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Abstract

This is a theoretical thesis in Mathematics Education which examines how map pro-
jections, as an interdisciplinary topic between mathematics and geography, can be
communicated to Danish upper secondary students. Given the limited literature on
teaching map projections in Danish upper secondary schools, the thesis focuses on
transposing scholarly knowledge on the subject into actual teaching material. To do
so, Didactical Engineering is used as the methodology, with emphasis on its prelimi-
nary analyses as the foundation of the design. The analyses include an epistemological
analysis of the mathematics at stake, an institutional analysis identifying potential
conditions and constrains affecting the development of the teaching material, as well
as an didactical analysis about existsing didactic literature, which relates to the thesis.
Based on these analyses, the Theory of Didactical Situations is used as a framework
for the design process.
The thesis demonstrates, through the example of the teaching material, how and
what aspects of the theory of map projections can be communicated. It suggests that
as an interdisciplinary topic, the geographical aspects of map projection and the use
of maps, can serve as a meaningful way to present the theory of map projections, as
a transition to the mathematics of map projections. In addition to this, the design
suggests that most of the scholarly knowledge about map projections, especially the
mathematics, has the potential to be transposed into concepts mentioned in the cur-
ricula and textbooks, and provides an example hereof. However, the analyses also
suggest that there might be some limitations to how much that can be transposed.
The designed teaching material then provides an example on how these limitations
can be addressed differently.
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1 Introduction

Interdisciplinarity between the natural science subjects in upper secondary schools
in Denmark has been part of the school’s organization since the 2005 reform. At
that time, it was introduced into the curriculum as specific interdisciplinary courses,
particularly the course Almen Studieforberedelse (abbreviated AT), but also through
the course Naturvidenskabelig Grundforløb (Hansen, 2007). However, with the 2017
reform, AT was abolished. Nevertheless, interdisciplinarity remains a requirement
and is explicitly stated in the curricula, though it is now up to the individual up-
per secondary school to incorporate this and how the collaboration is carried out
(Rasmussen, 2021). According to Rasmussen (2021), the removal of AT may have
led to increased uncertainty among teachers regarding interdisciplinary teaching, as
AT provided a structured framework. However, it may also have granted greater
flexibility. This thesis does not assess the merits of AT, or of interdisciplinarity in
upper secondary schools, but instead explores how an interdisciplinary lesson could
be designed and take form.

The interdisciplinarity will be between my major, mathematics, and my minor, geog-
raphy. Such as other natural sciences, geography is not isolated from mathematics.
Here, mathematics functions mainly as a practice-oriented tool, naturally integrated
into methods for processing, analyzing, and calculating geoscientific data. In my
view, there are numerous opportunities for interdisciplinarity between mathematics
and geography — the only thing I was missing was a topic where it was evident that
mathematics serves not only as a tool for calculations but also as a foundation for
reasoning.

I would like to thank my supervisor, Professor Carl Winsløw, for steering me in the
direction of map projections. Map projections are the method for producing maps,
for which maps are one of the most important tools in geography, used to organize
and analyse spatial data and to visualize geographical phenomena. More interesting,
especially in regards to world maps, map projections will always distort the Earth’s
surface. As we will see, mathematics forms the foundation of map projections, making
it a strong topic for interdisciplinarity between mathematics and geography. To guide
the work of this thesis, I have formulated the following research question:
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”How and to what extent can map projections, as an interdisciplinary topic between
mathematics and geography, be communicated to Danish upper secondary students?”

The assumption is that teaching map projections, whether it is interdisciplinary or
not, is not particularly widespread in Danish upper secondary schools (if even exist-
ing). Thus, in order to investigate the research question, I have designed my own
version of a teaching material on map projections, which could frame a potential
interdisciplinary lesson. To do so, I have made use of the research methodology Di-
dactical Engineering, especially its preliminary analyses and a priori analysis, and the
Theory of Didactical Situations to guide the design and shape the teaching material.

As a preparation to the design, I have studied the theory of map projections, for
which I have selected and included in this thesis. Thus, this thesis is an external di-
dactic transposition process. The external didactic transposition (abbreviated EDT)
is part of the didactic transposition, a key notion from the Anthropological Theory of
Didactics, or just ATD. Didactic transposition refers to the process of transforming
scholarly knowledge (scientific knowledge, knowledge produced by research communi-
ties, like at universities) into knowledge to be taught (proposed knowledge to be taught
at schools). The knowledge to be taught is then transposed into knowledge actually
taught by teachers in a teaching situation, which is then assimilated by students as
learned/available knowledge (Chevallard and Bosch, 2020). The EDT concerns the
selection, modification, and organisation of knowledge to be taught, starting from
scholarly knowledge and culminating in the development of curricula and teaching
materials that will be used in a specific course (Bosch et al., 2021). Even though
ATD provides the notation of external didactic transposition to describe the work of
and structure of this thesis, ATD will not be part of the didactical framework that
surround the thesis.

The thesis is structured as follows: first, a brief description of both the Theory
of Didactical Situations as well as the method of Didactical Engineering. Then a
presentation of the selected scholarly knowledge on map projections. Afterwards I
will preform the preliminary analyses, posed by Didactical Engineering, followed by a
conception and a priori analysis, where I describe the design and choices I have made,
regarding the designed teaching material. Since I will not test the teaching material
through an actual lesson, there will be no empirical data to analyse or discuss, hence
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the discussion that follows will focus on the choices made in the design-process. The
thesis will end with a conclusion, in which the research question is answered.

2 Didactical framework

2.1 Theory of Didactical Situations

The Theory of Didactical Situations (TDS in the following) is a well known and
used theory in mathematics educations, developed in the 1960’s by Guy Brousseau
(González-Martín et al., 2014). There exists many texts about TDS and much re-
search has been done, based on TDS. However, this section will be a short introduction
to TDS, presenting only some of the concepts and aspects from TDS, which will be
used designing of the the teaching material. For a more detailed description of TDS,
I would recommend reading the translated works of Brousseau (1997).

According to González-Martín et al. (2014, p. 118), ”TDS is a theory that analyses
variables of teaching practice and explores their relationship with the production of
mathematical knowledge”. In addition to this, TDS provide some conceptual tools
to construct and analyse Situation(s), that is ”the ideal model of the system of rela-
tionships between students, a teacher, and a mathematical milieu” (González-Martín
et al., 2014, p. 117). Situations can be modelled according to two levels; an adidac-
tical level and a didactical level (González-Martín et al., 2014).

At the adidactical level, the focus is on the students interactions with the milieu,
and the feedbacks from the milieu, which helps the students to form strategies for
solving and producing new knowledge (González-Martín et al., 2014). In line with
Brousseau (1997), in an adidactical situation, the teacher leave the students to work
on the problems independently, without much interference from the teacher. One can
identify adidactical situations based on the activity, which lead to knowledge produc-
tion; Brousseau (1997) calls these situation of action, of formulation and of validation.

In the situation of action, the students forms strategies to solve problems, or in gen-
eral, gaining new knowledge through physically interacting with the milieu. In the
situation of formulation, the students formulate and discuss answers or strategies
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for solving, progressively adapting an appropriate language. However, the students
reasoning are often insufficient or incorrect, hence situation of validation must lead
the students to discuss their implicit validations, get them to evolve, redefine or re-
place their theory with the right one (Brousseau, 1997). The targeted knowledge can
be understood through one or more adidactical situations which preserves the true
meaning (the epistemology) of the mathematical knowlegde at stake, what Brousseau
(1997) calls fundamental situation(s). Only when the student can apply and relate
the mathematical knowledge to the real world or different contexts, outside the class-
room, the student has truly acquired the knowledge (Brousseau, 1997). Furthermore,
as González-Martín et al. (2014) notes, the feedback provided by the milieu may
sometimes be insufficient to ensure full adidactivity, hence the teacher can not dis-
appear completely from the situation and must step in and provide additional tools
and/or rules.

The teacher’s role become more explicit at the didactical level, which include de-
volution and institutionalisation (González-Martín et al., 2014). In devolution, the
teacher places the students in a adidactical situation by devolving (think of it as dele-
gating or ”turn over”) the broader situation, involving the mathematical knowledge at
stake, to a problem or situation that enable the students to work independently and
which provides meaningful interaction. Through the institutionalisation, the teacher
connects the students works with the scientific knowledge and the didactical project
(Brousseau, 1997).

2.2 Didactical Engineering

According to Artigue (2014), Didactical Engineering (abbriviated DE) is a research
method for designing and analysing classroom realizations, developed in the 1980’s
in close connection to TDS, hence ”this theory became [...] the natural support of
DE” (Artigue, 2014, p. 468) or as González-Martín et al. (2014) notes, ”DE relies
on TDS to implement Situations which aim to to give students maximal responsibility
in producing new mathematical object and techniques which appear as optimal math-
ematical tools to the problems they are given” (González-Martín et al., 2014, p. 121).
The methodology consists of four main phases: preliminary analyses; conception and
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a priori analysis; realization, observation and data collection; an a posteriori analysis
including validation. In DE, the validation is internal and based on the comparison
between a priori and a posteriori analyses, compared to other more traditional the-
ories of didactics in mathematics education (Artigue, 2014).

The preliminary analyses consists of three dimensions: an epistemological analysis, an
institutional analysis and a didactical analysis (Artigue, 2014). The epistemological
analysis examines the mathematical content at stake, often including its historical
development, which helps the researcher to define what the students should learn.
This include identifying epistemological obstacles, that might lead to misconceptions
about the mathematical content among the students. Epistemological obstacles arise
when prior knowledge interferes with learning new concepts. Artigue (2014) notes,
this is important when later identifying fundamental situations. The institutional
analysis takes into account the institutional conditions and constraints that surround
the DE. According to Artigue (2014), these conditions and constraints may be situ-
ated at different levels, from the curricular choices regarding the teaching, available
resources, evaluation, etc. to the general curricular choices regarding the chosen con-
tent. In relation to this, Artigue (2014) states that it is important to understand
that the (current) curricular choices and organizations also has undergone a histori-
cal development, which also needs to considered when identifying the conditions and
constrains. Lastly, the didactical analysis is the research for other studies involving
the (mathematical) content at stake. This can be used as an inspiration or guide for
the following design (Artigue, 2014).

Conception and the a priori analysis is about the choices made in the design, how
they relate to the preliminary analysis, identifying main didactic variables for each
situation and posing conjectures about how students might react with the milieu.
Artigue (2014) distinguishes between choices of different levels; macro-choices, which
guide the overall design, and micro-choices, which affect a specific situation. These
choices lead to identification of the macro-didactic and micro-didactic variables. The
conception and the a priori analysis is an important part of DE, as this is where
research hypotheses are formulated and held up against theoretical didactical situa-
tions (Artigue, 2014).
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The last two phases in DE is about the realization, data collection and an a posteriori
analysis. Since this is a theoretical thesis, I will not conduct a lesson, hence the these
phases will not be of much relevance in this thesis. Nonetheless, the realization and
data collection phase is about putting the researchers work made in the preliminary
and a priori to a test in a classroom and observing and collecting the students’ work
(Artigue, 2014). During this, the researcher is able to make changes to and adapt the
design, which is important for the following a posteriori analysis. In the a posteriori
analysis, data and observations are interpreted and held up against the hypotheses
posed in the a priori analysis, from which the hypotheses are evaluated (Artigue,
2014).

What I have presented are the main characteristics of DE as a research method, which
I find relevant for my thesis. As Artigue (2014) notes, these principles are not as rigid
as described here; the methodology is very versatile, and can be used to study other
aspects of mathematics education beyond just lesson design.
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3 A brief history of map production and map pro-
jections

The purpose of this section is to provide a brief introduction to the historical devel-
opment of map production, called cartography, and map projections 1. This section
is (primarily) based on Snyder’s Flattening the Earth (1993), and you are interested
in more details of this development, I recommend looking into Flattening the Earth,
which also contains detailed descriptions of all known map projections throughout
history.

Map projections is the method for producing maps, that is transforming the round
Earth so it can be displayed on a flat surface, and can be be traced back to ancient
Greece. Among the ancient Greeks, there was a broad consensus that the Earth was
round, but also the sky that surround the Earth was round, and for a long time, math-
ematics, astronomy and map projections were closely linked. Hence, the development
of projections was primarily to construct star maps. However, there are examples of
maps of the Earth’s surface dating back to this period, and the early map makers
were aware that there were some limitations when trying to display the round Earth
on a flat surface.

Nevertheless, they still tried. For this, and much like we do today, there was a need
to develop an artificial grid of lines of latitude and longitude, which could be used
to define locations on the Earth. Here, the Greek astronomer and mathematician
Hipparchus (c. 190-126 BCE) formalized a system of longitude and latitude, which
inspired Ptolemy’s works on maps of the Earth’s surface. Ptolemy (c. 100-178 CE)
was a highly influential figure, which made a significant impact on (among other
things) cartography, especially with his Geography, in which he standardized the sys-
tem of meridians and parallels (see p. 10 for more information of these) - Figure 1
shows a reconstruction one of Ptolemy’s world maps. But the use of mathematics in
constructing maps were very limited.

1To study the history of the content at stake can be proved useful in an epistemological analysis.
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Figure 1: A reconstruction of Ptolemy’s world map, c. 1500 (Wikipedia, 2025).

Although Ptolemy and a handful of others had provided fairly detailed descriptions
for constructing maps of the Earth’s surface, it seems that maps produced in the
period before the Renaissance, i.e., during the Middle Ages, were more rooted in
philosophy. With the Renaissance (1470–1669), a new era of map production and
projections emerged. The Renaissance was a period of great geographical discover-
ies, leading to an increasing demand for more accurate maps of the Earth’s surface.
The relatively simple method of constructing maps resulted in distortions of shapes
and, more importantly, failed to represent lines of constant bearing, called rhumbs,
as straight lines. This made existing maps rather impractical for navigation. This
issue led Gerard Mercator (1512–1594) to develop his projection, now known as the
Mercator projection, which was used by sailors for many years to come. However,
how he actually accomplished this remains a subject of debate.

Whilst the Renaissance brought many mathematical advancements and new discov-

8



eries2, mathematics still played a minor role in map projections. It was not until
after the Renaissance that we see a greater focus on mathematics in map production.
Specifically, J.H. Lambert (1728-1777) revolutionized map production by using the
newly developed calculus in his map projections, making it possible to create projec-
tions that preserved certain properties of the Earth’s surface. Furthermore, the Earth
itself became subjected to the mathematical analysis, as well as the development of
tables of logarithms made computations easier. In addition to this, more accurate
measurements of the Earth resulted in the conclusion that the Earth’s shape approx-
imates closer to a rotating, flattened ellipsoid (also known as a spheroid) rather than
a perfect sphere. All of this resulted in the mathematics behind map projections
becoming more advanced as well as more precision when mapping the Earth.

The works of Lambert showed there was room for advancement in the field of car-
tography, and with the 19th century brought one of the greatest contributions: the
foundation of map projections on firm mathematical principles. How and why this
happened, Snyder (1987) does not explicitly states, but one could infer that the in-
troduction of analytical geometry in the 17th century, including coordinate systems,
made it possible to describe spherical coordinates and transformations algebraically
(Katz, 2014). And the development continue to today. The modern day cartography
deserves a whole section itself, which I will not provide. Today, computer programs
like GIS (Geographic Information Systems) have made it possible to solve geometric
problems directly from large databases, containing spatial and geographic informa-
tion. However, even though much has become digitized, Lapaine (2017) argues that
maps and map projections are still very important for every GIS, used for presenting
the output data; it is important to be familiar with the map projection, their formulas
and their origin, and thus Lapaine (2017) concludes, and which I will end this section
with: ”Hence, the computer aided method in the map production and first of all GISs
have not reduced, but increased the importance of map projections” (2017, p. 254).

2This includes the further development of plane and spherical geometry, but also a greater focus
on algebra for calculations and problem-solving, the beginnings of analytical geometry, and the
invention of calculus (Katz, 2014)
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4 The theory of map projections

The following section contains two main parts; a more ”geographical” aspect on map
projection, which include the classes and characteristics of map projections, and the
mathematical construction of map projections, including geometry of the sphere and
conversion formulas. But first, a short (also rather ”geographical”) presentation of
geographic coordinates, which is important for understanding map projection classes
and characteristics.

4.1 The geographic coordinate system

The geographic coordinate system is a spherical, 3-dimensional coordinate system used
to define locations on the Earth’s surface (Esri, 2021). The locations are expressed
by latitude and longitude, both angles measured in degrees from the center of the
Earth to the location on the surface (Figure 2). Then these can be visualised on the
reference model (a model of the Earth - see p. 11 for more); the latitudes are visualised
by lines, or in fact circles, parallel to the equatorial line (or circle, often referred to
as the Equator), called the parallels of latitude, and the longitudes visualised by
curved lines going from north-south, called the meridians of longitude. The zero
latitude is along the equatorial line and the zero longitude is defined as the Greenwich
meridian (or Prime meridian), the meridian passing through Greenwich in England
(Esri, 2021). Locations on the Earth can then be expressed using the latitude and
longitude of that location. The longitude is measured from 0◦ (the equatorial line)
to 90◦ followed by either N or S to note whether the location is north or south of the
equatorial line, respectively, and the longitude is measured from 0◦ (the Greenwich
meridian) to 180◦ followed by either E or W to note whether it is east or west from
the Greenwich meridian, respectively (Bolstad, 2012). As we will see later, conversion
from geographic coordinates to planar Cartesian coordinates is an important part
when doing map projections.
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Figure 2: The latitude and longitude, as well as the parallels and meridians (The Editors
of Encyclopedia Britannica, 2025).

4.2 What kind of map projections are there?

4.2.1 The classes of map projections

Map projections can be understood geometrically as projections from a reference sur-
face onto the surface of a geometrical shape, which is tangent to the reference model
(Small Farm Link, 2024). Here, the reference surface is the surface of a reference
model, which I define to be the mathematical model, used to represent the Earth.
The shape of the Earth is complex, the surface is not smooth and in reality there
does not exists a perfect model of Earth. Therefore, when doing projections, one
must decide on which model to use, which can be expressed mathematically. Some
may use the terms reference globe, reference sphere or reference ellipsoid to refer to
the spherical shape of Earth (Robinson and The Committee on Map Projections,
2017; Bolstad, 2012). I will stick to reference model for a more general term. Later
on, I will specify which model I will use.
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The geometrical shape must be able to be ”cut open” and made into a flat, 2-
dimensional surface (a map), without additional distortion3. One way of classifying
map projections is based on the geometrical shape, the reference surface is projected
onto (Small Farm Link, 2024). The three main geometrical shapes are a plane, a
cylinder and a cone, which define the three main classes of map projections: az-
imuthal (perspective) projections, cylindrical projections and conic projections (Small
Farm Link, 2024; Robinson and The Committee on Map Projections, 2017). There
exists map projections, which does not fall under these classes. However, I will only
present these three classes of map projections.

Figure 3: The three different classes of map projections. Starting from left: azimuthal,
conical, cylindrical (Anderson and Kessler, nd).

3This is why it is sometimes mentioned as a developable surface within the theory of map pro-
jections.
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Figure 4: Visual representation of the azimuth
angle. Own illustration.

The class of azimuthal (perspective) pro-
jections is when the reference surface is
projected onto a simple, 2-dimensional
plane (Figure 3). A plane is made tan-
gent to some point, standard point (or
point of tangency (Small Farm Link,
2024)), and the point of perspective is
either center of the reference model, the
antipodal point4 of the standard point
on the reference surface or placed at in-
finity (Small Farm Link, 2024). The
projections are named azimuthal since
they preserve the azimuth angle (Figure
4), that is ”the angle, in degrees from
north, between the great circle arc and
the meridian” (Robinson and The Com-
mittee on Map Projections, 2017, p. 27) - see p. 18 for definition of great circle. The
outline of the map will become circular with great distortion, the further away from
the standard point one get (Robinson and The Committee on Map Projections, 2017).

In the class of cylindrical projections, the reference surface is projected onto a cylinder
that is ”wrapped around” the reference model (Figure 3). The cylinder is tangent
to the reference model at a standard line, hence the diameter of the cylinder can
be thought of as the same as the reference model’s (Small Farm Link, 2024). The
outline of the map will become rectangular, and can be made to preserve different
kind of characteristics which result in different kind of distortions (Robinson and The
Committee on Map Projections, 2017).

With the class of conic projections, the reference model is projected onto a cone,
which is placed over the reference model and made tangent along a standard line
(Small Farm Link, 2024) (Figure 3). Conic projections are quite complex, hence not
a class of map projections I will use more time on in this thesis, but I still think it
is important to mention the existence. For more details about conic projections, I

4Antipodal points: two points that are diametrically opposite.
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would recommend Snyder’s Map Projections: A Working Manual (1987), pp. 97-140.

Lastly, I would like to note that the different kind of classes of map projections
can further be divided by the types of aspects. Firstly, I have mentioned the plane,
the cylinder or the cone is tangent to the reference model. There are also a secant
case, where they cut the reference model at two places (Small Farm Link, 2024).
Then there are the normal, transverse and oblique aspects, which does not have an
distinct definition but depends on the class (Small Farm Link, 2024). However, I
will not focus on other aspects than the tangent and normal. For the azimuthal
(perspective) projections, this means that the polar aspect is the normal aspect, i.e.
the plane is tangent to the North Pole (or South Pole) and the meridians is projected
to straight lines that ”ray” from the North Pole (Small Farm Link, 2024). For the
cylindrical projections, the normal aspect is the equatorial aspect, i.e. the cylinder
is tangent to the Equator, and the parallels and meridians are projected to straight
lines, intersecting each other perpendicular (Small Farm Link, 2024).

4.2.2 The characteristics of map projections

Map projections can further be classified based on what they preserve from the ref-
erence surface when transforming it onto a flat surface, so called characteristics of
map projections. Since no projection can preserve all the characteristics, each type
introduces distortions in different ways.

Firstly, map projections can be equal-area (or equivalent), meaning that regions on
the map maintain their correct relative sizes. However, shapes gets distorted, espe-
cially near the edges of the map. In many cases, angles and shapes of landmasses are
significantly altered. Despite these distortions, equal-area projections are valuable for
applications where accurate representation of spatial distributions and relative sizes is
essential, such as in thematic maps displaying population density or land use (Small
Farm Link, 2024; Robinson and The Committee on Map Projections, 2017).

Then there are map projections which preserve local angles; these are called conformal
map projections. Preserving local angles and shapes means that small (infinitesimal)
features retain their correct form. However, when maintaining local angles, these
projections significantly distort area; regions far from the standard lines or points
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appear much larger than they are in reality. This characteristic makes conformal pro-
jections especially useful for navigation and meteorology, where preserving direction
and local shape is more important than preserving size. Notably, no map projection
can be both conformal and equal-area (Small Farm Link, 2024; Robinson and The
Committee on Map Projections, 2017).

Some map projections may preserve some distances/lengths and these are called
equidistant map projections. Equidistant projections preserve distances along spe-
cific lines or from specific points, but they do not maintain area or shape across the
entire map. In most cases, distances are preserved either from a standard point to all
other points or along specific lines, such as meridians or parallels. These projections
are commonly used in applications where accurate measurement of distances from a
particular location is important, such as airline route maps (Small Farm Link, 2024;
Robinson and The Committee on Map Projections, 2017).

Then there exists map projections which preserve the azimuth angle, as already men-
tioned in the previous about the class of azimuthal projections. Azimuthal projections
maintain accurate directions (azimuths) from a central point to all other points on
the map (why also called true-direction projections). This makes them particularly
useful for navigation, especially in aviation and maritime contexts. Depending on
how they are constructed, azimuthal projections can also be equal-area, conformal,
or equidistant (Small Farm Link, 2024; Robinson and The Committee on Map Pro-
jections, 2017).

In this thesis, I will present Fajstrup’s (2006) selection of map projections: the three
azimuthal (perspective) map projections gnomonic, stereographic and orthographic,
as well as the two cylindrical map projections, Lambert’s equal-area and central cylin-
drical. I will also include the Mercator projection, another cylindrical map projection.
In the following table, I have presented the six map projections of focus, based on Sny-
der’s (1987) presentation of the map projections5. However, Snyder does not include
the central cylindrical projection in Map Projections: A Working Manual (1987), but
he does so in this Flattening the Earth (1993), which I then have used.

5Only some of the characteristics and features, noted in Snyder (1987), are included in the table,
that is the characteristics and features I find relevant to my presentation of the map projections.
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Name Class Characteristics
and features

Distortion Usage

Gnomonic. Azimuthal. Preserves azimuth
angle.
No distortion
at standard point.
All great circles
are shown as
straight lines.

Distortion of
angles (not
conformal),
areas and
lengths (except
the great
circles).

Star maps or
to show great
circle paths.

Stereo-
graphic.

Azimuthal. Preserves azimuth
angle and is
conformal.
No distortion
at standard point.

Distortion of
areas and
lengths.

To show
only one
hemisphere.
Most used for
polar maps.

Ortho-
graphic.

Azimuthal. Preserves azimuth
angle.
No distortion
at standard point.

Distortions of
angles (not
conformal),
areas and
lengths.

To show
only one
hemisphere.

Lambert’s
equal-area.

Cylindrical. Equal-area.
Meridians and
parallels are
shown as straight
lines at normal
aspect.

Distortion of
angles (not
conformal),
directions and
lengths.

Rarely used.

Central
cylindrical.

Cylindrical. Meridians shown
as equally
spaced straight
lines.
Parallels shown
as unequally
spaced straight
lines.

Distortion of
angles (not
conformal),
azimuth angle,
areas and
lengths.

Not used for
much, only a
textbook exam-
ple.
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Mercator. Cylindrical. Conformal.
Meridians shown
as equally
spaced straight
lines.
Parallels shown
as unequally
spaced straight
lines.

Distortion of
areas and
lengths.

For navigation.
Often used
for world maps.

Table 1: Some map projections and their class, characteristics and features, distortions and
usage.

I will later present some examples of maps constructed using these map projections.
Having now presented some concepts to describe distortions on maps, we can now
move on to presenting the mathematics of map projections and why map projections
can not preserve all the characteristics.
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4.3 The mathematics behind map projections

The primary source I have used for the mathematical theory is Lisbeth Fajstrup’s
lecture notes Kortprojektioner og forvanskinger (2006) for the land surveying program
at Aalborg University. This is clearly seen in the structure of the theory. To make the
following sections more readable, without constantly referring to the same source, I
want to clarify from the beginning that this is not a theory I ”came up with myself”,
but one attributed to Fajstrup’s notes6. However, there will be instances where I
felt Fajstrup’s notes were insufficient in some way, and I have used other sources for
further exploration. I will make this clear by explicitly referencing these sources in
the text.

4.3.1 Spherical geometry

Because Earth has a spherical shape, spherical geometry is crucial in the study of
map projections. No matter what (spherical) reference model one chooses, spherical
geometry lies as the foundation when doing map projections. Moving forward, I will
use the sphere with radius r as the reference model of the Earth. The sphere is the
most used reference model of the Earth, beside the ellipsoid. Fajstrup (2006) does
present the theory for both the ellipsoid and the sphere. However, I prefer the sphere
for simplicity. Then spherical geometry provides the foundation to calculating dis-
tances and angles on the sphere, and when transforming points on the sphere to the
plane.

Just like planar, Euclidean geometry is the study of point, lines and angles (among
others) in the plane, spherical geometry revolves around points, angles and lines on
the sphere. But lines on the sphere are not like lines in the plane, it is curves. A
curve on the sphere can be seen as a segment of a great circle on the sphere (called
great circle arcs), and are the most important circles on the sphere, since they are
used to define many features on the sphere’s surface:

Definition 1. A great circle is a circle on the sphere that appears as the intersection
curve between a plane passing through the sphere’s center O and the surface of the
sphere. Its radius r is the same as the sphere’s.

6Fajstrup’s (2006) lecture notes are in Danish, hence everything I have included in this thesis
from the notes have been translated to English by me.

18



Figure 5: An example of a great circle (red)
on a sphere. Own illustration.

Figure 5 shows a great circle on a sphere.
From this definition, it is clear that:

• Great circles are the largest circles
on the sphere.

• Infinitely many great circles pass
through two antipodal points.
Conversely, only one great circle
passes through two non-antipodal
points.

• The equatorial line make up a
great circle and meridians are great
circle arcs.

• The shortest path between two
points on a sphere is along the
great circle arc, connecting the two
points.

The second and third point can easily be argued:

The equator is a great circle: Place the sphere of radius r in a 3-dimensional Cartesian
coordinate system, then the sphere can be expressed as x2+y2+z2 = r2. The equator
can be defined as the set of points where z = 0, or the intersection of the sphere with
the plane given by z = 0. Since the center of the sphere is (0, 0, 0), which also lies on
the plane z = 0, it is clear from the definition that the equator is indeed a great circle.

Infinitely many great circles passes through two antipodal points...: Let A and B be
to antipodal points, then there is a straight line from A to B which passes through
the center of the sphere. The plane containing the line, also intersects the center,
and hence the intersection of the plane with the sphere must be a great circle by
definition. Since there are infinitely many planes containing this line, there must be
infinitely many great circles that passes through the two antipodal points A and B.
However, if A and B is not anitpodal, then A and B cannot be be connected with
a straight line that passes the center. Hence the plane that intersects A and B and
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cointain the line, and which passes through the center, must be unique.

The last point requires a fair amount of mathematics, which I will omit in this project
(like Fajstrup (2006) also notes). However, I encourage to read Andersen’s proof for
Geodesics on a spherical surface (Andersen, nd), in which he proves that the geodesic7

on a sphere is indeed a great circle arc.

Figure 6: Visual representation of an angle θ
sphere. Own illustration.

Then there is the angles on the sphere.
In this thesis, angles will be measured in
radians. By definition 1, great circles are
obtained by planes that passes through
the center of the sphere and intersects
with the surface of the sphere. Two great
circles intersect in some point (or in real-
ity two antipodal points) and will create
an angle on the sphere 8:

Definition 2. An angle θ on the sphere
is measured to be the acute angle between
the two planes, posed by the great circles.
The area spanned by the acute angle is
called a lune9.

As we see in Figure 6, the intersection
of two great circles produce not only one
but two identical acute angles (as well as
two identical obtuse angles, but we are not interested in these), hence creating an-
other lune on the other side of the sphere.

Determining the acute angle between two great circles is the same as determining
the acute angle between the two planes, induced by the great circles. This is similar
to determining the angle between two vectors in 2-dimensions, but with the normal

7A local length-minimizing curve.
8Fajstrup (2006) does not go into much detail about angles on the sphere; this is my own elabo-

ration.
9Or sometimes a digon (Encyclopedia of Mathematics, 2014).

20



vectors, −→n1 and −→n2, of the two planes:

cos θ =
−→n1 · −→n1

|−→n1||−→n2|

Now imagine three great circles on the sphere, pairwise intersecting, creating a spher-
ical triangle (Figure 7):

Definition 3. A spherical triangle is a triangle on the sphere, consisting of three
points, pairwise connected by three great circle arcs.

Figure 7: Visual representation of a spherical
triangle ABC on the sphere, consiting of three
great circle arcs a, b, c and the three angles
α, β, γ.

The spherical triangles differs from from
triangles in the plane by having curved
sides (great circle arcs) and a sum of an-
gles greater than π:

Proposition 1. Given a spherical tri-
angle ABC with angles α, β, γ, on the
sphere of radius r, the sum of the angles
is given by:

α + β + γ = π +
A

r2

where A is the area of the spherical tri-
angle.

Proof. Recall that the area of a sphere
with radius r is 4πr2.
Let there be given a spherical triangle on
a sphere, consisting of three great circles
arcs, a, b and c, with A,B,C being the
intersection points of these great circles. Let α, β, γ be the three angles in points
A,B,C respectively, generated by the pairwise intersection of the curve segments
(see Figure 7).
The three angles in the spherical triangles generates 3 lunes (one for each angles) as
well as 3 lunes on the backside of the sphere. Recall the area of a sphere and that a
lune with angle π will cover the whole sphere, then the area of a lune with angle θ
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must be: θ
π
4πr2 = 4θr2.

Overall, the triangle is covered 3 times by the three lunes, which is 2 too much, as
well as the triangle on the backside of the sphere is covered 2 times too much. This
means that the entire area of the sphere is covered up, including twice the area of the
spherical triangles, hence one get the area to be:

4αr2 + 4βr2 + 4γr2 = 4πr2 + 4A

=⇒ α + β + γ = π +
A

r2

The fraction A
r2

is called spherical excess and denotes the amount for which the sum
of the angles in a spherical triangles exceeds π radians.

If one wants to work with degrees instead of radians, the formula for the angle-sum
is a bit different, because one needs to ”correct” for the angles in radians. Hence, if
the angles α, β, γ is in degrees, then the formula for the angle-sum is given by:

α + β + γ = 180◦ +
A · 180◦

π · r2

4.3.2 Geographic coordinates

Geographic coordinates is an example of spherical coordinates, highlighting the re-
lationship between spherical geometry and map projections. In the work with map
projections, it is essential to know how to transform the geographic coordinates to
Cartesian coordinates. These play a central role when expressing some map projec-
tions mathematically.

I have already given a short presentation of the geographic coordinate system, as
parallels of latitude and meridians of longitude on the Earth’s surface, which will also
apply to the reference model of the Earth - in our case, the sphere. Hence geographic
coordinates are used when wanting to express a location on the Earth or the sphere,
and consists of latitude and longitude, expressed in degrees from their respective zero
point. However as noted, we will use radians. Mathematically, we can define the
latitude and longitude by placing the sphere in a 3-dimensional Cartesian coordinate
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system, with center of the sphere O colliding with the center of the coordinate system
(0, 0, 0). Let the x-axis go through the Greenwich Meridian, and the z-axis point
through the North Pole. Then for a point P on the sphere:

Definition 4. Latitude ϕ is the angle between the xy-plane and the position vector
−→
OP . We have ϕ ∈ [−π/2, π/2], with 0 being the equatorial line, negative angles being
south of the equatorial line and positive angles being north of the equatorial line.
Longitude λ is the angle between the Greenwich Meridian and the meridian passing
through the point P . We have λ ∈ [−π, π], with 0 being the Greenwich Meridian,
negative angles is west of Greenwich and positive is east of Greenwich.

Figure 8: A geographic coordinate P on the
sphere. Own illustration.

See Figure 8 for a visualisation of
geographic coordinates on the sphere.
Mathematically, we denote a geographic
coordinates by (ϕ, λ)10.

Hence determining the 3-dimensional
Cartesian coordinates for a geographic
coordinate is the same as calculating the
coordinates for the position vector

−→
OP

(Figure 8). Given the geographic coor-
dinate (ϕ, λ), we use the following trans-
formation formulas:

x = r cosϕ cosλ

y = r cosϕ sinλ

z = r sinϕ

which can be derived by using sine for
right triangles on the triangles seen in Figure 8. See for example Kro (2003, p. 25-31).

A more practical use of geographic coordinates is calculating the shortest distance
between two locations on the Earth, that is the spherical distance. Recall that the

10Note that Fajstrup (2006) writes geographic coordinate as (λ, ϕ). The other sources I have
consulted, such as Bolstad (2012), writes (ϕ, λ). I will stick to this notation.
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shortest distance between two points on the sphere is the length of shortest great
circle arc between the two points.

Let d denote the spherical distance between two points, P1 = (ϕ1, λ1) and P2 =

(ϕ2, λ2), on the sphere with radius r. Then d is given by:

d = r · σ

with σ = arccos [sinϕ1 sinϕ2 + cosϕ1 cosϕ2 · cos(λ1 − λ2)] being the spherical angle,
that is, the angle between the two positions vectors for P1 and P2 (Weisstein, 2024).
Hence it comes as no surprise, that the derivation of the spherical angle σ follows from
the formula for determining the angle v between two vectors. Letting the sphere have
radius 1 and express the two position vectors by 3-dimensional Cartesian coordinates,
we get:

cosσ =
−−→
OP1 ·

−−→
OP2

= cosϕ1 cosλ1 cosϕ2 cosλ2 + cosϕ1 sinλ1 cosϕ2 sinλ2 + sinϕ1 sinϕ2

= cosϕ1 cosϕ2(cosλ1 cosλ2 + sinλ1 sinλ2) + sinϕ1 sinϕ2

= sinϕ1 sinϕ2 + cosϕ1 cosϕ2 cos(λ1 − λ2)

(Weisstein, 2024).

4.3.3 Mathematical expressions of map projections

Given the conversion of geographic coordinates, one can express the different map
projections mathematically. As noted earlier, one can see map projections as projec-
tions from one surface to another, or from one set of points to another. As Fajstrup
(2006) notes, a map projection can be described analytically as a map

f : S2 → R2

f(ϕ, λ) = (f1(ϕ, λ), f2(ϕ, λ))

where S2 ⊆ {(ϕ, λ) ∈ R2| − π\2 ≤ ϕ ≤ π\2, −π ≤ λ ≤ π} is the surface of the
sphere. It is pretty clear that we would need the functions f1, f2 to be injective (and
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differentiable, we will see why later).

Using Fajstrup (2006), I will now present three different kinds of azimuthal (perspec-
tive) projections: gnomonic, stereographic and orthographic (see Figure 9).

Figure 9: Construction of the azimuthal projections: gnomonic, stereographic and ortho-
graphic (Raj, 2020, p. 102).

For simplicity, let the sphere have radius 1 in the following.

Gnomonic projection. Let the projection plane be given by z = 1, with the
perspective point being the center of the sphere (see Figure 9). Then one can write
the parametric equation of a line through a point P = (cosϕ cosλ, cosϕ sinλ, sinϕ)

and center of the sphere as: 0

0

0

+ t

cosϕ cosλ− 0

cosϕ sinλ− 0

sinϕ− 0


Since z = 1, the sphere intersect with the projection plan when 1 = t sinϕ ⇐⇒ t =
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1\ sinϕ, hence the analytical description of the gnomonic projection is given by:

(ϕ, λ) →
(

cosϕ
sinϕ

cosλ, cosϕ
sinϕ

sinλ

)
= cotϕ(cosλ, sinλ).

In this description, the perspective point is going through the North Pole. The
following figure (Figure 10) is how a map with gnomonic projection with perspective
point at the North Pole would look like:

Figure 10: A map where the gnomonic projection has been applied, with North Pole as
perspective point (Wikipedia, 2024c).

Stereographic projection. Again, let the projection plan be given by z = 1. Let
the perspective point be the South Pole, (0, 0,−1). Hence the parametric equation
for the line passing through a point P = (cosϕ cosλ, cosϕ sinλ, sinϕ) on the sphere
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and the perspective point is: 0

0

−1

+ t

cosϕ cosλ− 0

cosϕ sinλ− 0

sinϕ+ 1


so 1 = −1+ t(sinϕ+1) ⇐⇒ t = 2/(1+ sinϕ). Then the analytical description of the
stereographic projection is given by:

(ϕ, λ) →
(
2 · cosϕ

1 + sinϕ
cosλ, 2 · cosϕ

1 + sinϕ
sinλ

)
= 2 · cosϕ

1 + sinϕ
(cosλ, sinλ).

Recall that the stereographic projection is conformal. Figure 11 shows how a map
with the stereographic projection would look like:

Figure 11: A map where the stereographic projection has been applied, with South Pole as
perspective point (Wikipedia, 2024f).
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Orthographic projections. The perspective point is placed at infinite distance, or
in other words, projecting perpendicular on the projection plane z = 1. Then the
analytical description is given by:

(ϕ, λ) → (cosϕ cosλ, cosϕ sinϕ) = cosϕ(cosλ, sinλ).

Figure 12 provides an example of a map with the orthographic projection.

Figure 12: A map where the orthographic projection has been applied, with an equatorial
aspect (Wikipedia, 2024e).

The second class of projections are the cylindrical projections. Based on Fajstrup
(2006), I’ll describe the Lamberts cylindrical projection11 and the central cylindrical
projection (see Figure 13 & 14).

11In Fajstrups lecture notes she calls it Archimedes’ equal-area projection, but all other sources
ascribe it to Lambert (see for example Snyder, 1987).
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Figure 13: Construction of Lambert’s cylindrical equal-area. Note that the lines of latitude
and longitude are in degrees (BrainKart.com, 2023).

Figure 14: Construction of central cylindrical projection (Jung, 2019).

Again, let the sphere have radius r = 1.

Lambert’s cylindrical equal-area projection. A point on the sphere is projected
perpendicularly onto the tangent plane, that is the cylinder, with the equatorial line
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as standard line (see Figure 13). From the sine of right triangles:

(ϕ, λ) → (λ, sinϕ).

As the name for this projection suggest, the Lambert cylindrical equal-area projection
is equal-area. Figure 15 shows a map with the use of Lambert’s cylindrical equal-area
projection.

Figure 15: A map where Lambert’s cylindrical equal-area projection has been applied
(Wikipedia, 2024b).

Central cylindrical projection. The central cylindrical projection is given by
letting perspective point be the center of the sphere, the standard line is again the
equatorial line. Then consider a straight line from the perspective point through a
point on the sphere and further onto the cylinder (see Figure 14). This projection
can be expressed analytically by:

(ϕ, λ) → (λ, tanϕ)

Figure 16 is a map constructed by the central cylindrical projection.
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Figure 16: A map where the central cylindrical projection has been applied (Wikipedia,
2024a).

Mercator projection. As already mentioned, the Mercator projection is one of
the most known and used map projections (Snyder, 1987). Compared to the other
analytical expression of the map projection, the expression for Mercator is a bit more
complex and not so intuitive. I will still use Fajstrup’s (2006) notation, but the
expressions is from Snyder (1987):

(ϕ, λ) →
(
λ, ln

[
tan

(
1

4
π +

1

2
ϕ

)])
or as McClure (2018) writes it (still using Fajstrup’s notation):

(ϕ, λ) → (λ, ln(| secϕ+ tanϕ|))

I will go into more details about how one can derive to this expression in the following

31



section. A map constructed by the Mercator projection is shown in Figure 17, as well
in Figure 17.

Figure 17: A map where the Mercator projection has been applied (Wikipedia, 2024d).

Note that the cylindrical projections has the general expression (ϕ, λ) → (λ, h(ϕ)),
with h some function of the latitude ϕ (McClure, 2018).

4.4 Why doesn’t there exists a perfect map?

If there exists a perfect map, Fajstrup (2006) notes that the map must be conformal,
equal-area and preserve all distances on the reference model. This also includes that
great circle arcs on the sphere are mapped to straight lines on the map, ensuring
accurate measurement at all times - however, this is not possible. Fajstrup (2006)
proves the following theorem in the following way (see p. 11 in (Fajstrup, 2006)):
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Theorem 1. There does not exists a map from an open set U from the surface sphere
S2, which maps great circle arcs to line segments in R2 and is conformal.

Proof. Assume for a contradiction that such map in Theorem 1 exists. Let a spherical
triangle from U be mapped to R2, then the great circle arcs that make up the spherical
triangle gets mapped to line segments. The map is also conformal, hence the angles
in the spherical triangle, α, β and γ, gets preserved. From Proposition 1, we have
that α + β + γ = π + A

r2
. However, in R2, it is only possible that α + β + γ = π.

Hence one reach a contradiction, so there does not exists a map U ⊆ S2 → R2 which
is conformal and maps great circle arcs to line segments12.

Given the criteria posed for a perfect map, one can conclude from Theorem 1 that
there does not exists a map projection that preserves the Earth’s surface perfectly.
Actually, Fajstrup (2006) notes furthermore it is possible to prove that there exists no
map projection which 1) preserves distances, and 2) preserves both angles and areas.
The proofs for these statements are found in the field of differential geometry, and fol-
lows from the theorem Teorema Egregium (Kerkovits, 2023), proved by Carl Friedrich
Gauss in 1827 (Lapaine and Divjak, 2017). I will not go into more details about the
proofs, as it require the theory of differential geometry of curves and surfaces which is
not presented in this thesis, but I would recommend to look at either Schlichtkrull’s
treatment of Teorema Egregium (2018, pp. 93-105) or even Gauss himself in his In-
vestigations of Curved Surfaces13 from 182714. In brief, using the Gaussian curvature,
one can conclude that there does not exists a length-preserving projection (called an
isometry) between the sphere and the plane, because they do not have the same cur-
vature (Schlichtkrull, 2018). Another proof of the non-existence of a map projections
which preserve both angles and areas is found in Conrad’s Math 396: Map Making
(2006), which also uses differential geometry but with some different concepts than
used in Teorema Egregium.

All above states there does not exists a map projection without distortion, and will
always distort either angles, areas or distances. It is possible to measure the distor-

12In this thesis (and other places), it is presented that Proposition 1 (or something like Proposition
1) is necessary for the proof of Theorem 1; this may not be the case, as a simple counterexample is
enough.

13Original title: Disquisitiones generales circa superficies curves (Lapaine and Divjak, 2017).
14Translated work can be found in The Project Gutenberg’s General Investigations of Curved

Surfaces of 1827 and 1825 (2011).
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tion on a map, that is measuring the map scale distortion. In the theory of map
projections, a distinction is made between two types of map scale: the principal scale
and the scale factor (Small Farm Link, 2024). The principal scale is measured as the
ratio of distance on the sphere to the distance on Earth, and is constant (Small Farm
Link, 2024). There is always a downscaling of the sphere when doing map projec-
tions, hence the principal scale describes this downscaling. This is expressed as the
representative faction 1 : n, which indicates that 1 unit on the sphere corresponds
to n units on the Earth (Small Farm Link, 2024). How much 1 unit on the sphere
correspond to on the Earth can be found by dividing the circumference of the sphere
by the circumference of Earth. Hence the principal scale does not refer to the scale
of the map, but the scale of the sphere (or any kind of reference model) (Small Farm
Link, 2024).

The scale factor on the other hand, relates directly to the scale of the map, i.e. is
a local scale. This scale varies throughout the map, and is measured as the ratio of
the distance on the map to the corresponding distance on the sphere (Small Farm
Link, 2024). Hence one can say, that the scale factor quantifies the distortion on a
map. The distortion pattern on a map can be visualised by Tissot’s indicatrix (Figur
18), distortion ellipses which change size, shape and orientation based on the map
projection (Small Farm Link, 2024).
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Figure 18: The Gall-Peters projection with Tissot’s indicatrix (Small Farm Link, 2024).

The scale factor varies from one map projection to another since each projection
distorts in its own way. Instead of calculating the scale factor for every distance or
point on the map, a general expression for the scale factor can be derived for each
projection. Fajstrup (2006) does so, using the first fundamental form, a notion from
differential geometry used for determining metric properties on a surface, such as
curve lengths, areas and curvature (Gaussian curvature) (Schlichtkrull, 2018). For
determining the scale factor at a point P and for every direction γ′(t) for a curve γ

on the sphere, Fajstrup (2006) derives the following (using the expression on how to
calculate the length of a curve):

lim
t→t0

|(f ◦ γ)′(t)|
|γ′(t)|

=
|(f ◦ γ)′(t0)|

|γ′(t0)|

where f : S2 → R2 is the map projection. Then the fundamental form provides the
tools to determine (f ◦ γ)′(t0) and γ′(t0) for given a given map projection (Fajstrup,
2006). How to do so, I leave with a reference to Fajstrup (2006), pp. 25-33.

McClure (2018) gives a rather simple example of how to derive the scale factors for
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cylindrical projections. As we know, cylindrical projections can be conform (like the
Mercator) or equal-area (but not both!). In brief, if a cylindrical projection is to
be conformal, it must be scaled by equal factor in both the horizontal and vertical
directions. If it is to be equal-area, then if one direction is scaled by a certain factor,
the other direction must be scaled by the reciprocal of that factor (see McClure
(2018), p. 6). We know that the cylindrical projection maps the parallels from the
sphere to equally long lines on the map, so the scale factor along the parallels will be

2π
2π cosϕ = secϕ, given the sphere is of radius 1 (McClure, 2018). The scale factor for
the meridians is given by:

h(ϕ+ t)− h(ϕ)

t

with t the change of distance on the globe. Since it is the local scaling factor, let t → 0,
and hence the scaling factor along the meridian is h′(ϕ) (McClure, 2018) - this is why
we would need f1 and f2 to be differential. Recall, the cylindrical projections can
generally be expressed as (ϕ, λ) → (λ, h(ϕ)). This means, for a cylindrical projection
to be conformal, then one need h′(ϕ) = sec(ϕ). For this to happen, then:

h(ϕ) =

∫ ϕ

0

sec(φ)dφ = ln(| secϕ) + tan(ϕ)|)

and we see that this corresponds with the Mercator projection being conformal (Mc-
Clure, 2018). Based on this, McClure (2018) proceeds with a general analysis to
determine the scale factors that ensure conformality or equal-area properties for map
projections, using partial derivatives and the Jacobian matrix (McClure, 2018).

This ends the section of the selected scholarly knowledge of map projections. The
following will concern the preliminary analysis of the content at stake, preparing for
the design, conception and a priori analysis.
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5 The preliminary analyses of DE

The following sections deal with the preliminary analyses, as described in the section
about DE, used to support, and in some way justify the knowledge to be taught. This
involve an epistemological analysis, a institutional analysis and a didactial analysis.
These will be influenced by my chosen target group, which I already determined at
the beginning of the work of this thesis. The intended target group for the teaching
material will be students, preferably in their final year of the general upper secondary
education program (stx) in Denmark, typically aged 16-18, who are taking Mathe-
matics and Physical Geography15 at the highest level possible.

5.1 An epistemological analysis

As noted, the epistemological analysis is an analysis of the mathematical content at
stake, in this case the presented scholarly knowledge about map projections. In line
with DE, I will analyse the scholarly knowledge, identifying some overall aspects on
what should be taught, when teaching map projections to upper secondary students,
as well as identifying some possible epistemological obstacles and related misconcep-
tions.

The assumption, thus expectation, is that upper secondary students have never been
introduced to map projections (neither in Physical Geography or Mathematics) and
that, in a potential interdisciplinary lesson on this topic, they would need to acquire
a significant amount of new knowledge without having many prior prerequisites to
work on. In reality, the students may not be able to be taught everything presented
in the previous sections (depends on the time allocated to the teaching, as well as
the findings in the institutional and didactical analysis), however, there are some key
aspects which is important to include when teaching map projections.

First, maps, hence map projections, will always distort the surface of the sphere.
There might be misconceptions about the accuracy of maps in general, that is maps
depicts the Earth’s surface perfectly. There are two facets in this, that is important
to address through a lesson on map projections: map projections are not projections

15In Danish upper secondary education, Physical Geography refers to the subject of geography.
See more about this in the institutional analysis.

37



from the Earth’s surface to a flat surface, but from a model of the Earth to a flat
surface, and there are different kinds of map projections, which imply different kinds
of distortions. Hence, the teaching material must include situations which address
these rather common misconception. This can be supported by including the impos-
sibility theorem, in which mathematics appears as the argument and reasoning to
this problem.

In relation to this, to understand why map projections distort (and also to under-
stand the impossibility theorem), differences between the geometry on the sphere
and the plane must be made clear. It might be enough to just acknowledge, that it
is impossible to make something round, flat. However, for a deeper epistemological
understanding, it is important to introduce spherical geometry, particularly the angle
sum of spherical triangles. Especially in relation to teaching upper secondary stu-
dents, because there might be some epistemological obstacles regarding this; through
their studies of planar geometry, students know that the triangles angle sum is 180◦,
and might think this also holds for spherical triangles. In addition to this, it is likely
that students also have a misconception about shortest distances on maps, since they
have been taught that the shortest distances in planar geometry is a straight line.
Including a situation, in which the students studies spherical triangles and distances
on the sphere can help correct these misconceptions.

To fully understand how map projections connects mathematics and geography, the
analytical expressions for map projections can be introduced. Assuming students
prerequisites about map projections are limited, they may think that computers and
satellites are used to produce maps (which is not wrong seen from a contemporary
perspective) but without giving much thought to how the computers then construct
maps (using the analytical expressions). Hence, for students to gain a deeper knowl-
edge about how mathematics is used in map projections, presenting the analytical
expressions can be deemed valuable. However, to do so, students must learn about
conversions of geographical coordinates.

However, it is notable that the quantification and generalisation of distortions on
maps is somewhat detached from the rest of the scholarly knowledge, meaning that
there is a need for a whole different theory of geometry, differential geometry, when
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calculating general expression of the scale factor for each map projection. The reason
for can be found in the historical perspective of the theory, since differential geom-
etry came much later than spherical geometry. In relation to the teaching of upper
secondary school students, it is reasonable to think that this might be too much to ex-
pect for students to learn, since it might require to much to learn - beside calculating
principal scales and scale factors for specific distances. With this perspective, and this
hold for all previous mentioned, it might seem more fitting to support the learning of
map projections and their distortions by letting students interact with maps. Maps
are inherently graphical, and students might trust the appearance of distortions on
maps more that the numbers and mathematical explanations. However, there might
occur some obstacles only showing statical maps, since students might not know how
the real world looks like, the accurate shapes and sizes of the landmasses. Letting
students interact with 3D models of the Earth or interactive maps can help support
the understanding of the different kind of distortions.

How and to what extend all of these aspects of the theory of map projections can be
communicated will be further examined through the following institutional analysis.

5.2 An institutional analysis

In the institutional analysis, I will examine the institutional conditions and con-
straints that surround the DE, in this case, the designing of teaching material about
map projections. This will include an analysis of curricula and textbooks, since these
somewhat describe the institutional expectations about what should be taught and
how. In Denmark, the Ministry of Children and Education (Danish: Børne- og Under-
visningsministeriet) is the public authority responsible for the children and education
sector, covering day care, primary and lower secondary education, upper secondary
education, and higher education. The ministry oversees, among other things, the de-
velopment of curricula (Danish: læreplaner) for upper secondary education, including
stx. More specificity, curricula for each subject offered are developed by a ”subject
consultant” (Danish: fagkonsulent) with experience of teaching the subject.
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5.2.1 The curricula

The curricula serve as guidelines that dictate a subject’s purpose, identity, learning
objectives (Danish: læringsmål), core content (Danish: kernestof), evaluation and
feedback, and examination formats, depending on the level. In short, they define
what students should be taught, what they should gain from the instruction, and
how they should be assessed. As mentioned earlier, my target group consists of stu-
dents taking Mathematics and Physical Geography at the highest possible level. In
Denmark, the levels are divided into A, B, and C, with A being the highest and C
the lowest16. Mathematics at A-level is quite common in Danish upper secondary
schools, whereas the availability of Physical Geography, which is only offered up to
B-level, has been decreasing.

With the 2005 reform for upper secondary schools, the subject Geography was re-
named Physical Geography, and the number of teaching hours was reduced (Malm
and Madsen, 2015). According to Conradsen et al. (2024), there has been a political
de-prioritization of Geography, affecting primary schools, upper secondary education,
and teacher training programs in Denmark. In relation to this, fewer students now
choose study programs that include Physical Geography, which could indicate that
the subject is gradually disappearing from both upper secondary education and in
general. Conradsen et al. (2024) even describe this de-prioritization as paradoxical
(which I strongly agree with) since the subject’s core areas address some of the most
pressing global challenges today, such as climate change, migration, inequality, and
sustainability.

This decline in priority may explain why Physical Geography is only offered up to
B-level, thereby limiting both the expectations for students and the depth of content
covered. At the same time, this can restricts the possibility of teaching map projec-
tions as an interdisciplinary topic between Mathematics A and Physical Geography
B. While such interdisciplinary teaching could be valuable, it may be difficult to im-
plement if there are few, if any, study programs that include both subjects at these
levels. However, in 2013, Geoscience A was introduced as an experimental interdisci-

16The level determines the duration of the subject: A-level lasts 3 years, C-level lasts 1 year. For
B-level, it is taught for 1 year if students have previously taken the subject at the C-level, or for 2
years if the B-level subject is part of the study program.
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plinary subject between Physics B and Physical Geography B, which has since become
a permanent subject offered at some upper secondary schools (Malm and Madsen,
2015), and requiring Mathematics A as part of the study program (Uddannelses-
guiden, 2021). This suggests a potential institutional space for an interdisciplinary
approach to map projections, though my focus remains on the curricula for Mathe-
matics A and Physical Geography B.

The curriculum for Geography B (Børne- og Undervisningsministeriet, 2024b) pro-
vides a few conditions for teaching map projections. Maps or map projections are
not mentioned in relation to the core content, which primarily covers landscape pro-
cesses, climate and weather, as well as sustainability and resource distribution. The
only place where maps are explicitly mentioned is in the learning objectives, which
state that students should be able to ”seek out, assess the quality of, interpret, and
apply a range of geoscientific representation forms such as texts, data, maps, […]”17

(Børne- og Undervisningsministeriet, 2024b, p. 1). Thus, maps are regarded as a
geographical tool among others, used to illuminate topics within the core content
rather than as a subject that can be analysed and understood in its own right. An
argument for the curriculum supporting a topic on map projections is that students
must be able to ”assess the quality” of maps; does this mean that students should be
familiar with different types of distortions? Since curricula does not propose actual
teaching situations, this question can be explored further by examining how maps are
presented in textbooks for Physical Geography B.

However, the curriculum pose conditions for the use of mathematics in the teaching
of Geography B. In the learning objectives, it is stated that students must be able to
”understand and critically apply complex geoscientific models and simple mathemati-
cal models as representations of reality” (Børne- og Undervisningsministeriet, 2024b,
p. 1). As mentioned, map projections are a mathematical construction and not, in
themselves, a model but rather a method for creating a model, namely a map of
Earth’s surface. However, in order to understand and critically apply, let’s say, maps,
one could argue that knowledge of map projections and their distortions is essential
for comprehension and application.

17This quote and the following in this section has been translated from Danish to English by me.
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The requirement that mathematics should also be applied within other subject areas
is also evident in the learning objectives of the Mathematics A curriculum. Among
other things, it states that students must be able to ”use mathematics as a means
to formulate, analyse, and solve problems within the subject itself or in other subject
areas and in relation to the world around them” (Børne- og Undervisningsministeriet,
2024a, p. 1). In the topic of maps and map projections, mathematics is used as a
means to express map projections and, not least, to solve problems within this field,
such as the fundamental issue that it is impossible to create a projection that pre-
serves all properties of Earth’s surface simultaneously. The mathematics used (such
as spherical geometry, trigonometry, and to some extent analytical geometry) has
the potential of covering some of the core content stated in the curriculum. About
geometry, trigonometry and vectors, the curriculum states (highlighting some of the
most important concepts that is used in the mathematics of map projections):

”Vectors in the plane and space: Coordinate sets, vector arithmetic, length, angle
between vectors, dot product, projection. In the plane: Determinant, area of a
parallelogram, line equation determined by a point and a normal vector, angle between
lines, parametric representation of a line and a circle. In space: Cross product,
parametric representation of a line in space, plane equation and para-
metric representation, the sphere as well as intersections, distances, and
angles in space.” (Børne- og Undervisningsministeriet, 2024a, p. 2).

In this quote, we also see projection mentioned. However, this relates to projection
of vectors on vectors18, and is not about projections from one space to another.

One potential limitation is that functions of multiple variables are no longer part of
the core content19, which could make it challenging to present map projections using
analytical expressions, since this require an understanding and use of functions of two
variables.

18See for example Matemat10k (2014), p. 38.
19Looking at the 2017 Mathematics A curriculum, functions of two variables were included, but

unfortunately (for my case) they have been removed in the 2024 curriculum. You can find the 2017
curriculum on the Danish Ministry of Children and Education’s website: https://www.uvm.dk/
gymnasiale-uddannelser/fag-og-laereplaner/stx-laereplaner.
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5.2.2 Textbooks

Although curricula represent the official institutional requirements and expectations
for each subject, it is also relevant to look beyond the curricula, and examine text-
books for each subjects. The role of textbooks in relation to institutional constraints
and constrains is significant, as they bridge the gap between the intended curriculum
and actual classroom practice. I have examined two textbooks: Naturgeografi - vores
verden (2023), a textbook designed for teaching Physical Geography C and B, as well
as Matema10k (2014) for teaching Mathematics A.

Like the curriculum for Physical Geography B, the textbook Naturgoegrafi - vores
verden (2023) does not place much emphasis on maps or map projections, hence does
not pose many conditions for teaching of map projections, which in itself can be a
constrain. However, the book does introduce potential issues related to the use of
maps, but provides no explanation whatsoever, stating that ”the map [...] is one of
the most important tools in geography. [...] One of the major challenges in creating
maps is transferring the round globe onto a flat map. This creates certain problems
and inaccuracies in the map that are important to be aware of ” (Kristiansen et al.,
2023, p. 11). The quote ends with a reference a figure20, Figure 19, which illustrates
the three classes of map projections, similar to Figure 3. Furthermore, the book con-
tains no exercises, only pure text accompanied by figures. This, of course, provides
some freedom to develop and formulate exercises related to the book’s content. From
this perspective, only imagination sets the limits for what kinds of exercises can be
created in connection with this otherwise very brief section on maps.

20The figure is somewhat misleading. At first glance, it appears to show the three classes of
map projections (cylindrical, conic, and planar) and below them, maps constructed by these map
projections. However, under the conic projection, a globe model of the Earth is depicted, which can
be misinterpreted as suggesting that using the conic projection would allow for the construction of
a spherical map, which is not correct.
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Figure 19: The figure from the Physical Geography textbook (Kristiansen et al., 2023, p.
11).

The Mathematics A textbook Matema10k (2014) extensively covers the core material
related to geometry, trigonometry, and vectors (see for example pp. 77-121 in the
textbook). Many of the mathematical formulas presented in this thesis can be recog-
nized in the textbook, including those for the angle between two vectors, the angle
between two intersecting planes, as well as the parametric representation of lines and
planes. Numerous exercises are provided to practice these concepts. However, the
book does not relate these topics to map projections, despite presenting other ex-
amples of interdisciplinary connections with different subjects, but does provide the
mathematical foundation for discussing map projections.

It is also worth noting that the curricula for both Geography B and Mathematics A
were revised in 2024. However, both textbooks were published before this revision,
meaning they may no longer fully align with the current institutional expectations
for these subjects and instead reflect older curricula. The Geography B textbook
was published in 2023, which suggests that it could still be relevant today. However,
the Mathematics A textbook was published in 2014. Since then, multiple versions of
the curriculum have been released, making it likely that this textbook is no longer
entirely representative of the current requirements. Nevertheless, it still covers the

44



same mathematical topics outlined in the core content, which is why it is referenced
in this thesis (with reservations).

5.3 A didactical analysis

A natural part of working on what I assume applies to all theses is the search for liter-
ature that, in some way, can be used in and support the purpose of the thesis. One of
the first searches I conducted as part of my thesis was ”kort projektioner gymnasium”
(English: ”map projections upper secondary schools”), which led me to the follow-
ing website: https://people.math.aau.dk/~fajstrup/UNDERVISNING/GYMNASIE/
KORTPROJEKTIONER/. Here, one can find Fajstrup’s lecture notes on map projec-
tions and distortions (Fajstrup, 2006), as well as a Word document containing notes
on spherical geometry aimed at upper secondary schools: Sfærisk Geometri (2005).
These notes were developed by Fajstrup in collaboration with Dorthe Nielsen from
Vesthimmerlands Gymnasium, and based on the document information, the last edit
was made in 2005 — meaning the notes are now about 20 years old. Nevertheless,
these teaching notes can be a great source of inspiration for my own work in designing
educational materials, in relation to the structure and organisation of the teaching
materials.

The content of the notes seem rather technical and the exercises are often accom-
panied by hints, such that students will be able to solve the exercises themselves
without help from the teacher. The hints might also assist the teacher, as it is also
possible that the teacher might have limited knowledge about the content. Compar-
ing the notes with the presented scholarly knowledge, one see a greater emphasis on
spherical trigonometry in the notes, which is not included in the scholarly knowledge.
Additionally, the notes do not offer much from a geographical aspect; there is no
mention of the classification of map projection, the purpose and use of the different
map projections and so on. This indicates that the notes were only developed with
only mathematics in mind, hence not meant to address map projections as an in-
terdisciplinary topic between mathematics and geography. From this perspective, it
seems reasonable why spherical trigonometry is also treated. In the preface to the
teaching notes, Fajstrup mentions that the material was tested at Espergærde Gym-
nasium in the spring of 2004, where the teacher and students provided feedback with
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suggestions for modifications. Unfortunately, there is no available empirical data on
this specific teaching experience.

Fajstrup’s and Nielsen’s work appears to be the only Danish example of literature
on map projections and spherical geometry in an educational context21. However,
there is also very little English-language literature on this topic. To search for other
didactic literature, I have used Google Scholar, where I employed search words such
as map projections, didactics, mathematics, geography, upper secondary schools, high
school — as well as various combinations of these. A few research articles on teaching
map projections appear, but none that I feel would contribute meaningfully to my
thesis.

But I came across the article Maps as Representation: Expert-Novice Comparison of
Projection Understanding (2002) by Anderson and Leinhardt. In this, they examine
how varying levels of expertise influence the perception of maps as representations of
the Earth’s surface, with a focus on shortest distances on maps (created using the
Mercator projection) versus the Earth’s surface. In short, Anderson and Leinhardt
(2002) conclude that the more experience one has in the field (which correlates with
the length of time spent working in the field), the easier it is to solve geometric prob-
lems, such as determining the shortest distance on a map; “experts” knew that the
shortest route on the map between two locations followed a curved path, whereas par-
ticipants with less experience had difficulties realising this and often assumed it was
a straight line. This is probably not surprising, but the most interesting aspect of the
article is their discussion of educational implications for K-12 students22. Here, it is
also evident, and not surprising, that students who had received the most instruction
(i.e., the older the students) had a deeper understanding of maps, map projections,
and distortions. Anderson and Leinhardt (2002) then suggest instructional strategies
that support students’ learning about distortions:

21Afterwards, my advisor made me aware that there also exists the following, Projekt 5.5:
Sfærisk Geometry og Introduktion til Korprojektioner (2014), provided by L&R Uddannelse
(Egmont): https://lru.praxis.dk/Lru/microsites/hem/fra_gymportal/docs/Projekt_5-5_
Sfaerisk_geometri_og_introduktion_til_kortprojektioner.pdf.

22In Denmark, we are not accustomed to this notation, but a quick internet search shows that the
term covers students from kindergarten to 12th grade (i.e., up to upper secondary school).
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”One way students could learn to account for distortion in the map due to projection is
by reading and interpreting maps with different projections and connecting them back
to the globe through a specific task. [...] In our study, we found evidence that using
lines of latitude and longitude was a successful strategy. However, no matter how the
concept of projection is taught, students need to have access to explicit experiences
documenting that the curve of the earth’s surface results in a great circle being the
shortest distance between locations on the earth’s surface. These activities would help
students understand the relation between the flat map and the curved surface of the
earth, while learning that this relation will change (i.e., the distortion) depending on
the type of map projection used.” (Anderson and Leinhardt, 2002, p. 316).

The findings from Anderson and Leinhardt (2002) suggest that incorporating inquiry-
based tasks, in which students study distortions on maps and relates these back to
the sphere, could foster a deeper understanding of map distortions. Likewise, this
can be supported by letting students work explicitly with shortest distances on the
sphere, all of which is already stated in the epistemological analysis. This reinforces
the necessity of structured instructions that leverage both theoretical and practical
aspects to help students grasp the complexities and limitations of representing a 3-
dimensional Earth on a 2-dimensional surface.

6 Conception and a priori analysis

This section presents the conception and a priori analysis of the designed teaching
material. The teaching material (in Danish) can be found in Appendix A, as well
as the materials used in some of the exercises can be found in Appendix B, C and
D23. Many considerations and choices have gone into the development of the teaching
material, some more explicit, others more implicit. For obvious reasons, I will not
go into every detail about the development of the teaching material, but will here
present the most important choices that have had a significant impact on the final
result.

23Please note that the format of the materials in Appendix D is misleading. In reality, the material
are meant to be printed in paper-size A3. Also, the map in which Lamberts cylindrical projection
has been used, has been rotated the wrong way.
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The first macro choices concern the content and the overall structure of the teaching
material. Many considerations lie behind the selection of the content; firstly, the main
goal is to teach students about map projections, as the method for producing maps,
and that there exists no map projection that depicts the Earth’s surface perfectly - as
mentioned in the epistemological analysis, the students might think that there exists
a map that depicts the Earth perfectly. In order for students to understand this,
they must learn about the distortions and why map projections distorts. To support
this knowledge development, classes and characteristics about map projections was
chosen to be included.

Of course, this can be done without ever presenting the mathematics behind map pro-
jections, but the teaching material is developed with regards to an interdisciplinary
collaboration between mathematics and geography, hence some mathematics must
be included, also in relation to preserve some epistemology. The selection of which
mathematics the teaching material should contain, was based both on the institutional
analysis and the epistemological analysis. As we have seen, students much undergo
a course about geometry, trigonometry and vectors in 2- and 3-dimensions, hence it
was assessed that some of the scholarly mathematical knowledge can be transposed
to fit into a high school context, as much of it involves circles, planes, and vectors in
3-dimensions. Therefore, it was decided to include topics such as spherical geometry
- especially spherical triangles and their angle sum - and the analytical geometry, the
conversion formulas. As mentioned in the epistemological analysis, this can support
the introduction of the analytical expressions.

This leads to identification of some prerequisites, for which it is expected that students
have learned about, to be able to follow content of the teaching material:

• Basic arithmetic (including unit conversions).

• The circle, its radius, diameter, circumference, and particularly the calculation
of circular segments.

• The two-dimensional coordinate system and coordinate sets.

• Triangles in the plane, including area and the sum of interior angles.
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• Trigonometry for right-angled triangles, as well as the sine and cosine rules and
conversion to radians.

• Vectors in 2-dimensions, especially the angle between two vectors, position vec-
tors, normal vectors, and vector calculations.

• An introduction to vectors in 3-dimensions.

• An introduction to planes in space, including the plane equation and normal
vector.

• An introduction to the sphere (and unit sphere) in space, including its equation,
radius, diameter, and circumference.

These choices and considerations further lead to the macro choice of the overall struc-
ture of the teaching materials. An example was presented in the didactic analysis,
namely the notes by Fajstrup and Nielsen (2005), which serves as inspiration for
structuring the teaching materials; these notes have influenced the overall mathemat-
ical structure but not how mathematics is connected to map projections. In order to
strengthen the interdisciplinarity between geography and mathematics (as mathemat-
ics is used to describe geographical tools), highlight the relevance of the subsequent
mathematics, and provide an accessible introduction to the topic, it was decided that
students need to be introduced first to the classification of the map projections (the
classes and characteristics).

Decisions like these lead to macro-didactic variables concerning aspects such as the
amount of time allocated and the organization and the number and nature of the exer-
cises included. For this teaching material, it is estimated that 3.5–4 hours (including
breaks) should be sufficient. Additionally, the exercises are designed so that students
can work on them in pairs or small groups, fostering discussion, strategy development,
and knowledge-sharing among students. These exercises themselves constitute micro-
didactic variables, as they can be adjusted in terms of difficulty level, length, and the
amount of information provided to support students in solving them. It should be
noted, student does not need any other types of CAS-tool, other than a calculator
which include the trigonometric functions.
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As mentioned earlier, TDS is used to guide the design of the teaching materials.
Although TDS is most commonly applied to orchestrate and implement an actual
lesson, the theory is here used to support the design of teaching materials. This is
because TDS compels one to consider the progression of the materials and the de-
velopment of exercises that are meaningful and encourage knowledge construction.
One could argue that this is also a type of macro choice, as it influences both the
overall structure of the teaching materials and how they evolve. At the same time,
it constitutes a micro choice for each teaching situation that the teaching material
encourage. For instance, considerable thought was given to how didactical situations
could be incorporated into the teaching materials — specifically, devolution and in-
stitutionalisation — either as a lead-in to the exercises or as a means to connect the
knowledge gained from the exercises to the scholarly knowledge.

The situations of devolution and institutionalisation thus function as didactic vari-
ables that the teacher can adjust, determining how much knowledge should be ”broken
down” and provided to students before they attempt to solve an exercise, as well as to
what extend the teacher connects this to the scholarly knowledge. Wherever possible
and meaningful, efforts have been made to incorporate devolution and institutionali-
sation, particularly in cases where the exercises exhibit a more adidactic nature.

The following conception and a priori analysis will be divided into similar sections as
in the teaching material:

6.1 First section: The introduction

A choice was made to begin the teaching material with an open-ended question (Ex-
ercise 1, p. 2 in Appendix A), which does not necessarily fall into the category of
macro- or micro-didactic variables — yet in a way, it does. By posing an open-ended
question, the aim is to encourage students to reflect while also partially assessing
their prior knowledge about maps. Students are not expected to develop a specific
strategy for answering the question, as there is no definitive solution. However, they
are expected to provide examples of what maps can be used for and how they are
created; for instance, through the use of computers and satellites.
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6.2 Second section: What are map projections?

The second section (pp. 2–4 in Appendix A) also begins by assessing students’ prior
knowledge about how maps can be created without the use of computer programs
and satellites. This represents a micro choice. Exercise 2 (p. 2 in Appendix A) is
designed to place students in a situation of action, where they can use Google Earth
to sketch their own version of a world map. It is expected that many students will
resort to freehand drawing, though some may recognize the potential of using the
graticule displayed on the Earth model in Google Earth. However, it is likely that
these students will not fully understand how to utilize the graticule effectively and
will instead adopt the strategy of freehand drawing. The main goal of the exercise
is to lead students to realize that constructing a perfect map of Earth’s surface is
a highly challenging — if not impossible — task. In Exercise 2, the use of IT also
appears as a didactic variable, allowing for adjustments based on which digital tools
students are already familiar with that might serve a similar function to Google Earth.

After Exercise 2, a devolution follows in which map projections are introduced as the
method for producing maps, along with an explanation of the overall work behind
map projections. This devolution is intended to prepare students for Exercise 3 (p.
3 in Appendix A). A micro choice was made to present an alternative model of the
Earth during this devolution, but it is possible to introduce more. A macro choice
was made to use the sphere as the model of the Earth for analytical purposes in the
subsequent work, which includes macro-didactic variables such as how much and in
what way the sphere is presented in the teaching material. The devolution also serves
to correct students’ potential misconception regarding map projections by explaining
what a projection is and clarifying that map projections are not simply a direct pro-
jection from Earth’s surface onto a flat map.

Exercise 3 is a situation of action in which students must calculate the circumference
of both the Earth and the sphere, then (implicitly) determining the principal scale. It
was decided to include the numerical calculations for the map scales, since it is rather
simple and the principal scale is often mistaken as the actual scale of a given map.
In this exercise, students are expected to apply their prior knowledge of the sphere,
though fundamentally, an understanding of circles is sufficient. The key challenge
for students is realizing that calculating the circumference of a sphere is the same as
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calculating the circumference of a circle. If students have already been introduced
to the formula for the circumference of a sphere, the expected strategy is that they
will apply this knowledge directly. Additionally, if students know about unit conver-
sion and orders of magnitude (maybe this is more of a question about whether they
remember or not), they should be able to determine how much 1 cm on the sphere
corresponds to on Earth by dividing the two circumferences. However, some students
may struggle to identify the appropriate strategy, in which case the teacher may need
to guide them toward this realization.

A decision was made to include an exercise, Exercise 4 (s. 4 in Appendix A), which
aim is to get the students to reflect and try to explain why map projections distort
the surface of a sphere. It was considered, if this exercise should include a hint
(for example: ”Can you make a ball completely flat?”), but the intention with this
exercise is not necessarily for students to give a ”correct” answer. The intention is
for students to discuss possible reasons, and to provide possible answers, and maybe
in collaboration, derive the correct answer.

6.3 Third section: What kind of map projections does there
exists?

The following section (pp. 4–7 in Appendix A) treat the different kind of map projec-
tions. This allows students to use the concepts later on and gives them insight into
how map projections distort the surface of the sphere before providing a mathemati-
cal explanation for this, thus can be seen as a fundamental situation. Consideration
was given to how to make this presentation as adidactic as possible, so that students
would have a sense of autonomy in their learning and better opportunities for institu-
tionalisation. Several micro choices were made in this context. The first was to allow
students to derive the classes of map projections themselves, which led to Exercise 5
(p. 4 in Appendix A). In this exercise, students are placed in a situation of action,
where they are given three maps that represent the three classes of map projections
(Appendix B), and they must identify the geometric shapes that form the surface
that is being projected onto. It is expected that students will follow the instructions
given in the exercise, cutting out the maps and attempting to manipulate them into
the desired shapes (cylinder, cone, plane). The plane projection here serves somewhat
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as a wildcard, as students do not need to ”manipulate” the map in this case; instead,
they can position it relative to a sphere (this can be either a fictional or physical
sphere, depending on the teacher’s choice).

Institutionalisation of the classes of map projections follows, where latitude and lon-
gitude are also explained through a fact box, as students need this knowledge for
the institutionalisation of the classes. The geographical coordinates will be further
studied later in the teaching material. Here, a macro choice was made to focus on the
cylindrical projections, as they are the easiest to understand and describe mathemat-
ically (aside from the Mercator projection). It was determined that students would
not be able to derive the characteristics of map projections themselves, because of
the uncertainty to how this should unfold, and whether students could in fact derive
the characteristics without any prior knowledge. Instead, the characteristics are pre-
sented as part of the devolution leading to Exercise 6 (p. 7 in Appendix A), except
that of being azimuthal. This was based on the decision about only focusing on cylin-
drical projections (which are not azimuthal anyway), as well as students might find it
difficult to distinguish between the characteristics of angle-preserving and azimuthal,
as they are both angles.

Exercise 6 aims to train students in how to visually assess the properties of a map
projection (Appendix C) and apply geographic reasoning to evaluate and explain
what the map can be used for based on its characteristics — a type of situation of
formulation, but also a fundamental situations according to the epistemological anal-
ysis. Once again, students are allowed to use Google Earth, and it is expected that
they will take advantage of this tool. The idea is that they will employ a process of
elimination: if they observe that sizes on the map are distorted (e.g., Greenland ap-
pears much larger on the map than on the model in Google Earth), they can conclude
that the map is not area-preserving and must therefore be conformal. Determining
whether a map is area-preserving can be more challenging since this property distorts
shapes, which can be misleading.

The exercise also includes a task where students must draw what they believe to be
the shortest path on the map. It was deliberately decided not to explain shortest
distances to the students at this point in order to keep all possibilities open regarding
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how they approach the task. The expected strategy is, of course, that they will
draw a straight line between the points, as they are familiar with this as the shortest
distance in planar geometry. However, some students may again use Google Earth
and notice that the shortest path on the model behaves differently from what they
expect. After the students are done with the exercise, the teacher can show the
actual shortest distances between the location, or wait until later when the concept
of shortest distances is connected to mathematics.

6.4 Fourth section: The mathematical prerequisites for map
projections

Many choices and considerations were made in the section on the mathematics behind
map projections (pp. 7-11 in Appendix A). The content was weighed against what
could be expected given students’ prior knowledge. The first macro choice was to
introduce some formal definitions essential for spherical geometry and, more specif-
ically, for the theory of map projections. Here, macro-didactic variables include the
definitions of great circles and angles on the sphere’s surface. Another macro choice
was to include key facts about great circles on the sphere, each of which can also func-
tion as a didactic variable. It was decided not to have students derive these results
themselves, as is done in Fajstrup and Nielsen’s notes (2005). The reason for this de-
cision was that students are only expected to have been introduced to the sphere and
planes in 3-dimensions but are not yet fully comfortable working with these objects.

All this serves as a devolution leading to Exercise 7 (p. 8 in Appendix A), where
students must determine the angle on the sphere’s surface — a situation of action
that forces them to apply both new and prior knowledge. Some students may struggle
to derive the normal vectors from the equations, in which case the teacher will need
to step in and assist. From this, it is expected that students will be able to use the
formula for determining the angle between two vectors.

Great circles are then used to define spherical triangles, where a key result is pre-
sented regarding the angle-sum in a spherical triangle (p. 9 in Appendix A). Here,
one must be aware of students’ possible epistemological obstacles regarding the angle-
sum, which is why a micro choice was made for students to work with the proof of the
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theorem, creating a fundamental situation. Exercise 8 (p. 9 in Appendix A) serves
multiple roles: in addition to being a micro-didactic variable, it also includes a devolu-
tion and functions as both a situation of action and formulation. In the first subtask,
students are asked to explain the formula: 4αr2 + 4βr2 + 4γr2 = 4πr2 + 4A. A hint
(which is also a didactic variable) is provided, which students can use to understand
and explain the formula. This also aims to test and develop students’ mathematical
reasoning. It is expected that students will try to use the hint, and some might also
use the formulas provided in the devolution (the intended strategy), however some
might get stuck and need help to realise, that they also need to use the formulas
presented in the devolution. In the second subtask, students are asked to explain
how one arrives at the formula for the angle sum, as presented in the theorem. If
students are comfortable with basic arithmetic, they should recognize that it simply
requires dividing all terms by 4r2. Some students may not immediately see this, so
the teacher can guide them by asking some leading question, for example about how
to ”remove” 4r2.

After this, the geographic coordinates are presented from an analytical perspective.
As mentioned in the epistemological analysis, this is important to include, if one de-
cide to present the analytical expressions. Exercise 9 (p. 10 in Appendix A) is again a
situation of action, where students must derive the conversion formulas using a figure
with right-angled triangles - inspirered by Fajstrup and Nielsen (2005). The expecta-
tion is that students will follow the suggested strategy, i.e., using sine for right-angled
triangles. However, some students may be uncertain about which angle they should
apply sine to, even though it is relatively clear from the figure. The second part of
the exercise may appear more challenging, where students must derive the conversion
formulas for ϕ and λ, as well as the radius of the sphere. A hint is also provided to
help students with the formula for the radius. Additionally, students may need some
extra assistance recalling the inverse of cosine and sine functions, but after this, they
should be able to apply the expected strategy to determine the conversion formulas.
The subsequent Exercise 11 (p. 11 in Appendix A) requires students to apply the
formulas they have just derived. There may be a need for an institutionalisation of
the knowledge from Exercise 10 before students proceed to Exercise 11.

In continuation of the section on geographic coordinates, it was deemed appropriate
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to include a fundamental situation, which address students’ possible epistemological
obstacle regarding the shortest distances on a map by providing a deeper explanation
of distances on the sphere. A micro choice was made to have students work with
distances on the sphere first and then later connect this to distances on the map and
distortions (which, in essence, is also then a macro choice). A devolution takes place,
where the formulas for calculating distance and the internal angle are introduced. It
was considered whether students should derive the formula for determining the inter-
nal angle themselves, as it simply requires using the formula for the angle between
two vectors or even presenting the cosine and sine relations for spherical triangles, as
done in Fajstrup and Nielsen’s notes (2005). However, another approach was chosen,
as it was assessed that time and space needed to be allocated to other aspects (crudely
put).

Again, students are placed in a situation of action in Exercise 11 (p. 11 in Appendix
A), where they must use the results from Exercise 10. Students are expected to con-
vert the coordinates from Exercise 10 to radians before applying the distance formula.
Although an attempt is made to recall students’ knowledge of converting to radians,
some students may still use the geographic coordinates in degrees. Here, a choice may
arise in the teaching situation; whether to point out the mistake to these students or
allow the situation to remain adidactic.

6.5 Fifth section: The mathematical expressions for map
projections

It was decided to include the mathematical expressions for map projections to show
students why map projections are essentially a mathematical construction (pp. 12-
13 in Appendix A). Several considerations were made regarding whether this section
should be included at all.

First, there is an institutional constrain in that students are not familiar with func-
tions of multiple variables. This imposes limitations on how the mathematical ex-
pressions can be communicated. Given that students have knowledge of conversion
formulas for geographic coordinates to Cartesian 3-dimensional coordinates, a macro
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choice was made to present the mathematical expressions using the same approach,
even if this may come at the expense of the epistemology.

Second, the question arose: what purpose would this serve for the students beyond
simply being informed about it? It was considered whether it would be possible to
design an exercise in which students themselves derive these expressions, for example,
using figures. While it is likely that students could manage this in the teaching
situation with the right guidance from the teacher, it was ultimately decided that
they would instead engage with this material through an assignment. Consequently,
this section takes on a more explanatory role, essentially didactic in nature, without
direct student involvement.

6.6 Sixth section: Why does map projections distort the
Earth’s surface?

The final section (pp. 14-16 in Appendix A) serves the dual purpose of linking spher-
ical geometry to distortions and introducing scale factor as a quantitative method
for measuring distortions on maps. Similar to Fajstrup and Nielsen’s notes (2005),
the impossibility theorem is presented as one of the main results concerning map
projections. The impossibility theorem was actually one of the first macro-didactic
variables identified when I was working on explaining the mathematics behind map
projections. However, unlike in Fajstrup and Nielsen’s notes (2005), a micro choice
was made: students should not only be presented with the proof of the impossibil-
ity theorem but also contribute to the main argument of the theorem. This led to
the inclusion of Exercise 12 (p. 14 in Appendix A), where students must provide a
counterargument to the claim that a map projection can exist in which great circle
segments are depicted as straight lines while also preserving angles. The exercise thus
functions as a situation of formulation. It aims to highlight the difference between
planar and spherical geometry (if that distinction was not already clear to students)
while also training their mathematical reasoning through proof by contradiction. The
assumption is that Danish upper secondary students work with proofs in their math-
ematics education but are still not entirely familiar with proof by contradiction. This
is also the reason why students are not expected to present the full proof of the im-
possibility theorem themselves.
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This exercise is designed to challenge even the most advanced students. Naturally,
students who are less comfortable with mathematics will struggle to formulate the
argument and will therefore require significant assistance from the teacher in reaching
this insight. The expectation is that students will particularly rely on their partners
for sparring and discussion as part of their knowledge development. Some students
will use the information provided in the exercise and apply their acquired understand-
ing of the differences between spherical triangles and planar triangles (differences in
side lengths and angle sums) to formulate the counterargument. Since the full proof
is not included in the teaching material, the institutionalisation must come from the
teacher, who will go through the proof with the whole class.

It was decided to spend the last part of this section on scale factors on maps, for the
same reason as presented earlier in relation to Exercise 3. A devolution takes place,
including an example. Exercise 13 (p. 15 in Appendix A) aims to have students apply
their acquired knowledge (thus creating a situation of action) using a physical map.
Several micro-didactic variables are incorporated, including the choice of maps, the
amount of information provided to students, and the selected geographic points. The
exercise consists of seven subtasks, all of an adidactic nature. In the first two sub-
tasks, students are expected to use the same strategy as in Exercise 3. Some students
may once again calculate the Earth’s circumference, but most are expected to reuse
this from Exercise 3. In subtasks 3 and 4, students must apply their knowledge of
geographic coordinates and distances on a sphere, which they are expected to manage
since this content should still be fresh in their memory. In particular, subtask 3 serves
as a situation of formulation. Subtasks 5 and 6 focus on scale factors, where students
engage in a situation of action by measuring distances on the map (Appendix C),
calculating the scale factor, and then evaluating how this aligns with distortions on
the map. The students are expected to measure the distances on the map using a
ruler, and then use the example as inspiration for solving. A key consideration was
how these location pairs should be positioned relative to each other, in order to use
the result in relation to distortions. If the locations were paired along the same lati-
tude, developing the exercise would require significantly more effort, as the shortest
distances on the map would also be curved lines. Therefore, it was decided that the
locations should be paired along the same longitude instead.
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The last subtasks (4,5,6 and 7) in Exercise 13 was inspired by Anderson’s and Lein-
hardt’s suggestion, mentioned in the didactical analysis. The goal is to get the stu-
dents to realise, that one can easily determine whether or not a map is distorted, by
studying the lines of the parallels and meridians as well as the shortest distances on
maps.

After further consideration, it was decided that students should conclude a potential
lesson on map projections with a written assignment. An assignment provides stu-
dents with an opportunity to apply and reinforce the knowledge they have acquired
through the teaching material, as well as to reflect on what they have actually learned.
The purpose of this assignment is to fill in any gaps that have arisen or have not been
addressed in the teaching materials (or the lesson itself). In this way, certain didactic
variables can be identified that should be incorporated into the assignment: maps
that have utilized the map projections presented on pp. 12-13 in Appendix A, along
with the mathematical expressions for these projections.

Students are first asked to find maps (using the internet, which is also a didactic
variable) where the map projections presented have been applied, describe (again)
the visible distortions, and assess what these maps are used for. The students have
already seen maps with cylindrical projections in previous exercises but have not en-
countered a map using the orthographic plane projection. Additionally, the students
have only worked with one map at a time, and in this assignment, they must gather
all the maps together, refresh their memory on the properties, and assess the dis-
tortions. They will also be tested on their (geographical) knowledge of what these
maps can be used for. Furthermore, students are asked to explain the mathematical
expressions for the map projections. Here, they must use their knowledge of the con-
version formulas for geographic coordinates to Cartesian coordinates, as well as their
knowledge of trigonometry for right-angled triangles. The assignment can be done in
small groups or pairs, but it could also be interesting if it is completed individually.
Since this is a home assignment, students might just use the internet as a strategy for
solving this assignment. However, it is intended that the students use the teaching
material and the exercises for reference.
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7 Discussion

The design of the teaching material for map projections was guided by both theoret-
ical (like the preliminary analyses and TDS) and practical considerations. The goal
was to introduce upper secondary students to map projections an an interdisciplinary
topic, supporting both the development of geographical and mathematical knowledge.
Although it can be difficult to discuss one’s own product without empirical data, as
it risks becoming too speculative, this discussion seeks to critically reflect on some of
the choices made in the design, considering their effectiveness, possible limitations,
and areas for possible improvement.

The first critique is regarding some of the macro choices made in the beginning of the
design. A key decision was to focus on spherical geometry and analytical geometry
due to their relevance to map projections. While this aligns well with the Mathemat-
ics A curriculum and the findings in the epistemological analysis, one could question
whether the mathematical depth is appropriate for all students. The inclusion of
spherical triangles and coordinate conversions, which will be entirely new knowledge
for students to assimilate, provides a strong foundation but may challenge students
with weaker mathematical backgrounds. More exercises in which the students assert
distortions on maps, before engaging with formal mathematical concepts, could make
the topic more accessible for students which are less comfortable with mathematics.
Likewise, the structure of the material, where the classification and characteristics
of map projections were introduced before the mathematical formulation, is aimed
to strengthen the connection between geography and mathematics. This approach
helps students understand the necessity of mathematical tools but also risks creating
a disconnection between theory and application, even though not intended. A more
integrated method, intertwining mathematical concepts with the characteristics of
map projections, could reinforce understanding more effectively. For example, a map
projection being area-preserving might seem obvious, but what does it really mean to
be angle-preserving? When introducing angles on the sphere, it could be effective to
recall the characteristic of angle-preserving. However, this was not done, because one
would need the understanding of infinitesimal quantities, which is not a prerequisite
required by students.
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TDS was employed progress the exercises and guide student knowledge construc-
tion. The incorporation of devolution and institutionalisation phases (even though
the institutionalisation phases might not be explicitly stated in the teaching material)
aimed to create meaningful learning situations. However, a critical reflection on the
exercises, particularly those related to mathematical content, suggests that some may
resemble more traditional mathematics exercises where students apply given formulas
rather than developing their own solving strategies. While this approach ensures ef-
ficiency, it may not fully align with the principles of TDS, which emphasize the need
for students to develop knowledge through adidactic situations. This raises the ques-
tion of whether more open-ended exercises could have been incorporated to encourage
multiple solution strategies and deeper engagement with the concepts. Likewise, the
exercises does not include a situation of validation, which again may limit the stu-
dents knowledge production and the feeling of autonomy. In relation to this, another
important consideration is that many exercises allow for only one method of solving,
limiting students’ ability to explore alternative strategies. This could restrict their
ability to develop flexible problem-solving skills and their mathematical reasoning. In
some cases, providing multiple ways to approach a problem or encouraging students
to devise their own methods before introducing formulas might have supported more
meaningful learning experiences. The potential trade-off between efficiency and con-
ceptual exploration is an important factor in assessing the overall effectiveness of the
teaching material.

It could also be discussed whether the choice of only focusing on cylindrical might not
be as appropriate as intended. At first seem like a way to ensure that students were
able to work with mathematical concepts in relation to map projections. However,
not including other map projections at all, other than the orthographic map projec-
tion, could result in students not gaining a broader understanding of map projections
and distortions in regards to other classes of map projections. This also lead to the
omission of the azimuthal characteristic, not providing students a rather important
characteristic. However, this relate to a more general discussion whether or not it
is better to gain a deeper understanding of one or few aspect of some content, or a
broader understanding.

The teaching material incorporates didactic variables, such as group work and struc-
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tured exercises. While group work fosters collaboration and knowledge-sharing, it also
introduces the risk of passive participation. More structured individual accountabil-
ity, such as requiring students to present findings, might help this issue. Additionally,
the decision to present some mathematical results (such as the results about great
circles, or the formula for the spherical angle in relation to distances on the sphere)
rather than having students derive them aimed to streamline learning but may have
reduced opportunities for deeper conceptual engagement. Encouraging students to
actively construct knowledge, rather than passively receiving it could enhance their
learning experience. The assignment serves as opportunity to assess the students in-
dividual learning, as well as an opportunity for students to synthesize their learning
by analysing real-world maps. However, there is a risk that it becomes a superficial
exercise if students rely too heavily on internet searches (or the use of large language
models) rather than engaging deeply with the teaching material.

8 Conclusion

The goal of this thesis was to examine the following:

”How and to what extend can map projections, as an interdisciplinary topic between
mathematics and geography, be communicated to Danish upper secondary students?”

Even though the purpose of the use of Didactical Engineering was to develop teaching
material on map projections, which should serve as an example to answer the research
question, its preliminary analyses has also proved useful to investigate the research
question itself.

The assumption was that students are not taught about map projections in Dan-
ish upper secondary schools, which is supported by the results of the institutional
analysis. The institutional analysis also suggests a possible limitation in the imple-
mentation of such teaching (as it is not prioritized in curricula or textbooks, and
because Mathematics A and Natural Geography B are not necessarily part of the
same study program). However, there are opportunities for meaningful transposition
of the theory of map projections. According to the curriculum, and as supported
by textbooks, students must go through a course on geometry, trigonometry, and
vectors in 2- and 3-dimensions. This indicates that as long as the theory of map
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projections, especially the mathematics, can be linked to concepts within this core
content, it should be possible for students to understand a significant portion of the
scholarly knowledge, while also preserving some epistemology. The didactical analysis
identified an example of how and which aspects of the mathematics behind map pro-
jections can be communicated to upper secondary students, and also how students,
through inquiry-based tasks, can develop an understanding of distortions in maps —
an approach that has inspired the designing of the teaching material. The teaching
material thus presents an example of how and to what extent map projections can be
communicated to upper secondary students.

It demonstrates that a more geographical approach to map projections and their clas-
sification is possible and can serve as a meaningful transition to the mathematical
aspects. It highlights the interdisciplinarity between mathematics and geography,
showing how mathematics functions both as a tool and an explanation, while pro-
viding students with the means to describe the distortions they observe on maps.
Similarly, incorporating elements such as circles, planes, and vectors in the mathe-
matical presentation ensures that students can relate to previously learned concepts,
making the material more accessible and easier to grasp. However, challenges may
arise when presenting the analytical expressions for map projections, as students lack
the necessary background to understand them as functions of multiple variables, or
to comprehend how distortions on maps can be quantified. Nevertheless, the teaching
material offers alternative approaches to addressing these challenges.

The thesis contributes to a broader understanding of how complex mathematical
concepts can be adapted and communicated in upper secondary education. While
the theoretical development of the teaching material provides a possible approach to
teaching map projections, the discussion shows there might still be room for improve-
ment and further clarification. Further studies, such as practical implementation and
testing, would be valuable in assessing its educational impact, providing more in-
sight to how and what extend map projections can be communicated, such that it
ensure students development of knowledge also. A future expansion could focus on
student responses, teacher experiences, and the development of alternative teaching
methods that further enhance students’ understanding of both the mathematical and
geographical aspects of map projections.
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9 Appendix A

The teaching material in Danish is found on the next pages.
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1. Introduktion 

Kort; hvad er et kort egentlig? I kender måske mest til kort gennem jeres brug af Google Maps 

eller Kort-appen på iPhone. I har helt sikkert også stødt på nogle kort i jeres geografibog, eller 

måske set et kort i ny og næ i tv’et. I geografi er kort et meget benyttet værktøj, hvor det 

bruges til at beskrive rumlige mønstre og sammenhænge på Jordens overflade.  

Øvelse 1: 

Giv nogle eksempler på, hvad et kort kan bruges til. Hvordan tror I, man laver et kort? 

 

Produktionen af kort har fundet sted i mange tusinde år. Vi tilskriver de gamle grækere som 

de første til ”rigtigt” at arbejde med kort produktion, hvor de kortlagde stjernehimlen, men 

også landjorden. Kortene dengang var faktisk meget nøjagtige, med tanke på, at de ikke havde 

samme teknikker og værktøjer som vi har i dag1. I dag bruger vi satellit-data og GIS til at 

producere (digitale) kort. Produktionen og læren om kort er en gren af geografien, kaldet 

kartografi. Som I kommer til at se, danner matematikken de vigtigste grundsten i kartografien. 

Som I nok ved, så findes der kort der viser byer, regioner, lande og endda hele verden. Det er 

specielt sidstnævnte, såkaldte verdenskort, der er fokusset i dette forløb. Derudover kan kort 

også have nogle forskellige temaer, som de forsøger at vise, f.eks. højder (topografiske kort), 

socioøkonomiske forhold, grænser, arealanvendelser osv. Verdenskort er specielt 

interessante, fordi der opstår nogle problemer, når man forsøger at vise Jorden på én gang, 

hvilket vi kommer til at se nærmere på i dette forløb. 

 

2. Hvad er kortprojektioner? 

Øvelse 2: 

Hvordan forestiller I jer, at et verdenskort ser ud? Lav en hurtig skitse af et verdenskort. I kan 

evt. benytte jer af Google Earth2, hvis I er i tvivl om hvordan Jordens overflade nu ser ud. 

 

Det I lige har forsøgt jer med, er en slags kortprojektion, dog uden brug af de rigtige teknikker. 

En kortprojektion er metoden man bruger til at producere kort, og er i sin natur (i dag) en 

matematisk konstruktion. Vi kommer her til at gennemgå den overordnede tankegang bag 

kortprojektioner, før vi dykker ned i den matematiske del. 

 
1 Hvis I er interesseret i mere viden om kort produktion før computere og satellitter, så anbefales det at se 
YouTube-videoen How Our Earth was Mapped before Satellites af Interloop 
(https://www.youtube.com/watch?v=yoO5O_QJ3N8).  
2 Det er værd at notere, at Google Earth selvfølgelig kun er en model af Jorden. Men den er baseret på en 
model og en masse data, der gør, at dens beregninger er stemmer overens med virkeligheden, ned til få meters 
afstande. Derfor bruger vi den som reference til hvordan Jorden nogenlunde ser ud i virkeligheden.  
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En projektion er en afbildning, en funktion, der sender et 

objekt fra et fler-dimensionelt rum hen på en flade. I 

tilfældet med kortprojektioner, projicerer3 man altså ikke 

bare Jordens overflade hen på et fladt kort. Først skal vi 

bestemme, hvilken (matematisk, geometrisk) model vi vil 

repræsentere Jorden med. Jordens form er kompleks, der 

er svær at gengive, og derfor ser man sig nødsaget til at 

vælge en model, man kan beskrive matematisk. Den skal 

være rumlig og 3-dimensionel, ligesom Jorden. Det er af 

generel opfattelse, at Jorden har form som en kugle. Dette 

er til dels korrekt, men Jorden er ikke perfekt kugleformet. 

Jorden bliver lidt sammentrykt ved polerne grundet 

rotation, og har derfor mere form som en såkaldt 

ellipsoide4. En kugle har, som I nok ved, samme radius til 

hvilket som helst punkt på kuglens overflade, hvorimod en 

ellipsoide har forskellig radius til de forskellige punkter på 

dens overflade (se Figur 1). I tilfældet med Jorden, så 

bliver Jorden trykket sammen ved polerne, dvs. Jordens 

radius mod polerne er mindre end mod Ækvator. Vi vil dog 

gå med kuglen som den simplere model af Jorden, da det 

er lettere at antage, at Jorden har én radius i stedet for 

flere forskellige.  

Før vi kan begynde arbejdet med kortprojektioner, så skal vi gøre denne kugle mindre. Det er 

for at gøre størrelsesforholdet mere håndgribelige. Dette kommer også til at have betydning 

for, hvor stort vores kort ender ud med at være. Hvis vi lod kuglen have ramme radius som 

Jorden (rettere sagt, Jordens radius langs Ækvator), vil vi ende med et enormt stort kort, der 

vil have samme størrelsesorden som Jorden. Det går selvfølgelig ikke, så vi nedskalerer kuglen 

til en væsentlig mindre radius.  

Øvelse 3: 

Antag, at Jorden er en perfekt kugle med konstant radius på 6378 km. Hvad er Jordens 

omkreds i km og i cm? Ydermere, så skalerer vi kuglen ned til en radius på 60 cm. Hvad er 

denne kugles omkreds i cm? Udregn også, hvad 1 cm på kuglen svarer til på Jorden.  

 

Udgangspunktet for kortprojektioner er denne mindre kugle (som fremadrettet bare bliver 

kaldt for kuglen), som repræsenterer Jorden. Kortprojektioner vil altid forvrænge enten 

former, arealer, længder, ja endda vinkler, fra kuglens overflade, så de misvises på kortet. 

 

 
3 Det hedder projicere, og ikke projektere. At projektere har noget at gøre med projektarbejde.  
4 Også kaldet omdrejningsellipsoiden. Selv dette er en idealisering af Jorden. 

Figur 1: Ellipsoiden og kuglen. 
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Øvelse 4: 

Hvorfor tror I, at kortprojektioner forvrænger kuglens overflade? 

 

Arbejdet med kortprojektioner indebærer altså at man udvælger en model af Jorden (kuglen), 

nedskalaer den og så projicere kuglens overflade (som egentlig bare består af en masse 

punkter) hen på en flad overflade (Figur 2).  

 

               Figur 2: Groft set arbejdet med kortprojektioner. Trin 1: udvælgelse og nedskalering af model af Jorden.                 
Trin 2: projicering af kuglens overflade hen på en flade, så man får et kort. 

 

3. Hvilke kortprojektioner findes der? 

Der findes forskellige slags kortprojektioner, grundet kortprojektioner forvrænger. Her skelnes 

der mellem deres typer og deres egenskaber. Kortprojektionens type baseres på følgende: da 

Jordens og heraf kuglens runde form er umulig at gøre flad, har man behov for nogle andre 

geometriske former, som man kan projicere hen på og som derefter kan gøres flade som et 

kort. 

Øvelse 5: 

I er givet tre kort (som i Figur 3), hvor der er benyttet tre forskellige typer kortprojektioner. 

Klip disse ud og prøv at finde ud af, hvilken figur der er tale om. I er givet en kugle (miniudgave 

af Jorden), hvordan vil I placere formen på kuglen? 

 

Figur 3: Lignede kort, som I har fået udleveret med Øvelse 4. 
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De tre forskellige slags kort, I har fået udleveret, er resultatet af de tre typer kortprojektioner: 

planprojektionen, kegleprojektionen og cylinderprojektionen (Figur 5). Der findes mange 

forskellige typer kortprojektioner, men disse tre er de mest kendte og benyttede.  

Ved planprojektionen bliver der projiceret direkte hen på en flade, også kaldet en plan i 

matematikken, der tangerer (rører) kuglen i ét bestemt punkt. Derfor får kortet en cirkulær 

Faktaboks: Breddegrader og længdegrader. 

Til lokationsbestemmelse på Jordens overflade bruger vi breddegrader og længdegrader. 

Som begreberne antyder, måles begge i grader, og altså vinkler set fra Jordens centrum. 

Ved visualisering af bredde- og længdegraderne danner man et slags geografisk 

koordinatsystem på Jordens overflade. Dette koordinatsystem kan også bruges på kuglen, 

da omtales det som sfærisk koordinatsystem. 

Breddegrader måler, hvor nord eller syd en lokation er, i forhold til Ækvator. Graderne 

varierer fra 0° ved Ækvator til 90° ved polerne, og man skelner mellem nord og syd for 

Ækvator ved at notere med hhv. N eller S. På modeller af Jorden visualiseres breddegrader 

som parallelle linjer eller cirkler til Ækvator. 

Længdegrader, også kaldet meridianer, måler hvor øst eller vest en lokation er, i forhold til 

Greenwich meridianen (nulmeridianen). Her varierer graderne fra 0° ved Greenwich til 

180°, og noteres med enten Ø (øst for Greenwich) eller V (vest for Greenwich). 

Længdegrader visualiseres som buede linjer, langs overfladen, der går fra Nordpolen til 

Sydpolen. 

Tilsammen udgør de geografiske koordinater, hvor breddegrad noteres først og 

længdegrad bagefter, f.eks. 55.68°N, 12.57°Ø. Bemærk, her skrives kommatal med 

punktum. 

 

Figur 4: Visualisering af breddegrader og længdegrader. Fra: https://bidevind.dk/posts/navigation. 
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form. Denne type kortprojektion bliver typisk brugt til fremstilling af polare kort, og egner sig 

mest til visning af halvkuglen. I disse tilfælde fremstår meridianerne som rette linjer, der alle 

stråler ud fra Nordpolen eller Sydpolen (Figur 5).  

Næste er kegleprojektionen. Her kan I forestille jer, at man placerer en kegle hen over kuglen, 

så den tangerer kuglens overflade langs en linje (eller cirkel, breddegrad cirkel) på kuglens 

overflade, og projicerer hen på keglen. Kortets form bliver, som hvis man klipper keglen op og 

flader ud (Figur 5). Ved denne kortprojektion vil meridianerne også fremstå som rette linjer, 

der stråler ud fra keglens top.  

Den sidste type der nævnes, er cylinderprojektionen. Kuglen placeres ”inde i” en cylinder med 

samme radius, der også tangerer cylinderen langs en linje, og der projiceres hen på cylinderen. 

Ved denne type projektion får kortet en rektangulær form. Her vil både breddegraderne og 

meridianerne fremstå som rette linjer på kortet.  

 

Figur 5: Fra højre mod venstre: planprojektion, kegleprojektion, cylinderprojektion. Fra: 
https://mapscaping.com/understanding_map_projections/. 

Vi kommer ikke til at gå i flere detaljer om kegleprojektionerne, og heller ikke så meget med 

planprojektionerne. Som sagt, så egner planprojektionerne sig ikke til verdenskort, og 

kegleprojektioner er meget komplekse at fremstille og forstå. Så fremadrettet vil vi arbejde 

cylinderprojektioner. I vil dog se et eksempel på, hvordan man kan udtrykke en bestemt 

planprojektion. 

Ud over typer af kortprojektioner, kan kortprojektioner (uanset type) have forskellige 

egenskaber. Nogle kortprojektioner er arealbevarende, dvs. bevarer arealer fra kuglens 

overflade til fladen, kortet. Nogle kortprojektioner er vinkelbevarende, dvs. bevarer lokale (i 
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et punkt eller mellem to linjer) vinkler på kuglens overflade til kortet. Det betyder, at der 

bevares retninger. Kortprojektioner med denne egenskab kaldes også for konform. Så er er 

kortprojektioner, der kan bevare nogle afstande, ikke alle! Disse egenskaber er noget et kort 

arver.  

Hvis der fandtes en kortprojektionen, som bevarede Jordens overflade perfekt, eller rettere 

sagt kuglens overflade, så skulle kortprojektionen bevarer alle afstande, samtidig med arealer 

og vinkler. Men det er matematisk umuligt, og kortprojektioner vil altid forvrænge kuglens 

(Jordens) overflade i en eller anden grad. Derfor må man gøre sig nogle overvejelser i forhold 

til hvad formålet med kortet er: hvad skal kortet bruges til? Dette bestemmer hvad der er 

vigtigt for kortprojektionen at bevare.  

Øvelse 6: 

I får nu udleveret et kort med en cylinderprojektion og skal nu til at overveje følgende: 

a) Tror I den er arealbevarende eller vinkelbevarende? 

b) Hvad vil I mene dette kort kan bruges til? 

c) Der er markeret nogle lokationer på kortet: tegn de korteste afstande mellem 

lokationerne, som I tror den er i virkeligheden.  

I kan til fordel igen benytte jer af Google Earth til sammenligning.  

 

Vi vil senere se nærmere på, hvorfor det er umuligt for kortprojektioner at bevare alle 

egenskaberne. Indtil da skal vi se nærmere på den grundlæggende matematik bag 

kortprojektioner, så vi nemlig kan forsvare, hvorfor der ikke findes en kortprojektion, der 

bevarer alle egenskaberne. 

 

4. Matematiske forudsætninger for kortprojektioner 

Arealer, vinkler, linjer, afstande er alle væsentlige begreber fra geometrien. I har arbejdet med 

geometri i 2-dimensioner, i planen. Der eksisterer også geometri på kuglen, som kaldes for 

sfærisk geometri. Kortprojektioners opgave er at bevare noget af sfæriske geometri, når vi 

projicerer fra kuglen til en flade. Det viser sig at være lidt af opgave, da den sfæriske geometri 

er anderledes end geometrien i planen.  

Kuglen er en 3-dimensionel figur, som vi anskuer i det 3-dimensionelle rum med x-, y-, og z-

akser. Lad kuglens centrum være i (0,0,0), noteret med 𝑂.  

Linjer på kuglens overflade er ikke linjer, som I kender dem fra planen, men er linjestykker af 

storcirkler: 

 

 

 

Definition 1. En storcirkel er den cirkel på kuglens overflade, 

der fremkommer ved skæringen mellem kuglens overflade 

og en plan, der går gennem kuglens centrum.  

Linjestykker af en storcirkel kalder vi storcirkelstykker.  
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Faktum: 

• Storcirkler er de største cirkler på 

kuglen. 

• Ækvator er en storcirkel. Meridianer er 

storcirkelstykker. 

• Den korteste afstand mellem to 

punkter på kuglens overflade er langs 

den korteste storcirkelstykke, der 

forbinder de to punkter. 

• To storcirkler vil altid skære hinanden i 

to punkter, der er diamental modsatte 

(dvs. antipoder). Specielt går der 

uendelig mange storcirkler gennem to 

punkter, der er diamental modsatte. 

Vi bruger storcirkler til at definere vinkler på kuglen. Pr. definition 1 opstår en storcirkel ved at 

lade en plan, der går gennem centrum, skære kuglens overflade. Har man to storcirkler, har 

man altså to planer, som skærer hinanden i to punkter på kuglen (diamentale punkter). 

 

At udregne vinkler på kuglens overflade er altså det samme som at udregne vinklen mellem 

to planer. Bemærk, her taler vi om den spidse vinkel 𝑣, som kan ses i Figur 6. Vinklen 𝑣 danner 

en såkaldt tokant. Faktisk dannes en lignende tokant på ”bagsiden” af kuglen. 

Er vi givet ligningerne for planerne kan vi nemt finde vinklen mellem de to planer. Vi husker 

fra vektorer i 2D, hvordan man finder vinklen mellem to vektorer. Lignende tanke gør sig 

gældende for udregning af vinklen mellem to planer, men her benytter man sig af planernes 

normalvektorer. Så lad 𝑎 og 𝑏 være to planer, der går gennem kuglens centrum og skærer med 

kuglens overflade. Lad 𝑛𝑎⃗⃗ ⃗⃗  og 𝑛𝑏⃗⃗⃗⃗  være normalvektorerne til planerne 𝑎 og 𝑏, henholdsvis. Da 

kan man bestemme vinklen mellem de to planer ved: 

cos(𝑣) =
𝑛𝑎⃗⃗ ⃗⃗  ∙ 𝑛𝑏⃗⃗⃗⃗ 

|𝑛𝑎⃗⃗ ⃗⃗ | ∙ |𝑛𝑏⃗⃗⃗⃗ |
 

Øvelse 7: 

Lad to planer 𝑎 og  𝑏, der skærer enhedskuglen i centrum, være givet ved ligningerne: 𝑎:  𝑥 +

2𝑦 + 2𝑧 = 0 og 𝑏:   2𝑥 − 𝑦 + 𝑧 = 0. Udled normalvektorerne for planerne og bestem vinklen 

mellem planerne, dvs. vinklen på kugleoverfladen. 

Figur 6: Storcirkler på kuglen, inklusiv vinkler på kuglen. 

Definition 2. En vinkel 𝑣 på kuglens overflade, er 

den stumme vinkel, dannet af skæringen mellem 

to storcirkler. Denne er den samme som den 

stumme vinkel mellem de to skærende planer, der 

danner storcirklerne. 
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Er man givet tre storcirkler på kuglens overflade, vil man få dannet en trekant på kuglen – en 

sfærisk trekant - hvor storcirklerne parvis skærer hinanden i punkterne 𝐴, 𝐵, 𝐶, og derved 

danner vinklerne 𝛼, 𝛽, 𝛾 (Figur 7). For at gøre det fremadrettet arbejde ”lettere”, skal vi minde 

os selv om, hvordan vi regner en vinkel 𝑣 målt i grader om til radianer: 

radianer = 𝑣 ∙
𝜋

180°
 

Dette gør det lettere at arbejde med vinkler fremadrettet. Her er et vigtigt resultat om sfæriske 

trekanter: 

  

 

 

 

 

 

Øvelse 8: 

Formålet med denne øvelse, er at forstå 

argumenterne bag beviset for Sætning 1 

ovenfor.  

I bund og grund handler det om at anskue 

arealer af de forskellige (sfæriske) geometriske 

overflade figurer, man får dannet, når man har 

en sfærisk trekant på kuglen. 

Se på den sfæriske trekant 𝐴𝐵𝐶 i Figur 7. De tre 

vinkler 𝛼, 𝛽, 𝛾 danner tre tokanter. En tokant 

med en vinkel på 𝜋 radianer vil dække hele 

kuglen, så arealet for en tokant med vinkel 𝑣 er: 
𝑣

𝜋
∙ 4 ∙ 𝜋 ∙ 𝑟2 = 4𝑣𝑟2.  

Dette følger af, at arealet af en kugles overflade er 4𝜋𝑟2. Vi lader 𝐴 betegne arealet af den 

sfæriske trekant 𝐴𝐵𝐶. I beviset for sætningen, udleder man følgende formel om arealerne for 

de områder, der bliver dannet af tokanterne og den sfæriske trekant: 

4𝛼𝑟2 + 4𝛽𝑟2 + 4𝛾𝑟2 = 4𝜋𝑟2 + 4𝐴 

1) Forklar formlen. Hvorfor ser den ud som den gør? Hint: tage et led ad gangen og 

forklar hvad det er for et areal, der er tale om. Brug gerne Figur 7 til forståelse.  

2) Hvordan ender vi med formlen for vinkelsummen: 𝛼 + 𝛽 + 𝛾 = 𝜋 +
𝐴

𝑟2 

 

Sætning 1. Givet en sfærisk trekant 𝐴𝐵𝐶, med vinkler 𝛼, 𝛽, 𝛾, 

da er vinkelsummen givet ved: 

𝛼 + 𝛽 + 𝛾 = 𝜋 +
𝐴

𝑟2
 

med 𝐴 arealet af den sfæriske trekant og 𝑟 kuglens radius.  

Figur 7: En sfærisk trekant på kuglens overflade. 
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4.1. Geografiske koordinater 

I er blevet introduceret til de geografiske 

koordinater (se Faktaboks på s. 5). Når vi 

snakker om kortprojektioner, vil vi gerne 

kunne udtrykke de geografiske koordinater 

som et punkt 𝑃 på kuglen i rummet. Det gør 

vi ved at bestemme koordinaterne til 

stedvektoren 𝑂𝑃⃗⃗⃗⃗  ⃗  i det 3-dimensionelle rum 

(Figur 8). 

Lad z-aksen gå lodret op gennem 

Nordpolen. Vi ser nu breddegrader og 

længdegrader som decideret vinkler. Lad 𝑃 

være et vilkårligt punkt på kuglen. 

Breddegraden 𝜑 er vinklen mellem 

stedvektoren 𝑂𝑃⃗⃗⃗⃗  ⃗ og xy-planen. Vi lader 𝜑 ∈

[−90°, 90°], hvor negative grader er vinkler 

syd for Ækvatorlinjen og positive grader er nord for Ækvatorlinjen. Længdegraden 𝜆 er vinklen 

mellem Greenwich meridianen (vi lader x-aksen gå gennem denne) og meridianen der går 

gennem 𝑃. Vi lader 𝜆 ∈ [−180°, 180°], hvor negative grader er vest for Greenwich meridianen 

og positive grader er øst for Greenwich meridianen.  

På Figur 7 ser vi, at hvis vi lader punktet 𝑃 projicere vinkelret ned på xy-planen, kan vi danne 

punktet 𝑄 og dermed stedvektoren 𝑂𝑄⃗⃗⃗⃗⃗⃗ . Da stedvektoren 𝑂𝑃⃗⃗⃗⃗  ⃗ har længde 𝑟, må stedvektoren 

𝑂𝑄⃗⃗⃗⃗⃗⃗  have længde 𝑟 ∙ cos(𝜑). Punktet 𝑄 kan projiceres vinkelret hen på hhv. x- og y-aksen, hvor 

vi finder punkt 𝑆 og punkt 𝑇, hhv. Vi får følgende retvinklede trekanter: 

 

Figur 9: Retvinklet trekanter udledt af Figur 7. 

Øvelse 9: 

Brug Figur 9 til at udlede konverteringsformlerne for koordinaterne 𝑥, 𝑦 og 𝑧 til det 3-

dimensionelle koordinatsæt (𝑥, 𝑦, 𝑧). Hint: brug sinus for retvinklede trekanter og 

sin(90° − 𝑣) = cos (𝑣). 

Givet koordinatsættet (𝑥, 𝑦, 𝑧), udled formlerne til udregning af de geografiske koordinater 

(𝜑, 𝜆) og radius 𝑟. Hint: kuglens ligning er givet ved: 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, for en kugle med 

centrum i (0,0,0). 

Figur 8: Et punkt P på kuglen i rummet. Den grønne meridian er 
Greenwich meridianen. 
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Øvelse 10: 

Vi er givet de geografiske koordinater på Jorden for København ved (55.7°, 12.6°). Omregn 

dette til 3-dimensionelle koordinater (husk, Jorden har radius 6378 km). Derudover, så er vi 

givet de 3-dimensionelle koordinater på Jorden for Tanga, Tanzania: 

(374.16 , 2180.95 , 5981.83). Omregn disse til geografiske koordinater.  

 

4.2. Afstande på kuglen 

Givet geografiske koordinater (𝜑, 𝜆) kan vi altså 

omregne til 3-dimensionelle kartesiske 

koordinater, men er vi givet to sæt geografiske 

koordinater (𝜑1, 𝜆1) og (𝜑2, 𝜆2) kan vi f.eks. 

bestemme den korteste afstand mellem disse 

på kuglens overflade. Husk, at den korteste 

afstand mellem to punkter på kuglen er langs 

den korteste storcirkelstykke mellem punkterne 

(Figur 10). Dette er årsagen til, at korteste 

afstande på kort ikke nødvendigvis er en ret 

linje. Lad 𝑃1 = (𝜑1, 𝜆1) og 𝑃2 = (𝜑2, 𝜆2), da kan 

vi igen danne stedvektorerne 𝑂𝑃1
⃗⃗ ⃗⃗ ⃗⃗  ⃗ og 𝑂𝑃2

⃗⃗ ⃗⃗ ⃗⃗  ⃗. 

Afstanden bliver udregnet ved hjælp af vinklen 

𝑣, målt i radianer, mellem disse stedvektorer 

(Figur 10). Denne kalder vi indre vinkel mellem punkterne. 

Den korteste afstand 𝑑 på kuglen udregnes som følgende: 

𝑑 = 𝑟 ∙ 𝑣 

hvor 𝑟 er radius af kuglen. Er man kun givet de geografiske koordinater, skal vi først have 

udregnet den indre vinkel 𝑣. Husk, at de geografiske koordinater er i grader, så de skal også 

omregnes til radianer, før vi kan bruge formlen: 

cos(𝑣) = sin(𝜑1) sin(𝜑2) + cos(𝜑1) cos(𝜑2) cos(𝜆1 − 𝜆2) 

Denne formel er et eksempel på brugen af cosinus-relationerne i en sfærisk trekant, og kan 

udledes ved at bruge formlen for vinkler mellem to vektorer (her de to stedvektorer).  

Øvelse 11:  

Givet de geografiske koordinater fra Øvelse 10, udregn den korteste afstand 𝑑 på Jordens 

overflade mellem København og Tanga.  

 

 

 

Figur 10: To punkter på kuglens overflade og vinklen 
imellem. 
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5. Matematiske udtryk for udvalgte kortprojektioner 

Kortprojektioner handler som nævnt om at projicere kuglens overflade over på en flade, en 

geometrisk figur, der omkranser kuglen og som kan ”klippes op” og flades ud. Denne 

projicering kan vi beskrive med matematik. Vi har allerede snakket om 

konverteringsformlerne for geografiske koordinater til 3-dimensionelle koordinater. Det er 

sådan set samme tankegang vi bruger, når vi vil beskrive kortprojektioner matematisk; at 

konvertere punkter på kuglen til punkter hen på en flade, så man får et kort. Kortet er dog ikke 

3-dimensionel, men kun 2-dimensionel. Så vi er kun interesseret i at konvertere til x- og y-

koordinater.  

For simpelhedens skyld, lader vi kuglen, vi projicerer fra, have radius 1. 

Vi ser først på et eksempel med en planprojektion:  

Ortografisk planprojektion: 

Her lader vi projektionsplanen tangere kuglen i et punkt, 

og projiceret vinkelret hen på planen (Figur 11). Fra 

konverteringsformlerne for geografiske koordinater til 3-

dimensionelle koordinater ser vi: 

𝑥 = cos(𝜑) cos(𝜆) 

𝑦 = cos(𝜑) sin(𝜆) 

Den viser meridianerne som rette linjer på kortet. 

 

Vi kommer nu til nogle eksempler på cylinderprojektioner: 

Lamberts arealbevarende cylinderprojektion:  

Ved Lamberts arealbevarende cylinderprojektion, 

projiceres punkter på kuglen vandret hen på cylinderen 

(Figur 12), hvor cylinderen tangerer langs Ækvatorlinjen. 

Vi får: 

𝑥 = 𝜆 

𝑦 = sin(𝜑) 

  

Som I nok kan regne ud fra navnet, så er denne 

cylinderprojektion arealbevarende. Den viser 

breddegrader og meridianer som rette linjer. 

 

Figur 11: Ortografisk planprojektion. 

Figur 12: Lamberts arealbevarende 
cylinderprojektion. 
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Central cylindrisk projektion: 

Her projiceres punkterne på kuglen langs en ret linje, der 

går fra centrum af kuglen, gennem punktet, og videre ud på 

cylinderen (Figur 13). Formlerne er: 

𝑥 = 𝜆 

𝑦 = tan(𝜑) 

Den central cylindrisk projektion har ikke rigtig nogle 

bevarende egenskaber, andet end den som alle andre 

cylindriske kortprojektioner viser bredde- og længdegrader 

som rette linjer. Men den er let at forstå, set fra et 

trigonometrisk synspunkt. 

 

Mercators cylinderprojektion: 

En af de mere kendte projektioner, men også mere 

indviklet. Hvor de andre kortprojektioner måske virker 

indlysende, er det svært at gennemskue hvordan man 

kommer frem til formlerne: 

𝑥 = 𝜆 

𝑦 = ln(| sec(𝜑) + tan(𝜆) |)  

Mercators cylinderprojektion er såkaldt konform, og dette er et eksempel på, hvor komplekst 

det kan blive, hvis man vil have ens kortprojektion til at bevare visse egenskaber. Figur 14 er 

et eksempel på et kort med Mercators cylinderprojektion. 

Figur 13: Central cylindrisk projektion. 

Figur 14: Mercators cylinderprojektion. Fra: 
https://en.wikipedia.org/wiki/Mercator_projection. 
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6. Hvorfor er det, at kortprojektioner forvrænger Jordens overflade? 

Som nævnt tidligere, så vil kortprojektioner altid forvrænge, kuglens, heraf Jordens overflade. 

Hvis der fandtes en ideel kortprojektion, som perfekt bevarede Jordens overflade, skulle den 

bevare både alle arealer, alle vinkler og ikke mindst alle afstande, herunder de korteste 

afstande mellem vilkårlige lokationer. Vi har set på cylinderprojektioner som projicerer 

breddegrader (paralleller) og længdegrader (meridianer) til rette linjer, men ikke de korteste 

afstande. Faktisk kan vi generelt vise at: 

 

 

 

Øvelse 12: 

Hovedargumentet i beviset for Sætning 2 tager udgangspunkt i sfæriske trekanter5 og hvad 

der sker, når man projicerer en sfærisk trekant en på en flade (en plan for eksempel). Kan I 

formulere et modargument til, at der skulle findes en kortprojektion, der projicerer 

storcirkelstykker til rette linjer på kortet og samtidig bevarer vinkler? 

 

Det er også muligt at vise, at der ikke findes en kortprojektion, der bevarer både vinkler og 

arealer. Det er dog ikke noget vi vil gøre her. Det er nok med denne sætning, at vi kan 

konkludere, at der ikke findes en kortprojektion, som ikke forvrænger Jordens overflade på en 

eller anden måde. 

Målforhold viser sig at være helt central i forklaringen om, hvorfor kortprojektioner 

forvrænger Jordens overflade. Man skelner mellem to målforhold: et globalt målforhold, der 

måler forholdet mellem Jorden og kuglen, og så det lokale målforhold, som fortæller noget 

om forholdet mellem kuglen og kortet.  

I regnede et eksempel på et globalt målforhold i Øvelse 3. Den bliver som regel udtrykt som 

forholdet 1: 𝑛, som siger noget om, at 1 cm på kortet svarer til 𝑛 cm i virkeligheden (på Jorden). 

Denne er konstant, og det er den vi ser udtrykt på fysiske kort.  

Det lokale målforhold et i sin forstand det sande målforhold på kortet. Den udregnes som 

forholdet mellem længder på kortet og så længde på kuglen, dvs. 

lokalt målforhold =  
længde på kortet

længde på kuglen
 

Et hurtigt eksempel: 

Vi er givet et kort, hvor der er benyttet en kortprojektion, og et globalt målforhold 

1: 52.000.000, dvs. 1 cm på kuglen svarer til 520.000.000 cm eller 520 km i virkeligheden. På 

kuglen udvælges der to punkter der ligger 2 cm fra hinanden, på samme længdegrad 

 
5 Faktisk burde det være nok med et modeksempel. 

Sætning 2: Der findes ikke en kortprojektion, som 

projicerer alle storcirkelstykker til rette linjer på 

kortet, og samtidig bevarer vinkler. 
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(meridian). Dvs. der er 1040 km mellem disse punkter, jf. det globale målforhold. De samme 

punkter finder vi på kortet. Vi måler til gengæld at der er 2,2 cm mellem punkterne på kortet, 

eller 2,2 ∙ 520 = 1044 km, oversat til virkeligheden. Det lokale målforhold er derved: 

lokalt målforhold =  
1044

1030
= 1,00385, og det fortæller os faktisk, at der sket et ”stræk” (nord-

syd) af kuglens overflade ved brug af kortprojektionen.  

Øvelse 13:  

I har fået udleveret et kort med en af de præsenteret cylinderprojektioner. Noteret er også 

det globale målforhold. Radius af kuglen, som projiceres fra, er noteret på kortet og Jorden 

har en radius på 6378 km. 

1) Beregn kuglens og Jordens omkreds. 

2) Hvordan er man kommet frem til det globale målforhold?  

På kortet ser I nogle lokationer markeret, der parvis ligger på samme længdegrad. Deres 

geografiske koordinater er følgende: 

① (76.02°, -65.11°) 

② (51.92°, -65.11°). 

③ (37.56°, 104.14°).   

④ (-3.31°, 104.14°). 

3) Ligger lokationerne ①, ②, ③ og ④ på den nordlige eller sydlige halvkugle, og hvad 

med vest eller øst? 

4) Beregn de korteste afstande 𝑑 (på Jorden) mellem lokationspar ① og ②, samt ③ 

og ④.  

5) Brug en den udleveret lineal til at finde afstanden mellem punktpar ① og ② samt 

③ og ④ på kortet. Hvad er det lokale målforhold for disse punktpar? 

6) Sammenhold de udregnede lokale målforhold med forvrængningen på kortet. Kan I 

finde en sammenhæng mellem det lokale målforhold og forvrængningen? 

7) Se på bredde- og længdegrad linjerne der er visualiseret på kortet. Hvad fortæller om 

forvrængningen der sker på kortet? Sammenlign evt. med modellen i Google Earth. 

 

De lokale målforhold kan faktisk generaliseres for hver kortprojektion, for hvert punkt. Det 

kræver dog noget matematik, som er meget over niveau af hvad der forventes af jer. Det 

matematiske udtrykt for Mercators projektion er specifikt baseret på dets lokalt målforhold, 

der sikrer, at projektionen bevarer vinkler.  

Arbejdet med kort produktion i dag (kartografien) laves over computeren, vha. satellit-data og 

GIS. Vi kan nu lokationsbestemme, udregne størrelser, finde de hurtigste ruter på få sekunder 

og med få centimeters unøjagtighed. Men selvom alt dette er til rådighed, er det endnu ikke 

lykkedes at få skabt et perfekt kort af hele Jorden (vi har netop set hvorfor det er umuligt). 

Jorden er og vil altid være en kompleks størrelse, men det har ikke fået det videnskabelig 

samfund til at miste interessen for kort. Faktisk har teknologien åbnet for en hel ny måde at 
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arbejde med kortprojektioner på, og vi ser stadig en udvikling inden for kartografien, selvom 

man ikke længere gør det i hånden.  

 

 

 

 

 

 

Som aflevering: Se på de fire kortprojektioner (s. 12-13). Brug nettet til at 

finde kort, hvor disse kortprojektioner er benyttet. Beskriv kortenes 

egenskaber (herunder hvad det betyder for forvrængningerne) og kom med 

flere eksempler på, hvad disse kort kan bruges til. Derudover ønskes der også 

en forklaring på, hvorfor deres formler ser ud som de gør (brug evt. Figur 11, 

12, 13) – det er ikke et krav, at I skal kunne forklare formlerne for Mercator 

projektionen, men I er velkommen til at prøve! 



10 Appendix B

The material for Exercise 5 in the teaching material is found on the next page.

85



 



11 Appendix C

The material for Exercise 6 is found on the next pages.
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12 Appendix D

The material for Exercise 14 is found on the next pages.
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Kort med Mercator projektionen. Målforhold: 1:134.932.660 

Radius af kuglen: 29,7 cm. 

① 

② 

③ 

④ 



Kort med Lambert’s areal-bevarende projektion. Målforhold: 1:95.416.667 

Kuglens radius: 42 cm 

① 

② 

③ 

④ 



Kort med central cylindrisk projektion. Målforhold: 1:134.932.660 

Radius af kuglen: 29,7 cm. 

① 

② 

③ 

④ 
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