate the students’ instrumental genesis. A triplet that is
partly created a priori and partly created on the actual moment of teaching
defines the instrumental orchestration: a didactical configuration, an ex-
ploitation mode and a didactical performance. The didactical configuration
concerns the settings and the artifacts involved in the teaching situation.
The exploitation mode concerns the way the teachers decides to exploit a
didactical configuration for the benefits of his or hers didactical intentions
(Trouche 2004). Finally, the didactical performance involves interactive de-
cisions while teaching, e.g. what questions to pose and how to respond to
students answers, how to deal with unexpected aspects of the mathematical
task, of the tool or to other emerging goals (Drijvers et al. 2010).

Rationale and research question

The purpose of this case study is to deepen our understanding about the
conditions and constraints related to the teachers’ instrumental genesis.
This is an important aspect that has received less attention compared to
the students’ instrumental genesis (Kieran & Drijvers 2006). The notion of
instrumental orchestration will be used to describe how we have staged a
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certain orchestration with a particular didactical configuration in order to
support the teachers’ instrumental genesis and the development of instru-
mented didactical techniques. An important characteristic of this design is
the decision to include both ICT and theoretical concepts in the teachers’
instrumental genesis.

Furthermore, the affordances of a tool are not just the physical prop-
erties of the tool but what behavior it offers to the user of the tool in the
current environment - the praxis. Thus, the affordances are relative to the
user and constrained by the environment. In other words, when we speak
about the teachers’ instrumental genesis we refer to the affordances pro-
vided by the tool and not on the tool itself. The research question is the
following:

RQ: How can the teachers’ instrumental genesis be supported in order
to transform ICT into effective instruments for teaching and learning math-
ematics?

Didactical configuration

The setting

This work involved collaboration with three experienced mathematics teach-
ers from a lower secondary school in Sweden. The school administration
invited a researcher to take part of an already ongoing project at the school.
The aim of this project was to increase students’ motivation to engage
with challenging and creative mathematical activities by targeting students’
self-efficacy. With respect to the overall character of the already ongoing
project, problem solving supported by ICT was suggested as learning ob-
jectives.

After an initial meeting, the school administration selected three volun-
tary teachers to participate and to form a team together with a researcher.
Our part in this project was originally planned to last for one semester and
to encompass approximately 30 hours of physical meeting with the teach-
ers. This is still an ongoing project.

The structure of the teachers professional development

A central part of the configuration is the iterative work involving the teach-
ers similar to other approaches related to professional development, e.g. the
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lesson study approach. The purpose was to engage the teachers in activities
addressing both praxis and logos near the teachers’ own classrooms. This
approach was based on the models for teacher change proposed by Guskey
(2002) and Clarke & Hollingsworth (2002).

According to Guskey (2002), teacher change is primarily an experien-
tial learning process that begins when there is evidence of changes in class-
rooms. Therefore, in order to establish any sustainable change in the teach-
ers’ didactical praxeology there has to be evidence of classroom change and
changes in student learning outcomes prior to teacher’s change. Adopting
this perspective implies that the design should focus on creating improve-
ments in the classroom by e.g. introducing a new instructional approach,
new material or curricula or by modifying the teachers’ didactical tech-
niques. A challenge is that teachers do not easily abandon teaching routines
that they have developed in the demanding environment of their own class-
room (Drijvers et al. 2010, Guskey 2002). Therefore, in order to become
committed to the new practices, it is essential to give teachers opportuni-
ties to enact new practices in their own classrooms (Guskey 2002). This
challenges the researcher to engage the teachers in meaningful discussions
how new tools and new pedagogical approaches will be used and also pro-
vide teachers with routines and didactical resources that support this new
practice (Garet et al. 2001, Gellert 2008, Guskey 2002).

In addition, the “interconnected model for teacher growth” (Clarke &
Hollingsworth 2002) was used for designing feedback to the teachers. This
empirical founded model proposes that teacher change occurs in four inter-
connected domains analogous to the domains proposed by Guskey (2002):

• Personal (changes in teachers attitudes)
• Practice (classroom experimentation, e.g. using ICT)
• Consequence (e.g. salient outcomes such as student engagement)
• External (input, e.g. workshops, lectures)

Two mediating processes, enactment and reflection, models the inter-
connection between different domains located within as well as outside the
teacher’s personal and professional world of practice. By supporting the
mediating processes, change in one domain may be translated into change
in another domain (Clarke & Hollingsworth 2002). The didactical config-
uration includes elements (e.g. lectures, workshops, classroom experimen-
tation, resources, etc.) that address all of these domains. Therefore, the in-
tention was to support the mediating processes by giving feedback on the
basis of all four domains. In other words, while Guskey’s model provided
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an outline and a sense of what to focus on, the model proposed by Clarke &
Hollingsworth (2002) was used as a complementary model to design feed-
back to support the teachers’ professional development.

Before continuing with the exploitation of the configuration, two ad-
ditional elements in the didactical configuration need to be presented. As
mentioned previously, there were two parallel and interrelated processes
of instrumental genesis. One process relates to the instrumental genesis
of a pedagogical tool, i.e. the notion of high-level and low-level evalu-
ation (described below). The other process is related to the instrumental
genesis of the affordances of the dynamic geometry software GeoGebra
(www.geogebra.org), of which the teachers had no previous experience in
using. The pedagogical tool was used by the researcher together with the
teachers to monitor and guide the teachers’ instrumental genesis of GeoGe-
bra through the enactment of a theoretically underpinned lesson in problem
solving. The following presentation will focus on the pedagogical tool and
the lesson in problem solving as the other elements in the didactical config-
uration were imbedded in these elements.

The pedagogical tool: High-level and low-level evaluation

Teaching requires didactical configurations that involve communication
and the way teachers exploit these configuration can be very decisive. Prac-
tices that give students the opportunity to e.g. interpret, generalize, justify,
prove their ideas or participate in other forms of mathematical argumen-
tation can greatly enhance the development of their mathematical thinking
(Kieran & Drijvers 2006, Walshaw & Anthony 2008).

A typical pattern for teacher initiated communication is a three-part
pattern commonly known as the IRE sequence (Initiate, Reply, Evaluate)
where the teacher asks a question, the students reply, and the teacher eval-
uates or gives feedback (Leinhardt et al. 1987, Mehan 1979, Shavelson &
Stern 1981). In its most basic form the teacher initiates the sequence by
posing a question to a student to which the teacher already knows the an-
swer. The student then replies and the teacher evaluates by using phrases
such as “that’s fine” and continues with the next question or next problem.
If the student response is not what the teacher anticipated the teacher may
ignore and continue by calling on other students until the teacher receives
the correct answer (Leinhardt et al. 1987). Simplifying the complexity of
a question is another form of evaluation that sometimes is driven to the
extreme where the content disappears completely and students no longer

www.geogebra.org
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are expected to provide any answers other than repeating already available
information (Brousseau 1997, Mehan 1979). In these cases the teacher do
not stimulate a discourse that could bring out students mathematical think-
ing regarding the task at hand. In other cases the teacher engage students
in a more substantial exchange by e.g. posing follow-up question, pretend-
ing not to understand, asking for clarifications, asking for examples or by
giving hints or providing other scaffolds based on students’ replies (Chi
2009, Leinhardt et al. 1987). The IRE sequence could be attributed to a di-
dactical technique and a characterization of the technique could be made
based on the kind of behavior the technique affords student in the didac-
tic process. For this purpose we differentiate between students being pas-
sive, active, constructive and interactive (Chi 2009)). Being active refers
to overt activities such as students copying the solution from the board,
manipulating or measuring and solving routine problems. Being construc-
tive includes being active with the addition that the learner is producing
some additional outputs that go beyond and are not explicitly presented
in the learning materials. It includes mathematical valued activities such
as self-explaining, posing problems, asking questions, providing justifica-
tions, formulating hypotheses, comparing and contrasting, reflecting, mon-
itoring and other self-regulation activities (ibid.). It is not the activity per
se that guarantee or defines a constructive activity but the nature of the pro-
duced outputs. A student asking shallow question by rephrasing available
information is not being constructive. Instead, the student is merely being
active by engaging with the learning material (Chi 2009).

When being Interactive, both partners have to make substantive contri-
butions (being constructive) on the same topic or concept and also consider
each other’s contributions. This mode is defined by the produced outputs
meaning that not all conversations between two persons are necessarily in-
teractive. Furthermore, being constructive and interactive not only stimu-
lates students to participate in the construction of a mathematical praxe-
ology including a well developed logos, there is also evidence that being
interactive is better than being constructive, and constructive is better than
active in terms of students learning outcomes. All these modes are better
than passive that focus on students receiving instruction for example by
reading, listening or observing a teacher presentation (Chi 2009).

In the classroom, student can be interactive with peers or with the
teacher. In the latter case the dialogue often proceed according to an ex-
tended IRE sequence where the teacher engage students in a substantial
exchange. For our purposes, we define high-level evaluation as teacher ac-
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tions within the IRE sequence that afford students to be constructive or
interactive. Low-level evaluation only stimulates being active or passive.

The lesson in problem solving supported by GeoGebra

The lesson in problem solving supported by GeoGebra is organized in two
sections, an introduction and a geometrical problem. In the introduction
the students are presented with some ideas (heuristics), concepts and the
mathematical content that the students need in order to solve the problem
(i.e knowing how to compare the area of triangles). The introduction also
serves as a scaffold for the students to formulate a mathematical question to
explore in the second section. The geometrical problem is illustrated below
(Fig. 9.1). Inside the larger rectangle, a point (denoted M) connects two
smaller rectangles (blue and red) and by moving the point inside the larger
rectangle the area of the two smaller rectangles changes dynamically.

Fig. 9.1: Sequences from the geometrical problem implemented in GeoGe-
bra.

The teacher introduces the students to the context of the geometrical
problem by using the dynamical affordances of GeoGebra. Moving on to
the next step, the purpose is to formulate a mathematical question to pur-
sue. Instead of the teacher formulating the problem (students being passive)
students are invited to formulate their own questions (being constructive).
Students’ responses are of course not always meaningful and relevant but
by requesting several suggestions and by using built-in scaffolds in the les-
son (from section one) and high-level evaluation students can be stimulated
being constructive/interactive. If the intended question still is not formu-
lated the teacher has no choice but to formulate the intended question or
even to pursue another question. Thus, the teachers had the opportunity to
deviate from the lesson plan if the situation in the classroom would call for
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it. The intended question is where to position the point so that the size of
the two areas coincides.

Once the question is posed the teacher guides the student through the
remaining part that consists basically of the following five steps: Making
initial “guesses” (random or based on symmetrical properties); Refining the
initial guesses and making new ones (“guessing” systematically in order to
find a pattern); Finding a pattern and hypothesizing that there are an infinite
number of solutions that could be represented by a straight line (diagonal);
Controlling the hypothesis; Proving the hypothesis.

The dynamical affordances are used to support students’ initial “guesses”
(Fig.9.1a). A built-in grid in GeoGebra provides affordances for comparing
areas by counting the number of squares within each rectangle. Thereby, ad-
ditional solutions may be found (Fig.9.1b). Once a pattern is discovered and
a hypothesis formulated, the computational affordances are used to control
the hypothesis. In GeoGebra areas can easily be calculated and dynami-
cally updated as the rectangles are manipulated (Fig.9.1c). To complete the
evaluation process the hypothesis is proven by deductive reasoning (geo-
metrically or/and algebraically).

The focus of the lesson is not necessarily on introducing new con-
cepts but on students participating in a structured problem solving process
and engaging them in mathematical activities such as posing questions,
making guesses, hypothesizing, reasoning and proving (being construc-
tive/interactive). Activities such as posing questions, planning and eval-
uation are not always considered by teachers as a mathematical task but
what has to be done to organize the process of study (Rodríguez 2008).
But, a gradual shift of responsibility from teacher to students is a key as-
pect in mathematics as many regulatory processes may be considered as a
part of a mathematical activity (Rodríguez 2008). Furthermore, the use of
specific strategies instead of unstructured discovery to solve problems is a
capability that students can learn effectively in instruction to enhance their
problem solving skills (Zimmerman & Campillo 2003).

The didactical exploitation and performance

The didactical exploitation is illustrated in Figure 9.2. The teachers were
provided with different types of scaffolds such as lectures, workshops and
also the lesson in problem solving supported by GeoGebra. First, the lesson
was demonstrated to the teachers and afterwards there was a discussion



102 Miguel Perez

about the purpose and the underlying theoretical components of the lesson.
In this meeting the IRE sequence and notion of high-level and low-level
evaluation was introduced to the teachers. Furthermore, they were provided
with a manuscript of the lesson explaining the underlying theories and also
a video from the demonstration.

The three teachers were engaged in an iterative process of enactment
and reflection encompassing the teachers conducting the lesson in problem
solving together with a follow-up discussion where they were provided with
feedback based on these lessons. In the first iteration, we wanted the teach-
ers to enact the lesson within our team (the teachers and the researcher) and
in the following iterations with their own students. The teachers received
immediate feedback after the first iteration but in the following iterations
the feedback was provided at a separate occasion and based on the analysis
of the video recordings from the enacted lessons. After each iteration the
lesson was challenged in terms of usability and the teachers were invited to
suggest any modification. This iterative approach enabled us to monitor the
process of instrumental genesis and to adapt the didactical performance to
the emerging needs.

Fig. 9.2: Overview of the didactical exploitation.

The didactical exploitation could be understood as a collaborative reg-
ulatory process related to some aspects of the teachers’ didactical prax-
eologies and the knowledge taught (didactical regulation). The didactical
exploitation involved important opportunities for self-reflection. For exam-
ple, the analysis of the videos was initially made by the researcher and
presented to the teachers, but gradually the teachers assumed some respon-
sibility for the analysis. In other words, even if the researcher initially as-
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sumed the regulatory responsibility there was a specific aim of gradually
transferring agency in order to shift ownership (Coburn 2003, Penuel et al.
2007). The common language, supported by the pedagogical tool, allowed
the researcher and the teachers to explore how the resources that we had
introduced could be used to support institutionally valued forms of math-
ematics instruction. Especially in terms of improved learning gains by fo-
cusing on students’ interactive-constructive processes.

Results and analysis

As the teachers became more accustomed to conducting the lesson we could
see some progress related to the instrumental genesis of the two different
but intervened artifacts. Initially the teachers found it difficult to separate
between students being interested or motivated and students being active.
Between students “not doing anything” and being passive. Another issue
that was discussed was that the student’s outputs had to be assessed in rela-
tion to the learning objectives in order to decide if the students were being
constructive or not. We used video sequences from their own practices to
address these issues and to study how different forms of evaluation affected
their students’ behavior.

The teachers had the freedom to deviate from the manuscript if ne-
cessary, which they did at several occasions. We noticed an increased use
of high-level evaluation resulting in situations where less important issues
were discussed at the expense of moving on to more essential parts of the
lesson. In other situations, the teachers avoided all forms of explicit evalua-
tion even when the students’ responses were obviously incorrect. This indi-
cated that the teachers interpreted the different forms of evaluation in terms
of good and bad evaluation. The inputs that were provided to the teachers
were reviewed but a decisive cause for this emerging interpretation was not
found other than the possibility that the duality of the notion had induced
this interpretation. Our iterative approach allowed us to discuss this issue
with the teachers and a potential misunderstanding was avoided.

From the beginning the teachers had some problem in managing some
of the features of GeoGebra but this became rapidly a minor issue for the
teachers. The real struggle was the use of GeoGebra to engage the students
in the process of problem solving without jumping directly to the conclud-
ing moments. This was especially critical in the second part of the lesson
but the teachers tended to use the computational affordances to reach the
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solution of the problem instead of stimulating the students’ mathematical
thinking when searching for the solution. The computational affordances
were intended to be used once a hypothesis was formulated but the teach-
ers used them with the students to generate new solutions (step two: refining
the initial guesses and making new ones) and value them either as correct or
incorrect. The computational affordances were also used to find additional
solutions in search of a pattern merely by tracking the numerical values cal-
culated by GeoGebra. In other words, the computational affordances were
used to provide low-level evaluation by in terms of “right” or “wrong” and
by significantly simplifying the complexity of the task of searching for ad-
ditional solutions.

This specific sequence was shown to the teacher and they were asked to
give an analysis in terms of identifying the IRE sequence, analyzing differ-
ent forms of evaluation and also the students’ behavior. The teachers could,
as a group, identify the sequence, which extended for several minutes. They
were also able to recognize how the teacher used GeoGebra to perform the
act of evaluation and to provide low-level evaluation in a situation where
the students’ interest and attention toward the task was relatively high. In
this case, the level of student motivation was not confused with students
being constructive/interactive.

The progress made by the teachers suggests that the instrumental gen-
esis of the notion of high-level and low-level evaluation was successful to
some extent. The teachers were able to use the pedagogical tool to analyze
the implication of their use of GeoGebra in relation to how the students
were engaged in the construction of the mathematical praxeology. In addi-
tion, the teachers have reported that the pedagogical tool has helped them to
reflect on how they communicate with students in their everyday practice.

The pedagogical tool allowed the teachers to recognize the ineffective
use of the computational affordances in terms of engaging students in con-
structive/interactive processes, but still we do not know to what extent the
teachers have developed appropriate and effective didactical techniques as-
sociated with the GeoGebra. In this sense, we consider the instrumental
genesis of the tool to be partial at the moment. On the other hand, the notion
of high-level and low-level has increased the teachers’ self-awareness and
of how different actions affects students’ possibilities to participate in effec-
tive and mathematically valuable activities. With this support, the teachers
could now continue the commenced work of developing effective didactical
techniques appropriate for ICT supported learning environments.
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Conclusions

In this paper we have highlighted some important aspects of the teachers’
instrumental genesis. As we have seen, teachers can use ICT to support any
existing practice. Thus, we cannot expect that the integration of ICT itself
will necessarily produce any improvements on teachers’ practices. Teachers
need time and support to be committed the new practices but we need to
remember that this is a process of change that is difficult for the teachers.
To support teachers in this process of change, we propose that designers of
professional development should include pedagogical resources that could
aid the teachers in their continuing mission to transform tools into effective
instruments for teaching and learning.
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Abstract. This paper represents work in progress on the didac-
tic transposition resulting in an interdisciplinary course for pre-
service teachers. It is shown how knowledge for teachers can be
described using the anthropological theory of the didactic, and the
first steps of an analysis of the course’s genesis is presented. Firstly,
the ‘knowledge to be taught’ chosen for interdisciplinary consid-
eration is seen to be determined by the “noosphere” outside the
teaching disciplines. Secondly, a more internal transposition takes
over, attempting to supply, and create a meaningful bi-disciplinary
connection. The resulting course description is presented, and fur-
thermore an ‘a priori’ analysis of a Study and Research Path is
briefly discussed as a means to satisfy many of the constraints put
on ‘taught knowledge’.

Introducing the problematic

Pre-service teachers are to acquire didactic knowledge that enables them to
help pupils acquire mathematical and biological knowledge in lower sec-
ondary school. This is a well-known plight of prospective teachers if we
regard only one discipline at a time, and those who educate teachers have
for many years’ expounded and enacted didactic knowledge that helped
pre-service teachers do this. The challenge for those who educate teachers
is thus on a meta-level; it is a nested challenge, which inherent intrica-
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cies they are not free to dismiss (Chevallard 1989). This challenge has in
Denmark traditionally been meet by providing pre-service teachers with
greater mastery of the single (scholarly) discipline, and, over the last 20
years, increasing amounts of pedagogic and didactic knowledge, have been
integrated into the teacher education curriculum. However, in the last ten
years, increasing demands have been put directly on teachers in secondary
education, to combine different disciplines into coherent teaching which
is interdisciplinary in some form or another (See fx Hansen & Winsløw
(2011) regarding upper secondary eduation, and ; Undervisningsministeriet
(2009a) regarding lower secondary). On the other hand, those who educate
teachers have not been expected to do the same to any great extent. There-
fore newly graduated teachers have largely been left on their own to do the
interdisciplinary synthesis. Furthermore it is worth noting, that the majority
of existing research is concerned with the direct design and implementation
of interdisciplinary education, or the evaluation of interdisciplinary teach-
ing compared to ordinary teaching (See e.g. Berlin & White (2010)). Very
few consider the nested problem of interdisciplinarity in teacher education.

I begin by presenting the theoretical framework of the Anthropological
Theory of the Didactic (ATD) to express the challenge of helping others ac-
quire interdisciplinary teacher knowledge. And then I provide a case from
a Danish project (named ASTE) developing a new teacher education pro-
gram, where selected knowledge from “the teaching of mathematics” and
“the teaching of biology” has undergone transposition into an interdisci-
plinary course under the heading ‘Health - Risk or Chance?’ The subse-
quent analysis considers two parts: a) the transposition process from ex-
isting national curricula to the specific course curriculum and course de-
scription. b)The design of a Study and Research Path (SRP) (Chevallard
2006) for pre-service teachers. Part a) is done “a posteori” while part b)
provides an ‘a priory’ analysis of the SRP design, and a discussion regard-
ing its appropriateness to instil, in pre-service teachers, didactic knowledge
regarding the combined disciplines.

Framing the problematic in ATD

In ATD, knowledge is modelled using the notion of praxeological organ-
isations (Chevallard 1999). Praxeologies are the combination doing and
knowing. When presented with a task, humans can employ a technique to
handle that task. Task and technique is called praxis and what reasoned
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discourse and theorizing can be done relating hereto is called logos. One
cannot exist without the other, although either may be very simple or un-
derdeveloped. When considering teacher knowledge (Huillet 2009), a dis-
tinguishing is made between knowledge to be taught and the knowledge to
help others acquire that knowledge. The former I will abbreviate KO, where
K stands for some “declared Knowledge” (cf. (Chevallard 1989, p. 8) and
O for praxeological Organisation, and the later I abbreviate DO: “Didactic
Organisation” The knowledge is usually declared in a form belonging to an
established discipline (in this case mathematics or biology).

In an interdisciplinary course pre-service teachers are to engage in a
number of lessons (very broadly understood), where some kind of disci-
plinary synthesis is apparent, and the intention is that the didactic organisa-
tion of the teacher educator (DOE ) will give rise to (inter)disciplinary and
didactic organisations among the pre-service teachers (KOPS and DOPS).
It is important to stress that KO’s and DO’s are intimately connected, and
therefore DO do not refer to general pedagogical issues.

Thus is the challenge for the teacher educator: To build DOE which
helps pre-service teachers to build their KOPS and DOPS which again will
help pupils build their own praxeologies regarding the involved disciplines
(KOP). The general research question then becomes: How is knowledge
(KOPS and DOPS) for an interdisciplinary course for pre-service teachers
compiled, and what conditions do the characteristics of such a course put
on DOE?

The following paragraphs pave the way for a reformulation into the
case-specific research question, and each of the two parts of the analysis
will be preceded by a short section detailing further theoretical tools needed
to deal with the specificity of each.

The case context, data and methods for the two parts of
the analysis

Teacher education in Denmark takes place at University Colleges (UC)
where pre-service teachers study the “teaching-disciplines” of lower sec-
ondary school. It is an education directed specifically towards the pro-
fession as a teacher, and the courses can roughly be divided into school-
discipline specific ones and general pedagogic ones. I will concern my-
self only with the school-subject specific ones, which feature an integrated
study of the related “scholarly knowledge” (KO) and its didactics (DO).
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To become a certified teacher of e.g. mathematics, the pre-service teacher
needs to take four ‘math’-courses valued ten ECTS1 each (Which together
with other courses makes a total of 240 ECTS for the entire degree).
The norm is for a pre-service teacher to study three mono-disciplinary
school-disciplines, thus becoming a certified lower secondary teacher of
e.g. mathematics, biology and history. The course under consideration
in this paper is situated in the special program ASTE, which offers pre-
service teachers to become certified in four school-disciplines: mathemat-
ics, physics/chemistry, biology and geography. The central idea is to make
a recombination of elements from existing mono-disciplinary teacher edu-
cation courses, utilizing synergy between the mentioned, very much related
disciplines, and thus making “room” for the extra school-discipline certifi-
cation. The recombination resulted in four courses named: “Energy and Cli-
mate” (covering elements from geography and physics/chemistry), “Sus-
tainability” (biology and physics/chemistry), “Nature playing dice” (mathe-
matics and physics/chemistry), and “Health - risk or chance?” (mathematics
and biology). It can be gleamed from the course-names that those involving
mathematics, has stochastic elements as focus, the reasons for which will
become apparent during the analysis of the didactic transposition below. It
should also be remarked that the math-perspective has been given a slight
precedence over the bio-perspective due to limitations of space.

Data for part A, regarding the transposition of knowledge for the course
selected as case for this paper, comes in the form of audio recordings of
meetings, as well as documents, both external (e.g. curricular guidelines)
and those produced by the participants internal to the development of the
special educational program. Both recordings and documents have been
inventoried and coded using the qualitative data analysis software NVivo.
Excerpts offering insight into the transposition process have been coded
according to its (disciplinary) position or lack thereof, and impact on the
realized course curriculum and course description.

Data for part B, the design of the SRP, is a conglomeration of back-
ground reading of textbooks, research papers, web-based “information ma-
terial” and discussions during a ph.d. course (Mathematics and Science:
The relationships and disconnections between research and education.,
2014). Data for the design proposal is necessarily diffuse, as it seeks to
describe paths possible and desired, intended to satisfy a number of design
requirements. Not the paths actually taken by pre-service teachers.

1 European Credit Transfer System
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Part A: Analysing the didactic transposition resulting in
“Health - Risk or Chance?”

In this part I answer the case-specific research question: How is knowledge
(KOPS and DOPS) from teacher education curriculum in mathematics and
biology selected and combined to produce the course: ‘Health - Risk or
Chance?’

The didactic transposition of knowledge can be divided into four steps:

Fig. 10.1: The didactic transposition process (Bosch & Gascón 2006)

Knowledge is created at some point, here called “scholarly knowledge”
and then it is selected by the educational system to be taught to some stu-
dents. In this process the knowledge changes. Although the process most
certainly goes from left to right, there is a definite feedback indicated by the
arrows going in the other direction. In this analysis I take a closer look at
the ‘knowledge to be taught’, which to a large degree is defined within the
educational system, or the institutions entrusted to provide education. Nev-
ertheless society in a much larger sense has a say in what should be taught.
The “noosphere” is all actors having a say regarding what to be taught.
(Politicians, researchers, public and private interest groups etc.) Tracing the
genesis of “Health - risk or chance?” it is seen that the transposition process
inside the educational system can be divided into more detailed steps:

Fig. 10.2: Expanded ‘Knowledge to be taught’
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The Official National Curriculum (ONC) for teacher education de-
scribes mathematics using what is called, four “areas” of competence: Top-
ics, Ways of Working and Thinking, Math Didactics and Didactic Methods.
The ONC is permeated by the idea that you can describe curriculum in
terms of “competencies” (Blomhøj & Jensen 2007). E.g. Math Didactics
is described as: ‘The scientific domain encompassing the study of actual
mathematical teaching and learning, as well as development of a theoreti-
cal basis for math teaching.’ and it has the goal of enabling the pre-service
teacher to “describe, analyse and asses teaching and learning of mathemat-
ics with the support of didactic theory.” (LU13 2013, Annex 2)

To further specify what knowledge these competences actually cover,
the ONC lists around forty paired elements specifying “target knowledge”
and associated “target skill”. E.g. under Math Didactics it is stipulated
that the pre-service teacher must know “how math curricula changes with
time and how it is related to societal and scientific challenges.” Associated
hereto the pre-service teacher can skill wise “relate to existing curricula
for mathematics education in relation to mixed ability instruction” (LU13
2013, Annex 2). Some readers may find the example pair somewhat non
sequitur, but as all legal documents do, the ONC requires interpretation:
What does it mean to ‘relate’ to curriculum?

It is noteworthy that the “competency” description does not stand alone.
The specification into terms of ‘knowledge and skills’ render “competency”-
description somewhat superfluous, and more significantly, the pairs of
“knowledge and skills” lend themselves readily to praxeological analy-
sis: The “target skill”-requirements all point to something the pre-service
teacher has to be able to do, which is the same as solving a task using a tech-
nique (this is praxis). Likewise the “target knowledge” can be interpreted
as a specification of the logos the pre-service teacher should have, mak-
ing this an example of DOPS. Elaborating the example it is evident that ‘to
assess whether an exercise from an old math-textbook is relevant for high
ability pupils’, is a didactic task and technique for the pre-service teacher,
which can be informed by knowledge of curricular change. In terms of the
presented ATD framework I argue that ONC declares teacher knowledge
in the form of praxeological organisations (DOPS) to be taught by teacher
educators (using DOE ).

‘Knowledge to be taught’, as written in the ONC, is considered by
an assembly of mathematics teacher educators2 (step two in Figure 10.2),

2 “Den Nationale Faggruppe”
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one from the math department at each University College. At this step
roughly half of the praxeologixal organisations are selected to be taught in
two Common national courses for all math teacher education programs (A
parallel process takes place regarding biological knowledge to be taught).
The remaining praxeological organisations are considered locally by the
math educators at each University College, and arranged into another two
courses (This is a ‘semi-step’ not depicted in Figure 10.2). This is where the
ASTE project enters into the transposition process: Principally ASTE could
choose to make any rearrangement of the praxeological organisations left
for local determination and combine them with appropriate ones from bio-
logy. (Appropriate in the sense of being well suited for synergy between the
two teaching disciplines) This did not happen due to institutional organisa-
tional constraints: The ASTE courses could only replace one of the locally
determined math courses; “Special needs pupils and mathematical aids” or
“Evaluation and stochastic processes”, because one of them had already
been written into the local curriculum. (The above mentioned ‘semi-step’
of the transposition process) Which one it actually was, took a while for
the ASTE-developers to figure out, as the local curriculum development
process ran alongside the ASTE endeavour.

“Uhh, we have just solved it! ... Yes it fits, so it is stochastics
which is the common topic and then some different competen-
cies...” (ASTE Curriculum Planning, May 2, 2013, Time index
2:09:5–2:10:21)

The developers had only briefly considered mixing stochastic and bio-
logical topics beforehand:

“The use of genetics in connection with biotech could be reserved
for the bi-disciplinary course ... then you could also, if they [the
pre-service teachers] had already had a little about genetics, de-
velop the aspect of probability in mathematics ... also combina-
torics, like with the colour of eyes” (ASTE Curriculum Planning,
May 2, 2013, Time index 1:56:40-1:57:18

Even though the mathematical praxeologies regarding “modelling”, es-
pecially “functions”, had been the favourite connection between math and
biology, the development was now bound to combine statistical aspects of
mathematics with the biological elements:

“It just has to be very special kinds of models, it should not be
function-models, and it must have something to do with gathering
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data, that is, statistics or probability, right? At least if we have
to cover “our” [praxeological organisations]...” (ASTE Curricu-
lum Planning, Mathematics Educator, May 2, 2013, Time index
2:53:35-2:54:00)

‘‘What kind of truth is it when we say carrots are healthy? What
does it really mean? What is the data founded on? Here you can
work with all the mathematical methods and models you like in
order to understand. ... Uncle Sofus smoked cigars all his life and
did not die, ergo tobacco is not lethal. It is this kind of problem-
atics...” (ASTE Curriculum Planning, Biology Educator, May 2,
2013, Time index 2:54:42-2:54:00-2:54:56)

This resulted in the following ‘knowledge to be taught’ to the pre-
service teachers (Table 10.1) which can be viewed as very general, but none
the less paired descriptions of the knowledge and praxis block of intended
praxeologies.
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Table 10.1: Biological and mathematical ‘knowledge to be taught’ (“math”
indicated by italics)

Following the selection of praxeologies by the planning group, a “work-
ing group” of ASTE developers was formed (not identical to the planning
group). This group produced through a series of meetings and document ex-
changes, a course description carrying over a great deal of the ideas hinted
in the last citation above:
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Table 10.2: “Health - risk or chance” course description

Concluding remarks on part A

This brief account of the transposition process show that the deciding fac-
tors for KOPS and DOPS selected for the course “Health - risk or chance?”
resides primarily outside the ASTE project. Decisions taken at the first two
steps of the expanded transposition process (depicted in figure 10.2), and in
at another “semi-step” by local teacher educators, severely narrowed down
the possible combinations. Regarding the last two transposition steps, it can
be said that the presented course-description expresses the ASTE-working
group’s attempt at turning “left over” ‘knowledge to be taught’ into a mean-
ingful course, and it still remains to be seen if the course designers will be
able to make it meaningful for the pre-service teachers. The transposition
process has thus put quite daunting conditions on DOE to be developed. It
was not clearly perceived prospects of synergy, either from the perspective
of mathematics education or biology education, which dictated the com-
bination of statistics and health to be an interdisciplinary field in which
teacher education could flourish. The teacher educators are thus required
to ‘break new ground’, and in the following part I present the SRP design,
which the educators will employ to, at least partially, handle this challenge.
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Part B: Design a bi-diciplinary SRP

A Study and Research Path is didactic mechanism, or teaching proposal,
where pupils set out to answer a grand question in a semi-autonomous fash-
ion (See e.g. Chevallard (2009), Winsløw et al. (2013) for more details).

The central requirement for a SRP is the necessity for pre-service teach-
ers to have enough means to start the study and deal with the initial grand
question. The fundamental objective for the teacher educator is to secure
that responsibility to answer the question is assumed, as well as responsi-
bility for the majority of decisions of the study process. The SRP is initi-
ated by a question with strong generating power, capable of imposing nu-
merous derived questions leading to various elements of ‘knowledge to be
taught’. Instead of starting from “classic content” established in the strict
framework of a discipline or a body of knowledge, the proposal consists
in ideally “covering” curricula with a (or several sets of) SRP(s) without
a specific connection to classic content. The study of these SRP’s should
cause the encounter with the intended knowledge, and other knowledge,
and thus features a high degree of widening compared to the majority of
study processes(Rodríguez et al. 2007). It is important to note that SRPs
are in this manner “naturally” interdisciplinary.

When implementing a SRP, it provides a framework for DOE and at the
same time suggests a possible answer to the required interdisciplinarity. The
central challenge is to design a generating question for the SRP which will
spawn sub questions that will make pre-service teachers become knowl-
edgeable about both KOP and DOPS, and in the process also develop their
own KOPS. The idea is that:

“Setting up a “scene” in the [...] classroom, with a crucial “open-
ing question” in the beginning, may provide a rich field to initiate
a dialogue and give the opportunity for knowledge conflicts and
negotiation of meaning”(Patronis & Spanos 2013, p. 1997).

Design requirements for the SRP dictates that it must cover a theme
which is exemplary for the teaching of “the nature of science and mathe-
matics” (Gericke 2014, pp. 7-8) and exemplary for the teaching of similar
themes related to biology and mathematics. The SRP theme must fit into
the overall descriptions and requirements of “Health – risk or chance?” and
the theme must be clearly related to descriptions and requirements (curricu-
lum) for the math and biology disciplines in lower secondary school. (That
is, its relevance must be obvious to pre-service teachers). Furthermore the
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generating question must give rise to investigations of both mathematical
and biological organisations, as well as their associated didactic praxeolo-
gies, as related to the teaching of children in lower secondary school.

Proposed design and the first steps of analysis

In this paragraph I only just present the generative question Q0 (actually
used in the course implementation) and its ‘a-priori’ derived questions re-
volving around the illness diabetes, which disrupts human blood sugar reg-
ulation. The result is given in the “tree-diagram”-form (Hansen & Winsløw
2011)

Fig. 10.3: Tree diagram showing the generating question and the first few
sub questions. Green and yellow colour respectively indicates questions,
and therefore disciplinary organisations, from biology and mathematics,
whereas blue colour indicates questions to generate didactic organisations.
Dashed arrows indicate that the receiving question is expected to draw on
knowledge from the answers to originating questions.

Q0 Why is diabetes a problem for school and society?
Q1 What is diabetes?
Q2 How to describe and investigate the distribution of diabetes?
Q3 What is written about diabetes in school texts? (Curriculum, textbooks,

etc.)
Q4 How are known school lessons on diabetes? (e.g. in published lesson

studies)
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Q5 Why choose the theme “diabetes”? Why should it be a concern for
schools?

Q6 What could be suitable settings or scenarios wherein to learn about
diabetes?

Q1,1 What is the consequences of diabetes?
Q1,2 What is the cause(s) of diabetes?
Q1,2,1 How has the causes of diabetes changed over time?
Q1,2,2 How is possible causes identified?
Q2,1 Who is afflicted with diabetes? (Where do they live (geographic dis-

tribution), how old are they age-distribution, socio-economic distribu-
tion...)

Q2,2 How many gets diabetes? (Distribution in time)
Q5,1 What do children know about diabetes? What are their experiences?

Will diabetes be a motivating theme?

It is of cause central to elaborate why this diagram presents important
and likely features of the SRP, and in particular why some questions are
foreseen to make connections across the disciplines, but due to the limited
space of this paper, I have to let the network of questions speak for itself,
save for the considerations mentioned below

Considerations regarding SRPs as didactic organisation

The generative question is of paramount importance as it is likely to be
the only part of the SRP that the educators have any direct control over.
The chosen form is actually two questions in one, and point the pre-service
teachers towards making a disciplinary investigation and a didactic investi-
gation. In fact they are directed to consider the first two (or two and a half)
steps in the didactic transposition process (Figure 10.1). They need to re-
view the scholarly knowledge and the knowledge to be taught while think-
ing ahead to actual lessons. It is ideally necessary for pre-service teachers
to concern themselves with all parts of the transposition process; in that
respect pre-service teachers and teachers in general do not differ from re-
searchers of didactic transposition processes. The (perhaps only) difference
is that the former has to act out the final steps of the transposition; at some
point have to perform actual teaching.

Suitably framed via the generating question, SRPs has the potential as
part of DOE to force pre-service teachers into doing on their own, what they
are indeed expected to do, on their own, as full members of the teacher pro-
fession. Teacher educators who seek to use SRPs, are obliged to perform an
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a priori analysis, using consecutive reformulations of the generative ques-
tion, constantly evaluating the potential for realisations of ‘knowledge to
be taught’. This could also be the case for other forms of “project”-work
in teacher education, but the inquiry-process of SRP’s, which are based on
questions, rather than works to be visited, is helpful in overcoming a too
narrow “focus” on single parts of the transposition.

Concluding remarks

Part A of this paper showcases the peculiarities of didactic transposition
which bring disciplines together in unexpected combinations. Not arbitrar-
ily, but because forces in the ‘noosphere’ had priorities which left only
certain elements for the course ‘Health – risk or chance?’ and a course de-
scription is possible to form. This part answers the research question while
Part B touch upon the beginning of the internal didactic transposition of
turning the course description into ‘actually taught knowledge’, for which
a study and research path is presented as an element in the didactic praxe-
ology of the teacher educator.



11

The new paradigm in teaching of stochastics
methods

Radka Hájková

Department of Mathematics, Faculty of Education, University of South Bohemia,
Czech Republic

Abstract. If we look into Czech curriculum from mathematics, we
find one very interesting thing. It is completely lacking teaching
combinatorics and theory of probability at lower secondary school.
This is a completely different trend than in neighbouring coun-
tries. This article deals with the introduction of an experiment of
teaching combinatorics and theory of probability in one 8th class
of lower secondary school. There are described phase preceding
the experiment – situation in the rest of OECD countries, espe-
cially in our Slavic neighbours, or history of teaching this part of
mathematics in our country. It includes suggestions on further pro-
cedure and changes in the Czech curriculum. Of course, this opens
up further questions and problem of integration combinatorics and
theory of probability into the curriculum.

Introduction

Nowadays, the emphasis is usually placed on independent thinking of stu-
dents, on their creative activity and scholarship. Problems are designed to
be linked to real life (to be clear their applicability in practice).

This trend is evident in all subjects, is no exception in mathematics.
But we focus on mathematics in Czech curriculum - Framework Education
Programme. If we look at the educational content of Mathematics and its
applications, we find that even here the trend is evident. As an example may
be mentioned expected outcomes: students transfer simple real situations
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in math using variables; formulate and solve real-life situations using equa-
tions and their systems; analyze and solve simple problems, model specific
situations in which they use mathematics tools in the whole and rational
numbers and other outlets. (more in Jer̆ábek & Tupý (2007)).

It is certainly correct that there is a connection with the real world and
mathematics, thus this subject is closer to students. Mathematics is an im-
portant part of everyone’s life and everyone operates with it every day in
everyday life and many of us need it at work (shop assistants, waiters, ac-
countants, etc.). It is therefore very important that pupils in lower secondary
school properly formed the basic mathematical concepts, which will be able
to work and develop. One area of mathematics in our curriculum of basic
education is lacking - combinatorics and theory of probability is not in-
cluded in our Framework Educational Programme.

However this substance is for practical life very important. We often
meet with the statement that something is “unlikely”, to determine “how
many options there”, etc. We use this knowledge in evaluation surveys, but
also for example in games, not only gambling. For pupils would therefore
be beneficial to meet with these concepts and basics of probability and com-
binatorics at lower secondary school and formed at least a basic idea.

We can see we encounter with an unusual phenomenon in our country.
The Czech curriculum does not include a content which is taught in the
surrounding countries and in almost all other places. Why is it so? How can
we explain it? This paper looks for answers for these and other questions.

A didactical transposition phenomen on teaching of
combinatorics and theory of probability

As stated in Greer & Mukhopadhyay (2005) - Achieving greater under-
standing of probability in the population facing great resistance, or as noted
Fischbein (1990) - we are afraid of probability.

About the importance of theory of probability Rubel writes: Inclusion
probability and data analysis as one of the five NCTM standards is a tool
that reflects the growing use of social data and the capabilities required to
derive conclusions based on these data. Probabilistic reasoning is a key as-
pect for a wide range of professional activities and (in a broader sense) is
part of everyday life. However, it is not only theory of probability, as men-
tioned Freudenthal (1973) - simple combinatorics is the backbone of basic
probability, and our teaching should it be taken into account. Therefore,
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we cannot in any case combinatorics ignored. It is an integral part of the
teaching of probability and should be prevented.

Finding solutions how to include teaching this part of mathematics in
our curriculum is difficult. If we see a problem from a view of didactical
transposition (Bosch & Gascón 2006), we can see a lot of work, which is
necessary to the reintroduction of combinatorics and probability at lower
secondary school. Didactical transposition is composed from four parts.
The first one is Scholarly knowledge, which represents institutions produc-
ing, and using knowledge. Knowledge to be taught is the second part and
it is based on educational system, “nooosphere”. The third is Taught know-
ledge, which takes place in a classroom. The last one is learned, available
knowledge and is associated with community of study (you can see fig.
11.1)

Fig. 11.1: Schema of didactical transposition process

Evolution of the knowledge to be taught

We can compare the results of the international research of TIMSS and
PISA. Our country is usually comparable with rest of the OECD countries
in mathematics. However one fact has attracted us - ‘It is interesting to take
a look at how successful pupils from other countries were when solving
this particular problems. If we compare our students’ level of success to
the average of OECD countries the picture changes. All five problems the
pupils had trouble to solve belong to the area of probability theory and
statistics.’(Hejný et al. 2012).

And we can compare our curriculum with our neighbours too. The
countries which are very similar linguistically and culturally, Slovakia and
Poland, have this topic included. Combinatorics and probability theory in
Slovakia are taught in the 6th, 7th and 8th grade in more or less 25 lessons
(since 2003 when “S̆tátny vzelávací program” (S̆tátny vzdelávací program
2011) was settled, there is not a strict time schedule anymore). In Poland
(Pazdo 2010), the assumed number of lessons is slightly lower but the con-
tent is nearly corresponding to the Slovakian. In both of these countries,
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pupils are introduced to these topics even earlier – the propaedeutic takes
place latest during the 5th grade using dice or other games. If we take a look
at other countries, the researches show that in 35 from 42 chosen devel-
oped countries this topic is taught during the school years that correspond
to our lower secondary schools (Jones 2007). A similar conclusion made
also Jelínek & S̆ediv (1982), who did a survey in 22 countries (Australia,
Belgium, Canada, England, France, Finland, Hong Kong, Hungary, Ireland,
Israel, Ivory Coast, Japan, Luxembourg, Netherlands, New Zealand, Nige-
ria, Scotland, Sweden, Spain, Thailand and the USA). They found that the
theory of probability is taught in 20 countries and combinatorics in the 14
at lower secondary school.

But on the other hand it is interesting that we taught combinatorics
and theory if probability at lower secondary school 30 years ago (more
in Mikulc̆ák (2007)). The curriculum was changed in 1980 and our pupils
learnt combinatorics in 6th grade and theory of probability in 7th grade of
our school. There were major changes in the nineties - he political system
has changed and the education system was loosened because of this. Di-
rectors in schools got more power in deciding which curriculum will be
included and which omits and in 1996 Combinatorics and theory of prob-
ability disappeared from our curriculum again (Zpráva o vývoji c̆eského
s̆kolství od listopadu 1989 2009).

Today, it is difficult to decide what the main cause of the end of teach-
ing this part of mathematics was. Maybe it was the change of the political
regime. Another possibility is greater authority of school principals. Fi-
nally, it was a poor preparedness of teachers to teach it. All aspects are
described in the aforementioned literatures. We can therefore assume that
the combination of these factors caused a retreat from teaching of combi-
natorics and theory of probability. But the next question is why there is no
change to these days? Why Czech textbooks contain this part only as a sup-
plementary or hobby? Why are these examples classified in our standards
as “non-standard”?

Learned, available knowledge

I started my experiment from the last part – Learned, available knowledge.
Pupils’ knowledge usually come from everyday life. Pupils do not often
meet combinatorics and probability at lower secondary school. However, I
examined how the students are. The results can be seen in table one, details
were published in S̆tĕpánková & Tlustý (2014). The questions tested were
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selected from the international researches TIMSS and PISA (Frýzkoá et al.
2006, Tomás̆ek 2009, Úlohy z matematiky a pr̆írodních vĕd pro z̆áky 8.
roc̆níku: tr̆etí mezinárodní výzkum matematického a pr̆írodního vzdĕlávání:
replikace 1999 2001) to make sure that the results can be compared to the
national standards from a few years ago.

I analyzed probability and combinatory skills of 143 8th grade students.
Pupils got 5 problems from combinatorics and theory of probability. In this
test, we wonder if he results of our tests will be similar to the national
results in the PISA and TIMSS researches.

Table 11.1: Comparison of results of our experiment and national results in
international researches

As Table 11.1 shows, the results are usually fractionally worse than
the national average standard. The reason can be caused partially by the
accumulation of combinatory and probability theory problems. Hence the
test was quite difficult for the pupils and we do not consider the different
results to be too important.

I therefore proceeded to the assessment of pupils’ strategies, especially
the estimation and guessing. As I expected, the most frequent method was
calculus and schematic solving (see Fig.11.2). This type of problems is not
usually taught so pupils are not familiar with any algorithm they might use.
That is why their solutions are of inquiry based learning nature like drawing
schemes, guessing and estimating.
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Fig. 11.2: Example of pupils’ solutions

Results from my test confirmed me that would not be a problem pupils’
understanding. They were able to solve some tasks without previous know-
ledge of school.

Change in the knowledge to be taught

Because of the results from my test I could precede to the next part.
Next phase meant connection between Knowledge to be taught and Taught
knowledge. The first step was the production of learning materials and find-
ing schools where the teaching of combinatorics and probability could take
place. So I created textbooks for pupils and a guidebook for teachers.
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The textbook starts from the simple tasks of combinatorics on listing
all possible phenomena and proceed to the selection of all favourable. The
following part allows discovering rule of sum and rule of product. Last part
of this chapter is topped charts and moving them and their applications in
these tasks.

Marek went from Lhota to visit his friend Mirek in Lom. But he
forgot the map and he hoped that he can find the way. Paths chose
at random. Look at a map and tell how likely they hit the first time
and came to a friend?

Fig. 11.3: Task of the role of probability

In these applications, therefore pupils have to analyze previous skills
and at the same time find new rules. This chapter reveals to pupils law of
large numbers and the classical definition of probability.

After consulting with several teachers, I managed to find a suitable class
to try. It took place in the eighth grade for 7 lessons - the pupils wrote
tests in two lessons and learned in five lessons. This time is quite sufficient,
however, optimum time would be ten lessons, in the case of interest on more
simulations longer time. I participated mainly as an observer, the lessons
led mathematics teacher of this class. He got precise instructions and also
had methodological guide before lessons.

Pupils received lessons generally positive; most of them actively en-
gaged automatically, some pupils needed more time, but everybody worked
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in the final phase. The teacher confirmed that the class did not behave dif-
ferently from other lessons and I, as unknown person, was not a disruptive
element in the class.

The first three lessons we spent with combinatorics. Pupils got teach-
ing materials, each task we read aloud and then everyone had some time
on their own solutions (Fig.11.4). Then we started discussion and children
who had correctly solved task, helped to find solutions to others. Thus, we
worked with all the tasks, pupils got some time to find their own solution of
problems which were solved in the final stage by using computers and sim-
ulations too. The first three lessons children studied combinatorics, in the
remaining two we focused on probability calculus. Pupils wrote the second
test after it and then I did semi-controlled interview with selected children.

Fig. 11.4: Example of pupils‘ solutions

Nevertheless, the data from this pilot study have not yet been processed,
I can already make a few notes I recorded during research and preliminary
evaluation.

The reaction of pupils to teaching was generally positive. Very often
repeated response was that this topic is “logical”, that “it was not math-
ematics.” Pupils further appreciated the support illustrative and schematic
solutions and in independent work - “everything we could discover our-
selves.”

Pupils, who has in mathematics generally low scores, could solve many
tasks independently. The only advice we gave them was to use crayons,
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outline everything and write notes. Weakest pupils worked independently
and found some solutions themselves and they often refer it as “fairly easy”
and “logical”.

For pupils who achieve good results in mathematics, this substance was
quite simple. Rules and patterns usually reveal a group of pupils, which is
generally successful in mathematics. Some tasks, however, were problems
for them too and one task we had to deal with our help significantly to make
it for pupils manageable and understandable.

The group, which we would describe as average, worked alone for most
tasks. They usually waited to help their classmates with more demanding
tasks, which uncovered new rules.

This part is able to be considered as successful. Next step which waits
me is a questionnaire survey with teachers of mathematics. I would like to
know their opinion about:

• teaching combinatorics and probability at lower secondary school
• teaching without algorithm and formulas
• solving using schemes, charts, logical judgment etc.
• using simulations, technologies etc.

I hope all this things (tests, teaching and their result, opinion of teachers
etc.) can help to include in our curriculum.

Scholarly knowledge of this part of math is incontestable as mentioned
above. I think that the introduction of this topic will be beneficial for better
understanding of this topic and hence to scholarly knowledge too.

Conclusion

Combinatorics and probability is usually not taught at lower secondary
school in our country. However it is not a rule, it is possible to teach it
and first textbooks contain several tasks there.

Another important step is that we have new standards from 2012 (in
Fuchs (2012)), which specify the absolute minimum of what have to be
achieved at the end of the 5th and 9th grade of basic school to know and
learn. The thematic area “Non-standard application tasks and problems”
has only two sample tasks and one is directly from combinatorics.

As mentioned (Bosch & Gascón 2006, p. 53), we have to overcome
many obstacles. The transpositive work is done by a plurality of agents (the
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‘noosphere’), including politicians, mathematicians (‘scholars’) and mem-
bers of the teaching system (teachers in particular), and under historical
and institutional conditions that are not always easy to discern. It makes
teaching possible but it also imposes a lot of limitations on what can be and
what cannot be done at school. I still hope that standards, textbooks and
not least my work will lead to the reintroduction of this part of math to our
schools.
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Abstract. One of the ways to analyse textbook is to trace back how
such a mathematical content was explicated in a current and histor-
ical textbooks. The purpose of this study is to compare the expla-
nation of proportion in three different textbooks from two different
periods. By using praxeology, I analyse a current open online US
textbook and two historical US textbooks. I describe how propor-
tion is explained and appeared in examples and in exercises. The
results show that each textbook has its own typical type of task
and technique. I also observe that the way proportion is explained
in current textbooks draws on what we could call ‘daily life sit-
uations’ while the historical textbooks use a more formal defini-
tion. Furthermore, I find that the historical textbooks provide more
algebraic approaches to discuss property of proportion while the
current textbook gives advantage for students to have more than
one techinques. The results of these analyses might be of interest
in order to analyse future potential textbooks.

Keywords: arithmetics proportion, current textbook, historical text-
books

Introduction

Proportion is one of antique topics in mathematics. We can see how influ-
ential this topic because in old time this topic emerges in every mathemat-
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ics textbook, from primary school to university. More recently, this topic
has begun to be absent from the scientific mathematical world. For exam-
ple, we can not find proportion terminology in the encyclopaedia of math
(http://www.encyclopediaofmath.org). However, in some countries, such as
the US, proportion is still discussed in lower secondary school.

Proportion is about relation between two couples of numbers or more.
Mostly, the idea of proportion refers to Euclid’s element in book 5 as a
proportion that deals with magnitude and book 6 as a similar figure (see
(Fitzpatrick 2008, p. 130 & 155). Recently, proportion also can be found
in today’s lower secondary school. National Governors Association Center
for Best Practices & Council of Chief State School Officers (2010) states
that proportion in the US lowers secondary textbooks is also appeared as
ratio and proportional relationship topic that mainly use arithmetic task in
grade 6 and as special linear equation form and similarity in grade 8. These
discussions drive me to conclude that proportion can appear not only in
arithmetic domain but also in geometry and algebra domain. Furthermore,
I am curious by how proportion appear in textbooks.

Textbooks can be used by teachers to plan and to implement their teach-
ing. Therefore, a good quality textbook should be developed to support
teachers. One of the ways to understand what makes a good quality text-
book is to analyse a previously used textbook, because a historical back-
ground of certain concept can be useful in understanding their present-day
explication.

The purpose of this study is to compare the way proportion in arithmetic
is introduced in two different periods of textbooks (a current textbook and
two historical textbooks). By seeing how proportion is expressed at two
different times, we can better analyse and understand the potential of future
textbook content.

Theoretical approach

This comparative work is inspired by Clément (2007) who analysed the
concept of a cell, as it is expressed in biology textbooks, becomes a po-
tential didactical obstacle. This phenomenon is shown to have a pedago-
gical explanation, a historical explanation and a sociological explanation.
In particular, Clément showed that the historical explanation gives a strong
influence in current-day textbooks, even though it has lost its pertinence to

http://www.encyclopediaofmath.org
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today’s knowledge. Thus, in this research, I also try to capture a compara-
tive work between a current textbook and two historical textbooks.

Regarding the textbook analysis, I am inspired by the work by González-
Martin et al. (2013) who carried out a textbook analysis for real number and
found an un-integrated mathematical organization. However, in González-
Martin et al. (2013) work’s, they focus on general type of task in which
means that this type of task can be interpreted in to more than one type of
task . Therefore, it needs a research that focus on a specific type of task.

In this study, I use the anthropological theory of didactic (ATD) by
Chevallard (1999, 2002). Based on this theory, knowledge cannot be con-
sidered as individual knowledge but rather it depends on selecting, design-
ing, communicating, and learning knowledge in an institution. Therefore,
there is a relationship between the scholarly institution which produces
the knowledge and the institution of school which disseminates the know-
ledge. This relationship is governed by didactic transposition (Chevallard
& Bosch 2014). In this research, I do not attempt to capture the didactic
transposition of the topic of proportion, but I analyse the textbooks as part
of the institution in which they are used as the ‘knowledge to be taught’.
This focus of analysis gives me opportunity to build a wider framework of
proportion itself.

To build such explicit result in this study using ATD, I use praxeology
as the main tool. Etymologically, praxeology refers to practice and know-
ledge and it consists of a four tuples: type of task, technique, technology
and theory. When study mathematics, student often faces a type of task
(T ). This type of task can be solved by particular technique (τ). Also, a
technologies (θ) s needed to explain the reason why a student choose the
technique. Then a theory (Θ) is needed to justify the technology. The col-
lection of type of task, technique, technology, and theory is called mathe-
matical praxeologies. For further definitions, I refer the reader to (Winsløw
2011).

Context and methodology

According to common core state standard (CCSS) for mathematics in the
US, ratio and proportional relationship is located in grade 6 (National Gov-
ernors Association Center for Best Practices & Council of Chief State
School Officers 2010). However, I also realize that every state in the US
does not have obligation to adopt that common core standard. Neverthe-
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less, a report shows that forty five states and the District of Columbia have
adopted the CCSS in mathematics (Achieve 2013).

Regarding to the textbooks regulation, a local school have an author-
ity to approve the selection of each grade (U.S. Department of Education,
International Affairs Office 2008). A current open online textbook from
www.ck12.org is used for this research. CK-12 Foundation is a non-profit
organization with a purpose to reduce the cost of textbook in the U.S. and
worldwide. Specifically, I used a book by Mergerdichian et al. (2014) for
grade 6 where ratio and proportion are located. I consider this online text-
books because it can be easily accessed by students (or might be for the
readers) as a resource of the study. For a comparison, I use two the US his-
torical textbooks by Adams (1848) and Hopkins & Underwood (1908) that
can be found on https://archive.org/index.php.

I realize that only one current textbook and two historical textbook are
chosen and these three textbooks do not represent a general condition of
how arithmetic’s proportion in the US textbooks. However, by using the
case of these textbooks, I can apply a new approach in textbooks analysis
using ATD.

The focus of this research is on type of task and technique that are
provided by textbooks in the examples and exercises. I also realize that
there is no given technique in the exercise. Thus, I consider how proportion
is explained in the textbooks as a reference to adopt what technique that
student might be used to solve the task. The main result of data analysis is
a reference model that contains of a collection of type of task.

Result

Proportion can appear in many mathematical domains, e.g. arithmetic, al-
gebra and probability. However, due to the scope of this study, I only focus
on proportion in arithmetic domain. In the following discussion, I will dis-
cuss proportion theme in arithmetic domain in three parts: 1. How propor-
tion is introduced historically by Adams (1848) and Hopkins & Underwood
(1908), 2. How proportion is introduced currently by Mergerdichian et al.
(2014), 3. How a reference model can be applied as textbooks analysis.

www.ck12.org
https://archive.org/index.php
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Proportion in historical mathematics textbooks

I consider discussing two historical textbooks from the year 1848 & 1908
in the same section because these two textbooks have the same structure:
ratio, proportion, and compound proportion.

These two textbooks explain proportion using a formal definition: pro-
portionality is the equality of ratio. The authors also gave an example using
numbers such as ‘6 : 8 = 6

8 = 3
4 = 15

20 ’. Thus, by this example, the authors
conclude that ‘6 : 8’ proportional to ‘15 : 20’.

Additionally, proportion can be generally expressed as a:b::c:d. It is in-
teresting to note how the symbol of proportion is written using double colon
(::) in Adams (1848). However, in Hopkins & Underwood (1908), propor-
tion is already expressed with sign of equality (=) and they also explain
that using double colon as a sign of equality is now rapidly becoming rare.
These two textbooks also provide a formal algebraic explanation of cross
product properties. Consider the cross product formal definition by Adams
(1848) below:

In every proportion the product of extremes is equal to the product
of the means (Adams 1848, p. 61).

By this he means when we have then it is can be algebraically written, as
a× d = b× c. a and d are the first and the fourth terms of proportion that
is called the extremes and the d, b are second and third terms that is called
the means. However, only Hopkins & Underwood (1908) who provide the
proof properties of proportion algebraically: If a

b = c
d ⇔

abd
b = cbd

d ⇔ ad =
bc. In this case, the authors consider a tuple as fraction and multiply each
of these fractions by the product of their denominator.

Proportion in current mathematics textbooks

Proportion in the current textbook contains ratios, rate, proportion, percent,
decimal and fraction. In this discussion I only focus on ratio and proportion.
Different from historical textbooks, the authors provide a picture and a story
using daily life situation to discuss proportion. Consider figure 12.1 and
explanation by Mergerdichian et al. (2014) below:
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Fig. 12.1: A discussion about proportion (Mergerdichian et al. 2014, p.
591).

Tim loves to read about frogs.... . He amazed to read that frog can
jump twenty times its body length. That means if a frog is three
inches long, it can jump 60 inches. (Mergerdichian et al. 2014, p.
591).

Then, the authors formalise that proportion is a two equal ratio. They also
use numbers to explain. However, in this current textbook, there is no dis-
cussion about how to prove property of proportion algebraically. Moreover,
the authors do not discuss about means and extremes and do not use double
colon as equal sign.

Reference model

We use mathematical praxeologies to describe the examples and the exer-
cises in the textbooks. I categorize type of tasks and techniques to express
the praxis. However, I do not use theory, due to limited source in lower
secondary textbooks. In arithmetic, proportion is defined as the relation be-
tween two couples of numbers or more: if x1

x2
= y1

y2
. There are six types of

tasks (T3−T6) belong to proportion from three textbooks that are catego-
rized as follows (table 12.1).
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Table 12.1: Types of tasks

In T1, students are given a tuple (x1,x2) and one element (y1) of a tuple
and are asked to find remaining element of a tuple when these two tuples
are similar. Later, I use similarity, proportion and direct proportion as the
same meaning. While in T2, students are faced with a modification of pro-
portion that called indirect proportion. Here, students are asked to find the
remaining element of a tuple by giving a tuple and one element of a tuple
when these two tuples are indirect proportion.

In the ‘ratio’ type of task task (T3), students are asked to find ratio by
two given numbers. Algebraically, this type of task can be expressed by
giving two variables (x,y) and determine the ratio (r) in order to prove (x,y)
is similar to (l,r). Authors in T3 give two numbers and students are asked to
find the ratio of these numbers. While in T4, students are given a ratio and
a number and are asked to find a number so that these two numbers are in
the given ratio. Often, a ratio task is called unit value task because students
deal with a unit rate.

Students are given two tuples in type of task T5 and are asked to decide
which one is bigger. I acknowledge that this type of task is very far from
definition of proportion that we have discussed before. However, I see this
type of task as development of proportion application in daily life situation.

Compound ratio (T6) at least contains three ratios. These are called com-
pound ratio because it consists of several simple ratios to be multiplied to-
gether for a new ratio.

To illustrate these six types of tasks, I take examples from three text-
books as follows in the table 12.2. Additionally, I use a small ‘t’ for task
and I use capital ‘T ’ to symbolise type of task.
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Table 12.2: Examples of tasks

To solve those task in the table 12.2, students need to use a technique
(τ) to solve (see table 12.3). Therefore, there are some tasks in the exercise
that does not have the answer. Thus, I determine the techniques based on
my interpretation from introduction section.

Table 12.3: Examples of tasks

We also found in Mergerdichian et al. (2014) that the authors provide
another technique for τ1 called unit value technique ‘τ1’:

τ1: If x1
x2

= y1
y2

then x1
x2

= 1
m so that y2 = my1 or y1

x1
= 1

m , so that y2 = mx2.
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Technique τ1 gives students opportunity to use more than one technique
to solve T1. Students are asked to find the external ratio of some tuples and
to multiply a given number of another tuple with this ratio. Besides using
external ratios, student also can use internal ratios ( x1

x2
) to find remaining

number by multiplying a given number of another tuple.

Discussion

All of textbooks have the same typical type of tasks (T1 and T3), namely the
missing number and ratio. However, the technique in each textbook also has
a different characteristic type of task. For example, current textbook has T4
and T5 and in the historical textbooks there are T2 and T6.

In the type of task T2 (indirect proportion), students have opportunity to
develop missing number technique, where it somehow has different concept
from direct proportion. Student in the T3 and T4 can develop their idea about
modification of proportion that use unit value or ratio. While in T5 and T6,
students have to develop a new idea using proportion concept. By knowing
these varieties of type of task, it can be enrich our reference to construct
proportion task. Thus, students are challenged by having varied type of
task.

Both current and historical textbooks define proportion using ratio
equality. However, the two textbooks use different approaches. The his-
torical textbooks directly define proportion with formal definition by using
number and discuss specific terms like means and extremes which do not
appear in current textbooks. Moreover, one of the historical textbooks use
‘double colon’ as sign of equality. Today, most of textbooks are using ‘nor-
mal’ sign equality (=) to express proportion. This situation shows the evo-
lution of the using of mathematics symbol. In current textbooks, the authors
use daily life situation to engage student and finish with formal definition.

lso, both current and historical textbooks discuss the property of pro-
portion called cross product property. In historical textbooks, the authors
also provide a mathematical proof of this property. However, authors in
current textbook do not discuss about the proof. Students only apply the
property of proportion. Moreover, in the current textbook, students more
focus on using what the textbooks call ‘ratio’ (τ1). In this situation students
are asked to find unit rate and use it to find unknown number. Thus, stu-
dents are given advantage by having more than one technique. The proof
can support student to understand mathematically where the formula come
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from. However, by having more than one technique it helps students to see
a task from more than one perspective.

Conclusion

The current and historical mathematics textbooks have the same kind of
common types of tasks, but at the same time, they have a certain typical
task that can only be found in each particular textbook. Also, we found that
current textbooks have more techniques than historical textbooks.

Even though, both textbooks define proportion as equality ratio and dis-
cuss cross product properties, they have different approaches to explain.
Daily life situation in the current textbook influences the number type of
tasks and techniques. While formal definition approach in the historical
textbooks influence mathematical understanding.

Different approaches to explain proportion and the properties of pro-
portion and the variety of types of task can be used to develop future math-
ematical textbooks. Also, a general model of analysis for textbooks can be
used to develop the analysis textbooks outside the theme of proportion or
even outside the discipline of mathematics.
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A challenge for physics continuous professional
development in the UK based on didactic
transposition theory

Gary Williams
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Abstract. The Institute of Physics Teacher Network is described
and a direction for its future work presented along with ideas that
have influenced this position. The aim of this paper is to propose a
possible tool for more effective CPD provision and supported self-
development, with two analytical frameworks combining to outline
a possible driver for systemic change.

Background

Starting in 2001 the Institute of Physics (IOP) in the UK has funded
and managed a network of coordinators, the IOP Teacher Network, who
run continuing professional development (CPD) events for those teaching
physics in secondary schools (IOP Scotland 2013). In the period 2009-
2011, over 97% of teachers attending workshops run by the Teacher Net-
work stated that the workshop would have a positive impact on their class-
room practice (IOP Scotland 2013). From 2005 until 2009 the total number
of teacher-days of CPD delivered by the Teacher Network was over 10,000.
From March 2013 until December 2014 the total number of teacher- hours
delivered by the Teacher Network was over 27,000. Currently 70% or
more of state-funded secondary schools in England attended at least one
IOP/Teacher Network event1).

1 Monitoring of numbers attending workshops and their perceived quality is on-
going. Not yet published by IOP but available on request. Data for England has
been gathered regularly due to funding arrangements.
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The success of the model used by IOP, a centrally supported network
of field workers who go into schools, has influenced other developments.
The IOP identified a need for more targeted support during the early stages
of the Teacher Network and developed the Stimulating Physics Network
(SPN). The Perimeter Institute in Canada also set up a network of coordi-
nators (Lambert 2010), as have the Royal Academy of Engineering (2014).
Both organisations having initially interacted with the IOP. One of the aims
of these networks is to help support and retain those teaching physics, as
retention has been a problem for some time (Centre for Education and Em-
ployment Research 2008). This may not have been stated explicitly but it
is an underlying principle of the model, a part of community building. It is
bottom-up, grass roots, by teachers for teachers, as opposed to top-down.

There are problems with content being “delivered” via networks, with
CPD workshops primarily being topic-based sets of practical activities, for
example how to make a compressed air rocket launcher or use a Van de
Graaff generator. They are very effective workshops, with many teachers
taking up these ideas to make their lessons more inspiring, but they are
a specific type of workshop and have limitations. (This is not a criticism
of the networks but more a property of the whole; increasing demand is
outstripping capacity, and some teachers justifiably want knowledge deliv-
ered). There is a lack of critical inspection and much centres on the passing
on of standard ideas and “this is how I teach it”, rather than looking at
research evidence or evaluating impact or improving decision making. A
possible reason for this is the belief by some that there is one best way
of teaching a topic. This is not in agreement with the views of many of
the Physics Network Coordinators (PNCs, the people running the Teacher
Network) who tend more towards a craft interpretation of teaching (Winch
2008), in that the best method depends on the students, teacher and social
context, prior knowledge and experience, and a host of other factors (Leach
2007). It is also not in agreement with the ideas developed by didactic trans-
position:

“thus shattering the illusion of a unique mathematical knowledge
already defined and for which the best teaching method was to be
found” (Bosch & Gascón 2006).

These lines of investigation led to the area of pedagogical content know-
ledge (PCK). This had been looked at in the early days of the Teacher Net-
work but seemed to be making little useful progress. The work of Loughran
et al. (2012) has produced tools that help identify, document and develop
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PCK, namely content representations (CoRes) and pedagogical and pro-
fessional experience repertoires (PaP-eRs). CoRes are linked to PaP-eRs
which are rich descriptions concerning an individual teachers approach,
these often explain more about the reasoning the teacher followed to justify
using a particular approach. These seem a useful device for sharing and de-
veloping teaching ideas and may have moved PCK on, at a level useful for
teachers (Loughran et al. 2007a).

Brighouse (Research Machines 2006), quoting American researcher Ju-
dith Little, asserts that an outstanding school can be identified when four
factors are visible. Teachers:

• talk about teaching,
• observe each other’s practice,
• plan, organise, and evaluate their work together rather than separately,
• teach each other.

The first point covers something that happens and is encouraged at all
Teacher Network events. The second is much more difficult to initiate due
to the way that the Network operates. The final point is a cornerstone of
the Teacher Network, which leaves the third point. The ideas outlined in
this paper will hopefully address this point and introduce some systemic
change, moving away from delivery and towards a more critical, analytical
and reflective community.

Didactic transposition theory and cores

Didactic Transposition Theory (DTT) looks at the original intention of what
should be taught and why and how it changes as institutions act upon it, see
fig. 13.1 below (Bosch 2014).

Fig. 13.1: Diagram of the process of didactic transposition (resource:
Chevallard & Bosch (2014))
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A CoRe is a table with column headings that list the teaching outcome
in the sequence in which they are to be taught. Big Idea A being followed
by Big Ideas B and C and so forth. The row headings relate to different
aspects of teaching. The appealing thing about CoRes is their flexibility,
simplicity, and their use as a tool for developing understanding as well as
documenting and analysing practise. They do not define PCK but highlight
important factors that are part of it.

The two approaches place emphasis in different areas. A CoRe places
more emphasis on student difficulties. DTT places an equal emphasis on
the initial transpositions. For practical reasons this may be an unfruitful
research area in the UK. Despite these problems and differences DTT,
and CoRes together with PaP-eRs seem useful tools following similar ap-
proaches. They do not appear to be at odds with each other.

It is informative to compare CoRes and PaP-eRs to didactic transposi-
tion theory. The first action needs to be the removal of the CoRe row head-
ing “Other factors that influence your teaching of this idea” as this refers
to practical issues, specific to a particular situation so of little use here (for
instance whether the lab has sinks).

The CoRe row headings can be split into three areas: what you are do-
ing, why you are doing it, and the implicit and explicit transpositions. There
is also an added box – why evaluate in this way? (This wording needs fur-
ther thought).

In the CoRe column heading we have the “Big Ideas” (which is a mis-
leading label), the Scholarly Knowledge as DTT describes it. Teachers
without a good understanding of this then need to initiate a subject spe-
cific study.
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Table 13.1: The beginnings of a content representation. (Resource:
Loughran et al. (2007b))

There is then the first transposition. This is partly the curriculum level
to which the subject knowledge has been allocated. Taking a part of physics
as an example, the electromagnetic spectrum doesn’t have a label on it that
says “11-14 years”. Hence putting it into a position in the curriculum is the
first transposition.

The row heading “What you intend students to learn about this idea.”
has two possible sources. One source is the teachers interpretation (as
teachers don’t always stick to the curriculum and may by-pass it to deliver
what they see as Scholarly Knowledge), which may be coloured by the
prescribed curriculum or it may be an interpretation of Scholarly Know-
ledge by those in the “noosphere” (Chevallard 1989) producing a curricu-
lum statement. Let us think of this simply as “what are we trying to teach?”
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Fig. 13.2: Comparing two frameworks for analysis

For a new teacher the questions they often want answered are indeed
“what am I trying to teach?” followed by “how do I teach it?”, so we may
link Teaching Procedures to Taught Knowledge. Fig. 13.2 suggests together
with this the idea of evaluating progress is also important, be that summa-
tive or formative assessment.

Hence, a tool for directing CPD might start by making sure these areas
are covered:

• What am I trying to teach?
• How do I teach it?
• How is success measured for both teachers and students?

These areas are shown in fig. 13.3, which we shall call Praxis2.
Once teachers can answer these questions, they might be expected to

start analysing their teaching and justifying decisions. Looking back at fig.
13.2 let us now examine the CoRe row headings that have been placed
towards the right hand side. Figure 13.4 shows a more thoughtful set of
processes – if fig. 13.3 is Praxis then fig. 13.4 is Logos. It covers more of
the reasons why these actions were taken:

• Why are we trying to teach this?

2 The terms Praxis, Logos and Transpositions are used here as labels in preference
to terms like “stage 1” etc.
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• Why are we teaching it this way?
• Why evaluate in this way?

Fig. 13.3: A starting point, or “Praxis”.

Fig. 13.4: “Logos”.

Finally there are Transpositions, the remaining row headings from fig-
ure 13.2. This is the domain of the experienced teacher, those who see the
flaws in the curriculum in comparison to Scholarly Knowledge and those
aware of the bias they may have in their own teaching, see figure 13.5.

It could be argued that a certain row heading is incorrectly connected to
the chain of didactic transpositions. Given the multifaceted nature of how
teachers work, interact with students and rework the knowledge they hope
students will come to understand, this isn’t an issue that needs dealing with
(Ogborn et al. 1996). What is being shown here is that two communities
are arriving at similar conclusions. Their common conclusions can be used
to direct progress.
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Fig. 13.5: “Transpositions”.

What might this look like in practice?

The ideas described here have been presented to a sub-set of the Physics
Network Coordinators. An attempt was made to put the “Praxis” step into
practice, with the aid of a large piece of material and some A5 post-it notes,
see fig. 13.6. PNCs built partial CoRes looking at the topics of particle
physics and rockets – both of these topics are connected to workshops cur-
rently run by the Teacher Network. The material, which had a grid pattern
drawn on it and the row headings from the “Praxis” stage written in, was
laid on a table. PNCs then filled in these boxes by writing relevant infor-
mation on the post-it notes and placing them appropriately. PNCs are expe-
rienced teachers, usually with a minimum of ten years of teaching behind
them, so this happened quickly; their mastery obvious. The process of ap-
plying this analytical tool to PNC workshops raised several issues:

• A CoRe should be a dynamic tool. The point is not to complete a CoRe,
but to catalyse a worthwhile discussion and improve decision making.
The quality of the discussion while building the CoRe was at a high
level and tightly focussed - it was all relevant to the classroom.
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• Despite having different curricula (as PNCs from England and Scotland
were present) a worthwhile discussion was still possible.

• As the Network Coordinators are all very experienced teachers the
boxes for the “Praxis” stage were quickly filled in. The discussion then
moved on to look at “Transpositions” with evidence about misconcep-
tions and research occurring naturally in the normal flow of the conver-
sation.

• The “Logos” stage was dealt with in the course of the discussions.

Fig. 13.6: A partial CoRe completed by the PNCs.

One outcome of the discussion during this small trial was a consen-
sus about the direction the Network should pursue in future. A number of
skeleton CoRes (complete frames but only partly filled in with suggested
discussion prompts that relate to teaching) will be prepared and workshop
participants will use these to build partial CoRes (incomplete frames being
fully filled in if possible). The theory behind the idea and its use as a more
powerful analytical tool will be made clear, but within the workshops it will
be used to complement the usual topic based approach. It will hopefully be
taken up in schools as it becomes more widely used and understood, the
value of identifying problem areas becoming evident.
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Systemic change and further work

While the IOP Teacher Network and SPN have been very successful, they
could be more effective in improving teaching practice in schools. There
are a number of practical requirements for what would constitute a systemic
change:

• It must involve working with groups of teachers, or a department in a
school.

• The workload cannot be the sole responsibility of the teachers.
• It must be flexible enough to work with outside support but not rely on

it, and work across the curricula of different nations.
• It should continue after an initial set-up period.
• It must produce measurable results.

The proposal is to take some of the ideas from CoRes and PaP-eRs and
DTT and use these to develop tools to help a department develop its own
CPD program. Teachers would be empowered to assess their own needs and
helped to find resources to improve teaching or subject knowledge where
possible. The beauty of DTT when compared to CoRes is that it allows for
the possibility of there not being a solution to a teaching problem at a school
level. Teachers need not feel like they have failed when they are unable to
solve a problem.

Step 1: The intention is to try and add a CoRe/DTT based tool into work-
shops already run by the Teacher Network. This will start to famil-
iarise the physics teaching community with the idea. Teachers will also
be pointed in the direction of material to allow them to take this further.

Step 2: A small pilot project will be run using a CoRe/DTT based tool
to guide departments in their CPD provision. This will identify a cur-
riculum area and age range and go through the praxis, logos and trans-
position stages, identifying areas of need and problems, and finding
solutions, if necessary in conjunction with their local PNCs. Feedback
will involve the use of Talkphysics - an online community for teachers
of Physics and their supporters at www.talkphysics.org.

Step 3: Having provided a tool for in depth analysis of a scheme of work,
for example, teachers also need support and nurturing should they want
to take this further. One possibility could be summer schools where
experienced researchers support teachers in doing this with the whole

www.talkphysics.org
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serving as a gateway through to broader research. The Teacher Network
should explore this option with universities.

Conclusion

CoRes and PaP-eRs and DTT have been compared and used to develop
ideas for a tool for self-direction of CPD, and more effective CPD provi-
sion. A proposal has been made to take this forward in the context of the
IOP Teacher Network.
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Abstract. The paper presents and discusses an ATD based model
of theory-practice relations in mathematics teacher education. The
notions of didactic transposition and praxeology are combined and
concretized in order to form a comprehensive model for analyz-
ing the theory-practice problematique. It has been shown that the
model can be used both as a descriptive tool to analyse interactions
between, and interviews with, student teachers and teachers and as
a normative tool to design and redesign learning environments in
teacher education, in this case a lesson study context.

The theory-practic problematique

Establishing coherence between theory and practice is one of the main chal-
lenges in mathematics teacher education. In Denmark more than four out of
ten student teachers experience a lack of coherence between the teaching of
general educational science and didactics taking place at the university col-
lege and the practice of teaching in schools (Jensen et al. 2008). Through-
out the last decades teacher education has become increasingly academic -
which can be seen as positive – but concurrently, the practices at schools
have become much more challenging due to increasing social and ethnic
segregation, which affect schools particularly in disadvantaged neighbor-
hoods. Therefore, many student teachers tend to focus on practical teach-
ing tools rather than academic theories. This development causes a risk of
a widening of the gap between theory and practice in teacher education.
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The theory-practice divide can be regarded (1) from theory to practice
or (2) from practice to theory. As regards (1) the questions are: How can
theoretical knowledge be utilized to analyze and develop teaching practice
in schools and how do we create a shared frame of reference from teach-
ing practice to interpret the theory? Subject matter knowledge, pedagogi-
cal knowledge and pedagogical content knowledge are taught separately at
university colleges but are in reality inextricably entwined with each other.
The challenge is how to create interplay between the academic theories of
mathematics and pedagogy and teaching practice in teacher education. It is
crucial to create this interplay in order to legitimize the theoretical educa-
tion and to place school knowledge in a wider context.

As regards (2) the teaching practice must be made transparent and
treated as the main object of discussion and theorization in teacher educa-
tion. This is necessary in order to ensure that student teachers’ learning in
and from teaching practice is connected to theoretical education and brings
about a critical view on theory and research from a practical point of view.

These complex theory-practice relationships in teacher education call
for a model which can be used to describe and analyze the interplay be-
tween mathematical and didactical knowledge; teaching practice and learn-
ing in both teacher education and mathematics teaching in school.

The aim of the research project behind this paper is to answer the fol-
lowing two research questions:

1) What different kinds of theory-practice problems appear in mathematics
teacher education - according to student teachers?

2) How can these theory-practice problems be conceptualized and ana-
lyzed within an ATD based model?

In this paper the focus is on how the model can be used as a tool for ana-
lyzing empirical data from a lesson study project with teachers and student
teachers. However, at first, the model will be presented and discussed. The
paper is rounded off with a discussion of the benefit of the model in analyz-
ing theory-practice relations in mathematics teacher education and on how
such analyses can inform the design and use of lesson studies in teacher
education.

A model of mathematical teacher education

The Anthropological Theory of the Didactic (Chevallard 2012) provides an
epistemological framework for mathematical knowledge. In ATD mathe-
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matical knowledge, regarded as a human activity including teaching and
learning mathematics, is modelled by mathematical and didactical praxe-
ologies (Winsløw & Madsen 2008).

Praxeologies consist of a practice block (praxis) regarding the questions
what to do and how to do it (know-how) and a theory block (logos) regard-
ing why to do it (know-why). In addition to this, ATD models the didacti-
cal transposition of mathematical knowledge from scholarly mathematics
mainly evolving at universities to knowledge actually taught and learnt in
schools (Bosch & Gascón 2006, p. 56). The didactical transposition is di-
vided into two steps. The first step is the external didactical transposition
from scholar mathematics to knowledge meant to be taught - the mathe-
matical knowledge as it is described in e.g. curriculum and textbooks. This
step is often performed by people outside the school. The second step is
the internal didactical transposition from knowledge meant to be taught to
knowledge actually taught – this step is every day work for teachers.

The two concepts, praxeology and didactic transposition, both bring
central theory-practice relations into focus – the first one inside an institu-
tional frame (e.g. the school) and the second in a broader context between
institutions. Together they provide a comprehensive picture of teacher edu-
cation in mathematics, which can be used to point out and analyze problems
and constraints as the theory-practice problematique. In the model below
the two concepts are combined to form a model for analyzing the theory-
practice problematique in teacher education (figure 14.1). In my research
the model is intended to be a tool for both descriptive and normative ana-
lyses. At first, the model is used descriptively to analyze different kinds
of empirical data from two lesson study projects in connection with teacher
education. On this basis, the model will be used normatively to propose new
ways to organize teaching practice, preparatory education and the theoreti-
cal education at the university college to improve coherence between theory
and practice in teacher education.
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Fig. 14.1: Teacher education model based on ATD

he model consists of four columns containing the four kinds of know-
ledge in the didactic transposition. Each kind of knowledge is described
by a mathematical praxeology with theory, technology, technique and task
(see (Winsløw & Madsen 2008) for further details) depicted with white
boxes and a didactic praxeology, also with a theory and practice block, de-
picted as “blue‘” boxes in figure 14.1. By collocating the model and teacher
education practice three different, pivotal theory-practice problems can be
located – occurring in different forms. These are emphasized by three red
axes – two vertical and one horizontal axis.

The horizontal axis is dividing the practice blocks and the theory blocks.
This axis stresses the divide between practical, procedural mathematics
with emphasis on techniques to carry out tasks and theoretically doing
mathematics by combining techniques and concepts, arguing, proving etc.
The transcendence of this barrier is a crucial point for mathematical edu-
cation – the higher level of abstraction in the theoretical block is a neces-
sity but also a very difficult barrier to almost all pupils. Consequently, this
axis is a significant problem area for teacher education both with regard to
student teachers learning scholar mathematics and pupils learning mathe-
matics at school and the relation between practice and theory block is an
appropriate model in both cases.

The two vertical theory-practice axes are dividing, respectively, the
scholar mathematics and knowledge meant to be taught and knowledge
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meant to be taught and knowledge actually taught. The divide in the first
axis is treated at the university college. Comparison of scholar mathemat-
ics and knowledge meant to be taught is again highly relevant in teacher
education to analyze what and why specific content is or is not selected for
curriculum. It is pivotal for student teachers to be critical to this selection
and to question the decisions in curriculum or textbooks. The arrows at the
base of the model pointing “back” e.g. from knowledge meant to be taught
to scholar mathematics stresses that knowledge meant to be taught or actu-
ally learned can be taken as a starting point for analyzing the mathematical
knowledge on the previous levels in the system. The latter of the verti-
cal axes is dividing the theoretical education taking place at the university
college and teaching practice at schools. To combine these two, university
colleges often organize preparatory education as a special forum, depict
as a small box in the bottom of the model. The internal didactical trans-
position from knowledge meant to be taught to knowledge actually taught
is everyday work for teachers and thus obvious content in mathematical
teacher education. Again, the arrow is pointing both ways stressing that it
is fruitful to change perspective and analyze knowledge meant to be taught
on the basis of student teachers observations or descriptions of knowledge
actually taught or knowledge actually learnt in teaching practice. This point
is an example of the normative aspect of the model.

The two columns to the right are a little different compared to the other
kinds of knowledge. The relation between knowledge actually taught and
knowledge actually learnt cannot offhand be described as a theory-practice
problem because both are a part of the teaching practice at schools – the
knowledge actually taught and learnt. Off course, teaching and learning can
be described and analyzed by theoretical tools but the interplay at schools
is a practice matter. As the transposition takes place inside school it is a part
of the internal transposition but knowledge actually taught and knowledge
actually learnt are closer connected and appears in a more direct interrela-
tionship than the other kinds of knowledge. Student teachers are supposed
to react to pupils’ communication and learning e.g. during a dialogue in
the classroom and adapt the teaching to the individual pupil or the specific
class. Knowledge actually taught and knowledge actually learnt can be the-
oretically analyzed separately but are intertwined in practice. Therefore, the
two kinds of knowledge are not separated in the model, but have a common
borderline regarded as the interplay between the pupil’s knowledge and the
knowledge presented by the teacher in the form of the teaching environment
presented.
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Analysis of a lesson study project

The next section is an analysis of a group of two teachers and three student
teachers’ learning outcome from a lesson study project on the basis of the
ATD-model. The lesson study was conducted in autumn 2013 in two classes
grade 6 and 7 and the title was “Similar – what does it mean?” It was a
part of a bigger lesson study project with the title Trigonometry and inquiry
based learning involving 29 student teachers and 17 teachers. The empirical
data from the lesson study consists of a lesson plan, video recordings of the
two completions of the lesson, two 45 minutes interviews with one of the
teachers and one of the student teachers and an article written by the student
teachers. Because of the limited space in this paper, lesson study will not be
described and only the lesson plan, the video recordings and the interviews
will be analyzed. For further information about lesson study reference is
made to Lewis (2002), Hart et al. (2011) and Stigler & Hiebert (1999).

Lesson Plan

The lesson plan is divided into three sections: First, some practical infor-
mation concerning the participants, who taught the lessons, the name of the
school, dates for completion of the lesson and the classes involved. The
second part encompasses the tittle and aims of the lesson, competencies
involved and working method. The last section is a detailed plan of the les-
son containing mathematical focus point and learning goals of the lesson, a
timetable, key question, teaching resources and useful tips for the teacher.

The lesson starts with a 10 minutes introduction to geometric similarity
on the basis of every day examples of similar and not similar objects like a
golf ball and a football, different sizes of Toblerone packaging (chocolate),
enlarging/reducing in a photocopier and a pony and an Arab horse (not sim-
ilar). After the introduction, the pupils receive a right-angled triangle cut of
cardboard and the teacher asks the key question: “You shall pretend that you
are a photocopier and draw an enlarged and a reduced copy of the triangle”.
This is the main mathematical task of the knowledge actually taught. When
the pupils have drawn the two triangles they must contact the teacher. The
teacher then asks them two questions: “How did you construct the trian-
gles?” and “How can you convince me that the two triangles are similar to
the one cut of cardboard?” The two questions encompass the transcending
of the horizontal theory-practice axis from the practice block to the theory
block in knowledge meant to be taught. The teacher’s didactic praxeology
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in connection to this mathematical praxeology is therefore a key issue of the
lesson. The task is chosen in order to pursue three different learning goals
from the Danish curriculum: Similarity of right-angled triangles, Reason-
ing competency and Aids and tools competency (for further details about
competencies in Danish curriculum see Niss & Højgaard (2011)).

The crucial mathematical praxeology to be developed in the lesson
study is based on the type of task: Given a right-angled triangle, how can
you reduce/enlarge the size without changing the form? A possible, pre-
dictable – and desirable – technique is to copy two or three angles from
the cardboard triangle for instance by putting it on top of the paper and
draw the angles and then reduce/enlarge the length of the sides. The tech-
nology to be realized by the pupils is firstly, that equiangular triangles are
similar and secondly; the ratios between the lengths of equivalent sides
are constant. Theory – in this case the mathematical definition of similar-
ity – is framing and justifying technology. The lesson plan also points out
some pivotal didactic praxeologies. The first one is concerning the inquiry
based education mentioned in the category mathematical working methods:
“working in pairs – inquiry based education”. Inquiry Based Education
(IBE) is a significant trend in mathematical and scientific education in the
last decade. The Danish word for inquiry “undersøge” is mentioned 206
times in the 89 pages mathematical curriculum for primary and lower sec-
ondary school of the time (Undervisningsministeriet 2009b). The origin of
IBE is in John Dewey’s philosophy of education (for further details see
Artigue & Blomhøj (2013)). IBE is concerned with the teaching-learning
relation in the model – a theoretical idea about how pupils learn and from
this how to teach. The example shows the delicate interplay between the
pupil’s and the teacher’s didactic praxeology. The appertaining type of task
in the teacher’s didactic praxeology is how to set up a learning environ-
ment that makes the pupils investigate the mathematical task. The task is
not explicitly mentioned in the lesson plan but two different techniques to
solve the task appear in the following quotes: “The pupils work inquiring
with concrete materials and get the opportunity to reason on their own” and
“Tips for the teacher: Be careful not to unveil the points”. So, the two main
didactical techniques are to use concrete materials and to give the pupils
opportunity to work out their own solutions (in pairs) without a standard
procedure presented by the teacher.

The second didactic praxeology is connected to the mathematical goal
of the lesson: “The pupils shall reason that angles and ratios between the
lengths of equivalent sides are constant in similar triangles”. The goal
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articulates the technology of the mathematical praxeology in knowledge
meant to be taught. The crucial didactical task is to give the pupils op-
portunity to extend their understanding of the everyday word similar (in
Danish: ligedannede) to a more exact mathematical interpretation. What do
we mean when we claim that e.g. two polygons are mathematically simi-
lar? The pupils have an intuitive idea of the word/concept and the aim is
to build up their mathematical knowledge on the basis of this comprehen-
sion, in particular two pivotal properties of similar triangles. To attain this
goal the teachers and student teachers use the technique to take a well-
known situation from the pupils’ everyday life about reducing and enlarg-
ing two-dimensional figures (photocopying) and ask them to study what is
happening when you enlarge/reduce a right-angled triangle. The selected
mathematical tasks cause two problems. Firstly, the most obvious and ex-
pected technique – copying the angles – is only connected to the first part
of the goal concerning the angles. The pupils are not encouraged to make
any further mathematical investigations of the similar triangles and none
of the tasks involves the ratios between the lengths of the sides. Secondly,
the lack of a mathematical investigation prevents the pupils from reason-
ing referring to the theory block – answering why. Because the pupils’ only
knowledge about similar at this stage is the everyday word, they are only
able to answer the question “How can you convince me that the two trian-
gles are similar to the one cut of cardboard?” referring to this – answering
how – the practice block.

This example shows how the model captures underlying mathematical
and didactical considerations and the relations between these. In this case,
the model is primarily used descriptively to analyze the lesson plan but it
can as well be used normatively for instance to improve the design of the
lesson plan template in the example about the ratios between the lengths of
the sides by stressing the connections between mathematical and didactical
praxeologies or type of task, technique and technology.

Video recordings of the lessons

The video recordings show that the student teachers to a great extent con-
duct the lesson as it is described in the lesson plan. They have experience
with lesson study and know that this is important to focus the attention on
the teaching instead of the teacher. During the section of the lesson where
the pupils work with the problem in pairs they stick to the manuscript of
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the lesson, e.g. “Be careful not to unveil the points”, and pose the planned
question. For instance in the following situation in grade 6:

Pupil 1: This one is double size
ST: How can you convince me, that it is the same triangle? Can

you argue that they are similar?
Pupil 1: It has the same shape – and it has three sides
Pupil 2: And it is right-angled
ST: Yes. But so is this triangle (the teacher shows a triangle from

another group). And your triangles are not similar to this one

The student teacher finds a new triangle which is definitely not similar to
the group’s triangle

ST: Look at this one. Is it similar to your triangle?
Pupil 1: No
ST: No, but they both have a right angle and three sides. Try to

find out what the similar triangles have in common but these
have not. Think about it...

The student teacher leaves (my translation).
The student teacher’s first question is almost verbatim from the lesson

plan. This question is difficult to answer for the pupils. Nevertheless, Pupil
1 refers to “same shape” as a colloquialism but unfortunately, the teacher do
not respond to the suggestion and so the pupil does not get the opportunity
to create a link to the mathematical concept – equal angles. As stated in the
previous section, this is the task of the didactic praxeology – to extend their
understanding of the everyday word similar to a more exact mathematical
interpretation. The example (and others alike) shows that the question does
not encourage the pupils to investigate mathematical properties about the
similar triangles and thereby get an opportunity to become acquainted with
the theory block of the mathematical praxeology. The technique to solve the
didactical task seems to fail. Maybe as a consequence of this, the student
teacher improvises and reformulates the question: “Try to find out what the
similar triangles have in common but these have not.” This question is not
mentioned in the lesson plan but it leads the pupils to examine mathemat-
ical properties because the question is posed in mathematics. An obvious
answer to the question is that similar triangles have angles in common but
ratios of the length of sides are not in the same way immediate obvious
for pupils at this age. A new didactical task is therefore how the teacher
can pose questions to lead the pupils to examine the ratios of the length
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of sides without “unveiling the point”? Analyzing the situation by means
of the model could for example lead to a question like “What will hap-
pen if you multiply the length of the three sides with the same number – 2
for example?” The example shows that a problem concerning the didactic
praxeology requires an analysis in details of the appertaining mathematical
praxeology.

The recapitulation in the end of the lesson is very different in the two
completions of the lesson. In the first completion (grade 6) only few of
the pupils participate – hesitating and insecure. In the second completion
(grade 7) several of the pupils contribute to the conversation, and it seems as
though most of the pupils have a growing understanding of similarity. The
teacher’s first question to initiate the class discussion is concerning how the
pupils reduced and enlarged the triangle. In both classes two different kinds
of correct solutions – “measuring and copying the angles” and “measuring
and multiplying the length of all sides by e.g. 2” – are suggested, however,
in grade 6 multiplying the length of the sides was explained very unclearly.
During the dialogue, the teacher tries to generalize the pupils’ techniques
by saying: “similar triangles are equiangular” but the pupils do not go into
this discussion – they stick to answering the “how question”.

After a brief exposition the teacher concludes by framing a precise the-
orem about angles and the ratio between corresponding sides in similar
triangles. It does not seem immediately obvious that the pupils transcend
the axis between the praxis block and the theory block and it is difficult
to tell if the teacher realizes this on the basis of the video recordings. The
teachers are both determined to complete the planned lesson although it is
very clear – especially in grade 6 – that the pupils have not reached this
point.

The video recordings show that the student teachers are very deter-
mined to follow the lesson plan as it is planned by the participants. The
comprehensive preparation of the lesson and the very close connection to
the theoretical education at the university college gives the student teachers
an opportunity to try out their theoretical knowledge – both didactical and
mathematical – in practice. Because they stick very carefully to the lesson
plan there is a close connection between knowledge meant to be taught and
knowledge actually taught and between the mathematical and the didacti-
cal praxeology – this is a crucial challenge in teacher education. Obviously,
this challenge should be taken up in teaching practice but student teachers
often find this very isolated from the theoretical education at the university
college. In teaching practice the student teachers are “forced to act” – they
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have to teach a fixed number of lessons each week. Therefore, they often
experience teaching practice as complex and stressful and fall into short-
lived performance without coherence to their learning outcome from the
theoretical education.

Interviews

Dialogue and working relationship between teachers and student teachers
are – of course – important learning resources about school practice for stu-
dent teachers. The interviews show that both teachers and student teachers
experience significant differences between the dialogue involving teachers
and student teachers in the lesson study compared to the usual teaching
practice situation:

Teacher (about teaching practice): “Usual, when you have student
teachers, it is vulnerable. Very often, you tell them what they did
wrong or what they shall be aware of next time in the class instead
of sticking to the point, the lesson, the content.(...)”
Teacher (about lesson study): “Focus is on the lesson and not on
the student teachers. We are not supposed to supervise them. We
discuss what is working and what is not working about the lesson.
We share a common responsibility to make the lesson work. We
don’t evaluate the student teachers but the lesson.”
Student teacher: “In teaching practice, the teacher watches you
when you teach, whereas in lesson study we are equal. We should
all participate in the preparation of the lesson and we could all con-
tribute to the lesson.”

In teaching practice the student teacher usually prepare the teaching and
teach a single lesson, while 1-3 of his or her fellow students and the teacher
observe the lesson. Afterwards, the teacher supervises the student teacher
in very close connection to the student teacher’s presentations and interac-
tions with the pupils in the lesson. The student teacher then tries to “correct
the mistakes” before the next performance – some descriptions by student
teachers and teachers indicates an inappropriate “trial and error” method.
The strong focus on the student teacher’s performance emphasizes the prac-
tice block of the teacher’s didactic praxeology and – to a lesser extend – the
teaching-learning relation in the ATD-model. According to both teachers
and student teachers, it is unusual to discuss didactical and mathematical
theory, curriculum and other topics in connection with the teaching on a
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general level – the two columns to the left in the model are almost absent
in the dialogue. The interviews show that the teacher’s didactical praxeol-
ogy in knowledge actually taught is most often disconnected from both the
appertaining mathematical praxeology and the mathematical and didactical
praxeologies in the other columns. This is evident in many of the dialogs
between teachers and student teachers in connection with teaching practice.
Such practice off course implies a risk of widening the gap between student
teacher’s experience of theory and practice during their teacher education.

The interviews show two main differences between the dialogue be-
tween teachers and student teachers in connection with usual teaching prac-
tice and lesson study. Firstly, the dialogue in lesson study take place both
before and after the teaching and especially the very long time spent prepar-
ing the lesson was emphasized as fruitful. The common preparing together
with the lesson plan template makes the participants discuss and consider
knowledge meant to be taught, the internal didactical transposition and the
interplay between mathematical and didactical praxeologies. Secondly – as
stressed by the teacher in the quote above – focus is on teaching and not the
teacher in lesson study. This implicates for instance that knowledge actu-
ally learnt to a much higher degree is included in the dialogue in connection
with lesson study than it is in the dialogue in connection with teaching prac-
tice and thus, the interplay between knowledge actually learnt and know-
ledge actually taught can be examined, discussed and related to knowledge
meant to be taught.

There is a very clear consensus between teachers and student teach-
ers that the dialogue in connection with lesson study to a much higher
degree than the dialogue in connection with teaching practice includes a
broader range of pivotal problems in teaching and learning mathematics.
As a consequence, theory-practice axis in the model are treated and tran-
scended more often.

Conclusion

The ATD model points out three different theory-practice problems in
mathematics teacher education. It is crucial to put focus on all three axes
and give student teachers opportunities to establish coherence between
theory and practice in connection to the three axes.

Through different examples from a lesson study it is shown, that the
model can be a fruitful tool to analyze teaching and learning contexts in
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teacher education. Firstly, the model can be used as a descriptive tool to
analyze and criticize planned teaching (lesson plan), actually completed
teaching and the participants’ experiences of the teaching with a special
focus on theory-practice problems. Secondly, the model can be used as a
normative, prescriptive tool for making adjustments to or changes in didac-
tical designs for teacher education.
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