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Abstract
This is a thesis within the didactics of statistics and mathematics that investigates how to in-

troduce likelihood functions and maximum likelihood estimation in Danish upper secondary

school. The thesis examines how the topic can be meaningfully communicated to strengthen

the content of statistics and create links between statistics, probability and mathematics.

Since likelihood functions and maximum likelihood estimation as topic is largely unknown

in the context of upper secondary education, and that very little didactic literature exists on

the topic, the purpose is to carry out a new didactic transposition. This is done by analysing

the content of likelihood functions and maximum likelihood estimation and by developing

a textbook chapter. The analysis consists of a subject matter didactic analysis conducted

within the theoretical framework known as ‘Stoffdidaktik’. The analysis use the tools ’aspects’

and ’Grundvorstellungen’ to describe the content and explore which competencies students

might acquire to understand the topic. Furthermore, the analysis identify subject-didactic

perspectives used to legitimize likelihood functions and maximum likelihood estimation as

knowledge to be taught. In total, four subject-didactic perspectives are identified that sup-

port the teachability of the topic. Secondly, to organize the didactical design, an analysis of

the textbook chapter using the theoretical framework of the ’Anthropological Theory of the

Didactic’ is conducted. This analysis consists of an institutional analysis of the conditions

that must be considered when implementing likelihood functions and maximum likelihood

estimation in teaching practice. It was found that the topic places high demands on both

teachers and students in terms of qualifications and prior knowledge, due to its theoretical

nature. Finally, the analysis includes an a priori analysis on the praxeological organization

and the task design. This analysis offers a proposal for how a didactical design on likeli-

hood functions and maximum likelihood estimation could be introduced in upper secondary

school. However, it also identifies several heuristic difficulties related to task design, which

teachers should be aware of when using the textbook chapter.

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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1 Introduction
The background for this thesis is my professional interest for statistics and my experience

as an upper secondary school teacher during the last three years. My wish has been to

write a thesis that combines my passion for teaching and lesson planning, and my master in

statistics. Over the past four months, this has taken shape as a theoretical didactic thesis

about the method of Maximum Likelihood Estimation (MLE).

I have chosen my topic MLE because of my education in theoretical statistics and to explore

how an exciting statistical topic can be incorporated into an upper secondary school context

and communicated to students. Maximum Likelihood Estimation is a method that uses

a sample to estimate the parameters in an assumed statistical model. Estimation is one of

the most fundamental concepts in statistics, where it is used to calculate or guess a value.

The MLE method was invented by the British statistician and geneticist Sir Ronald Aylmer

Fisher (1890-1962) at the beginning of the 20th century and today the method is widely

used in machine learning and applied statistics [Efron and Hastie, 2016].

It is my belief that MLE is not a typical teaching topic in upper secondary school. It has

actually been quite a journey to investigate whether any research in the didactics of math-

ematics and statistics has been done on MLE – and whether any teaching materials about

MLE exist for upper secondary school. After thorough investigation, very few didactical

papers aimed at upper secondary school on MLE have been found. For example, a search in

the International Association for Statistical Education (IASE) website yields only nine hits

from their collected conferences and journals. All the nine hits are aimed at the university

level [IASE, 2025]. Therefore, an essential part of my thesis has been to figure out how to

organize and design a teaching material on MLE for upper secondary school, since there is

very limited inspiration and didactical literature to be found. Furthermore, it is important

to argue why it makes sense to teach MLE in upper secondary school at all. My goal of

this thesis is to contribute to a new didactic transposition within statistics by developing a

didactical design on likelihood functions and MLE aimed at upper secondary school.

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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In Danish upper secondary school, statistics is not a subject of its own, but it appear in school

mathematics as a subfield [Børne- og Undervisningsministeriet, 2024a]. Likewise statistics is

often described as applied mathematics, as it relies heavily on the use of probability models

to describe stochastic phenomena. Despite the important role of probability, the key element

in statistics is data, and statistics involves all the processes related to data: collecting data,

constructing models, data analysis and finally the interpretation [Ekstrøm et al., 2017].

Statistics appear in one of the three branches in national mathematics syllabus: (1) trigonom-

etry and vectors, (2) functions and calculus, and (3) probability and statistics [Børne- og

Undervisningsministeriet, 2024b]. The field of statistics as a branch creates the institutional

framework for statistical education in Danish upper secondary school: what statistical con-

tent should be taught and what are the possibilities for an optional topic in statistics? In

my experience as teacher, you are busy getting through all the core content, leaving little

time for optional or supplementary content. In 2024, mathematics got a new syllabus stating

that 10 percent of the total teaching must be spent on supplementary content [Børne- og

Undervisningsministeriet, 2024a]. This revision makes it possible to allocate time for op-

tional topics, such as my proposal of MLE to be taught in upper secondary school. The aim

of this thesis is not to discuss the role of statistics in the syllabus, or why the 10 precent

could advantageously be allocated to topics in statistics, but to investigate how a concrete

teaching material could be organized and designed introducing the topic of MLE to students.

My target group of the design is A-level mathematics students.

The main research question of this thesis is: How can likelihood functions and maximum like-

lihood estimation be introduced in Danish upper secondary school mathematics in a way that

strengthens the content in statistics and establishes connections between concepts in statistics,

probability and mathematics? In section 3, I will further detail the research question into a

number of sub-questions.

The foundation is that such introduction of MLE to upper secondary school students is pos-

sible due to the new syllabus from 2024. To answer the research questions, I have developed

a textbook chapter on MLE, which could potentially be used as the supplementary topic of

the syllabus. To develop the chapter, I have conducted extensive preparatory work.

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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First, I introduce the theoretical framework (section 2), the history of likelihood (section 4)

and I give a brief introduction to probability (section 5). Secondly, I use different types of

didactical analysis to approach the didactic transposition of likelihood functions and MLE.

A subject matter didactic analysis on likelihood functions and MLE is conducted (section 6)

within the theoretical framework called ’Stoffdidaktik’. It has been used to organize likelihood

functions and MLE by subject-didactic tools, exploring relevant concepts interconnected to

MLE. The subject matter didactic analysis has also been used to identify subject-didactic

perspectives of likelihood functions and MLE that strengthens the content of statistics and

connects concepts in statistics, probability and mathematics.

A didactical design is developed (section 7) consisting of a institutional analysis and a priori

analysis, which is part of the research methodology known as didactic engineering. The

institutional analysis includes considerations and design choices regarding how the textbook

chapter can be implemented in a teaching practice by institutional means. To organize and

design the textbook chapter, I have performed an a priori analysis. This analysis includes

task design: what is the goal of the tasks, what can students do to solve the tasks and

why students choose the strategies as they do. In the didactical design, the Anthropological

Theory of the Didactic (ATD) is used as theoretical framework, which is applied to address

epistemological and institutional questions in developing my didactical design. For example

considering the institutional constraints and conditions relevant for the design or working

with the epistemological organization of knowledge in relation to practice and theory. In

the a priori analysis the framework is applied to develop an ATD-based reference model for

likelihood functions and MLE, which is used to structure the textbook chapter in tasks that

students can solve and techniques and technologies students can use in their solution.

Finally, a discussion is conducted (section 8), where I address some of the limitations and

contributions of the didactical design, and possible improvements of my investigation.

Despite the rather unusual and theoretical topic (likelihood functions and MLE) in my the-

sis, I have a great hope that the didactical design will be used in some shape or form and

that this thesis can open a conversation about the content of statistics in an upper secondary

school context.

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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2 Theoretical Framework

2.1 Anthropological Theory of the Didactic
As background for analyzing statistical content in Danish upper secondary school mathe-

matics it seems crucial to study the role of statistical education in perspective to the real-life

teaching practices and the knowledge related to MLE. To achieve this, a didactic program

of Yves Chevallard (1946–) is used as a theoretical framework. Chevallard introduced ’the

Theory of Didactic Transpositions’ in the eighties and later expanded it to ’the Anthropo-

logical Theory of the Didactic (ATD)’ in the nineties. In the center of his theories is human

practices, discourses and institutions related to mathematical knowledge [Winsløw, 2011].

In this view knowledge-related activities such as ”Doing, teaching, learning, diffusing, creat-

ing, and transposing mathematics” [Bosch and Gascón, 2014, p. 68] must be seen in relation

to the institutions they are taking place in, and it is the role of didactics to cover this

institutional condition [Bosch and Gascón, 2014, p. 68]. In ATD, institutions should be

understood widely as structures and systems related to didactic phenomena. One of the key

concepts of Chevallard’s theories is didactic transpositions, which is

”..the transformations an object or a body of knowledge undergoes from the mo-

ment it is produced, put into use, selected, and designed to be taught until it is

actually taught in a given education institution.”

[Chevallard and Bosch, 2014, p. 214]

In other words, didactic transposition theory is about knowledge circulating between differ-

ent institutions and actors in a society. The process of didactic transposition involves four

types of knowledge; scholarly knowledge, knowledge to be taught, taught knowledge and

learnt knowledge. The theory is especially concerned about the evolution and changes to

this process, which is sketched in figure 1 [Bosch and Gascón, 2014]. Further, the theory dis-

tinguishes between two types of transpositions: internal (inside the classroom) and external

(outside the classroom) [Winsløw, 2011].

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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Regarding internal didactic transpositions, it is crucial what is being taught, ”taught know-

ledge”, what is being adopted from the syllabus, and what is transmitted to the students, as

well as what the students actually learn, ”learnt knowledge”. External transposition concerns

the connections between the the microcosm of the classroom and the impact of the outside

world. These transpositions are the institutional framework around education containing

the noosphere and scholarly knowledge [Winsløw, 2011]. Scholarly knowledge is knowledge

produced for and by scientists, professors and students at the universities. Thus, scholarly

knowledge has a lot of integrity, but its formalization and complexity is rarely suited for

pre-academic education. In the didactic process, the noosphere selects and intermediates

scholarly knowledge to adapt the level of school education as ”knowledge to be taught”.

This sphere includes textbooks writers, teachers, the Ministry of Children and Education,

politics, public opinions and more on [Chevallard and Bosch, 2014].

Figure 1: Diagram on the process of didactic transposition [Bosch and Gascón, 2014].

The didactic transposition diagram is a tool for analyzing conditions for didactic phenomena

and for developing a teaching practice — its application to this thesis is inspired by Wan

Kang and Jeremy Kilpatrick’s article ”Didactic Transposition in Mathematics Textbooks”

[Kang and Kilpatrick, 1992]. ATD is used for preparatory work on teaching MLE as a new

didactical transposition. The goal is to transform MLE into ”knowledge to be taught.”

— The first part of the didactical transposition consists of organizing MLE as an integrated

whole. According to Kang and Kilpatrick the topic must be derived from scholarly knowl-

edge and given a ”coherent theoretical assemblage” [Kang and Kilpatrick, 1992].

— Next, MLE as ”knowledge to be taught” must be legitimized as knowledge to be used. I

must be able to argue why MLE should be taught and how students can apply it. Hence,

subject-didactic arguments must be established to justify the didactic transposition.

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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— According to Kang og Kilpatrick a textbook chapter is a declared body of knowledge. In

the didactic design, MLE must be declared, meaning it must be broken into parts and recon-

structed as ”knowledge to be taught.” In other words, the content must simply be presented

in a new way that makes sense to upper secondary school students. This involves identifying

structural conditions and constraints that hinder MLE as ”knowledge to be taught” and

taking these into account when developing textbooks [Kang and Kilpatrick, 1992].

2.2 Praxeologies
Another design tool of ATD is to describe knowledge-related practice and organization in

terms of praxeologies. In ATD, a praxeology P is a human practice that can solve math-

ematical tasks. A praxeology is denoted as a 4-tuple P = [T/τ/θ∗/Θ∗] [Winsløw, 2011].

This thesis uses a ∗-notation to avoid confusion with the parameter θ in a statistical model.

Chevallard divides mathematical activity into two blocks, which identify the practical part

of a task and the knowledge-based part of a task. The practical block [T/τ ] consists of types

of tasks T and the techniques τ that can be used to solve them. The knowledge block [θ∗/Θ∗]

consists of technology θ∗, which includes elements that directly apply to solutions such as a

definition or a theorem. The second part is theory Θ∗, which provides a deeper and more

integrated explanation behind tasks [Barbe Farre et al., 2005]. For example, a theory could

be probability theory or number theory. So, a praxeology is simply a theoretical model that

identifies and connects practice and knowledge of a task.

Figure 2: Reference Model of Mathematical Organisation [Barbe Farre et al., 2005]

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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The tools of didactic transpositions and praxeologies are interconnected, partly because

praxeologies cannot be viewed in total isolation from institutional conditions and constraints

[Barbe Farre et al., 2005]. In Figure 2, the praxeology-theoretical reference model is shown in

relation to the process of didactic transposition. In this thesis, praxeologies is used as design

tool for organizing knowledge related to MLE. A praxeologic reference model on MLE is

build using the notation P = [T/τ/θ∗/Θ∗], which the design of the textbook chapter should

be based on. My own reference model on MLE developed in this thesis is denoted Pref .

2.3 Subject Matter Didactics
The second theoretical framework used is subject matter didactic, ’Stoffdidaktik’, which was

a school of thought in mathematical education research in the German-speaking countries

from the late 1960s to the 1980s [Hofe and Blum, 2016]. This approach in mathematical

education research focus on the analysis of mathematical concepts in relation to their content

and conceptual understanding [Hußmann et al., 2016]. The approach had a particular pur-

pose of simplifying mathematics education to make it more accessible and understandable

for students at the primary and secondary school levels [Hofe and Blum, 2016]. One of the

most central figures within the school was the German mathematics educator Arnold Kirsch

(1922–2013). He described ways to implement ”accessibility” in mathematics education. For

example ”making accessible by including the ”surroundings” of mathematics” or ”making

accessible by changing the mode of representation” [Vohns, 2016, p. 214]. Kirsch’s notion of

”surroundings of mathematics” can be understood as a broader perspective on mathemat-

ics, which connects mathematical tasks to real world examples and contextualize it [Vohns,

2016]. In appendix C, I have made a concept-board on accessibility inspired by Kirsch.

Overall, the subject matter didactic school played a crucial role in challenging the mathemat-

ics education at the time, which was highly conceptually difficult and had many similarities

to the practices in university mathematics [Hofe and Blum, 2016]. Today the scene of

mathematics education is completely different than in the 60s, however the subject matter

didactic analysis, has kept its relevance. This type of analysis works through mathematical

or statistical content preparing it for students or teachers to read [Vohns, 2016]. A similar

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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’content-orientated’ analysis can be found in the French didactic tradition. Namely the a

priori analysis within the school of didactic engineering [Hußmann et al., 2016]. I have cho-

sen to use both analyses types in my preparatory work, as they despite similarities provide

some very different perspectives. Now, I will explain the analysis types.

Subject Matter Didactic Analysis: A subject matter didactic analysis must process and

conceptualize the mathematical content primarily with methods coming from the mathemat-

ical content itself. In short, the method consists of the teacher thoroughly and systematically

studying the mathematical concept with the purpose of making it accessible for students or

other teachers. The teacher acts as a kind of ”conveyor” of the content: organizing, recon-

structing and declaring knowledge [Hußmann et al., 2016].

A Priori Analysis: This approach also work systematically with the content, but has a

more student-active and environment-situated view, where students competencies and learn-

ing outcomes are forecast to strengthen the analysis [Hußmann et al., 2016]. The French

approach, a priori analysis, often includes: a forecast of the target group of students, their

mathematical prerequisites, potential misconceptions and strategies [Hußmann et al., 2016].

The full methodology of didactic engineering is not used, as my thesis does not have a prac-

tical part: performing a teaching sequence and conducting a posteriori analysis. The a priori

analysis in this thesis is used more as a complement to the subject matter didactic analysis.

This is to include student-active and environment-situated considerations in developing the

didactical design.

2.4 Fundamental Ideas and Grundvorstellungen
In this thesis the two principles: ”fundamental ideas” and ”Grundvorstellung” are elaborated.

These principles relates to a subject matter didactic way of analyzing content [Scheiner et al.,

2023]. Fundamental ideas is the underlying ideas and methods that connect different parts of

mathematics. Identifying fundamental ideas helps us provide a broader and more intercon-

nected perspective on the subject of mathematics [Vohns, 2016]. Hence, fundamental ideas

are main principles or the essence of mathematics and can, structurally, be regarded as global

or overarching ideas [Scheiner et al., 2023]. In table 1 some examples of fundamental ideas
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are listed. Students often do not encounter fundamental ideas as inherent to a single topic,

but it is something they acquire over time by identifying recurring features of mathematics

[Vohns, 2016].

Examples of fundamental ideas in mathematics of Schreiber (1979)

Properties: quantity, continuity, optimality, invariance and infiniteness

Concepts: ideation, abstraction, representation, space and unit

Table 1: Examples of fundamental ideas [Scheiner et al., 2023]

The principle of ’Grundvorstellungen’ comes from the subject matter didactic view of math-

ematics focusing on how one could simplify mathematics to match with peoples cognitive

abilities and human experiences [Hofe and Blum, 2016]. The application of the concept

comes from the German mathematics educator Wilhelm Oehl (1904-1991). According to

Oehl, Grundvorstellung refers to the idea or meaning behind a specific aspect of mathemat-

ics such as methods, properties or mathematical operations [Hofe and Blum, 2016].

Aspect: A subdomain of a concept that can be used to characterize the concept.

Grundvorstellungen: A conceptual interpretation that gives meaning to the aspect.

Table 2: “Aspect–Grundvorstellung” relation [Greefrath et al., 2016]

A description of aspects and Grundvorstellungen is given in table 2 above. Connected to one

aspect there can be different Grundvorstellung, i.e., ways of understanding the mathemat-

ical aspect, such as through various verbal and graphical representations. Thus, it makes

sense to work in a dynamic way, constantly re-representing mathematical aspects in different

ways and formulating different Grundvorstellungen and layers of understanding [Hofe and

Blum, 2016]. The role of subject matter analysis is among others to establish relationships

”Aspect–Grundvorstellung” of a given mathematical concept — and to support the students

”process of concept formation” [Greefrath et al., 2016]. In my thesis, I identify fundamen-

tal ideas, aspects and Grundvorstellungen in the subject matter didactic analysis of MLE,

examining layers of meaning and establish relationships between likelihood functions, MLE

and concepts in school mathematics.
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2.5 Statistics Education
Since I have found almost no subject-didactic literature on teaching MLE aimed at upper

secondary school, I have drawn upon subject-didactic research on statistics education more

generally. Statistics education refers to the academic body of scholarly work that focuses on

how statistics is taught and learned [Zieffler et al., 2017]. I will not go into detail about the

field of research, as a wide range of research questions are being explored. However, I will

briefly outline some of the concepts from the literature that I draw upon in the two analyses.

— Statistical and mathematical reasoning: Statistics and mathematics are different

in their nature of reasoning. Mathematical reasoning is logical and deductive and involves

applying axioms and definitions, and finding logical patterns by use of configuration and

abstraction [Ottaviani, 2011]. Statistical reasoning is also about finding patterns, but it

differs a lot as it rely on data. Statistical reasoning is inductive: it is about formulating

questions, collecting, analyzing and interpreting data [Burrill and Biehler, 2011].

— Statistical literacy: Students ability to understand statistical terminology in a context

and to understand argumentation based on statistics [Burrill and Biehler, 2011]. This is also

the ability to reason statistically, apply statistical knowledge and to develop a critical sense

in today’s information society [Batanero and Borovcnik, 2016].

— Statistics-as-magic: The term ”statistics-as-magic” is used by G. W. Cobb and D. S.

Moore in [Cobb and Moore, 1997]. The term refers to the fact that students have no real

understanding of what is happening in a statistics, because statistical knowledge is taught in

a way that relies heavily on digital tools and automated recipes. The digital tools perform

all the hard work for the students [Cobb and Moore, 1997]. This term is similar to what

[Pedersen and Jankvist, 2021] mention as black-box using CAS-tools.

— Shared problem space: Tasks and concepts that build a bridge between mathematics

and statistics [Groth, 2015].

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design



Page 15

3 Research Questions
Based on the theoretical framework, the goal of the my investigation is to build a strong

foundation for the didactical design and thereby answer the main research question of this

thesis. This thesis is divided into two main sections: a subject-matter didactic analysis (in

section 6) and an analysis of the didactical design (in section 7). The subject matter didactic

analysis lead to two following areas of investigation and related research questions:

1. The concept formation of MLE approached by subject matter didactic.

1.a) What knowledge will students acquire when working with the concepts of statis-

tical model, likelihood function and MLE?

2. Legitimization of MLE as knowledge to be taught approached by subject matter di-

dactic and research in statistics education.

2.a) How can likelihood functions and MLE strengthen the content in statistics in

upper secondary school?

2.b) How can likelihood functions and MLE establish connections between different

branches of school mathematics in upper secondary school?

The didactical design lead to following areas of investigation and related research questions:

3. An institutional analysis of the textbook chapter carried out by ATD.

3.a) What institutional constrains and conditions are encountered when you design a

textbook chapter about likelihood functions and MLE?

4. An a priori analysis comprised by praxeological organization and task design ap-

proached by ATD and research in statistical education.

4.a) How can a teaching material on MLE be organized in a textbook chapter?

4.b) How can tasks be formulated about MLE in a way that aligns with Danish upper

secondary students’ prerequisites and academic level?
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4 History of Likelihood
In this section, I want to elaborate on the history of likelihood functions and MLE before

conducting the subject matter didactic analysis. This is to help the reader better grasp these

concepts. Many historical detail about likelihood are given in A. W. F. Edwards’ article “The

History of Likelihood” (1974) and in the book “In all likelihood: Statistical Modelling and

Inference Using Likelihood” (2001) by Yudi Pawitan. I will skip most details and only give

a rough outline beginning with the invention of probability and statistics.

Probability was invented by the French mathematicians Blaise Pascal (1623–1662) and Pierre

de Fermat (1601–1665) in the 17th century and was motivated by their interest in gambling.

The field of statistics was first born a century later as ”probabilistic inference” by Thomas

Bayes (1702–1761) and Pierre-Simon Laplace (1749–1827) [Batanero and Borovcnik, 2016].

Bayes and Laplace invented ”probabilistic inference” independently of each other by intro-

ducing the concept of Inverse Probability. Today the term inverse probability is not used,

but it is simply the term for a conditional probability of a hypothesis (H) given a sample

(Data), denoted as P (H|Data). We also know inverse probability from Bayes’ theorem as

the posterior distribution [Pawitan, 2001c]. It should be interpreted as the probability of

a hypothesis being true, conditioned on observed data. To use Bayes’ theorem, we assume

that we know the probability of observing the data given the hypothesis, a likelihood, and

that we know the underlying distribution of the hypothesis, the axiomatic prior [Pawitan,

2001c]. Then using Bayes’ theorem, we can calculate the inverse probability as

P (H|Data)︸ ︷︷ ︸
The inverse prob.

=

P (Data|H)︸ ︷︷ ︸
The likelihood

× P (H)︸ ︷︷ ︸
Axiomatic prior

P (Data)︸ ︷︷ ︸
Normalizing constant

.

Bayes’ theorem includes determining the sampling distribution aka. the likelihood after

data is observed. The concept of likelihood is fundamental in Bayes theorem as it contains

our observed knowledge [Edwards, 1974]. In Bayes’ theorem, be aware that the likelihood

is combined with a prior, which means that statistical evidence is not obtained from the
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likelihood itself [Pawitan, 2001c]. Another important contribution to statistics was Carl

Friedrich Gauss’ (1777–1855) theory of errors, including the method of ordinary least squares

[Batanero and Borovcnik, 2016]. Statistics as a systematic science that draws inference

and is used for decision-making is relatively new. The rigorous mathematical approach

used in statistics today, including the formal and systematic way of conducting statistical

tests, is often referred to as modern statistics. In fact, statistics as a modern science is the

newest branch of school mathematics [Varberg, 1963]. Modern statistics was pioneered by

Ronald A. Fisher, Jerzy Neyman, and Karl Pearson from the 1920s to the 1940s, where they

systematized confidence intervals and statistical tests [Batanero and Borovcnik, 2016].

One of the most important concepts of this thesis is the notion of likelihood, which like

the method of MLE was invented by Fisher between 1912 and 1922 [Edwards, 1974]. It is

essential to distinguish Fisher’s notion of likelihood from Bayes’ theorem, where P (Data|H)

is used to describe the conditional probability of drawing a sample given that a hypothesis is

true. In Fisher’s notion, the likelihood function can be used to gain statistical evidence solely

based on the observed data and the function itself [Etz, 2018]. I will denote a likelihood as

LData(H) and it is a function defined in terms of the conditional probability

LData(H) = P (Data|H),

The likelihood function measures the relative possibility of the occurrence of the observed

sample (Data) given specific choices of hypothesis (H) [Reid, 2000].

The difference between a likelihood function and a conditional probability is which one of

(Data) and (H) is considered varying and which one is fixed. For a conditional probability

the sample is considered varying and the hypothesis is considered fixed. On the contrary, a

likelihood function is varying over possible hypothesis and the observed sample is considered

fixed [Etz, 2018]. MLE is the method of finding the hypothesis that best explain the observed

sample and it is found by maximizing the likelihood function. We will soon return to these

concepts and explain them in more detail in the subject matter didactic analysis.
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5 Brief Introduction to Probability
I will now introduce the basics of probability theory as a foundation for presenting key

concepts such as statistical models and likelihood functions.

Random experiment An experiment where the outcome cannot be predicted with

certainty but if it is repeated many times, certain ’proba-

bilistic’ patterns can be observed.

Sample space X The sample space X of an experiment is the set of all possible

outcomes of an experiment.

Event A An event A is the subset of the sample space X .

σ-algebra

Measurable space (X ,A)

A σ-algebra is a family of subsets of X that obey certain

axioms. We require that the set of events A is a σ-algebra

in order to assign events with probabilities. If A is a σ-

algebra on X , we call the pair (X ,A) a measurable space.

We will mainly use two types of measurable spaces. The

type where X is a countable set and A = P(X ) is the power

set, and the type where X = Rn for some n and A = B(Rn)

is the Borel-σ-algebra on Rn.

Probability measure P

Probability space (X ,A, P )

A probability measure on a measurable space (X ,A) is a

function P : A → [0, 1] that satisfies P (X ) = 1 and for every

countable sequence (An)n≥1 of pairwise disjoint elements of

A it hold P (
⋃∞

n=1An) =
∑∞

n=1 P (An). We call (X ,A, P ) a

probability space.

Random variable X Given a probability space (X ,A, P ) and another measurable

space (E,E) a random variable is a measurable function

X : X → E.
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Probability distribution Let X : (X ,A, P ) → (E, E) be a random variable. Then

the probability distribution of X is the map PX : E → [0, 1]

given by

PX(B) = P (X−1(B)) ∀B ∈ E .

Density function Given a random variable X : (X ,A, P ) → (E, E) and a

measure Q on (E, E), we say that X has a density function

with respect to Q if there exists a measurable function f :

E → R+ such that

PX(B) =

∫
B

f dQ, ∀B ∈ E .

We will only consider two types of density functions. If X

is countable and A = P(X ), then we only consider densities

where Q is the counting measure. In this case the function

f : E → R+ is called the point mass probability. If X = Rn

and A = B(Rn), then we only consider densities where Q is

the Lebesgue measure on Rn and then the integral becomes

the integral we know from calculus.

The references of this list are ”Probability Essentials” of [Jacod and Protter, 2012] and

”Measures, Integrals and Martingales” of [Schilling, 2017].

This list can be used as a reference for the later sections, but having a deep understand of

all the concepts is not necessary. We will generally not discuss the framework of σ-algebras

further, but simply assume that things behave nicely and are measurable. This decision

comes from the fact that this construction is not core content in Danish upper secondary

schools [Børne- og Undervisningsministeriet, 2024a].

Often, it is also skipped in introductory university statistics courses, since the probabilistic

foundation is less prominent — and we often make nice choices such as A = P(X n) or

A = B(Rn) for the two cases [Lauritzen, 2023].
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6 Subject Matter Didactic Analysis
In this section, I will introduce the terminology and statistical theory behind likelihood func-

tions and MLE and conduct a subject matter didactic analysis. The concept formation, is

heavily inspired by the article “Aspects and ‘Grundvorstellungen’ of the Concepts of Deriva-

tive and Integral: Subject Matter-related Didactical Perspectives of Concept Formation” by

G. Greefrath, R. Oldenburg, H.-S. Siller, V. Ulm, and H.-G. Wiegand [Greefrath et al., 2016].

My analysis draws on the article’s use of the analytical tools ’aspect’ and ’Grundvorstellung’,

but I also use the article’s structure to organize my own investigation.

Although the subject matter didactic analysis focuses on the subject matter (the statistical

content of MLE), I occasionally include input related to the target group, level of complex-

ity and the core content of the syllabus in upper secondary school. This was necessary to

set boundaries for the investigation of MLE, which could otherwise have been much more

extensive and more theoretical without these limitations.

6.1 The ”Statistical Model” Concept
First, I will elaborate on the ”statistical model” concept, which may be the most important

underlying feature of likelihood functions and MLE. I begin by clarifying how the ”statistical

model” concept is approached in this thesis and I investigate how it is incorporated in Danish

upper secondary school textbooks.

The German mathematicians Uwe-Peter Tietze, Manfred Klika, and Hans Wolpers describe

in their book ”Mathematikunterricht in der Sekundarstufe: Didaktik der Stochastik” that,

statistical modelling involves the description of stochastic situations and the formalization

of these situations. This is done by the use of specific probability distributions such as the

binomial distribution and the normal distribution [Tietze et al., 2002]. Furthermore, they

characterize the ”statistical model” concept as a mathematical structure given by X , where X

is a sample space, and a family (Pθ)θ∈Θ of probability distributions [Tietze et al., 2002]. This

structure is very general and makes it possible to describe many different stochastic situations

from real-world examples to artificial situations with dice, playing cards and coin tosses.
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It is the specific choices of X and (Pθ)θ∈Θ, made appropriately in relation to a stochastic

situation, that constitute the model [Tietze et al., 2002]. This rather strict characterization of

a statistical model is in this thesis regarded as the ”parameterized family” aspect and is used

later in Definition 1. Consistent with this view, the ”statistical model” concept is regarded as

a mathematical description of a stochastic situation. The subject-didactic analysis focuses

on the conceptualization of this, asking what characterizes a statistical model and how a

statistical model obtains its meaning.

I have investigated how statistical models are integrated into Danish upper secondary school

mathematics education. This has not been straightforward to figure out. The investigation

was conducted based on the syllabus and a selection of textbooks, in which I searched for the

terms ”statistical model” and ”binomial model” and examined their subject-specific context.

The following material was included in the investigation.

— Matemat10k : statistik [Agermose Jensen and Timm, 2014].

— Lærebog i matematik A2 stx [Brydensholt and Ebbesen, 2025a].

— Lærebog i matematik A3 stx [Brydensholt and Ebbesen, 2025b].

— Mat A2 stx [Carstensen, 2021].

— Sandsynlighedsregning og statistik [Clausen et al., 1997].

— Hvad er matematik? – B: grundbog [Grøn, 2015].

— Statistik C [Gråbæk et al., 2025].

— Højniveaumatematik. Bind 2 [Hebsgaard and Sloth, 1999].

— Læreplan matematik A – stx [Børne- og Undervisningsministeriet, 2024a].

— Vejledning til læreplan i matematik A [Børne- og Undervisningsministeriet, 2024b].

We will refer to this list as Material List. Among the textbooks I have had access to,

none include a formal definition of a statistical model. Several of the textbooks do not

use the term ”statistical model” at all, although some do provide a formal definition of the

binomial model [Clausen et al., 1997]. The concept of ”mathematical model” is mentioned

in the syllabus for upper secondary school (A-level), but the term ”statistical model” is

not [Børne- og Undervisningsministeriet, 2024a]. On this basis, the material suggest that

statistical models are either included in the form of the binomial model, or not included.
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Likewise, the investigation shows that the ”parameterized family” aspect is not included in

the mathematics textbooks. Instead my investigation shows, that particular examples play

a key role in teaching statistical models. Also Tietze, Klika and Wolpers emphasize that

especially artificial situations (examples such as games involving dice, playing cards, or coin

tosses) are the common way of teaching the ”statistical model” concept. These types of

situations typically give rise to a binomial model, and the preferred approach is to teach the

concrete binomial model rather than the general concept of statistical models [Tietze et al.,

2002]. In terms of the subject matter didactic framework, I think the binomial model and

the mentioned artificial situations are important as applications to statistical models and

helps establish intuition. In contrast, I look at the general concept of a statistical model.

6.1.1 The ”Parameterized Family” Aspect

A statistical model relies as mentioned on a stochastic situation. This is represented by

one or more data observations x = (x1, x2, ..., xn). We formalize that data is stochastic as

a realization of a random variable X = (X1, X2, ..., Xn). By the ”parameterized family”

aspect a statistical model is characterized by defining the sample space X and by indicating

the distributions that can reasonably be assumed to have generated the given data as a

family of distributions [Ditlevsen and Sørensen, 2018]. If we disregard the σ-algebra, we

can summarize a statistical model in three components based on the ”parameterized family”

aspect. After this, a more technical definition is given also based on the ”parameterized

family” aspect now including the σ-algebra.

Three Components of a Statistical Model

1) The sample space X of an experiment is the set of all possible outcomes of an experiment.

2) An observation x = (x1, ...xn) that represents the occurrence of one or more experiment.

3) A family of possible probability distributions (Pθ)θ∈Θ on the sample space X .

[Ditlevsen and Sørensen, 2018]
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Definition 1. A statistical model contains a measure space (X ,A) and a family

(Pθ)θ∈Θ of probability distributions on (X ,A). The space (X ,A) is called the repre-

sentation space, where X is the sample space and A is a σ-algebra. The parameter

space Θ is the index set for the family of probability distributions in the model.

Further, we assume that we have a family of densities (fθ)θ∈Θ, where fθ is a density

function for Pθ [Lauritzen, 2023].

Remark: In the case where the sample space X is discrete we call fθ a point mass function.

In this definition I have made several indirect assumptions. When writing (Pθ)θ∈Θ, I have

assumed that the family of probability measures is parameterized, i.e., the family can be

indexed by a parameter space Θ. I have also assumed that every measure has a density, in the

general setting we would say the family is Dominated. A density is always given with respect

to another measure, and I will always use the Lebesgue measure if the data is continuous

and the counting measure if the data is discrete [Lauritzen, 2023]. The assumptions that the

family is parameterized and dominated is necessary in order to define the likelihood function

later. By this aspect we obtain the following characterization of the binomial model.

Let X be a random variable on the sample space X = {0, 1, 2, ..., n} and Θ = [0, 1] be a

parameter space. Let P = {Pθ|θ ∈ Θ} be a family of probability distributions given by

Pθ(X = x) =

(
n

x

)
θk(1− θ)n−x, x ∈ {0, 1, 2, ..., n}.

Then Pθ is the binomial distribution and the above equation is the point mass function. This

is a discrete statistical model specified by the binomial distribution [Lauritzen, 2023].

6.1.2 The ”Random Variable” Aspect

An alternative aspect is the ”random variable” aspect. In this aspect, I view a statisti-

cal model as a random variable with a distribution including an unknown parameter. In

the case of the binomial model, I may write: Let X be a stochastic variable with sample

space X = {0, 1, .., n} and suppose that X ∼ bin(n, θ) where θ is an unknown parameter in

Θ = [0, 1] [Ditlevsen and Sørensen, 2018].
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The important difference between this aspect and the ”parameterized family” aspect is

whether I consider one distribution with a varying parameter θ or a set of many distri-

butions. The two aspects are very similar, but the ”random variable” aspect is more suitable

for an example like tossing a coin. Since the focus is on the random variable, which represent

the outcome of the coin. The ”random variable” aspect is also the chosen aspect in the school

material that define a binomial model. This aspect is used in [Clausen et al., 1997].

6.1.3 The Grundvorstellung ”Prior Assumptions”

A statistical model gains its meaning within the reality or the context associated with the

stochastic situation. The context of the stochastic situation reflects various features and

conditions, which one in statistics refers to as prior assumptions [Milhøj, 2025]. This gives

rise to the Grundvorstellung I call ”prior assumptions”. For example, the interpretation of

a binomial model arises from the specific assumptions underlying a binomial experiment.

Namely, that there are two possible outcomes, that we are considering repeated trials, and

that the outcomes are independent of one another [Clausen et al., 1997].

In general, one can divide prior assumptions into two types: the structural part and the

stochastic part [Milhøj, 2025]. The structural part of the binomial model consists of the

features we just described for a binomial experiment. For instance, in the case of coin toss-

ing, the interpretation of the statistical model relies on the repetition of an experiment with

the two possible outcomes heads and tails. If the condition is that the coin is tossed 10

times and we count the the outcome of heads, the sample space becomes X = {0, 1, . . . , 10}.

These prior assumptions form the basis for why the binomial distribution is the appropriate

distribution for this type of stochastic situation.

It is primarily through this contextualization of these structural elements that the aspects

of a statistical model gain its meaning. In the ”parameterized family” aspect, the structural

part is reflected in the specification of the sample space and in the family of distributions.

Likewise, in the ”random variable” aspect, it is reflected in the choice of the sample space

and the assumption that the random variable X lies in a specific class of probability distri-

butions.
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The second part is the stochastic component, which is a major theme in the statistics educa-

tion literature. It is referred to by various terms like statistical uncertainty, non-reproducibly

or variability [Makar and Rubin, 2017]. A statistical model also obtains its meaning from

the uncertainty associated with data. When drawing a sample, one only has access to partial

information, and this gives rise to uncertainty [Ditlevsen and Sørensen, 2018]. This can be

explained according to the terms of population, sample and non-reproducibly.

Figure 3: Sample, Individuals and Population [Appendix B].

If a sample is randomly chosen from all the possible samples that could have been drawn,

then another randomly selected sample will likely not have precisely the same features as the

first one. For example, if we toss a coin 10 times over many repetitions of the experiment,

we will not get exactly five heads and five tails each time, since the experiment is random.

So uncertainty means that when we draw a new sample, the outcome is not reproducible

[Pawitan, 2001c]. The basic idea of drawing a sample is shown in figure 3.

Considering the aspects, the stochastic part in the ”parameterized family” aspect, is con-

tained within the individual distributions of the family. Meaning that the individual distri-

butions formalize the uncertainty connected to the non-reproducibility of the sample. In the

”random variable” aspect, the stochastic part is represented through the different choices of

the parameter θ. I conclude, that the grundvorstellung ”prior assumptions” contains two

parts, which both give meaning to the aspects. This connection is illustrated in figure 4.
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Grundvorstellung

Prior assumptions

parameterized family aspect

Random variable aspect

Structural contextualization

Stochastic contextualization

Figure 4: Aspect and grundvorstellung of statistical models.

According to my analysis, the Grundvorstellung ”prior assumption” can be transferred to

the following competencies, that students can acquire.

• A1: Recognize the structural and the stochastic parts of stochastic situations. Espe-

cially focusing on identifying these two parts in relation to binomial experiments as

the stochastic situation.

• A2: Explain how stochastic situations (either real-world situations or artificial situa-

tions) can be translated into mathematical symbolic language. This translation should

be based on either the ”parameterized family” aspect or the ”random variable” aspect.

• A3: Can switch between the contextualized level and the mathematical symbolic level

of the statistical model.

6.1.4 Introduction to iid. Random Variables

This introduction is a technical elaboration that will give me some tools. I will use these

tools in the case where I have observed data x = (x1, ..., xn) to make a statistical model of

this situation.

Assumptions. For the random variable X = (X1, ..., Xn) with the outcome x = (x1, ..., xn)

I make the following three assumptions

1. The random variable Xi with i ∈ {1, ..., n} is specified by a probability distribution or

a probability density function.

fXi
(x|θ) i ∈ {1, 2, ..., n},

where x is a possible outcome and θ is the parameter specifying the density.
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2. The random variables Xi and Xj with i, j ∈ {1, ..., n} are identically distributed, i.e.,

fXi
(x|θ) = fXj

(x|θ) for all i and j.

3. The random variables Xi and Xj with i, j ∈ {1, ..., n} and i 6= j are independent, i.e.,

fX1,...,Xn(x1, ..., xn|θ) = fX1(x1|θ) · ... · fXn(xn|θ) =
n∏

i=1

fXi
(xi|θ).

[Nielsen, 2017]

If I have n observations from a sample space X and I assume the observations to be iid.,

then we have the statistical model on the new sample space X n with P = {P⊕n
θ |θ ∈ Θ}.

Since we have iid. observations the densities become fθ(x) =
∏n

i=1 fθ(xi) [Lauritzen, 2023].

In the textbooks from the Material List, neither the assumption of iid. random vari-

ables or the fact that the joint density is the product of the marginal densities is mentioned.

However, some materials does cover the summation symbol and basic rules for working

with it [Gråbæk et al., 2025]. This is sometimes introduced in connection with numeri-

cal integration [Hebsgaard and Sloth, 1999]. The concept of the product symbol can be

transferred from the summation symbol. Note that assumption 3 above can be seen as a

generalization of the multiplication principle, where students learn that the probability of

two independent events occurring can be calculated by multiplying the probabilities of each

event: P (both A and B) = P (A)P (B) [Brydensholt and Ebbesen, 2025a].

A normal model characterized by the ”parameterized family” aspect and with the assump-

tion of iid. random variables is given by the following description.

Let X1, ..., Xn be iid. random variables on X = R and assume Xi is normal distributed with

parameters µ and σ, i.e. they have densities

fµ,σ(x) =
1√
2πσ2

e−
(x−µ)2

2σ2

The parameter space is Θ = R × R+. Our new statistical model have representation space

(Rn,B(R)n) and the parameter space is still Θ = R × R+. The distribution are given as a

product distribution with densities

fµ,σ(x) =
n∏

i=1

1√
2πσ2

e−
(xi−µ)2

2σ2 .
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6.2 The ”Likelihood Function” Concept
The ”likelihood function” concept is fundamental in statistics and plays a central role in

many statistical inference methods. The most well-known methods based on likelihood

functions are MLE, likelihood-ratio test and Bayesian inference [Etz, 2018]. Such methods

are commonly used in both theoretical statistics and applied statistics, particularly in fields

like machine learning [Efron and Hastie, 2016] and psychology [Etz, 2018]. Despite the wide

application of the concept, there are relatively few subject-didactic sources on the topic.

A brief subject-didactic analysis of likelihood functions can be found in German by D.-P.

Tietze, M. Klika, and H. Wolpers in ”Mathematikunterricht in der Sekundarstufe: Didaktik

der Stochastik” [Tietze et al., 2002]. A somewhat more in-depth subject-didactic analysis

can be found in Alexander Etz’s article ”Introduction to the Concept of Likelihood and Its

Applications” [Etz, 2018]. This article has its primarily target group as psychology students

at the universities and not upper secondary school teachers.

The subject-didactic analysis of the ”likelihood function” concept in this thesis is largely

based on my own original analysis, since there are few subject-didactic sources available. On

the other hand, there are many theoretical statistical sources that present the concept of

likelihood functions. In this analysis, the source for the theoretical foundation have primary

been: Steffen Lauritzen’s book ”Fundamentals of Mathematical Statistics” [Lauritzen, 2023],

Susanne Ditlevsen and Helle Sørensen’s lecture notes ”Introduktion til Statistik” [Ditlevsen

and Sørensen, 2018], and Heino Bohn Nielsen’s book ”Introduction to Likelihood-based Esti-

mation and Inference” [Nielsen, 2017].

6.2.1 The Intuitive ”Likelihood Function” Concept

Since likelihood functions are first taught at an academic level, I can not assume that upper

secondary school students are familiar with the concept. Also, I cannot assume that upper

secondary school mathematics teachers necessarily remember the topic from their time at

university. I must therefore start from the basics by addressing two general questions:

— What is the setting where the ”likelihood function” concept can be used?

— What is the purpose of introducing the ”likelihood function” concept?
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(1) The setting where the likelihood function can be used.

Likelihood functions apply to statistical sampling, when knowledge about the population

is incomplete. The incompleteness of knowledge arises from, the fact that I have no prior

information about the underlying distribution from which data is drawn. In such cases, our

only source of information is the data itself. Thus, introducing likelihood functions consists

of two main elements: (1) I have a sample, and (2) I assume that I have a family of distribu-

tions (also known as a statistical model) based on that sample [Etz, 2018]. This setup has

been explained in detail in the previous section on statistical models.

(2) The purpose of introducing likelihood functions.

The purpose of the likelihood function is to gain information about an unknown quantity.

Within a statistical framework, this unknown quantity is represented by a parameter θ in

a statistical model. Sometimes, the purpose is to estimate the unknown parameter θ, but I

shall show later that other types of analysis of θ can also be gained from likelihood functions

[Etz, 2018].

In addition to these two general questions, the intuition behind likelihood can also be de-

veloped through examples. I will primarily use the binomial model and coin tossing as

examples, with only a few exceptions. The reason for choosing the binomial distribution

is that it is included in the upper secondary school mathematics syllabus and it is more

simple than the normal distribution, which is also included in the A-level syllabus [Børne-

og Undervisningsministeriet, 2024a].

Example 1: Coin tosses

To get an intuitive idea of the ”likelihood function” concept, I will look at a classic setting

with coin tosses. In this coin toss scenario, I have no prior knowledge about the distribution

of heads and tails. Hence, I am uncertain whether the coin is fair. Let X be a random

variable that indicates the number of heads in ten independent trials. After tossing the coin

ten times, I observe x = 9 heads. Given the knowledge of this observation alone, what would

the probability θ be of getting heads? The information I have about θ is incomplete, and

I cannot say anything with certainty about the distribution of heads and tails. However, I

can still have some ideas about the likelihood of heads and tails based on our experiment.
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I might suspect that the coin is not fair and that the probability of head is high. I could

estimate θ by guessing such as θ̂1 = 0.77 or θ̂2 = 0.92. The likelihood function provides us

with a deductive way to compare different values of θ [Etz, 2018]. This is a function of the

unknown parameter θ derived from the point mass probability

L(θ) = Pθ(X = 9) =

(
10

9

)
θ9 · (1− θ),

which is called the likelihood function. Then L(θ̂1) and L(θ̂2) are calculated as

L(0.77) =

(
10

9

)
· 0.779 · (1− 0.77) = 0.219,

L(0.92) =

(
10

9

)
· 0.929 · (1− 0.92) = 0.378.

Based on the sample, I can use the likelihood function to rank all values of θ according to

how likely they make the sample [Fisher, 1922]. Since, it holds that L(θ̂2) > L(θ̂1), I have

that the point mass probability Pθ̂2
with θ̂2 = 0.92 explain the observation x = 9 better than

the point mass probability Pθ̂1
with θ̂1 = 0.77.

I still do not know the true value of the parameter θ, since the likelihood function reflects

the uncertainty within the statistical framework [Pawitan, 2001b]. However, the likelihood

function is a rational-deductive measure that can provide the estimate that makes the obser-

vation most likely. This estimate ”the best estimate” is exactly the MLE. MLE is calculated

from maximizing the likelihood function [Fisher, 1922], as I will show later.

I will now summarize the intuitive ”likelihood function” concept.

• B1: Perhaps the most central idea is the intuition of ’comparability’ or ’ranking’. This

is the intuition that the likelihood function based on data, provides a way to rank and

compare different values of θ.

• B2: Another intuition is ’weakness’ or ’incompleteness’. It is the intuition that like-

lihood functions can be applied to situations in which the knowledge of a stochastic

situation is incomplete, and one therefore cannot make definitive conclusions.
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Figure 5: Likelihood function of the probability θ in a binomial model with x = 9 and 10

trials. I can observe graphically from the plot that θ̂2 = 0.92 has a larger likelihood than

θ̂1 = 0.77 since L(θ̂2) > L(θ̂1). The figure shows that the MLE is θ̂MLE = 0.9, this is the

frequency
(
x
n
= 0.9

)
, which is quite intuitive [Appendix B].

6.2.2 The ”Density” Aspect

In the following, I analyse the ”likelihood function” concept in terms of subject matter

didactic. I do so by establishing the relationship between aspects and Grundvorstellungen

of the concept. In my analysis, I have only found one aspect of the ”likelihood function”

concept, namely the that the it is derived from the density fθ(x) in the continuous case

and the mass point probability Pθ(X = x) in the discrete case. In short, the ”density”

aspect is to view the density function as a function of the parameter θ, which is a precise

characterization of the likelihood function [Fisher, 1922].

In definition 2 a definition of the likelihood function is given, building on this aspect. In the

definition I also define the log-likelihood function, which is the composition of the likelihood

function as the inner function and the natural logarithm as the outer function. I will return

later to why the log-likelihood function is particularly useful.
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I introduce the likelihood function based on that I have observed some data x = (x1, ...xn)

and considering a statistical model with sample space X , parameter space Θ and densities

(fθ)θ∈Θ. Then I can define the likelihood function and the log-likelihood function.

Definition 2. For every x ∈ X , I define the likelihood function Lx : Θ → [0,∞) by

Lx(θ) = fθ(x).

The log-likelihood `x : Θ → [−∞,∞) is found by taking the logarithm of the likelihood

function

`x(θ) = log(Lx(θ))

[Lauritzen, 2023].

In the example with coin tosses in 10 trials, formalized by a binomial model, the likelihood

function is characterized by the point mass probability of the binomial distribution, viewed

as a function of the parameter θ. This function is given by Lx(θ) =
(
10
x

)
θx · (1− θ)10−x.

Technicalities: In the context where I have observed n iid. observations x = (x1, ..., xn) the

likelihood function becomes
∏n

i=1 Lxi
(θ) and therefore the log likelihood function becomes

`x(θ) = log

(
n∏

i=1

Lxi
(θ)

)
=

n∑
i=1

log (Lxi
(θ)) =

n∑
i=1

`xi
(θ). (6.1)

6.2.3 The Grundvorstellung ”Reversed Density”

The interpretation of the likelihood function as a ”reversion” of the density is based on the

swapping of x and θ in relation to which is fixed and which is varying.

L x
( θ ) = f

θ
( x )

This should be understood as considering the density function fθ(x), as a function of two

variables f(x, θ). The density function is given by considering the parameter θ as fixed

and varying the function over x. For the likelihood function, it is the other way around,
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I now consider x as fixed and vary over the parameter θ instead. I call this conceptual

understanding of the mathematical object the Grundvorstellung of ”reversed density”. Be

aware that the likelihood function is not a density function over θ (or a probability mass

function over θ in the discrete case), since it does not always integrate to 1. The likelihood

function describes how possible/likely the observed data is given a specific parameter θ not

how probable the parameter θ is, since the laws of probabilities do not hold for likelihoods

[Fisher, 1922]. In the ongoing example with coin tosses for 10 trials and x = 9 the likelihood

function is

Lx(θ) = 10θ9(1− θ).

I get the following integral when I integrate over the parameter space Θ = [0, 1].∫ 1

0

10θ9(1− θ)dθ =

∫ 1

0

(
10θ9 − 10θ10

)
dθ =

[
θ10
]1
0
−
[
10θ11

11

]1
0

= 1− 10

11
=

1

11
. (6.2)

So this example clearly does not integrate to 1.

So the Grundvorstellung ”reversed density” has two important subject-didactic perspectives,

that students can acquire.

• C1: First, the interpretation of the likelihood function by considering the density

function as a function of the parameter θ for fixed x.

• C2: Secondly, a likelihood is not a probability density function or a point mass prob-

ability. This can be shown by an example as above in (6.2).

6.2.4 The Grundvorstellung ”Relative Measure”

The Grundvorstellung ”relative measure” is an extension to the intuition of ’comparability’

or ’ranking’. As mentioned, the likelihood function is a way to rank specific values of the

parameter θ by which one makes the observed data most likely. In this sense the likelihood

function is a relative measure of how much a point estimate θ̂ supports the observed data.

Suppose I have observed some data x and θ̂1 and θ̂2 are two estimates such that the prob-

ability distributions Pθ̂1
and Pθ̂2

are two possible candidates for the true data-generating

distribution. If I have shown

Lx(θ̂1) > Lx(θ̂2), (6.3)
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then it is more likely that the data x was generated by Pθ̂1
rather than Pθ̂2

. The intuition is

that high outputs of the likelihood function and the log-likelihood function indicates that the

data supports a probability distribution Pθ̂ as being the true data-generating distribution

[Lauritzen, 2023].

The value of the likelihood function itself does not indicate how probable a specific value of

θ makes data, because as mentioned the likelihood function is not a probability distribution

[Etz, 2018]. So it is only meaningful to compare the likelihood of two or more different values

of θ like I did in (6.3). Another way of doing it is by looking at the likelihood ratio

LR =
Lx(θ̂1)

Lx(θ̂2)
.

Returning to example 1 with coin tosses in 10 trials, I compared the specific values of θ,

namely the estimates θ̂1 = 0.77 and θ̂1 = 0.92. The likelihood ratio for the two point

estimates θ̂1 = 0.77 and θ̂2 = 0.92 is calculated by

LR =
L9(0.92)

L9(0.77)
=

(
10
9

)
· 0.929 · (1− 0.92)(

10
9

)
· 0.779 · (1− 0.77)

=
0.378

0.219
= 1.726.

Therefore the observed data x = 9 is 1.726 times more probable under the hypothesis

θ̂2 = 0.92 than under the hypothesis θ̂1 = 0.77 [Etz, 2018].

Another way of comparing the likelihoods is by visual inspection. Visual inspection allows

us to see the full picture of all possible values of θ [Etz, 2018]. In Figure 6, the likelihood

function is shown with dotted lines drawn at the estimated values. The lines are used for

comparing the two estimates.

As mentioned, the likelihood function in itself has no interpretive meaning. Therefore, in-

creasing the sample size n does not reflect the output of the likelihood function in any

meaningful and interpretable way. However, increasing n is reflected in the likelihood ratio

and in the visual inspection [Etz, 2018]. For example one can show that in the Grundvorstel-

lung ”relative measure” it is of great importance whether I am observing 9 heads in 10 trials,

27 heads in 30 trials or 90 heads in 100 trials. It is intuitive that an experiment with 100

coin tosses resulting in 90 heads provides stronger statistical evidence than 10 coin tosses

resulting in 9 heads, which is exactly what is reflected in the ”relative measure”.
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Figure 6: Visual inspection of the likelihood function with graph reading for θ̂1 = 0.77 and

θ̂1 = 0.92 [Appendix B].

In relation to the visual inspection, the curve of the likelihood function becomes narrower as

the number of trials (sample size) n increases. In Figure 7, I show the three mentioned cases

with n = 10, n = 30, and n = 100 trials. It is clear from the figure that the ratio between

the likelihood values for θ̂1 and θ̂2 is not the same across the three cases.

In relation to the likelihood ratio, I will now denote the likelihood functions by L10(θ), L30(θ)

and L100(θ) respectively to distinguish between the three cases. Note that this is not entirely

consistent with the notation above, since the subscript usually indicates the fixed observation

x and not the sample size n.

In the case of 30 trials with x = 27, the likelihood ratio for the two competing hypotheses

θ̂1 = 0.77 and θ̂2 = 0.92 is L30(0.92)
L30(0.77)

= 5.142. This means that the observation is 5.142 times

more likely under the hypothesis θ̂2 = 0.92 than under the hypothesis θ̂1 = 0.77. Comparing

this to the likelihood ratio for 10 trials, the likelihood ratio for 30 trials is larger.

It makes sense that instead of comparing the two hypotheses θ̂1 = 0.77 and θ̂2 = 0.92, one

should use the best-supported hypothesis ”the maximum likelihood estimate” as the refer-

ence value [Etz, 2018]. This gives the likelihood ratio L(θ)

L(θ̂MLE)
.
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Figure 7: The scaled likelihood functions for observing x = 9 in 10 trials, x = 27 in 30 trials

and x = 90 in 100 trials [Appendix B]. Scaled likelihood means that the likelihood function

is scaled so it has maximum value corresponding to 1 (this does not chance the likelihood

ratio).
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When the hypothesis θ̂2 = 0.92 is compared to the best-supported hypothesis θ̂MLE = 0.9 in

the three experiments, I obtain:

L10(θ̂2)

L10(θ̂MLE)
= 0.975

L30(θ̂2)

L30(θ̂MLE)
= 0.927

L100(θ̂2)

L100(θ̂MLE)
= 0.776

It is observed here that the statistical evidence becomes stronger for the best-supported

hypothesis θ̂MLE compared to the hypothesis θ̂2 as the number of observations n increases.

I conclude from this analysis that it is an important subject-didactic perspective to always

look at the likelihood function in comparison. This is explained very clearly by Alexander

Etz in ”Introduction to the Concept of Likelihood and Its Applications”.

”We need to be careful not to make blanket statements about absolute support, such

as claiming that the hypothesis with the greatest likelihood is “strongly supported

by the data.” Always ask what the comparison is with.” [Etz, 2018]

Even though the best supported hypothesis θ̂MLE has the highest likelihood of all the pa-

rameters, I see that in the case of 10 tosses the likelihood ratio of θ̂MLE and θ̂2 is 0.975. So

the observed data x = 9 has almost equal statistical evidence under the two hypothesis.

The grundvorstellung ”relative measure” can therefore develop students statistical literacy

by making them deal with the reliability of the estimate.

The Grundvorstellung ”relative measure” can be summarized in the following terms that

students can acquire:

• D1: Can describe the likelihood function as a relative measure of θ, in line with the

intuition of comparison and ranking. This includes using the likelihood function to

compare two hypotheses.

• D2: Use calculations of the likelihood ratio and visual inspection of the ratio to support

statements about statistical evidence. These statement should explicitly mention the

reference likelihood.

• D3: Be familiar with the impact that the sample size n has on the likelihood curve

and on the likelihood ratio.
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6.2.5 Summary of the ”Likelihood Function” Concept

From the analysis about the ”density” aspect, I establish the following.

• The likelihood function is characterized by the density or the point mass probability.

The Grundvorstellung refers to the interpretation that gives the aspects its meaning.

• The ”density” aspect gains meaning as a kind of ”reversed density”, where x and θ are

swapped such that θ is varied, while x is fixed.

• The ”density” aspect also gains meaning as a ”relative measure”, allowing us to com-

pare different values of θ based on how well they explain the observed data.

The first Grundvorstellung ”reversed density” emphasizes a semantic understanding of the

concept, focusing on the likelihood function as a mathematical object. The latter Grund-

vorstellung ”relative measure” emphasizes a heuristic perspective, viewing likelihood as a

tool in statistical inference.

6.3 The ”Maximum Likelihood Estimation” Concept
The hypothesis that best supports the observed data is, the maximum likelihood estimate.

In, other words the MLE is the specific value of θ that corresponds to the highest output of

the likelihood function, and the correct interpretation of the MLE is that it is the value of

θ that makes the observed data most likely [Fisher, 1922].

6.3.1 The ”Optimizing” Aspect

I have only identified one aspect of the MLE concept, the ”optimizing” aspect, which refers to

the fact that the MLE is characterized as the method of finding the value that maximizes the

likelihood function. This aspect leads to the definition of the maximum likelihood estimator

in definition 3.
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Definition 3. For a statistical model with sample space X and an observation x ∈ X ,

one defines the maximum likelihood estimator as

θ̂MLE = argmax
θ∈Θ

Lx(θ)

given that this is well-defined [Lauritzen, 2023].

Notice that the MLE is not well-defined if the likelihood function doesn’t have a maximum.

However, it is always well-defined in the examples I will cover.

Technicalities: Since the logarithm is monotone and increasing I know that

argmax
θ∈Θ

Lx(θ) = argmax
θ∈Θ

`x(θ).

When determining the MLE, I can maximize the log-likelihood function instead of the like-

lihood function.

6.3.2 The Grundvorstellung ”Solution to `′(θ) = 0”

The ”optimizing” aspect, like for the likelihood function, gains its interpretive meaning from

the Grundvorstellung ”relative measure.” This means that the MLE only makes sense in com-

parison with other hypotheses. Without this relative comparison, the ”optimizing” aspect

can be misinterpreted and lead to an uncritical approach to ”the best estimate” even though

the statistical evidence is low. The Grundvorstellung ”relative measure” is elaborated on in

section 6.2.4, so the idea is not repeated here. Another interpretation of the ”optimizing”

aspect focuses on the interpretation of the MLE as the solution to the equation `′(θ) = 0.

In the case where the parameter space is continuous and the density functions are differ-

entiable with respect to the parameter, I can find the maximum of the likelihood function

using calculus [Watkins, 2011]. Let Sx(θ) =
d
dθ
`x(θ) be the derivative of the log-likelihood

function. In statistics this function is called the score function, and it has its own interests

— however, I will only use it to maximize the log-likelihood function [Lauritzen, 2023].

The advantage of maximizing the log-likelihood function instead of the likelihood function is

that it is much easier to find the derivative of the log-likelihood function. Returning to the
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example where I have n iid. observations, I know from equation 6.1 that the log-likelihood

function is a sum of the log-densities, whereas the likelihood function is the product of the

densities. Since it is easier to differentiate the sum than the product, the log-likelihood is

preferred.

Hence to find the MLE, one sets the score function equal to zero and solve for θ. In statistics

Sx(θ) = 0 is called the score equation. Having found this extreme point, one should check

that it is in fact a maximum either by inspecting the second derivative or by doing a func-

tion analysis [Watkins, 2011]. According to mathematics textbooks I have available in the

Material List, upper secondary school students learn to find extreme points by solving

the equation f ′(x) = 0 and then, based on the monotonicity rule, construct a sign diagram

for f ′(x) [Carstensen, 2021] [Brydensholt and Ebbesen, 2025a]. In this way, students can

determine whether the extreme point is a maximum or a minimum.

Now, I will go through two examples where I find the MLE for different distributions, that

may be relevant for upper secondary school students.

Example 2: MLE in the Binomial Distribution

I consider a sample x taken from a binomial distribution with unknown probability param-

eter p ∈ [0, 1] and a known number of trials n. So x is an integer between 0 and n. The

likelihood function is

Lx(p) =

(
n

x

)
· px · (1− p)n−x.

Then I can calculate the log-likelihood by taking the logarithm of the likelihood

`x(p) = log(Lx(p)) = log

((
n

x

))
+ log(px) + log((1− p)n−x)

= log

((
n

x

))
+ x · log(p) + (n− x) · log(1− p).

The score function then becomes

Sx(p) =
x

p
− n− x

1− p

So the score equation is x
p
− n−x

1−p
= 0. Solving for p, I get

x

p
− n− x

1− p
= 0 ⇔ x(1− p) = (n− x)p ⇔ x = np ⇔ p =

x

n
.
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Then the second derivative is

d2

dp2
`x(p) = −x

p
− n− x

(1− p)2
.

Since this is negative for all values of p, I know that p = x
n
is the maximum likelihood

estimate. I then write p̂MLE = x
n
[Ditlevsen and Sørensen, 2018].

Figure 8: The figure shows the likelihood function and the log-likelihood function of the

probability parameter p in a binomial model with x = 12 and n = 20 trials [Appendix B].

Example 3: MLE in the Normal Distribution

According to the syllabus, the normal distribution must be introduced to students with

mathematics on A-level. This example may therefore be of interest, even though I have

argued that the binomial distribution is generally the preferred for examples. It is in this

example that I explicitly make use of the introduction to iid. random variables from section

5.1.4, which increases the level of complexity.

There are two parameters in the normal distribution, so either you could use multivariate

calculus to maximize both parameters at the same time or you could assume one of the

parameters is known in advance and then maximize the other parameter. Since multivariate

calculus is not included in the A-level syllabus [Børne- og Undervisningsministeriet, 2024a],

I will focus on the latter.
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Let x = (x1, ..., xn) be a sample where the observations are iid. normally distributed with

unknown parameter µ ∈ R and the known parameter σ2 ∈ R+. The density function is given

by

fµ(y) =
1√
2πσ2

· exp
(
−(y − µ)2

2σ2

)
for y ∈ R. Then the likelihood function is

Lx(µ) =
n∏

i=1

1√
2πσ2

· exp
(
−(xi − µ)2

2σ2

)
.

Now taking the logarithm, I get

`x(µ) = log(Lx(µ)) =
n∑

i=1

(
log

(
1√
2πσ2

)
− (xi − µ)2

2σ2

)
= −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2.

So the score function is

Sx(µ) =
1

σ2

n∑
i=1

(xi − µ) =
1

σ2
n

(∑n
i=1 xi

n
− µ

)
.

I can then solve for µ in the score equation

1

σ2
n

(∑n
i=1 xi

b
− µ

)
= 0 ⇔ µ =

∑n
i=1 xi

n
.

The second derivative of the log-likelihood function is

d2

dµ2
`x(µ) = − n

σ2
,

which is negative for all values of µ (since it is a negative constant) and hence the MLE is

µ̂MLE = 1
n

∑n
i=1 xi [Ditlevsen and Sørensen, 2018].

The Grundvorstellung ”solution to `′(θ) = 0” can be transferred to the following competen-

cies, that students can acquire.

• E1: Recognize that the MLE can be determined by solving `′(θ) = 0.

• E2: Solve `′(θ) = 0 in the case of a binomial model and a normal model. Either in the

general setting of the binomial model or for a special case e.g. n = 10 and x = 9.

• E3: Apply tools from basic function analysis to argue that the solution to `′(θ) = 0 is

actually a global maximum.
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6.4 Other Subject-Didactic Perspectives on MLE
I have now conducted a subject matter didactic analysis by identifying aspects and Grund-

vorstellungen related to the concepts: statistical model, likelihood function, and MLE.

In the following, the subject matter didactic analysis continues, and I will bring other per-

spectives to light, related to these concepts. The focus is on the subject-didactic contributions

of likelihood functions and MLE, as legitimation for why this topic should be taught in upper

secondary school. This is done through four perspectives: (1) relativity, (2) generality, (3)

coherence and repetition, and (4) local connection.

6.4.1 The ”Relativity” Perspective

The ”relativity” perspective is the idea that likelihood functions itself carries information.

While MLE can be misinterpreted and lead to an uncritical approach to ’the best estimate,’

the likelihood function as ”relative measure” can assist students statistical literacy. I have

shown in relation to the Grundvorstellung ”relative measure” how this approach can be ob-

tained by visual inspection and calculation of the likelihood ratio. This can alternatively be

done by likelihood intervals. I have chosen to exclude likelihood intervals from my analysis

due to various considerations, such as use of the χ2−distribution which is no longer a part

of the upper secondary school syllabus [Børne- og Undervisningsministeriet, 2024a] and the

prioritization of other perspectives. For those interested in likelihood intervals, Pawitan pro-

vides an introduction to likelihood-based intervals in his book ”In All Likelihood: Statistical

Modelling and Inference Using Likelihood” [Pawitan, 2001b].

Regarding the analysis in ’6.2.4 the Grundvorstellung ”relative measure”’, the likelihood

function and MLE are legitimized by relativity because it:

• F1: Gives students a tool to compare two hypotheses relative to each other.

• F2: Provides students with tools to explore statistical evidence and the reliability of

estimates. However, it does not offer definitive answers, but should be considered as a

statistical analysis tool.
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• F3: Takes the importance of the sample size n into account.

• F4: Has more than one mode of representation. Relativity is reflected both in the

visual representation and in the calculation of the likelihood ratio.

• F5: Contributes overall to the development of students’ statistical literacy: applying

statistical knowledge and making statements about statistical evidence.

6.4.2 The ”Generality” Perspective

The generality of MLE means that it can be applied in many different settings. This is due

to the fact that MLE is a general technique that is not limited to a specific type of sta-

tistical model [Lauritzen, 2023]. Moreover, the method can be applied to both continuous

and discrete data. This enables us to make exercises that are based on various different

stochastic situations. There may be other advantages, and also some limitations associated

with introducing more types of statistical models to upper secondary school students. I shall

now show an example highlighting some limitations and advantages. I will later, in relation

to developing a didactical design, discuss the limitations of teaching MLE in relation to the

target group.

As already mentioned, the binomial and normal distributions are included in the A-level syl-

labus [Børne- og Undervisningsministeriet, 2024a]. Therefore, these distributions are obvious

choices to work with in an optional topic about likelihood functions and MLE. Alternative

distributions that can be explored include the exponential distribution, which can be used

to model situations involving waiting times, the Poisson distribution, which can be used to

model accidents or cases of illness over a period of time [Hadi and Sahib, 2023], and the hy-

pergeometric distribution, which for example can be used to work with the Lincoln-Peterson

method of mark and recapture [Pawitan, 2001a]. I will focus on the hypergeometric distri-

bution since it highlights certain strengths and limitations.

Example 4: The Lincoln-Peterson method of mark and recapture

The Lincoln-Peterson method of mark and recapture is a technique used to count individuals

in a population. The method starts by marking a subset of the population. Then a sample
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is taken, and the number of previously marked individuals in the sample is recorded. This

method is commonly used to count wild animals. The proportion of marked and unmarked

individuals provides an estimate of the population size N [Watkins, 2011].

The variables in the method: N is the total population size, t is the number of animals

marked in the beginning of the experiment, k is the size of the sample (number of captured

animals) and r is the number of marked animals in the sample. In the Lincoln-Peterson

method t and k are chosen before the experiment and r is the observed number of marked

animals. Then the purpose is to estimate the total population size N , which is unknown

[Watkins, 2011]. The likelihood function for N is the hypergeometric distribution

L(N) =

(
t
r

)(
N−t
k−r

)(
N
k

) .

When determining the MLE, it is not a problem that data are discrete (as shown in the case

with the binomial model). One can just use the Grundvorstellung ”solution to `′(θ) = 0”

since the parameter space is continuous so the derivative `′(θ) makes sense. However, for the

hypergeometric distribution where the parameter space is countable, one can no longer rely

on taking the derivative with respect to N [Watkins, 2011]. Instead, one can use the ratio of

the likelihood values for the successive value of N , namely L(N)
L(N−1)

. To find the maximum of

L(N), one can determine when this fraction is strictly smaller than 1 and when it is strictly

larger than 1. By the calculations in appendix D, one can see that

L(N)

L(N − 1)
> 1 ⇔ N <

tk

r
.

This shows that the function L(N) is maximized at N = b tk
r
c.

Then the MLE is N̂MLE = b tk
r
c [Watkins, 2011].

The point of introducing this method is foremost to work with an engaging example with

data grounded in the real world. The Lincoln-Peterson method is an example of how one can

contextualize the likelihood approach. As shown in appendix D, the Lincoln-Peterson method

is derived using mathematical concepts that occur in the school textbooks I have looked at

in Material List. These concepts include the factorial, arithmetic rules of fractions and

inequalities. Nonetheless, I think the calculations involved in appendix D are quite heavy
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and the conclusion that L(N) is maximized at N = b tk
r
c is conceptually difficult. I think that

the method poses some limitations in terms of calculation and conceptual difficulty. This

leads me to the next key point: Not all statistical models are equally suitable for applying the

MLE when teaching upper secondary school students. If one still wishes to work with such

examples (e.g., the Lincoln-Peterson method), I suggest the maximum likelihood estimator

can be identified graphically instead of though calculations. Alternatively, it can be used in

student projects where the subject can be explored in more depth.

The advantages of the ”generality” perspective can be summarized as follows:

• G1: MLE is a technique that allows for working with various types of stochastic

situations and statistical tasks.

• G2: The problems can be motivated by real-world examples.

The analysis has shown that the generality of MLE has some limitations in an upper sec-

ondary school context, since some statistical models are difficult to work with.

6.4.3 The ”Coherence and Repetition” Perspective

This perspective is about the ability to create strong connections between the syllabus in

mathematics and statistics. As mentioned in the section about the theoretical framework,

statistical reasoning and mathematical reasoning has its own distinct characteristics. Despite

these differences, both subjects belong to the same upper secondary school subject and syl-

labus. The positioning of statistics within upper secondary school mathematics sets certain

boundaries for the statistical content. For instance, it seems essential to create a strong link

between mathematics and statistics [Scheaffer, 2006]. The situatedness of statistics in school

mathematics as is the case in Danish upper secondary school is illustrated in Figure 9.

A strong coherence between mathematics and statistics means that the two fields are taught

in a way where they strengthen each other and the ”marriage” between them is legitimized

[Scheaffer, 2006]. For instance, students should understand why statistics is a part of the

mathematics syllabus so that it does not feel like a disconnected topic unrelated to the

rest of the core content in the syllabus, but they should also know the distinction between
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mathematics and statistics [Scheaffer, 2006]. This means that students both perceive the de-

marcation between statistical reasoning and mathematical reasoning and perceive a general

coherence between statistics and mathematics, allowing students to identify shared traits

and fundamental ideas common to both disciplines [Scheaffer, 2006]. This can according to

education researcher Randall E. Groth be achieved by that a shared problem space between

the disciplines become a larger part of the content in school mathematics [Groth, 2015].

Figure 9: The Situatedness of Statistics in School [Weiland, 2019].

In the following, I will argue that MLE creates a strong connection between the two branches

of upper secondary school mathematics: functions and calculus (classes of functions, func-

tion analysis and differential calculus) and statistics and probability. In doing so, I also show

that MLE creates coherence between statistics and other fields of mathematics.

The method of MLE touches fundamental ideas that are important to both mathematics

and statistics such as modelling, representation and estimation. The examination of funda-

mental ideas underlying MLE builds on my own analysis, but some more general notions

of modelling, representation and estimation relies on Gail Burrill and Rolf Biehlers article

”Fundamental Statistical Ideas in the School Curriculum and in Training Teachers” [Burrill

and Biehler, 2011].

• The fundamental idea of modelling. Within mathematics, the notion of a model

is a mathematical object (a function), interpreted as a simplification or idealization of

reality [Burrill and Biehler, 2011]. This idea is also central to statistics and the ”sta-

tistical model” concept. A difference is that mathematical modelling tends to ignore

variability and uncertainty. This, on the other hand, is one of the key ingredients of
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the fundamental idea ”modelling” in statistics [Burrill and Biehler, 2011]. The likeli-

hood approach underscores the fundamental idea of modelling in both a mathematical

and a statistical sense. Mathematical modelling gives the mathematical language to

formalize the structural parts of the statistical model. Modelling in a statistical sense

deals with the stochastic part of the model and its contextualization.

• The fundamental idea of representation. The fundamental idea of representation

in mathematics is about shifting between different modes of representation [Burrill

and Biehler, 2011]. In relation to likelihood functions, this includes the semantic

understanding of the function as a ”reversed density” versus the visual representation

of the likelihood function. The fundamental idea of representation in statistics is as a

key tool for analysis [Burrill and Biehler, 2011]. In relation to likelihood functions, I

use visual inspection of the likelihood graph to analyse the grundvorstellung ”relative

measure”.

• The fundamental idea of estimation. The fundamental idea of estimation in

the mathematical sense is done by proportional reasoning: this means to transmit

the features of the sample directly to the whole population. In other words, one

assumes a perfect proportional relationship between the two [Burrill and Biehler, 2011].

Calculating the MLE and choosing PθMLE
as the underlying data-generating function

behind some phenomena support proportional reasoning. The fundamental idea of

estimation in statistics puts emphasis on data and the uncertainty associated with

it. Some of the key ingredients in this are: (1) The intuition of ”weakness”, that

the information solely comes from data and therefore it might not be possible to say

anything certain about the population. (2) The stochastic component in the statistical

model: acknowledging that a sample is non-reproducible, meaning there will always be

variations from sample to sample, and (3) The inclusion of relative likelihood to assess

the reliability of an estimate.

I conclude that the likelihood function and MLE relies on the fundamental ideas: modelling,

representation and estimation — all essential to statistical reasoning and mathematical rea-

soning. In addition to connections created by fundamental ideas, MLE also establishes more
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concrete connections to other topics or concepts in the official syllabus. I will used these

connections to justify why it is within reach to teach MLE and how repetition plays an

important role in the perspective ”coherence and repetition”. The topic is recognizable due

to its many links to the core mathematical (and statistical) content in syllabus, which may

give students a sense of familiarity and confidence in the subject. This I will explain through

a connection diagram in figure 10, which I have developed using the A-level syllabus, Ma-

terial List and my previous analysis on the ”MLE” concept.

The column in the middle of Figure 10 consists of four central steps in determining the MLE

building on the Grundvorstellung ”solving `′(θ) = 0”:

A: Write down the likelihood function.

B: Take the natural logarithm of the likelihood function.

C: Obtain the score function and solve the score equation.

D: Check that the MLE estimator corresponds to a maximum.

The left and right columns show various connections, illustrating the core content of the

A-level syllabus occurring in the central steps. These include core content such as function

analysis, differential calculus, probability, and logarithmic functions [Børne- og Undervis-

ningsministeriet, 2024a]. Thus, the diagram demonstrates why MLE could be considered as

a shared problem space between mathematics and statistics

• with (A) writing down the likelihood function (as well as interpretations on likeli-

hoods and MLE based on the Grundvorstellung ”relative measure”) relying on the

probabilistic and statistical knowledge of sampling, statistical models and stochastic.

• and with (B), (C) and (D) relying on calculus and function analysis to solve a opti-

mization problem.

Therefore, MLE is a statistical topic building bridges to the mathematical core content in

the syllabus. The connection diagram in Figure 10 especially shows how the branches of

statistics and functions are being connected though MLE. The year in parenthesis is the

year the concept is typically taught in upper secondary school. This information is based on

the Material List.
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Figure 10: Connection Diagram of teaching MLE in upper secondary school [Appendix B].

The ”coherence and repetition” perspective legitimize likelihood functions and MLE as

”knowledge to be taught”, since it

• H1: Supports fundamental ideas that are prevalent in both statistics and mathematics.

• H2: Creates strong connections between different branches within upper secondary

school mathematics.

• H3: Repeats and extends some topics and concepts from the official syllabus. The

recognition may give students a sense of familiarity and confidence.
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6.4.4 The ”Local Connection” Perspective

In the ”local connection” perspective, I will continue looking into the subject-didactic struc-

ture of MLE. I will argue that different statistical topics such as linear regression, descriptive

statistics, probability and statistical inference are often taught as more or less separate topics,

and depending on the teaching approach, students may struggle to see the interconnections.

Furthermore, I show that MLE can create local connections. For example, one can show

that the least squares method is the same as calculating the maximum likelihood estimate

for ordinary linear models.

The structure of almost every introductory statistics course is to first start with descriptive

and exploratory data analysis, then move into probability, and finally go to statistical infer-

ence [Biehler, 1994]. Biehler warns us that the danger of a syllabus with such a structured

progression is that students get the impression that “EDA (Exploratory Data Analysis),

probability and inference statistics seem to be concerned with very different kinds of applica-

tion with no overlap” [Biehler, 1994, p. 16].

The connection between probability and statistical inference in the likelihood approach is

quite simple. The likelihood function is derived from a probability density function and can

be used as a tool to gain statistical inference. Likewise, a solid foundation of basic prob-

ability concepts is necessary to introduce the ”statistical model” and ”likelihood function”

concept as seen in section 6.1 and 6.2.

One can show that MLE also can create local connection to ordinary linear regression, which

is contained in the syllabus as core content [Børne- og Undervisningsministeriet, 2024a].

Linear regression is used to model the statistical association between two variables x and y

[Watkins, 2011]. The linear regression model is

yi = axi + b+ εi,

where one considers n observations with x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn). The εi

are called the residuals and are assumed to be iid. normal-distributed with mean zero.

I will now show that the MLE is equivalent to the least square method for ordinary linear
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regression. Since εi = yi − (axi + b), one consider it a random variable with parameters a, b

and σ2. The parameter σ2 is considered fixed, so the joint density for ε = (ε1, . . . , εn) is

fa,b(x, y) =
n∏

i=1

1√
2πσ2

exp

(
−(yi − (axi + b))2

2σ2

)
.

The likelihood function for ε then becomes

Lx,y(a, b) =
n∏

i=1

1√
2πσ2

exp

(
−(yi − (axi + b))2

2σ2

)
.

Taking the logarithm of the likelihood function

`x,y(a, b) = log

(
n∏

i=1

1√
2πσ2

exp

(
−(yi − (axi + b))2

2σ2

))

= −n · log
(√

2πσ2
)
− 1

2σ2

n∑
i=1

(yi − (axi + b))2

The first term is constant with respect to a and b and since each term in the sum is positive,

the log-likelihood function is maximized when the sum is minimized. So, I conclude that

finding the MLE is the same as minimizing the sum of squares
∑n

i=1 ε
2 [Watkins, 2011].

The advantages of the ”local connection” perspective can be summarized as follows:

• I1: MLE connects the probability topic and the statistical inference topic.

• I2: MLE can be considered as a generalization of the ordinary least square method.

Therefore, MLE creates a local connection between likelihood functions and the linear

regression topic.

In order to refer to the conclusions in later section, the summaries above have been given a

reference label A1, A2, A3, B1, ...., I1, I2.
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6.5 Overview: Subject Matter Didactic Analysis
In figure 11, I provide an overview of my results in the subject matter didactic analysis. The

figure is a flowchart intended to help organize the analysis. Among other things it illustrates

the relationships between the various concepts, aspects, and Grundvorstellungen.

Topic

Fisher’s

likelihood

approach

and MLE

Other subject-didactic

perspectives

MLE

Likelihood function

Statistical model

Concept

Parametrized

family

Random variable

Aspects

Density

Optimizing

Solution to `′(θ) = 0

Relative measure

Reversed density

Prior assumptions:

structural part and

stochastic part

Grundvorstellung

Relativity

Generality

Coherence and repetition

Local connections

Figure 11: Overview of the Subject Matter Didactic Analysis [Appendix B].
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7 Didactical Design
The didactical design consist of development and analysis of a mathematics textbook chapter

on likelihood functions and MLE. The textbook chapter can be found in Appendix A in

Danish and the textbook chapter can with advantage be accessed before reading any further.

This is due to that the textbook chapter was developed in parallel with the following analysis

on the didactical design. Therefore, I explicitly refer to the textbook chapter explaining my

considerations and design choices along the way. I have approached the didactic transposition

of a textbook chapter through the methodology of didactical engineering. The analysis is

divided into two parts. The first part focuses on the implementation of the design by doing an

institutional analysis (section 7.1). The second part focuses on the praxeological organisation

and the task design by doing an a priori analysis (section 7.2) [González-Martín et al., 2014].

As mentioned in section 2, this thesis does not use the complete methodology of didactical

engineering.

The didactical design should not be seen solely as the textbook chapter, which Kang and

Kilpatrick describe as a static form of knowledge. The design also involves the application

of the chapter into a dynamic form of a teaching practice and an environment [Kang and

Kilpatrick, 1992]. Likewise, in the following my considerations and design choices both

concern the static part of the product (the textbook chapter) and the dynamic part of

implementing the textbook chapter (a contextualization). Since the design has not been

tested in upper secondary school, it can only give rise to a pseudo-contextualization. This

implies that the analysis engages with hypothetical (or imaginary) students, trying to forecast

teaching activities in a real environment [Kang and Kilpatrick, 1992].

The institutional and a priori analyses are carried out in terms of mathematical praxeologies

(ATD) and statistics education research. Besides these theories, the analysis of the didactical

design builds on the conclusions from the subject matter didactic analysis (section 6).
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7.1 Part One: Institutional Analysis
The following analysis deals with the implementation of the design and explores the oppor-

tunities and limitations of the implementation in upper secondary school.

This is done by considering the target group of the design, students’ prerequisites and the

institutional conditions such as the national syllabus and textbooks, and by proposing a

design implementation, as an optional topic.

7.1.1 The National Syllabus in Mathematics

The national syllabus in mathematics (stx), developed by the Danish Ministry of Children

and Education, outlines the official requirements and recommendations for the knowledge to

be taught in upper secondary school [Børne- og Undervisningsministeriet, 2024a]. As late as

in 2024, a new mathematics syllabus was introduced, which is currently in force.

The national mathematics syllabus consist of three distinct course instructions, one for each

level of school mathematics: A, B, and C. In my investigation, I have used the new (2024)

syllabus for A-level, since A-level mathematics students is the target group for my didacti-

cal design. Any syllabus in Danish upper secondary school consists of four sections, first,

the identity and purpose of the subject, second, the core content, third, the organization of

teaching, and finally, evaluation. In addition to the syllabus, a supplementary guide (Vejled-

ning til læreplan) is provided, which offers much greater detail, particularly regarding the

content of the subject [Børne- og Undervisningsministeriet, 2024b].

7.1.2 The Material List

Textbooks in mathematics also play an important role in shaping conditions and constrains

surrounding the knowledge taught in school mathematics. This is because, a course in

mathematics often follows a certain textbook, and the choice of book heavily influence the

teaching practices [Kang and Kilpatrick, 1992].

The selected textbooks in the Material List in section 6.1 represents different questions

regarding conditions, which are useful in my investigation. Some books are chosen to dis-
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tinguish what core content is ”typically” taught in respectively 1st, 2nd, and 3rd year of

upper secondary school: ”Mat A2 stx” [Carstensen, 2021] and ”Lærebog i matematik A3”

[Brydensholt and Ebbesen, 2025b]. Some books are chosen according to the focus on statis-

tics: ”Matemat10k : statistik” [Agermose Jensen and Timm, 2014], ”Sandsynlighedsregning

og statistik” [Clausen et al., 1997] and ”Statistik C” [Gråbæk et al., 2025]. Other materials

represent books with a higher level of complexity or a more theoretical approach: ”Hvad

er matematik?” [Grøn, 2015] and ”Højniveaumatematik. Bind 2” [Hebsgaard and Sloth,

1999]. Having access to different mathematics textbooks has also been useful as inspiration

for writing a textbook chapter myself.

7.1.3 The Target Group

I have determined that the didactical design is intended for students at upper secondary

school (stx) with mathematics at a high level (A-level). Furthermore, it is preferred that

the students are on there third and final year (3.g) of Danish upper secondary school. The

decisions regarding the target group has been made due to the theoretical nature of the topic,

which in my own experience is first taught at university. I therefore assume that success-

fully communicating likelihood functions and MLE to upper secondary students will require

students to have as much prior knowledge as possible. The subject matter didactic analysis

support my assumption regarding the level and complexity of the topic. In particular, the

perspective ”coherence and repetition” show that MLE is an add-on to a lot of the core

content in the mathematics national syllabus.

Referring to the connection diagram in Figure 10 (section 6.4), the calculus and function

analysis required to perform the method of MLE are often taught in the second year of upper

secondary school (according to the Material List). However, density functions and the

normal distribution are usually not introduced until the third year [Brydensholt and Ebbe-

sen, 2025b]. As the subject matter didactic analysis show, density functions are important

for characterizing and understanding the ”likelihood” concept by the ”density” aspect and

the Grundvorstellung ”reversed density”. The design is therefore not intended for first or

second year students, since they do not have all the prerequisites.
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7.1.4 The Basics of Statistics

In this thesis, MLE is not proposed as an alternative to the current syllabus in statistics

and probability, but a supplementary add-on. I think it is important that students, before

approaching a theoretical statistical topic like MLE, already possess an understanding of

basic statistical concepts like frequency, sample, population, central tendency, distribution,

randomness and representativeness. Likewise, statistics education researchers George W.

Cobb and David S. Moore in their paper ”Mathematics, Statistics, and Teaching” [Cobb

and Moore, 1997] argue that an overly theoretical and formal way of doing statistics is not a

instructive way of approaching the basic concepts. In general, less formal and software-driven

methods for teaching statistical inference are commonly emphasized in statistics education

research instead of formal approaches, especially when targeting students younger than 16

[Makar and Rubin, 2017] [Batanero and Borovcnik, 2016]. Since the target group for this

design consists of students aged 17–19, a formal approach may be meaningful if the students

have the right prerequisites. The basic statistical concepts should therefore be prerequisites,

and not a learning outcome of the didactical design. If the students lack the proper statistical

prerequisites, they may not be able to understand what is being taught about MLE.

It is also necessary that the students have a teacher who puts emphasis on statistics and the

basic statistical concepts mentioned above [Scheaffer, 2006]. Both Linda Gattuso and Maria

Gabriella Ottaviani in their paper ”Complementing Mathematical Thinking and Statistical

Thinking in School Mathematics” [Ottaviani, 2011] and Richard L. Scheaffer in his paper

”Statistics and Mathematics: On Making a Happy Marriage” [Scheaffer, 2006] address how

mathematical reasoning and fundamental mathematical ideas dominate school mathematics.

Statistical ideas and ways of thinking are less prominent and may be neglected. I do not

believe the suggested design can be implemented in an environment where statistics have

been neglected or de-emphasized, due to the complexity of the subject matter.

7.1.5 Students Prerequisites

Students should have been through courses about (1) descriptive statistics, (2) probability

and combinatorics, (3) the binomial distribution and binomial test, and (4) the normal
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distribution and density function. According to the national syllabus, these courses should

ideally provide the following statistical prerequisites.

• Empirical materials and statistical descriptors such as the mean and the median.

• The concepts: sample, population and representativeness.

• Stochastic variables and the notation X ∼ bin(n, p).

• Events and independent events and have encountered the latter in relation to tasks

using multiplication of probabilities (known as the multiplication principle).

• The probability mass function of the binomial distribution.

• Estimation of the probability parameter p in a binomial model as the ratio between

the number of successes x and the number of trials n.

• Statistical hypotheses in connection with binomial tests and the notation H0 : p = p0.

• The probability density function of the normal distribution.

[Børne- og Undervisningsministeriet, 2024a]

[Børne- og Undervisningsministeriet, 2024b]

Beyond the statistical prerequisites outlined above, students are also expected to have prior

knowledge in the areas of calculus and function analysis. In order to understand the Grund-

vorstellung ’solving `′(θ) = 0’, students must be able to determine the log-likelihood function

using logarithmic rules, differentiate the function, solve the score equation, and verify that

the solution indeed is a global maximum [E1-E3]. I have identified the following prerequisite

knowledge in the syllabus that students are expected to have.

• Basic rules of logarithmic operations.

• Differential calculus, including arithmetic rules for derivatives.

• Graphical interpretation of monotonicity and extrema, as well as the use of f ′ to

determine extrema and monotonicity, and to construct signs diagrams for f ′.

[Børne- og Undervisningsministeriet, 2024a]
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In addition to this list, the supplementary topic in the second year (2.g) of upper secondary

school could advantageously involve summation (the notation
∑

). If students have encoun-

tered summation notation before, then it will be easier to introduce the product notation

(
∏
). However, if students have not previously encountered summation notation, this may

be a limitation of the didactical design.

7.1.6 MLE as Optional Topic

I suggest implementing likelihood functions and MLE in upper secondary school as an op-

tional topic. This is possible since the new syllabus (2024) allocates 10 percent of the total

teaching time to supplementary content [Børne- og Undervisningsministeriet, 2024a]. Ac-

cording to the syllabus, the following must apply to the supplementary content.

”Det supplerende stof, der skal udfylde mindst 10 pct. af undervisningstiden,

skal uddybe arbejdet med kernestoffet, indeholde nye emner eller metoder og

perspektivere faget med vægt på faglig argumentation.”

[Børne- og Undervisningsministeriet, 2024a, p. 2]

The supplementary content must meet certain requirements, e.g. it should introduce some

new content, while at the same time expand, strengthen or elaborate on the core content in

the national syllabus [Børne- og Undervisningsministeriet, 2024b].

My investigation has shown that likelihood functions and MLE strengthen the core content in

statistics, as well as content across different branches of school mathematics by the ”coherence

and repetition” perspective framed in H1-H3. Several core concepts from the national syl-

labus are extended in the likelihood topic. Among these core concepts are density functions

and statistical models. In the national syllabus, the concept of density function is described

as integrals used to determine ”interval probabilities” [Børne- og Undervisningsministeriet,

2024b]. With C1 and C2, the concept of the density function is expanded by characterizing

and giving meaning to the likelihood function. By the ”statistical model” concept, framed

in A1–A3, the concept of a statistical model is extended from the concrete binomial model

to a general statistical model. This generalization is stated in the ”generality” perspective,

framed in G1 and G2, enabling statistical investigations to be applied to a wide range of
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models. The likelihood approach can thus both elaborate on the work with the binomial

and normal distributions and be extended to other distributions as well. I choose that the

topic will be positioned after teaching the normal distribution and its density function (in

3.g), so that it becomes a natural extension of this.

In general, the likelihood approach can be seen as an extension of statistical inference and

hypothesis testing, which in the national syllabus consist of the binomial test by normal

approximation [Børne- og Undervisningsministeriet, 2024b]. By the ”relativity” perspective,

framed in F1–F5, students can broaden their toolkit for statistical analysis and develop a

deeper understanding of how to interpret statistical evidence.

The national syllabus also states that the supplementary content should put the subject

of mathematics into perspective, with an emphasis on mathematical reasoning [Børne- og

Undervisningsministeriet, 2024a]. In this context, likelihood functions and MLE illustrate

how mathematics (including calculus and classical algebra) can be applied in statistical in-

vestigations and thereby have to do with real-world phenomena. The content of MLE can

therefore shed light on the interplay between mathematical and statistical reasoning. This

is because the derivation of the maximum likelihood estimate relies on mathematical rea-

soning, through the deductive derivation of the log-likelihood function and the identification

of its global maximum. However, it is based on data and statistical assumptions — both

elements that belong to statistical reasoning and involve an inductive approach. Similarly,

the analysis and interpretation of the likelihood function and the maximum likelihood esti-

mate, based on the Grundvorstellung of “relative measure,” as framed in D1–D3, cannot be

understood solely through mathematical reasoning. Rather, my investigation in the subject

matter didactic analysis shows that the interpretation of MLE should involve critical statis-

tical reasoning and statistical literacy (F1-F5).

This perspective, relating types of reasoning, can more generally be understood as the inter-

play between two dimensions of school mathematics: pure mathematics (with mathematics

as a structure) and the practice-oriented dimension (with mathematics as a model), as de-

scribed by Jens Christian Larsen and Kasper Bjering Søby Jensen in their paper ”Metoder

og videnskabsteori i, med og om matematik” [Larsen and Jensen, 2019]. Within the likeli-
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hood approach, the practice-oriented dimension is represented through statistical reasoning,

where the real-world contextualization is both natural and essential in the way data is used.

Mathematics as structure is used for deriving the maximum likelihood estimate. A supple-

mentary topic about MLE can provide an interplay between the deductive and cumulative

structure of mathematics and the practice-oriented and inductive nature of statistics. Hence

MLE is a shared problem space [Groth, 2015].

Since the topic of MLE both elaborates on the core content and adds perspectives on math-

ematics with emphasis on mathematical reasoning, it falls within the requirements for sup-

plementary content in the national syllabus. It is worth noting that the official guidelines

specify that such perspectives may be internal to mathematics (and statistics), meaning

there is no requirement for the supplementary content to be seen in perspective to other

upper secondary school subjects [Børne- og Undervisningsministeriet, 2024b].

Finally, I consider the practical implementation of such optional topic in a teaching course.

The percentage allocated to supplementary content is relatively high. Assuming a total of

375 hours over three years, and that each lesson lasts 1 hour and 30 minutes [Børne- og Un-

dervisningsministeriet, 2024d], this corresponds to the possibility of offering optional topics

of around 8 lessons per year. Some of this time will probably be used for feedback on assign-

ments and tests. Based on the textbook material I have written [Appendix A], I propose a

teaching sequence consisting of five lessons. How the chapter and designed activities should

be structured across the five lessons are explained in part two of this analysis.

7.1.7 Limitations

In communicating an academic and theoretical topic (MLE) to upper secondary students

a number of limitations arise. The limitations in this section concerns the fact that both

teachers and students may not have the prerequisites or necessary tools regarding MLE.

According to A. Harradine, C. Batanero and A. Rossman in ”Students and Teachers’ Knowl-

edge of Sampling and Inference” [Harradine et al., 2011], there have been very few studies on

mathematics teachers’ knowledge of statistics. In their paper, they conclude that teachers
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often face many of the same difficulties in understanding statistics as their students do.

Some of the difficulties mentioned in [Harradine et al., 2011] relate to the following.

— Not understanding the difference between randomness and representativeness.

— Believing that statistical evidence can be obtained based on very small datasets.

— Failing to distinguish between the population distribution and the sample distribution.

— Confusing the rejection of a hypothesis with the hypothesis being definitively wrong.

— Struggling to interpret both p-values and confidence intervals correctly.

Even though this analysis does not apply directly to MLE, it does support the fact that

mathematics teachers at this level encounter some challenges in teaching probability and

statistics [Harradine et al., 2011]. The difficulties that teachers experience in a classic sta-

tistical approach (with the binomial test and confidence intervals) would likely also apply to

the likelihood approach. In fact, the difficulties may be even bigger, given that the topic of

MLE is unfamiliar in the context of upper secondary education.

”Uncertainty and statistical inference are challenging ideas for teachers, just as

they are for the general population.” [Batanero and Borovcnik, 2016, p. 342]

A possible limitation would be to find a teacher who is both willing and qualified to teach

MLE. If the teacher is unfamiliar with the topic, or lacks the necessary statistical qualifi-

cations, it could demand considerably more preparation than usual. One can also imagine

that some teachers are simply less interested in statistics, and unlike myself (who believes

statistics is highly important) may feel that the syllabus already includes more than enough

statistics. These limitations strongly depend on teachers’ attitudes toward teaching statistics

and teachers’ training in statistics [Batanero and Borovcnik, 2016].

According to the current study programs at Danish universities, upper secondary school

teachers cover MLE in a mandatory university course [Københavns Universitet, 2025] [Aarhus

Universitet, 2025] [Det Naturvidenskabelige Studienævn SDU, 2025]. Since I have not exam-

ined teachers’ knowledge of likelihood functions and MLE, it is uncertain how much teachers

actually remember about this topic and whether they consider it difficult.

The following limitations concerns the students’ prerequisites. In the subject matter didactic
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analysis, I found that many of the key concepts related to likelihood functions and MLE are

not included in the national syllabus or in the available textbooks form the Materials

List. This created several limitations and challenges, which I have had to navigate while

writing the textbook chapter.

As I concluded in the subject matter didactic analysis, one limitation is that students may

not know what a statistical model is. As mentioned in section 6.1, the ”statistical model”

concept is central to introducing the ”likelihood function” concept. Therefore, I have decided

that statistical models need to be addressed explicitly in the textbook chapter. This is done

using the ”random variable” aspect to characterize statistical models. This aspect is chosen

over the ”parametrized family” perspective partly because some textbooks already use the

random variable framework [Clausen et al., 1997], and partly because it uses the notation

X ∼ bin(n, p), which is included in the core content in the syllabus [Børne- og Undervis-

ningsministeriet, 2024b].

Another limitation, found in my investigation, is that students do not know about iid. ran-

dom variables. In the textbook chapter I do not explain iid. random variables, but I state

the fact that the joint density is a product of the marginal densities. This gives rise to a

blind alley, but the student have seen the multiplication principle which can be used as an

explanation.

A third limitation is that the parameter space might not be continuous. Models with a

countable parameter space such as the hypergeometric distribution makes it impossible to

determine the maximum likelihood estimate using standard differential calculus. This cre-

ates limitations regarding which models are practical to work with. To work around this

limitation, the students are only asked to find the MLE of the hypergeometric distribution

through graphical means. However, I chose to primarily focus on the normal and the bino-

mial distribution in the chapter, so this limitation is not crucial.

Finally, it is a limitation that students do not know multivariate functions. In my analysis,

I found that this becomes relevant, e.g. if one wishes to estimate both the mean and the

standard deviation in a normal model using the MLE method. Therefore, I decided that in
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the chapter’s treatment of the normal distribution, the standard deviation would be treated

as fixed, and only the mean would be considered an unknown parameter. This allowed me

to avoid working with functions of multiple variables.

Some of these limitations could potentially be addressed in a written student project (SRP)

on the likelihood function. In such a project, students are expected to engage more deeply

with new knowledge, e.g. learning about iid. random variables or multivariate functions

[Børne- og Undervisningsministeriet, 2024c].

7.2 Part Two: A Priori Analysis
In the following, I conduct an a priori analysis as part of the didactical design, where I ex-

plain the didactical engineering behind the textbook chapter and the corresponding design

activities in more details. The a priori analysis will include considerations regarding the

structure of the lessons and the task design. The structure of the design concerns fundamen-

tal design choices regarding the selected content and how the content is approached through

tasks that students can solve. The investigation of task design is about students’ possible

strategies and difficulties in solving mathematical tasks. I am analyzing some selected tasks

from the textbook chapter and considering hypothetical solutions.

I make a number of decisions regarding how to organize the design. One consideration, de-

scribed in the previous section (7.1), is concerned with the scope of the design. I decide that

the textbook chapter should correspond to an optional topic and consist of five lessons. Also,

I decide that the chapter should communicate likelihood functions and MLE to students by

teaching them to derive the maximum likelihood estimate and to compare two hypothesis

by their likelihoods. I have chosen, that the textbook chapter should build on the binomial

distribution and the normal distribution, recalling students prior knowledge about the dis-

tributions. I choose to place the optional topic about MLE as a continuation of the teaching

sequence about the normal distribution. Therefore, the normal distribution is included as

the first example in the textbook chapter, serving as a natural extension of the statistical

core content on third year. The maximum likelihood estimate for the normal distribution is

derived in the textbook chapter, while the students derive the maximum likelihood estimate
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for the binomial distribution themselves as an exercise. Finally, the first half of the design is

about MLE, and the second half is about comparing hypothesis relying on my investigation

of the Grundvorstellung ”relative measure”. This means that students should acquire the

competencies (D1) comparing two hypothesis graphically and by calculation, (D2) determine

the likelihood ratio and (D3) be familiar with effect of the sample size n on the likelihood

curve.

To structure my didactical design, I have chosen to build a praxeological reference model

using the tools from ATD. The praxeological reference model has been chosen as an organi-

zational tool for my design because it takes into account the epistemological considerations,

which are essential when transforming ”scholarly knowledge” into a teaching design with

”knowledge to be used” by students [Kang and Kilpatrick, 1992]. In addition, the frame-

work for the reference model is partly based on my own result from the subject matter

didactic analysis, in which I have outlined the organization of the scholarly knowledge and

found what competencies students can acquire. Moreover, the praxeological reference model

developed by R. Hakamata, K. Otaki, H. Fukuda, and H. Otani in the article ”Statistical

modelling in the Brousseaunian guessing game: A case of teacher education in Japan” [Haka-

mata et al., 2022] has inspired the structure of my own model.

In the article about the Brousseaunian guessing game [Hakamata et al., 2022], their ref-

erence model consists of an inferential statistical praxeology PIS, which gives rise to sub-

praxeologies that specify the different schools within statistical inference, e.g. ”Frequentist

school”, ”Fisherian school” and ”Bayesian school”. Since my thesis focuses solely on the

Fisherian approach to inferential statistics, the inferential statistical praxeology is just the

Fisherian praxeology PIS = PFisher. Alongside the inferential statistical praxeology, the

reference model in the article [Hakamata et al., 2022] includes a practice-oriented compo-

nent, consisting of the inquiry of a guessing game denoted as the experimental praxeology.

The practice-oriented part of my design is very different, as it does not encourage students’

autonomous inquiry of a game, but rather follows a more traditional textbook format with

exercises. The practice-oriented part in the didactical design consists of the different con-

textualizations in the exercises and examples included in the chapter. I will denote it by
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PContext. Hence, my reference model consists of two sub-praxeology with the structure:

Pref = PFisher ⊕ PContext.

Before I describe the five lessons, I will elaborate on the praxeology PContext by giving the

context of the exercises and examples. In my design, I have aimed to work with different

forms of contextualization to motivate the content and to use the ”generality” perspective.

This is reflected in the following examples and exercises used in the textbook chapter.

(1) An example on Danish women’s foot lengths and the normal distribution. This example

is inspired by Bo Markussen’s material on the normal distribution [Markussen, 2020]. I

myself added the likelihood approach to the context given in Markussen’s material.

(2) An example about opinion polls for the Danish political party, the Social Democrats.

This is a popular example in school textbooks, when introducing the binomial test. It is used

in [Grøn, 2015], [Clausen et al., 1997] and [Carstensen, 2021]. I myself added the likelihood

approach to the context of opinion polls and votes for the Social Democratic Party.

(3) An exercise on the Lincoln-Peterson method of mark and recapture (this exercise is

about ice birds), which is inspired by an example in [Pawitan, 2001b] about badgers.

(4) Classical examples and exercises with coin tosses and dice rolls. These examples and

exercises was primary inspired by an example by [Etz, 2018].

(5) An exercise about a sauna and a man called Earl, which is also inspired by [Etz, 2018].

In the a priori analysis, I will often refer to the general formulation of a task or technique

in purely theoretical terms of PFisher, but the version students encounter in the textbook

chapter will typically be presented within a contextualized setting of PFisher ⊕ PContext,

following Kirsch’s paradigm of ’making accessible by including the surroundings of mathe-

matics’.

In the following, I will conduct an a priori analysis the five lessons. Exercises in the text-

book chapter can in principle be done without digital tools. However, for some exercises it

is recommended that students use their CAS-tool as a calculator, but not anything more

advanced.
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7.2.1 Lesson 1: Introduction

Refer to appendix A ’1.Introduktion’ on pages 2-4

The design begins by posing the main task to be investigated by the students

T1: ’How can we ”best” estimate a parameter in a statistical model based on a sample?’

This task can also be formulated in terms of the example about women’s foot lengths to

evoke PFisher and PContext, respectively.

PFisher ⊕ PContext := [T1: ’How can we ”best” estimate the average foot length of

Danish women based on a sample?’]

In the first lesson, MLE is not introduced immediately as the solution technique to the task

T1. Instead, the first lesson focuses on the empirical and theoretical background needed to

pose and answer T1. The subject-didactic investigation has shown that MLE both belongs

to the branch of statistics and the branch of functions. Therefore, the praxeological model

consists of probability theory and statistics denoted Θ∗
Prob & stat and functions denoted Θ∗

Func

as theoretical elements. It is mainly Θ∗
Prob & stat that will be supported in this lesson.

After posing T1, the students are asked to recall their prior knowledge about parameters

and estimators in exercises 1.1 and 1.2 [Appendix A, p. 2]. As an activity, some students’

answers may be presented in plenary, so the teacher can evaluate students’ understanding

of parameters and estimates. Misunderstanding these concepts, may cause difficulties when

students later are asked to construct statistical models. The plenary discussion activity may

be continued by the teacher initiating a conversation about ’What does it mean that an

estimate is the ”best”?’ to explore the meaning of T1, since ”best” is a quite vague and non-

mathematical description. The students may suggest that the best estimate for the mean

in the normal distribution is the sample mean. The teacher can motivate T1 by explaining

that we want to support this intuition with mathematical derivations. Otherwise, students

may interpret “best” to mean the most reliable estimate, foreshadowing what some of the

following lessons are about. The teacher should see it as a good thing that the students are

thinking in this direction and mention that they will investigate this later.
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Secondly, the stochastic situation of women’s foot lengths is explained on page 3. I choose

that this subchapter ”1. Introduktion” and the next subchapter ”2. Maksimum likelihood

estimatet for normalfordelingen” [Appendix A] should use women’s foot lengths as a recurring

example, making the topic more accessible for students by including this contextualization.

By using this example, students should explore the ”statistical model” concept and acquire

the competencies A1-A3 with emphasis on (A2) ’explain how stochastic situations can be

translated into mathematical symbolic language’. This is also addressed in exercises 1.3 and

1.4, where students, among other things, are asked to construct statistical models.

To construct the statistical model in exercise 1.4 [Appendix A, p. 4], students have to

switch between different forms of representation from words and data to a formal statistical

description. For this, students can use the ”random variable” aspect with the notation

X ∼ N(µ, σ) or X ∼ bin(n, p). Students may possibly use the strategy of copying the

formulation at the bottom of page 3 [Appendix A]. This is not a bad strategy and it will

likely give the correct result. Assuming that X1, . . . , X56 are independent and N(µ, σ)-

distributed, where µ is unknown. Then, Xi represents the score of student i in the sample for

i = 1, 2, ..., 56. The issues arise later if the student is asked to construct a binomial model.

Then students may construct n = 56 random variables not understanding the structural

difference between the normal model and the binomial model, because the students just

copied the formulation.

It may also be that the stochastic part of the Grundvorstellung ”prior assumptions” causes

difficulties for students. For example, a binomial model (with x = 2 and n = 10) might be

described using X ∼ bin(10, 0.2) with a known proportion p = 0.2. The correct answer is

using X ∼ bin(10, p) with an unknown parameter p. These difficulties may arise because

students struggle to understand the difference between p and p̂. This is why I choose that

students start by recalling their prior knowledge about estimates and parameters. Otherwise,

students may not realize that a parameter represents the population proportion and not

the sample proportion [Batanero and Borovcnik, 2016]. This heuristic difficulty may stem

from a more general misunderstanding about the relationship between the sample and the

population. Some students believe that the representativeness of the sample gives a perfect
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one-to-one correspondence between the sample and the population, and therefore state that

p̂ = 0.2 is the true parameter. This belief is known in the statistics education literature as

the representativeness heuristic [Batanero and Borovcnik, 2016].

7.2.2 Lesson 2: MLE for the Normal Distribution

Refer to appendix A ’2.Maksimum likelihood estimat for normalfordelingen’ on pages 4-7.

This lesson treats T1 in the case of the normal distribution and teaches the students how

to apply the technique of MLE, which in the reference model is denoted τMLE. T1 can

be answered in many different ways, but since I limit myself to the Fisherian praxeology,

PFisher, this naturally restricts the number of possible techniques for solving the task. In

order for students to apply the τMLE, they must first solve the subtask T0.

T0 : ’How is the likelihood function derived?’

The task T0, is solved by deriving the likelihood function using the ”density” aspect. The

technique of using the probability density function (or the point mass probability) to de-

rive the likelihood function is denoted τDensity in the reference model. This is done by

applying the technology of ”reversing” the view on which variable is fixed and which is

varied in the density function, we denote this technology by θ∗Reverse. Other technologies

are also necessary, for example using the multiplication principle to derive the joint den-

sity and logarithmic rules to determine the log-likelihood function. I will not explicitly

include all the technologies in the reference model. Thus, one path of the reference model is

[T0/τDensity/θ
∗
Reverse/Θ

∗
Prob & stat,Θ

∗
Func], which is supported by probability theory and statis-

tics denoted Θ∗
Prob & stat and the branch of calculus and functions denoted Θ∗

Func as theoretical

elements. In this lesson, students will not explore the interpretation of the likelihood func-

tion in details, but just investigate T0 as a subtask in order to answer T1.

The investigation of T0 and T1 can as an activity be conducted through a plenary presen-

tation performed by the teacher, with inserted sessions of exercises. The exercises focus

on training or identifying the technologies used in τDensity and τMLE. In exercises 2.1, 2.2

and 2.4, students train the involved technologies such as taking the logarithm of a product
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or differentiating a sum (
∑

). As said, many technologies are involved in τMLE, including

solving the score equation `′(θ) = 0. I will denote this particular technology by θ∗Score. In

exercise 2.3, students are asked to identify the technologies involved in τMLE by explaining

the equality signs in the derivation of the log-likelihood function, this exercise should be the

main focus of lesson 2. The students can identify the technologies as follows. In showing

that log
(

1√
2πσ2

)
= −1

2
log (2πσ2), one can write

log

(
1√
2πσ2

)
(i)
= log(1)− log

(√
2πσ2

)
(ii)
= − log

(√
2πσ2

)
(iii)
= − log

(
(2πσ2)

1
2

)
(iv)
= −1

2
log
(
2πσ2

)
.

The technologies used here are (i) log(a
b
) = log(a) − log(b), (ii) log(1) = 0, (iii)

√
x = x

1
2

and (iv) log(xa) = a · log(x).

Similar, when showing −
∑n

i=1
1
2
(xi−µ

σ
)2 = − 1

2σ2

∑n
i=1(xi − µ)2, one can write

−
n∑

i=1

1

2

(
xi − µ

σ

)2
(v)
= −

n∑
i=1

1

2

(xi − µ)2

σ2

(vi)
= − 1

2σ2

n∑
i=1

(xi − µ)2.

Here, the technologies are (v) (a
b
)n = an

bn
and (vi)

∑
i a · xi = a

∑
i xi. Besides exploring the

technologies used in T0 and T1, this exercise is also good for repetition of standard calculation

rules, since a lot of such ”standard” technologies are involved in the derivations.

7.2.3 Lesson 3: MLE for the Binomial Distribution

Refer to appendix A ’3.Maksimum likelihood estimatet for binomialfordelingen’ on pages 8-11.

Students are not expected to read the pages 8-11 at home. Considerations has been made

regarding how the textbook chapter can guide the students to work more independently

with τMLE when answering T1. For that reason, I have chosen to structure this lesson on

MLE for the binomial distribution in a quite different way than the preceding lesson on

the normal distribution. The third lesson is mostly based on exercises that guide students

through their own inquiry of deriving the maximum likelihood estimate. The lesson guides

students through the path [T1/τMLE/θ
∗
Score/Θ

∗
Prob & stat,Θ

∗
Func] of the praxeological model. In
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the exercises (3.1-3.11), students are required to apply the technologies that they identified

in the previous lesson.

In the beginning of the third lesson, the example with opinion polls and the Danish Social

Democratic Party is explained [Appendix A].

PFisher ⊕ PContext :=[T1: ’How can we ”best” estimate the probability of voting for

the Social Democratic Party?’]

Afterwards, the students are expected to work in small groups following the instructions of

the textbook chapter. The first two exercises, 3.1 and 3.2, are a warm-up on the statistical

model concept. The statistical model describing votes for the Social Democratic Party is

provided in the chapter. Hence, students are not required to construct the model themselves.

Instead, the lesson practices A1, which was not addressed in details in the first lesson. In

exercise 3.1, students are asked to identify the stochastic part (the variability) of the model

by asking whether two opinion polls would be exactly the same. In exercise 3.2, they are

asked to identify the structural part of the model.

After the warm-up, the instructions in exercises 3.3-3.5 explore the task T0. Since the

students have only just been introduced to the technique τDensity, I have considered how

much guidance the students should get when solving T0. For example, the students are told

that they should insert the specific values n = 1635 and x = 322 into the likelihood function,

and that they should finally arrive at the log-likelihood function:

`322(p) = log

((
1635

322

))
+ 322 · log(p) + 1313 · log(1− p).

The final hint is provided to ensure that students do not proceed with the incorrect log-

likelihood function in the following exercises.

The next exercises focus on τMLE, where students estimate the probability parameter using

MLE. In these exercises, students can develop the competencies E1–E3. The instructions also

aim to introduce students to the likelihood intuition, B1, of ’comparability’ or ’ranking’. In

addition, the students should learn that the interpretation of the likelihood is the probability

of observing the sample given a specific estimate. This interpretation is presented in the blue
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box on page 11 [Appendix A]. In exercise 3.11, students are asked to calculate the likelihood

for some given estimates and rank them in order to train this intuition. Likewise, some

exercises on the likelihood curve are included, both to support the intuition of ”ranking” by

graphically representation and for students to recognize that the likelihood function and the

log-likelihood function have their global maximum for the same value of p.

After students own guided inquiry, some groups may present their findings in plenary. At

this point, the teacher should evaluate whether the students have grasped B1 and whether

they interpret likelihoods correctly. Be aware that students may have done the exercises

thoroughly and with a high learning outcome and at the same time have misinterpreted what

a likelihood is. The correct interpretation of a likelihood is, as mentioned, the probability that

the observed sample (Data) occurs given a specific estimate θ, which is denoted as P (Data|θ).

The probability of the estimate given the observed sample is denoted P (θ|Data) and is an

inverse probability/posterior distribution in Bayes’ theorem. Believing that P (Data|θ) =

P (θ|Data) is a heuristic difficulty that Fisher made himself when he first introduced his

ideas about MLE in 1912 [Edwards, 1974]. Fisher used Bayes’ phrase of inverse probability

in an incorrect way by confusing it with a likelihood. He claims that the maximum likelihood

estimate was the most probable value for the parameter θ. This is wrong since the maximum

likelihood estimator is the estimate making the observed data most likely [Pawitan, 2001c].

As said he made the mistake of reversing the two terms. Since then, the heuristic error of

reversing conditions P (θ|Data) = P (Data|θ) has proven to be one of the most pervasive

mistakes in statistical terminology [Edwards, 1974]. The mistake does not lie in swapping

the two probabilities in calculation, but in the interpretation. Fisher later, in 1922, specified

the method for MLE in terms of likelihood functions and admitted his mistake from 1912

[Edwards, 1974].

Based on the heuristic error of reversing conditions, students may hypothetically answer

exercise 3.7 by writing: ”The maximum likelihood estimate is the best estimate because it

is the most probable value”. Also, students may answer exercise 3.11 by writing: ”Since

L322(0.2) = 0.0236, we can conclude that the probability, that the hypothesis p̂2 = 0.2

is true, is 0.0236”. These errors advocate how wrong it can go on an interpretative level.
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This difficulty was also spotted in the Japanese investigation [Hakamata et al., 2022] on the

Brousseaunian guessing game.

”We have seen that the students naïvely replaced the (conditional) probabil-

ity—which is, de facto, the likelihood in this context—with its inverse probability.

Teachers tend to feel guilty when they overlook misunderstandings of their stu-

dents. Indeed, mistakes are usually regarded as antididactic events under the

paradigm of visiting works. By contrast, under the paradigm of questioning the

world, any possible flaw involved in knowledge needs not always be avoided in

advance; in fact, it can be welcomed in inquiry as probably didactic events.”

[Hakamata et al., 2022, p. 11]

Even though my study does not work under the paradigm of questioning the world, I would

still suggest, that as a teacher you let your students make the mistake as a didactic event.

The teacher can then explain to the students that a likelihood is not a probability by showing

with an example that the area under the likelihood curve is not 1, just as I did in the subject

matter didactic analysis under the Grundvorstellung ”reversed density” (6.2).

If we divide the likelihood function with the area under its curve, then we get a function

that integrates to 1. This scaling of the likelihood function is called the normalized likelihood

[Pawitan, 2001b]. Using the opinion poll example in lesson 3 the normalized likelihood

function is

Lnorm
322 (p) =

L322(p)∫ 1

0
L322(p)dp

.

The interpretation of the normalized likelihood depends on whether you use a Bayesian or

Fisherian view. In Bayesian statistics, the normalized likelihood will just be the inverse

probability/posterior density when the axiomatic prior is uniform [Pawitan, 2001b]. In Fish-

erian statistics, axiomatic priors are not used, and the normalized likelihood can only be

interpreted in terms of a likelihood even though it integrates to 1 [Pawitan, 2001c].

The question is then why the heuristic error of reversing conditions occurs in the interpre-

tation of likelihood. The classic case, where two events A and B are confused such that

the conditional probability P (A|B) is mistaken for its inverse P (B|A), is well-documented
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in the statistics education literature [Sotos et al., 2007]. It is often explained by students’

misunderstanding of what ’A given B’ actually means [Sotos et al., 2007]. However, this is

not quite the same as confusing P (θ|Data) with P (Data|θ). In the setting of MLE, we have

observed some data, so it seems logical to think of data as ’given’. Likewise, the object of

interest is the estimate and hence it seems logical to interpret the likelihood as the probabil-

ity of an estimate given data. The error may stems from students not understanding what

is stochastic and what is not.

7.2.4 Lesson 4: Comparing Two Hypothesis

Refer to appendix A ’4. Sammenligning af to hypoteser’ on pages 12-16.

The forth lesson corresponds to pages 12–16, which the students are expected to have read at

home. The last two lessons (4 and 5) treat the Grundvorstellung ”relative measure”, which

gives rise the following tasks.

T2: ’Which of the two hypotheses θ̂1 and θ̂2 best describes the observed data?’

T3: ’How can we estimate the parameter θ reliably?’

Students can solve T2 and T3 by the technique of comparing two hypothesis θ̂1 and θ̂2 by

their likelihoods. This technique is denoted by τRM (relative measure). The fourth lesson

focuses on T2, while the fifth lesson focuses on T3.

This lesson starts by posing T2 and introducing the concept of hypotheses, thereby letting

students recall their prior knowledge from the second year course on the binomial test. The

goal is to recall students’ understanding that a hypothesis can be viewed as an estimate.

The chapter presents the technologies needed to compare and rank hypotheses by their

likelihoods, and it uses a recurring dice example to show how the technologies are applied.

The dice example consists of a binomial model with n = 10, x = 7 and unknown probability

parameter p [Appendix A, p. 13]. The first technology that students can apply is a direct

comparison of the likelihoods using the inequality sign. This technology is denoted by θ∗Ineq..
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If p̂1 = 5
6
and p̂2 =

1
6
, then student can use the calculation,

L7(p̂1) =

(
10

7

)
·
(
5

6

)7

·
(
1

6

)3

= 0.155

L7(p̂2) =

(
10

7

)
·
(
1

6

)7

·
(
5

6

)3

= 0.00025

to argue which hypothesis that best explain data x = 7 by θ∗Ineq.: L7(p̂1) > L7(p̂2). Secondly,

students can apply the technology of the likelihood ratio, LR = Lx(p̂1)
Lx(p̂2)

, which is denoted θ∗LR.

The students can use the calculation,

LR =
L7(p̂1)

L7(p̂2)
=

(
10
7

)
·
(
5
6

)7 · (1
6

)3(
10
7

)
·
(
1
6

)7 · (5
6

)3 =

(
5
6

)4(
1
6

)4 =
54

64

14

64

= 54 = 620

to state that the data is 620 times more likely to occur under p̂1 than under p̂2.

The teacher must be aware that the likelihood ratio is not to be understood in terms of

inverse probability. For example, students may conclude that p̂1 is 620 times more probable

than p̂2, which is not correct.

Another difficulty can be that p̂1 is misunderstood as the deterministic true hypothesis, while

p̂2 is misunderstood as the false hypothesis, because of L7(p̂1) > L7(p̂2). This misunderstand-

ing may come from the topic of binomial tests, where hypotheses are either rejected or not

rejected, which can give the misconception that one hypothesis is always true and the other

is then false. In a study of misconceptions in statistical interference [Sotos et al., 2007], it is

explained how the misconception about deterministic false and true hypotheses comes from

mathematical reasoning. Mathematical derivations are often associated with the proof that

something is true. However, calculating the likelihoods is not a mathematical proof that one

hypothesis is true and the other is false. Students’ mathematical reasoning can therefore

be disruptive in relation to using statistical knowledge in decision-making processes and for

developing statistical literacy [Sotos et al., 2007].

Subchapter 4.5 is an exercise regarding coin tosses, which is very similar to the dice example.

Students must formulate and compare hypotheses by calculating the likelihood ratio. In the

final part of the exercise, students must explain what the likelihood ratio tells us about the

two hypotheses. Subchapter 4.6 is an exercise, which is based on the hypergeometric proba-

bility distribution and the Lincoln-Peterson method. In the subject matter didactic analysis,
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I concluded that the maximum likelihood estimate for the hypergeometric likelihood function

could not be derived by solving the score equation θ∗Score. Therefore, I have chosen a graphi-

cal approach, where students must read the maximum likelihood estimate on the likelihood

curve and graphically compare it to other hypotheses. The graphical approach gives rise to

a third technology that can be used to compare hypotheses, namely by visual inspection,

which is denoted θ∗V I in my reference model. The visual inspection can support students’

understanding of likelihood as a ”relative measure” according to Kirsch’s paradigm of ’ac-

cessibility by changing the mode of representation’. The task also has the subject-didactical

purpose of emphasizing the generality of the likelihood approach by showing students how

the techniques and technologies can be extended to other distributions. When students use

θ∗V I the teacher should emphasize that it is not the absolute distance between the heights on

the likelihood curve, but rather the relative distance (the ratio) that make sense. The path of

the praxeological model described in this lesson is [T2/τRM/θ∗Ineq., θ
∗
LR, θ

∗
VI/Θ

∗
Prob & stat,Θ

∗
Func].

7.2.5 Lesson 5: The Effect of Sample Size n

Refer to appendix A ’5. Betydningen af stikprøvestørrelsen n’ on pages 17-20.

The last lesson investigates the task

T3: ’How can we estimate the parameter θ reliably?’

The purpose of this lesson is for students to achieve the competence (E3) recognizing that

the reliability of the maximum likelihood estimate depends on the sample size n. The lesson

builds on an example with coin tosses to explain the effect of the sample size. It is not part

of my design, that students perform the coin tosses themselves, since the effect of n should

be explored by using the Fisherian praxeology PFisher and not by an informal approach.

Based on subchapter 5.1 [Appendix A, p. 17], the teacher poses T3 and explains the example

with coin tosses, where two binomial experiments are performed. One experiment with

n = 10 coin tosses and one with n = 50, and where ’success’ is getting a head.

PFisher ⊕ PContext := [T3: ’How can we estimate the probability p of getting head

reliably?’]
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In the first experiment, we observe x = 8 and in the second experiment x = 40. To investigate

T3, students must use the likelihood approach and apply the techniques they know from this

course, τMLE and τRM . The students may try τMLE to determine the maximum likelihood

estimate for both examples. The students can apply the technologies θ∗Reverse and θ∗Score or

directly apply the formula p̂MLE = x
n
. Students may recognize that the sample size do not

effect the maximum likelihood estimate, since 40
50

= 8
10

= 0.8, and move on to the second

technique τRM . To use τRM , student must formulate hypotheses, for example p̂1 = 0.75 and

p̂2 = 0.5, determine L8(p̂1), L8(p̂2), L40(p̂1) and L40(p̂2) and compare the likelihoods.

L8(0.75) =

(
10

8

)
· 0.758 · (1− 0.75)2 = 0.30199,

L8(0.5) =

(
10

8

)
· 0.58 · (1− 0.5)2 = 0.04394,

L40(0.75) =

(
50

40

)
· 0.7540 · (1− 0.75)10 = 0.13982,

L40(0.5) =

(
50

40

)
· 0.540 · (1− 0.5)10 = 0.000009.

The students may now conclude that L8(0.75) is not the same as L40(0.75) indicating that

the likelihood function is effected by the sample size n. It may be misunderstood that the

hypothesis θ̂1 = 0.75 is best supported by the small sample since L8(0.75) > L40(0.75), but

one cannot compare likelihood functions from different sample sizes.

Using τRM correctly, students should apply technologies θ∗V I or θ∗LR to compare the like-

lihoods. Using the technology θ∗LR, students can calculate LR10 = L8(p̂1)
L8(p̂2)

= 6.41 and

LR50 = L40(p̂1)
L40(p̂2)

= 10798.18. Then they should recognize that the statistical evidence for

p̂1 = 0.75 compared to p̂2 = 0.5 becomes higher for increasing n.

With regards to the technology θ∗V I , plotting the scaled likelihood functions with CAS-tools

does not seem to strengthen the understanding of the topic, therefore this should be facil-

itated by the teacher. From the plot (Figure 6 in the chapter) the students can describe

the shape of the two likelihood curves. Further, the teacher can ask the students what they

think the likelihood curves for n = 100 with x = 80 and n = 5 with x = 4 will look like.

Finally, students can sit in groups and work on exercise 5.1 and the exercise in subchapter 5.4.

Both exercises relate to the understanding of the relationship between the likelihood function
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and the sample size. In exercise 5.1, students can either set up the equation L5(p̂1) = L5(p̂2)

or use θ∗LR to set up the equation L5(p̂1)
L5(p̂2)

= 1. Here, students must use the interpretation of

a likelihood as a ”relative measure” to understand what it means that the sample is equally

likely under two hypotheses.

In subchapter 5.4 there is a sub-exercise of the same nature, but the sample size must now

be determined such that the data are sixteen times more likely under one of the hypotheses

compared to the other. Here, students must set LR = 16 and isolate for n. The student

should observe that for the likelihood ratio to increase from 8 to 16 the sample size must

also increase from 3 to 4.

7.2.6 Overview: Praxeological Reference Model

The praxeological organization consisted of three main tasks T1, T2 and T3. The organization

start with the method of MLE by posing the task T1. The findings from the subject matter

didactic analysis, particularly through the Grundvorstellung ”relative measure”, plays a

significant role in the design and serves as the foundation for posing the tasks T2 and T3. All

three tasks depends on the ability to derive the likelihood function, which lead to the subtask

T0. The model is developed to organize the different pathways that the design is intended to

pursue. As such, it offers a comprehensive overview of the design with orientation towards

practice. The complete praxeological reference model of the didactical design is

Pref = PFisher ⊕ PConext

= [T0, T1, T2, T3/τDensity, τMLE, τRM/θ∗Reverse, θ
∗
Score, θ

∗
Ineq., θ

∗
LR, θ

∗
V I/Θ

∗
Prob & stat,Θ

∗
Func].

The first lesson is not build on a specific path in the reference model, but serves as an

introduction to the topic. Its primary purpose is to elaborate on the theoretical element

Θ∗
Prob & stat by introducing a general statistical model. The purpose is to include the perspec-

tive of ”generality” (G1-G2) in the didactical design.

The second lesson builds on the path [T1/τMLE/θ
∗
Score/Θ

∗
Prob & stat,Θ

∗
Func], where students

access τMLE by identifying technologies that they already know from mathematics. Students

should recognize knowledge/technologies from the normal distribution, logarithms and dif-
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ferential calculus, which adds the ”coherence and repetition” perspective [H1-H3] to the

didactical design.

The third lesson also builds on the path [T1/τMLE/θ
∗
Score/Θ

∗
Prob & stat,Θ

∗
Func], but now the

binomial distribution is used as case. The goal is for the students to work more indepen-

dently with achieving τMLE for the binomial distribution. Also, the goal is to strengthen the

perspective of ”local connections” with connection to the probability and binomial distribu-

tion topic in 2.g. Thereby building local connections between the concepts of ’probability’

and ’likelihood’ as well as between the ’normal distribution’ and ’binomial distribution’, so

that students experience that the different topics in school statistics are related (I1). My

design do not explicitly cover the connection to the least square method (I2), this can be

further explored in additional exercises or student projects.

The fourth lesson builds on path [T2/τRM/θ∗Ineq., θ
∗
LR, θ

∗
VI/Θ

∗
Prob & stat,Θ

∗
Func] and the fifth

lesson builds on path [T3/τRM/θ∗Ineq., θ
∗
LR, θ

∗
VI/Θ

∗
Prob & stat,Θ

∗
Func]. The purpose is to teach

new techniques and technologies so that students can approach MLE more critically and

thereby develop statistical literacy. Thus, the design includes the perspective of ”relativity”,

which is framed in F1-F5.
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In Figure 12, an overview of the praxeological reference model is given, which is based on

the previous investigation in the a priori analysis.

Fisher’s likelihood approach and the real-world context of the exercises.
Pref = PFisher ⊕ PContext

How is the like-

lihood function

derived?

T0
How can we

”best” estimate

a parameter in a

statistical model?

T1

Which of the two

hypotheses θ̂1 and

θ̂2 best describes

data?

T2

How can we esti-

mate the parame-

ter θ reliably?

T3

Deriving the like-

lihood from the

probability density

function.

τDensity

Calculating the

maximum likeli-

hood estimate.

τMLE

Comparing θ̂1 and θ̂2 by their likelihoods

or comparing θ̂1 and θ̂2 by their likeli-

hood for different sample sizes n.

τRM

Lx(θ) = fθ(x),

`x(θ) = log(Lx(θ))

θ∗Reverse

Solution to

`′x(θ) = 0.

θ∗Score

L(θ̂1) > L(θ̂2)

Likelihood ratio: LR = L(θ̂1)

L(θ̂2)
.

Visual inspection.

θ∗Ineq.,θ∗LR, θ∗V I

The branch of probability theory and statistics,

and the branch of function analysis and differential calculus.

Θ∗
Prop & stat,Θ

∗
Func

Figure 12: Praxeological reference model [Appendix B].
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8 Discussion
The idea of introducing upper secondary school students to likelihood functions and MLE

is investigated in this thesis applying a subject matter didactic analysis and a didactical

design. One of the strengths has been to thoroughly and comprehensive explore likelihood

functions and MLE, given that it is a totally new didactic transposition in a upper sec-

ondary school context. The subjective didactic analysis complements the didactical design

effectively. Whereas the former emphasizes the theoretical and disciplinary elaboration of

the content, the didactical design contains a more student- and context-oriented perspective.

Another strength of my study is that I not only examine how MLE extend the statistical

content in school mathematics, but also how MLE strengthens the subject of mathematics

more broadly and contributes to coherence (in the ”coherence and repetition” perspective).

For this, the subject-didactic approach is highly beneficial in understanding how concepts

are connected and structured in scholarly knowledge, while the context-oriented view is nec-

essary to gain insight into the organization of Danish mathematics education.

Instead of investigating how MLE strengthens school mathematics and creates coherence,

and developing a didactical design, other approaches could have been taken and different

research questions explored. Another approach investigating likelihood functions and MLE

could have been based on a comparative study, comparing the classical ”frequentist” ap-

proach, the Bayesian approach and the likelihood approach to statistical inference. In such

a study, one could have examined the subject-didactic advantages and disadvantages of the

three approaches in relation to upper secondary school mathematics — and investigated

whether it might be beneficial to combine different approaches to statistical inference in

teaching. Within the Danish context, I think it is particularly relevant to examine the likeli-

hood approach in relation to the classical approach involving binomial tests and confidence

intervals. Notice that today only binomial test is core content (and not confidence intervals)

in the Danish national syllabus [Børne- og Undervisningsministeriet, 2024a]. Students can

perform a binomial test using their CAS-tool, which provides students with the acceptance

region. They can then determine whether the observed data falls within or outside this
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region and, on that basis, decide whether to reject the hypothesis as in [Knud Nissen, 2013].

Of course, teaching the binomial test can be approached in many different ways, but the

negative impacts of statistics-as-magic/black-box is plausible [Pedersen and Jankvist, 2021].

It would have been interesting to investigate likelihood functions in comparison to the core

statistical content to see whether the likelihood approach could serve as a more analog al-

ternative. Based on my investigation, the Grundvorstellung ”relative measure” and ”solving

`′(θ) = 0” supports a more analog approach. However, a comparative study focusing on

digital and analog technologies would have been essential to underpin such statement.

One criticism of my study is that the textbook chapter has not been tested, which would

have given rise to empirical data. When, as in this study, there is neither much literature to

support the likelihood approach nor an empirical study conducted, the investigation of stu-

dent strategies and difficulties becomes somewhat limited. Overall this makes it difficult to

interpret the results of the a priori analysis and to identify which practical considerations the

study may be lacking. Although I do not have any empirical material available, I critically

reflect on the limitations of introducing likelihood functions and MLE in upper secondary

school education. In particular, I have assessed the topic’s theoretical nature and have tried

to be realistic about the high demands regarding students’ prerequisites. One could have

considered lowering expectations and organized a different type of material. For example a

didactical design only deriving the maximum likelihood estimate for the binomial distribu-

tion. In that case, the normal distribution and the density function could have been avoided

as a prerequisite. The part building on the Grundvorstellung ”relative measure” comparing

different hypothesis could also have being avoided. The proposed topic would then lower

the prerequisites a lot, but would lose the generality of MLE (the ”generality” perspec-

tive) and development of students’ statistical literacy (in the ”relativity” perspective). On

that basis, the design would lose its potential to strengthen the statistical content in school

mathematics and mostly become an exercise in differential calculus and thus strengthen the

mathematical content and not the statistical content. It has been essential that my didacti-

cal design includes the ”generality” perspective and the ”relativity” perspective in answering

my main research question, which involves the strengthening of the statistical content of

school mathematics.
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9 Conclusion
The main research question investigated in this thesis is ”How can likelihood functions and

maximum likelihood estimation be introduced in Danish upper secondary school mathematics

in a way that strengthens the content in statistics and establishes connections between con-

cepts in statistics, probability and mathematics?”.

This question has been answered by a subject matter didactic analysis and a didactical de-

sign, which have been used to organize a textbook chapter on likelihood functions and MLE.

Both analyses have contributed to insights on introducing the topic. The analyses comple-

ment each other, since they have different purposes and objects of analysis. In the subject

matter didactic analysis, I analyse the scientific topic, describing the content in terms of

aspects and Grundvorstellungen. The analysis provide a broad overview of the scholarly

knowledge and help to unpack the ”statistical model”, ”likelihood function” and ”MLE”

concepts. Moreover, the analysis supports subject-didactic arguments for why one should

teach likelihood functions and MLE. The didactical design contains an institutional analysis

and an a priori analysis. The content is approached from a completely different angle by

the didactic engineering methodology looking into design implementation, task design and

institutional conditions. This is useful to address what is feasible in practice, considering

the different actors involved such as teachers, students and the national syllabus. By the

a priori analysis the statistical knowledge is transformed and organized in a didactical de-

sign targeting upper secondary school students using praxeological organization. I consider

the comprehensive didactical investigation to be useful in addressing the research questions,

since the topic itself is largely unexplored in an upper secondary school context.

1.a) What knowledge will students acquire when working with the concepts of

statistical model, likelihood function and MLE?

I have identified a range of competencies that students can acquire. With regard to statisti-

cal models students may learn to construct a statistical model and recognize the stochastic

and structural part of the model. Working with likelihood students may learn to interpret

the likelihood function in terms of a density function with reversed variables. Furthermore,
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the investigation showed that in order to understand likelihood functions, students need

competencies that support the Grundvorstellung ”relative measure,” since likelihoods can

only be interpreted in comparison with other likelihoods. Students will in this process be

acquainted with likelihood ratio and visual inspection of the likelihood curve. Finally, with

regard to MLE students may learn to solve the score equation using differential calculus and

basic function analysis.

2.a) How can likelihood functions and MLE strengthen the content in statistics

in upper secondary school?

To legitimize MLE as knowledge to be taught, four subject-didactic perspectives has been

identified. Three of these perspectives strengthen the content of statistics in school mathe-

matics. Firstly, the ”relativity” perspective, as framed in F5, contributes to the development

of students’ statistical literacy by encouraging them to apply statistical knowledge and make

statements based on statistical evidence. Secondly, the ”generality” perspective strengthen

the statistical content by engaging students with various types of stochastic situations and

statistical tasks, and thereby supporting statistical reasoning. Thirdly, the ”local connec-

tion” perspective strengthens the statistical content by creating local links between different

topics within statistics. Moreover, my discussion considers how the likelihood approach

could serve as an analog alternative to the current digital approach (statistics-as-magic) to

statistics.

2.b) How can likelihood functions and MLE establish connections between dif-

ferent branches of school mathematics in upper secondary school?

The ”coherence and repetition” perspective demonstrates how statistics and mathematics is

connected within the likelihood approach. The likelihood approach extend on the core con-

tent of statistics, e.g. density functions and statistical inference. Furthermore, to derive the

maximum likelihood estimate basic function analysis and differential calculus are repeated

— creating a strong connection to mathematics core content. This connection is used to

argue that the likelihood approach links the branches of statistics and functions, and that

determining the maximum likelihood estimate can be viewed as a shared problem space.
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3.a) What institutional constrains and conditions are encountered when you de-

sign a textbook chapter about likelihood functions and MLE?

I conclude that likelihood functions and MLE can be implemented in upper secondary ed-

ucation as a supplementary topic in line with the 2024 syllabus (A-level). However, the

investigation of institutional conditions reveal the high demands on both teachers and stu-

dents in terms of qualifications and prior knowledge. Based on this, it is suggested that

the topic is positioned in the third year of upper secondary school, so that students are

already familiar with the density function of the normal distribution. It is also suggested

that the design should not be implemented if statistics in general has been de-emphasized.

Although teachers’ knowledge of likelihood functions has not been specifically examined, it

is anticipated that, given mathematics teachers’ general difficulties with teaching the current

core content of statistics, similar challenges might also arise when teaching the likelihood

approach.

4.a) How can a teaching material on MLE be organized in a textbook chapter?

The design is developed as five lessons. The first half focuses on MLE, while the second

half focuses on comparing hypothesis in terms of likelihoods. The practice-oriented part is

based on a traditional textbook structure with exercises. What makes it different, is the

particular emphasis on contextualization. Students will first encounter MLE for the normal

distribution in order to train and identify the technologies used in the MLE technique. After

this, MLE for binomial distribution is introduced, where students are expected to derive the

maximum likelihood estimate themselves. At this stage, the practical work involves students

applying the technologies independently. In the second half, students are asked to use the

likelihood function to compare hypotheses. In practice, students are intended to apply two

technologies, visual inspection and the likelihood ratio, in order to investigate hypotheses

and perform critical statistical analyses.

4.b) How can tasks be formulated about MLE in a way that aligns with Danish

upper secondary students’ prerequisites and academic level?

Contextualization has been used as a key element throughout the textbook chapter to moti-

vate and make the very theoretical topic more accessible to students using Kirsch’s paradigm
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of ’making accessible by including the surroundings of mathematics’. In relation to deriving

the maximum likelihood estimate for the binomial distribution, detailed instructions are pro-

vided to ensure that students are not left alone to explore a new and challenging technique

on their own. In the exercises comparing hypotheses and exploring the effect of the sample

size n, the focus is not only on calculation but also on interpretation trying to develop stu-

dents’ statistical literacy. Even though I have adapted the design to the target group and

navigated the limitations, the a priori analysis shows that the interpretation of likelihoods

can lead to obstacles that can be difficult to overcome. When investigating the task design,

I found that students may encounter two major difficulties: the heuristic error of reversing

conditions and the misconception about deterministic false and true hypotheses.

Overall, my investigation has shown that a didactical design on likelihood functions and

MLE can be organized for upper secondary school in a way that strengthen the statistical

content and that creates a link between mathematics and statistics. However, the investiga-

tion also shows a number of difficulties that students may encounter and other limitations,

which might challenge the practical implementation of the design.
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A The Textbook Chapter on MLE
One the next page begins the textbook chapter about likelihood functions and MLE.

The chapter is developed by me for this thesis.
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Jagten på det Bedste Estimat 

En Introduktion til Likelihoodfunktioner og Maksimum 

Likelihood Estimatet (Supplerende Emne) 

 
Kilde: ”Isfugl, han”. Fotografi af Peter Halkier. https://nfd.dk/billede/isfugl-han/. 

Supplerende kapitel skrevet af Cæcilie Bøje Pedersen  

 

 

    Faktaboks om Fisher og Likelihoodfunktionen 

Likelihoodfunktionen og maksimum likelihood estimatet blev opfundet af Sir Ronald Aylmer 

Fisher (1890-1962), som var en engelsk statistiker, der arbejdede med biologi og genetik. Fisher 

opfandt de to begreber samtidigt i perioden mellem 1912 og 1922.  

I dag betragter man Fisher som en pioner indenfor statistikfaget, fordi han sammen med to andre 

statistikere Jerzy Neyman og Karl Pearson var med til at udvikle den videnskabelige måde vi i 

dag laver statistisk på ved bl.a. statistiske tests.  

Fishers maksimum likelihood estimation er i dag en meget populær statistisk metode, som for 

eksempel bliver anvendt indenfor biologi, psykologi, medicin og datavidenskab.  
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1. Introduktion 

I statistik indsamler vi ofte stikprøver med det formål at undersøge en bestemt egenskab ved en po-

pulation. Vi vil som regel gerne finde ud af hvilken model og hvilke parametre, der bedst beskriver 

den observerede stikprøve for at kunne sige noget mere generelt om egenskaben hos populationen.  

En sådan statistisk undersøgelse kan om-

handle mange forskellige fænomener fra 

verden omkring os. For eksempel kan vi 

undersøge menneskers højde, vælgertil-

slutningen til et politisk parti og mekanis-

men bag terningekast. For undersøgelser 

der tager udgangspunkt i en stikprøve, 

kan vi introducere begrebet likelihood-

funktionen.  

Likelihoodfunktioner kan bruges til at 

finde den værdi for en parameter, som 

bedst forklarer variationen i stikprøven. 

Det kan for eksempel være, at vi ønsker at bestemme den bedst mulige værdi for middelværdipara-

meteren 𝜇 i en normalfordeling ud fra en observeret stikprøve 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). Et andet eksempel 

kunne være at bestemme den bedst mulige værdi for sandsynlighedsparameteren 𝑝 i en binomialfor-

deling ud fra en observeret stikprøve 𝑥 (antal succeser i stikprøven). Vi kan i princippet gætte på, 

hvad værdierne af parametrene kan være på baggrund af stikprøven, men det anvendelige ved likeli-

hoodfunktionen er, at vi kan bestemme værdierne på en systematisk måde ved matematiske udled-

ninger. Dette bud kaldes maksimum likelihood estimatet.  

I dette kapitel skal vi studere likelihoodfunktioner og se hvordan de kan anvendes til at bestemme 

maksimum likelihood estimater for ukendte parametre. Vi vil som udgangspunkt bruge normalforde-

lingen og binomialfordelingen som eksempel til at introducere de nye begreber i kapitlet.   

Øvelse 1.1: Giv eksempler på hvad en parameter er fra de eksempler du tidligere har arbejdet med i 

matematikundervisningen?  

Øvelse 1.2: Anvend internettet til at undersøge hvad ordene estimere og estimat betyder? 

Figur 1: Illustration af population og stikprøve 
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1.1 Population og stikprøve 

I et statistisk forsøg ønsker vi at undersøge en egenskab for en population. 

For eksempel fodlængden hos voksne danske kvinder. Her er populationen 

voksne danske kvinder og egenskaben er kvindernes fodlængde.  

Vi foretager undersøgelsen ved tilfældigt at udvælge en stikprøve på 𝑛 indi-

vider fra populationen og så observere egenskaben hos individerne i stikprø-

ven. Vi udtager en stikprøve, fordi man sjældent har ressourcer nok til at un-

dersøge egenskaben i hele populationen.  

I undersøgelsen udvælger vi 20 voksne kvinder og måler deres fodlængde i millimeter. Her er stik-

prøven givet i tabellen. 

Stikprøve 1 

224 232 235 237 237 241 242 243 247 247 

248 249 252 253 256 259 260 264 267 274 

 

1.2 Den statistiske model 

Vi opstiller en statistisk model, hvor 𝑋 er en stokastisk variabel, der angiver egenskaben for et til-

fældigt individ i populationen. Vi antager også, at egenskaben hos individerne er uafhængig af hin-

anden, hvilket ofte kun er delvist opfyldt. Uafhængigheden sikrer, at vi kan anvende multiplikati-

onsprincippet/både-og princippet, hvilket bliver vigtigt senere.  

Vi kan nu danne 𝑛 uafhængige stokastiske variable, en for hvert individ (kvinde) i stikprøven, som 

alle er normalfordelt med ukendt middelværdiparameter 𝜇. Vi vil generelt antage at spredningspara-

meteren 𝜎 er kendt på forhånd og derfor ikke bekymre os om denne parameter.  

Vi kan da opstille følgende statistiske model. 

Model: 𝑋1, 𝑋2, … , 𝑋20 er uafhængige og 𝑁(𝜇, 𝜎)-fordelte, hvor 𝜇 er ukendt.  

Her angiver 𝑋𝑖 fodlængden for kvinde 𝑖 i stikprøven for 𝑖 = 1, 2, … ,20. 

Hvad er en statistisk model? 

Udgangspunktet i en statistisk undersøgelse er en statistisk model. Den statistiske model er en mate-

matisk beskrivelse af et virkeligt fænomen, hvor udfaldet ikke er givet på forhånd.  
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Øvelse 1.3:  

a) Giv eksempler på virkelige fænomener, som kan modelleres ved en normalfordeling.  

b) Giv også nogle eksempler på virkelige fænomener, som kan modelleres ved en binomial forde-

ling.  

Øvelse 1.4:  

Til matematikscreeningen i 1.g kan eleverne få mellem 0 og 100 point. Der udvælges tilfældigt en 

stikprøve på 56 elever fra 1.g, hvor man noterer deres pointtal.  

Nedenunder ses den sorterede stikprøve i tabellen.  

Stikprøve 2 

6 10 16 19 23 24 26 29 34 34 35 35 41 42 

43 43 41 45 46 46 46 47 48 52 54 54 56 57 

57 59 60 60 60 61 62 62 62 64 64 65 66 66 

66 66 68 69 70 71 72 73 77 78 80 81 85 93 

a) Angiv population og stikprøve i undersøgelsen? 

b) Opstil en statistisk model, som beskriver pointfordelingen ved matematikscreeningen i 1.g. 

 

2. Maksimum likelihood estimat for normalfordelingen 
 

2.1. Den sande værdi og estimatet 

Parameteren 𝜇 er et tal, der ikke kun beskriver stikprøven, men hele populationen. Ved at estimere 

denne parameter får vi derved ny viden om den population, som vi undersøger. I undersøgelsen om 

voksne kvinders fodlængde interesserer vi os for middelværdien af kvinders fodlængde for hele den 

kvindelige befolkning. Da vi som sagt ikke kan måle/observere hele populationen vil 𝜇 være 

ukendt. Vi vil kalde den ukendte værdi for den sande værdi af 𝜇. De bud man kan give på værdien 

af 𝜇 kaldes for estimater og benævnes med �̂�. Så nu går jagten ind på at bestemme estimatet for 𝜇. 

 

Definition 1: En statistisk model består af en stokastisk variabel X, som har en sandsynligheds-

fordeling med en ukendt parameter. 
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2.2 Maksimum Likelihood metoden  

Maksimum likelihood metoden går ud på at estimere parametrene i en antaget statistisk model, på 

baggrund af en stikprøve. Metoden bygger på antagelsen, at det vi faktisk har observeret, må være 

det, der er mest sandsynligt at observere. 

En normalfordeling med middelværdiparameter 𝜇 og spredning 𝜎 har tæthedsfunktion 

𝑓𝜇(𝑥) =
1

√2𝜋𝜎2
𝑒

−
1
2

∙(
𝑥−𝜇

𝜎
)

2

  . 

Spredningen 𝜎 betragtes som en kendt konstant og variablen 𝑥 er et vilkårligt udfald fra udfalds-

rummet. Likelihoodfunktionen er identisk med tæthedsfunktionen, men parameteren 𝜇 betragtes 

som en variabel mens observationen 𝑥 betragtes som en konstant: altså er der byttet rundt på deres 

rolle.  

Likelihood funktionen for en observation 𝑥 benævnes 

𝐿𝑥(𝜇) =
1

√2𝜋𝜎2
𝑒−

1
2

∙(
𝑥−𝜇

𝜎
)

2

  . 

Maksimum likelihood metoden går ud på, at vi skal bestemme det globale maksimumssted for like-

lihoodfunktionen 𝐿𝑥. Vi leder altså efter det 𝜇, hvor likelihoodfunktionen er størst mulig.  

Når stikprøven består af flere observationer 𝑥1, 𝑥2, … , 𝑥𝑛 benævnes likelihoodfunktionen  

𝐿𝑥1, 𝑥2,…, 𝑥𝑛
(𝜇). Da 𝑋1, 𝑋2, … , 𝑋𝑛 er uafhængige kan vi bruge multiplikationsprincippet til at udlede 

likelihoodfunktionen for samtlige observationer.  

𝐿𝑥1, 𝑥2,…, 𝑥𝑛
(𝜇) = 𝑓𝜇(𝑥1) ∙ 𝑓𝜇(𝑥2) ∙ … ∙ 𝑓𝜇(𝑥𝑛) = ∏ 𝑓𝜇(𝑥𝑖)

𝑛

𝑖=1

. 

Øvelse 2.1: 

a) Skriv summerne og produktet ud. 

𝑖)   ∑ 𝑥𝑖  

4

𝑖=1

                              𝑖𝑖)   ∏ 𝑥𝑖

4

𝑖=1

                           𝑖𝑖𝑖)    ∑
1

2

4

𝑖=1

𝑥𝑖   

  𝑖𝑣)   ∑
1

√2𝜋𝜎2

4

𝑖=1

𝑥𝑖                        𝑣)   ∑ 3 .

4

𝑖=1

   

b) Vi har indsamlet en stikprøve 𝑥1 = 10, 𝑥2 = 12, 𝑥3 = 10 og 𝑥4 = 11.  

Udregn de fem udtryk ud fra stikprøven. 
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Givet observationerne 𝑥1, 𝑥2, … , 𝑥𝑛 bestemmes log-likelihoodfunktionen 𝑙𝑥1, 𝑥2,…, 𝑥𝑛
(𝜇) ved at tage 

den naturlige logaritme af likelihoodfunktionen ∏ 𝑓𝜇(𝑥𝑖)𝑛
𝑖=1 .  

𝑙𝑥1, 𝑥2,…, 𝑥𝑛
(𝜇) = ln (∏ 𝑓𝜇(𝑥𝑖)

𝑛

𝑖=1

) 

Vi kan da omforme udtrykket ved brug af logaritmeregnereglerne. Tager vi logaritmen af et produkt 

bliver det til en sum af logaritmer.  

ln (∏ 𝑓𝜇(𝑥𝑖)

𝑛

𝑖=1

) = ∑ ln (𝑓𝜇(𝑥𝑖))

𝑛

𝑖=1

= ∑ ln (
1

√2𝜋𝜎2
𝑒−

1
2

∙(
𝑥𝑖−𝜇

𝜎
)

2

)

𝑛

𝑖=1

= 

∑ (𝑙𝑛 (
1

√2𝜋𝜎2
) −

1

2
∙ (

𝑥𝑖 − 𝜇

𝜎
)

2

)

𝑛

𝑖=1

= ∑ (−
1

2
ln (2𝜋𝜎2) −

1

2
∙ (

𝑥𝑖 − 𝜇

𝜎
)

2

)

𝑛

𝑖=1

= 

−
𝑛

2
ln(2𝜋𝜎2) − ∑

1

2
∙ (

𝑥𝑖 − 𝜇

𝜎
)

2
𝑛

𝑖=1

= −
𝑛

2
ln(2𝜋𝜎2) −

1

2𝜎2
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

. 

Dvs. log-likelihoodfunktionen er 𝑙𝑥1, 𝑥2,…, 𝑥𝑛
(𝜇 ) = −

𝑛

2
ln(2𝜋𝜎2) −

1

2𝜎2
∑ (𝑥𝑖 − 𝜇)2𝑛

𝑖=1 . 

Øvelse 2.2: Vi har en stikprøve 𝑥1 = 22, 𝑥2 = 24, 𝑥3 = 25, 𝑥4 = 24 og 𝑥5 = 20.  

Beregn følgende udtryk ud fra stikprøven.  

𝑎)  ln (∏ 𝑥𝑖

5

𝑖=1

 )               𝑏)  𝑙𝑛(2 ∙ 𝑒𝑥1)                  𝑐) ∑ 𝑙𝑛(2 ∙ 𝑒𝑥1)                  𝑑) ∑ 𝜇

5

𝑖=1

5

𝑖=1

. 

 

Øvelse 2.3: Forklar lighedstegnene i udledningen af log-likelihoodfunktionen ovenfor.  

Log-likelihoodfunktionen 

Da den naturlige logaritme er en voksende funktion, gælder der, at 𝐿𝑥(𝜇) og ln(𝐿𝑥(𝜇)) har mak-

simum for samme værdi af 𝜇. Dette vil vi ikke bevise, men det er et meget brugbart resultat, da 

det er meget nemmere at differentiere ln(𝐿𝑥(𝜇)) end 𝐿𝑥(𝜇).  

Funktionen ln(𝐿𝑥(𝜇)) kalder vi log-likelihoodfunktionen og benævnes 𝑙𝑥(𝜇). 
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2.3 Maksimering af log-likelihood funktionen   

Den afledte funktion af 𝑙𝑥1, 𝑥2,…, 𝑥𝑛
(𝜇) bliver en relativt pæn funktion  

𝑙𝑥1, 𝑥2,…, 𝑥𝑛
′(𝜇) =

1

𝜎2
∑(𝑥𝑖 − 𝜇)

𝑛

𝑖=1

, 

da det første led i log-likelihoodfunktionen giver nul, da leddet ikke afhænger af parameteren 𝜇.  

Øvelse 2.4: Differentier følgende udtryk i forhold til 𝜇. 

𝑎)  ∑(𝜇 − 𝑖)2

6

𝑖=1

                       𝑏)  ln(2𝜋𝜎2) + ∑(𝜇 − 𝑖)2

6

𝑖=1

           

Vi bestemmer nu de punkter på grafen for log-likelihoodfunktionen 𝑙𝑥1, 𝑥2,…, 𝑥𝑛
(𝜇) med vandret tan-

gent ved at sætte den afledte lig med nul.      

𝑙𝑥1, 𝑥2,…, 𝑥𝑛
′(𝜇) = 0   

1

𝜎2
∑(𝑥𝑖 − 𝜇)

𝑛

𝑖=1

= 0     ∑(𝑥𝑖 − 𝜇)

𝑛

𝑖=1

= 0     ∑ 𝑥𝑖

𝑛

𝑖=1

− ∑ 𝜇

𝑛

𝑖=1

= 0     

∑ 𝑥𝑖

𝑛

𝑖=1

− 𝑛 ∙ 𝜇 = 0      ∑ 𝑥𝑖

𝑛

𝑖=1

= 𝑛 ∙ 𝜇      𝜇 =
1

𝑛
∑ 𝑥𝑖 

𝑛

𝑖=1

     𝜇 = �̅�  

Dvs. der er en vandret tangent ved 𝜇 = �̅�, hvor �̅� angiver gennemsnittet af observationerne. 

Nedenfor ses grafen for log-likelihoodfunktionen.  Det fremgår at funktionen har et globalt maksi-

mum ved 𝜇 = �̅�, som er angivet med den stiplet linje i figuren. 

 

Figur 2: Log-likelihoodfunktionen for middelværdiparameteren 

Det vil sige maksimum likelihood estimatet for 𝜇 i normalfordelingen er  �̂� = �̅� . 
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2.4 Beregning af estimatet 

Vi vender nu tilbage til eksemplet med danske kvinders fodlængde, hvor stikprøvestørrelsen er 

 𝑛 = 20. Maksimum likelihood estimatet �̂� for danske kvinders fodlængde bliver 

�̂� = �̅� =
224 + 232 + 235 + ⋯ + 264 + 267 + 274

20
= 248,4.   

Vi konkluderer, at danske kvinder har en gennemsnitlig fodlængde på 248,4 millimeter. Bemærk at 

udtalelsen ikke kun gælder kvinderne i stikprøven, men danske kvinder generelt.  

Øvelse 2.5: Udregn maksimum likelihood estimatet for stikprøven i øvelse 2.2 med CAS-værktøj.  

 

3. Maksimum likelihood estimat for binomialfordelingen 

 

3.1 Vælgertilslutningen til Socialdemokratiet 

En statistisk undersøgelse omhandler vælgertilslutningen til det danske parti Socialdemokratiet, 

hvis der var folketingsvalg i morgen. Her er populationen stemmeberettigede danskere og egenska-

ben er om man stemmer socialdemokratisk eller ej.  I undersøgelsen vil vi bruge en binomialmodel 

til at beskrive fordelingen af socialdemokratiske partivalg.  

Øvelse 3.1: Lav en søgning på internettet, hvor I søger efter politiske meningsmålinger. Hvad er an-

tallet af socialdemokratiske partivalg ifølge meningsmålingen? Viser to forskellige meningsmålinger 

præcis den samme vælgertilslutning til Socialdemokratiet – hvor er de forskellige?  

Danmarks Radio (DR) laver månedlige meningsmålinger baseret på interviews, hvor de spørger hvad 

personen ville stemme på, hvis der var folketingsvalg i morgen. I perioden d. 15.-22. januar 2025 

afgav 1635 stemmeberettede danskere et partivalg til DR. Ud af de 1635 interviewede sagde 𝑥 =

322 danskere, at de ville stemme på Socialdemokratiet.  

 

Statistisk model: Lad 𝑋 være antallet af socialdemokratiske partivalg i en stikprøve på  

𝑛 = 1635 stemmeberettigede danskere. 𝑋 er 𝑏𝑖𝑛(1635, 𝑝)-fordelt med antalsparameter 𝑛 = 1635 

og ukendt sandsynlighedsparameter 𝑝. 
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Øvelse 3.2: Overvej under hvilke antagelser 𝑋 er binomialfordelt. Inddrag begreberne ”med tilbage-

lægning” og ”uden tilbagelægning”.  

Vi har tidligere i undervisningen ladet estimatet for sandsynlighedsparameteren 𝑝 i en binomialfor-

deling være frekvensen 𝑥/𝑛, hvilket også giver intuitiv god mening, når det er en sandsynlighed vi 

estimerer. I dette afsnit skal vi bevise at maksimum likelihood estimatet for sandsynlighedsparame-

teren 𝑝 i en binomialfordeling netop er  �̂� =
𝑥

𝑛
=

322

1635
= 0,197. 

 

 

3.2 Log-likelihoodfunktionen for binomialfordelingen 

Punktsandsynlighederne for en binomialfordeling er givet ved  

𝑃(𝑋 = 𝑥) = (𝑛
𝑥

) ∙ 𝑝𝑥 ∙ (1 − 𝑝)𝑛−𝑥, 

hvor 𝑝 er sandsynlighedsparameteren og 𝑛 er antalsparameteren. 

Øvelse 3.3: Opskriv forskriften for likelihoodfunktionen, som er identisk med sandsynlighedsfunkti-

onen ovenfor, men hvor vi betragter 𝑝 som den uafhængige variable og 𝑥 som en fast værdi.  

𝑳𝒙(𝒑) =… 

Indsæt værdierne 𝑛 = 1635 og 𝑥 = 322 i likelihoodfunktionen og opskriv L322(p). 

𝑳𝟑𝟐𝟐(𝒑) =… 

Øvelse 3.4: Det er en god ide at tage logaritmen af likelihoodfunktionen 𝐿322(𝑝). Denne funktion 

kaldes som sagt for log-likelihoodfunktionen. Bestem 𝑙322(𝑝). 

𝒍𝟑𝟐𝟐(𝒑) =… 

Øvelse 3.5: Brug logaritmeregnereglerne til at reducere funktionsudtrykket for 𝑙322(𝑝) og vis at 

𝑙322(𝑝) = ln ((
1635
322

)) + 322 ∙ ln(𝑝) + 1313 ∙ ln (1 − 𝑝)  

(Se formelsamling for logaritmeregneregler.) 
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3.3 Sammenligning af likelihoodfunktionen og log-likelihoodfunktionen  

Her ses grafen for likelihoodfunktionen L322(p) og log-likelihoodfunktionen 𝑙322(p) i hver deres 

plot. I de to plots er funktionerne skaleret så værdien af det globale maksimum er hhv. 1 og 0.    

 

Øvelse 3.7:  

Forklar hvorfor likelihoodfunktionens 

maksimumssted kan anses for at være det 

bedste bud på et estimat for binomialmo-

dellen.  

Øvelse 3.8:  

Aflæs det sted hvor grafen for 𝐿322(𝑝) 

antager sit globale maksimum og indse at 

de to grafer giver samme resultat.  

 

Øvelse 3.9: Sammenlign forskrifterne 

som du har bestemt i øvelse 3.3 og øvelse 

3.5 og afgør om det er lettest at maksi-

mere likelihoodfunktionen eller log-like-

lihood funktionen. 

 

 

 

Likelihoodværdien 

Hvad er likelihoodfunktionen? Udtrykket for likelihoodfunktion er identisk med sandsynlig-

hedsfordelingen for binomialfordelingen, det vil sige   

𝐿𝑥(𝑝) = (
𝑛

𝑥
) ∙ 𝑝𝑥 ∙ (1 − 𝑝)𝑛−𝑥. 

I likelihoodfunktionen betragtes sandsynlighedsparameteren som variablen med definitionsom-

råde [0,1]. Observationen 𝑥 skal opfattes som en konstant idet likelihoodfunktionen forudsætter 

en stikprøve.  

Figur 4: Log- likelihoodfunktionen 𝒍𝟑𝟐𝟐(𝒑) 

Figur 3: Likelihoodfunktionen 𝑳𝟑𝟐𝟐(𝒑) 



C. B. Pedersen Jagten på det Bedste Estimat 09-05-2025 

Side 11 af 20 
 

 

3.4 Bestemt maksimum likelihood estimatet 

Maksimum likelihood estimatet for sandsynlighedsparameteren i en binomialfordeling �̂� er den 

værdi af sandsynlighedsparameteren 𝑝, der bedst understøtter den observerede stikprøve 𝑥. Det be-

tyder, at estimatet har den største likelihoodværdi blandt alle de mulige værdier for sandsynligheds-

parameteren 𝑝. Vi fortsætter eksemplet om vælgertilslutning til Socialdemokratiet. 

Øvelse 3.11:  Bestem likelihoodværdierne 𝐿322(0,1), 𝐿322(0,2) og 𝐿322(0,3) ved udregning. 

𝑳𝟑𝟐𝟐(𝟎. 𝟏) = (𝟏𝟔𝟑𝟓
𝟑𝟐𝟐

) ∙ 𝟎. 𝟏𝟑𝟐𝟐 ∙ (𝟏 − 𝟎. 𝟏)𝟏𝟔𝟑𝟓−𝟑𝟐𝟐 =… 

𝑳𝟑𝟐𝟐(𝟎. 𝟐) =… 

𝑳𝟑𝟐𝟐(𝟎. 𝟑) =… 

Brug likelihoodværdierne til at vurdere hvilket estimat �̂�1 = 0,1, �̂�2 = 0,2 og �̂�3 = 0,3, som bedst 

understøtter stikprøven med observationen 𝑥 = 322. 

Hvad er betydningen af likelihoodværdien?  

Ordet likelihood kommer af det engelsk ord ”likely”, som refererer til det der er mest sandsyn-

ligt. Hvis estimatet for sandsynlighedsparameteren er �̂� = 0,1 kaldes tallet 𝐿𝑥(0,1) for en likeli-

hoodværdi og angiver hvor godt estimatet understøtter stikprøven.  

En høj likelihoodværdi betyder, at den observerede stikprøve er meget sandsynlig for det givne 

estimat. En lav likelihoodværdi betyder, at med det valgte estimat vil den observerede stikprøve 

sjældent forekomme.  

I eksemplet med vælgertilslutningen til Socialdemokratiet, betyder en høj likelihoodværdi, at 

estimatet �̂� er ”godt” til at beskrive fordelingen af socialdemokratiske partivalg. Hvis likeli-

hoodværdien er lav, vil estimatet være ”dårligt” til at beskrive fordelingen af socialdemokratiske 

partivalg.  

Bemærk, at en høj likelihoodværdi for et estimat ikke er ensbetydende med at estimatet er tro-

værdigt i den betydning, at �̂� er præcist lig med den sande værdi for 𝑝. Dette skyldes, at der kan 

være stor usikkerhed forbundet med at udtage en stikprøve.  

Øvelse 3.10: Overvej hvad usikkerheden forbundet med at udtage en stikprøve kommer af?  
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Øvelse 3.12:  Anvend differentialregning til at bestemme ekstremumsstedet for log-likelihood funk-

tionen 𝑙322(p) og argumenter for, at der her er et globalt maksimum ved at lave en fortegnstabel for 

den afledte til log-likelihoodfunktionen (evt. med CAS-værktøj).  

Øvelse 3.13:  Forklar hvad maksimum likelihood estimatet fortæller om vælgertilslutningen til Soci-

aldemokratiet i Danmark. 

 

4. Sammenligning af to hypoteser 

4.1 Hypoteser 

En likelihoodfunktion kan bruges til at sammenligne to hypoteser om en population. Likelihood-

funktionen giver en likelihoodværdi for hver hypotese og fortæller dermed hvilken hypotese der 

bedst understøtter den observerede stikprøve. En hypotese er blot en formodning, der vedrører den 

egenskab om populationen, som vi undersøger.  Vi vil til at begynde med formulere nogle hypoteser 

i ord.   

Hypotese 1: Socialdemokratiet får 25 procent af stemmerne til folketingsvalget.  

Hypotese 2: Socialdemokratiet får 30 procent af stemmerne til folketingsvalget.  

Hypotese 1: Gennemsnittet af fodlængden for danske kvinder er 245 mm.  

Hypotese 2: Gennemsnittet af fodlængden for danske kvinder er 253 mm. 

I en statistisk model, kan ovenstående hypoteser angives som et estimat. Dette skyldes, at hypote-

serne giver et specifikt bud på en talværdi for den ukendte parameter i en given model.  

Under antagelsen om, at socialdemokratiske partivalg kan beskrives med en binomialfordeling med 

ukendt sandsynlighedsparameter 𝑝, kan ovenstående hypoteser oversættes til estimaterne:  

Socialdemokratiet får 25 procent af stemmerne til folketingsvalget  ↔  𝐻:  �̂�1 = 0,25, 

Socialdemokratiet får 30 procent af stemmerne til folketingsvalget   ↔   𝐻:  �̂�2 = 0,3. 

Ligeså under antagelsen om at fodlængden hos danske kvinder kan beskrives ved en normalforde-

ling med ukendt middelværdiparameter 𝜇, kan ovenstående hypoteser oversættes til estimaterne:  

Gennemsnittet af fodlængden for danske kvinder er 245 mm   ↔     𝐻:  �̂�1 = 245. 

Gennemsnittet af fodlængden for danske kvinder er 253 mm    ↔     𝐻:   �̂�2 = 253. 
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4.2 Terningekast  

Du kan forestille dig, at du spiller med en terning sammen med dine venner, og at I slår mange seks-

ere. Du får mistænke om at der er snydt med terningen, fordi den ofte slår 6. Dette skyldes, at I har 

slået 7 seksere ud af i alt 10 slag med terningen. Du vil gerne finde ud af hvor stor sandsynligheden 

er for at slå en sekser med terningen og derved undersøge din hypotese om snyd.  

Dette scenarie vil vi følgende beskrive med en binomialfordeling, hvor "succes" er at slå en sekser 

og "fiasko" er at slå et hvilket som helst andet slag. 

Statistisk model: Lad 𝑋 være antallet af seksere slået ud af i alt 𝑛 = 10 slag. 𝑋 er 𝑏𝑖𝑛(10, 𝑝)-for-

delt, hvor 𝑝 er sandsynligheden for at slå en sekser og 𝑝 er ukendt. 

For at undersøge hypotesen om snyd opstilles to hypoteser  

• Hypotese 1: Vi formoder at terningen er en snydeterning med sandsynlighed �̂�1 =
5

6
 for at 

slå en sekser.  

• Hypotese 2: Vi formoder at terningen er fair med sandsynlighed �̂�2 =
1

6
 for at slå en sekser. 

Vi kan anvende likelihoodfunktionen i vores statistiske undersøgelse af terningekastene til at sam-

menholde de to hypoteser. For 𝑥 = 7 og 𝑛 = 10 bestemmer vi først likelihoodfunktionen 𝐿7(𝑝) ud 

fra punktsandsynligheden for binomialfordelingen. 

𝐿7(𝑝) = (
10
7

) ∙ 𝑝7 ∙ (1 − 𝑝)3 

Vi vil nu bestemme værdierne af likelihoodfunktionen 𝐿7(𝑝) for de to hypoteser  �̂�1 =
5

6
  og �̂�2 =

1

6
  

ved følgende udregning. 

𝐿7(�̂�1) = (
10
7

) ∙ (
5

6
)

7

∙ (
1

6
)

3

= 0,155 

𝐿7( �̂�2) = (
10
7

) ∙ (
1

6
)

7

∙ (
5

6
)

3

= 0,00025 

Det vil sige 𝐿7( �̂�1) > 𝐿7(�̂�2). Dette forhold betyder, at hypotese 1 med estimatet �̂�1 =
5

6
 understøt-

ter vores stikprøve 𝑥 = 7 bedre end hypotese 2.  

Hovedresultatet er, at vi kan bruge likelihoodfunktionen til at undersøge hvilken af to hypoteser der 

stemmer bedst overens med stikprøven. Bemærk dog, at dette ikke betyder, at vi kan forkaste hypo-

tesen med den lave likelihoodværdi.  
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4.3 Sammenligning af to hypoteser �̂�𝟏 og �̂�𝟐 

I en generel statistisk model benævnes parameteren med 𝜃 og en hypotese vil benævnes som et esti-

mat 𝜃. Så snart vi har angivet sandsynlighedsfordelingen for modellen kan vi være mere konkrete. 

For eksempel kan vi for binomialfordelingen kalde parameteren 𝑝 og hypotesen for �̂�. 

I det generelle tilfælde kan to hypoteser 𝜃1 og 𝜃2 sammenlignes ved at bestemme deres likelihood-

værdi og sammenholde dem.  

  

 

4.4 Likelihood ratio 

Vi kan også sammenligne to hypoteser ved at bestemme likelihood ratio-størrelsen, som angiver 

forholdet mellem to likelihoodværdier og benævnes LR. 

 

Vurdering af likelihood ratio-størrelsen 

Om hypotese 1, 𝜃1, og hypotese 2,  𝜃2, siges at 

• Hvis likelihood ratio er tilnærmelsesvis 1, så giver hypoteserne næsten lige gode beskrivel-

ser af den observerede stikprøve.  

• Hvis likelihood ratio er mindre end 1, så giver hypotese 2 en bedre beskrivelse af den obser-

verede stikprøve end hypotese 1.  

Definition 2: Givet to hypoteser 𝜃1 og 𝜃2, hvor hypotesen 𝜃1 har en større likelihoodværdi end 

hypotese 𝜃2,  således at  

𝐿𝑥(𝜃1) >  𝐿𝑥(𝜃2), 

da gælder det at hypotesen 𝜃1 bedre understøtter stikprøven bedre end hypotesen 𝜃2 gør.  

Definition 3: Givet to hypoteser 𝜃1 og 𝜃2 er likelihood ratio-størrelsen 

𝐿𝑅 =
𝐿𝑥(𝜃1)

𝐿𝑥(𝜃2)
. 
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• Hvis likelihood ratio er større end 1, så giver hypotese 1 en bedre beskrivelse af den obser-

verede stikprøve end hypotese 2.  

• Hvis likelihood ratio er tilnærmelsesvis nul, så giver hypotese 1 en meget dårlig beskrivelse 

af stikprøven.  

• Hvis likelihood ratio er meget stor, så giver hypotese 2 en meget dårlig beskrivelse af stik-

prøven.  

Vender vi tilbage til eksemplet om terningekastet kan likelihood ratio for de to hypoteser �̂�1 =
5

6
 og 

�̂�2 =
1

6
 bestemmes til  

𝐿7(�̂�1)

𝐿7(�̂�2)
=

(
10
7

) ∙ (
5
6)

7

∙ (
1
6)

3

(
10
7

) ∙ (
1
6)

7

∙ (
5
6)

3 =
0,155

0,00025
= 620. 

Konklusion er at den observerede stikprøve 𝑥 = 7 er hele 620 gange mere sandsynlig under hypo-

tesen �̂�1 end under hypotesen �̂�2. Der er altså ret stærk statistisk evidens for hypotese 1.  

 

 

4.5 Opgave om møntkast  

I et binomialforsøg slås der med en mønt 10 gange, hvor udfaldet krone er succes. Mønten lander på 

krone i 8 af slagene og på plat i 2 af slagene. I forsøget kender vi ikke sandsynlighedsparameteren 𝑝 

for at slå krone. En hypotese er at mønten er symmetrisk, hvor �̂�𝑆 angiver estimatet for denne hypo-

tese. 

a) Angiv estimatet for hypotesen �̂�𝑆 for at mønten er symmetrisk.   

b) Opstil en anden selvvalgt hypotese og angiv estimatet �̂�𝐴.   

c) Bestem likelihoodfunktionen for binomialmodellen med den givne stikprøve (𝑥 = 8).  

d) Bestem likelihoodværdien for hypotesen om at mønten er symmetrisk og for den selvvalgte hy-

potese.  

e)  Bestem likelihood ratio 
𝐿8(𝑝𝐴)

𝐿8(𝑝𝑆)
 og forklar dens betydning i forhold til de to hypoteser.  
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4.6 Opgave om grafisk aflæsning af likelihoodfunktionen 

En teknik der anvendes til at tælle individer i en population, går ud på at mærke en delmængde af 

populationen. Man udtager derefter en stikprøve og noterer hvor mange af individerne i stikprøven, 

som er blevet mærket tidligere. Denne metode bruges blandt andet til at tælle vilde dyr.  

Andelen af vilde dyr som er henholdsvis ’mærket’ og ’ikke-mærket’ giver et estimat for populatio-

nens størrelse 𝑁. Metoden bruges til at tælle isfugle i Danmark, hvor man mærker 30 isfugle og 

sætter dem ud i naturen igen. Herefter udtages en stikprøve på 50 isfugle, hvoraf 3 isfugle er mær-

ket og 47 isfugle ikke er mærket.  

 

N er isfuglepopulationens størrelse i Danmark, som er ukendt. Isfugle med mærke er 𝑘 = 30. Stik-

prøvestørrelsen er 𝑛 = 50 og i stikprøven var 𝑥 = 3 isfugle mærket.  

Vi antager, at isfuglene er udvalgt/talt tilfældigt, og da kan likelihoodfunktionen for 𝑁 bestemmes 

ved hjælp af den hypergeometriske sandsynlighedsfordeling  𝐿(𝑁) = 𝑃(𝑋 = 3) =
(30

3 )(𝑁−30
47 )

( 𝑁
50)

. 

Nedenfor ses likelihood funktionen af parameteren 𝑁.  

 

Figur 5: Likelihoodfunktion for den hypergeometrisk sandsynlighedsfordeling. 

Den hypergeometriske sandsynlighedsfordeling  

Den hypergeometriske sandsynlighedsfordeling er  

𝑃(𝑋 = 𝑥) =
(𝑘

𝑥
)(𝑁−𝑘

𝑛−𝑥
)

(𝑁
𝑛

)
, 

hvor 𝑋 er en stokastisk variabel der angiver antallet af succeser i en stikprøve med 𝑛 individer 

udtrukket tilfældigt fra en population med 𝑁 individer, med 𝑘 succeser.  
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a) Bestem maksimum likelihood estimatet for 𝑁 ved at aflæse på grafen for likelihood funktionen. 

b) Giv en betydning af det aflæste estimat. 

c)  Vurdér de fire bud på estimater �̂�1 = 200, �̂�2 = 350, �̂�3 = 400 og �̂�4 = 600 ved at aflæse på 

grafen (så nøjagtigt som muligt).  

d) Hvilke betingelser bør være opfyldt om de mærkede fugle i populationen for, at estimatet er tro-

værdigt?  

 

 

5. Betydning af stikprøvestørrelsen 𝒏  

5.1 Hvad sker der når stikprøvestørrelsen 𝒏 vokser?   

I en statistisk undersøgelse har stikprøvestørrelsen 𝑛 betydning for præcisionen og troværdigheden 

af et estimat 𝜃 i en statistisk model. Har vi en stor stikprøve, kan vi som regel komme med meget 

troværdige og sikre konklusioner om populationen. Har vi derimod en lille stikprøve bliver vores 

konklusioner usikre og vi kan måske slet ikke konkludere noget som helst om populationen på 

denne baggrund.  

Vi vender tilbage til opgaven om møntkast, hvor vi jo kun slog 10 gange med mønten. Det kan der-

for være svært at vide om det blot var tilfældigt, at vi slog krone hele 8 gange. Vi vil nok stadig 

være tilbøjelige til at tro at mønten er symmetrisk. Vi udvider forsøget og slår 𝑛 = 50 gange med 

mønten i stedet for, slår krone 40 af gangene (𝑥 = 40) og opstiller en ny statistisk model: 𝑋 er antal 

kroner i 50 kast og 𝑋~𝑏𝑖𝑛(50, 𝑝). Vi skal nu undersøge hvad der sker, når stikprøvestørrelsen bli-

ver større.  

5.2 Den grafiske betydning af stikprøvestørrelsen 𝒏 

Betydningen af stikprøvestørrelsen/antalsparameteren 𝑛 har betydning for grafen for likelihood-

funktionen. Jo større stikprøvestørrelse 𝑛 er, jo smallere og stejlere bliver grafen for likelihoodfunk-

tionen omkring maksimum likelihood estimatet.  

Nedenunder ses graferne for likelihoodfunktionerne 𝐿8(𝑝) = (
10
8

) ∙ 𝑝8 ∙ (1 − 𝑝)2 og 
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 𝐿40(𝑝) = (
50
40

) ∙ 𝑝40 ∙ (1 − 𝑝)10. Af graferne for likelihoodfunktionen kan man aflæse likelihood-

værdien for forskellige værdier af 𝑝. På plottet ses det, at funktionerne har samme globale maksi-

mumsværdi, hvilket giver anledning til det samme maksimum likelihood estimatet 

�̂� =
𝑥

𝑛
=

40

50
=

8

10
= 0,8. 

 

Figur 6: Likelihoodfunktionerne 𝑳𝟖(𝒑) og 𝑳𝟒𝟎(𝒑)  

 

For en lille stikprøve (med 𝑛 =  10 og 𝑥 = 8) vil grafen som regel være bred og flad. Det betyder, 

at de forskellige mulige værdier for 𝑝 har en nogenlunde ens likelihoodværdi.  

Maksimum likelihood estimatet er som sagt den værdi for 𝑝 som understøtter stikprøven bedst.  

Når de andre mulige værdier for parameteren 𝑝 næsten er lige så gode og har likelihoodværdier tæt 

på hinanden, siger vi at den statistiske evidens for maksimum likelihood estimatet er svagt og 𝐿𝑅 er 

tæt på 1.   

For en større stikprøve (𝑛 =  50 og 𝑥 =  40) vil grafen for likelihoodfunktionen blive smallere. 

Det betyder, at likelihoodværdien formindskes markant når estimatet �̂� bevæger sig væk fra det glo-

bale maksimum og dermed vil LR bliver markant forskellig fra 1. Altså vil der være en store fordel 

ved at vælge maksimum likelihood estimatet.  
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5.3 Stikprøvestørrelsens effekt på likelihood ratio 

Effekten af stikprøvestørrelsen n påvirker likelihood ratio-størrelsen. I mønteksemplet kan vi sam-

menligne de to hypoteser: �̂�1 = 0,75 (der er 0,75 sandsynlighed for at slå krone) og �̂�2 = 0,5 (møn-

ten er symmetrisk). 

Når stikprøven er lille (𝑛 =  10 og 𝑥 =  8) bestemmes likelihood ratio til  

𝐿𝑅 =
𝐿8(�̂�1)

𝐿8(�̂�2)
=

(
10
8

) ∙ (0,75)8 ∙ (0,25)2

(
10
8

) ∙ (0,5)8 ∙ (0,5)2
= 6,41. 

Den observerede stikprøve 𝑥 = 8 er hermed 6,41 gange mere sandsynlig under hypotesen �̂�1 =

0,75  end under hypotesen  �̂�2 = 0,5.  

Når stikprøven er stor (𝑛 =  50 og 𝑥 =  40) bestemmes likelihood ratio til 

𝐿𝑅 =
𝐿40(�̂�1)

𝐿40(�̂�2)
=

(
50
40

) ∙ (0,75)80 ∙ (0,25)20

(
50
40

) ∙ (0,5)80 ∙ (0,5)20
= 10798,18 

Den observerede stikprøve 𝑥 = 40 er 10798,18 gange mere sandsynlig under hypotesen �̂�1 = 0,75  

end under hypotesen  �̂�2 = 0,5. Den statistiske evidens for hypotesen �̂�1 = 0,75 er dermed blevet 

markant større.  

Øvelse 5.1: Der slås krone fem gange (𝑥 = 5) ved 𝑛 møntkast. Bestem hvor stor 𝑛 skal være for at 

stikprøven er lige sandsynlig under hypotesen �̂�1 = 0,75 som under hypotesen  �̂�2 = 0,5.  

 

5.4 Opgave om Earl og saunaen 

En mand Earl er rejst på ferie til et fremmed land, hvor han bor på et hotel, som har to saunaer. En 

sauna kun for kvinder og en kønsneutral sauna. Earl beslutter sig en eftermiddag for at tage i sauna, 

men et problem opstår, da han ikke forstår det lokale sprog. Han kan ikke finde ud af, hvilken af 

saunaerne, som er den kønsneutrale. Forestil dig, at Earl står ude foran saunaerne og prøver at tyde 

skiltene på det lokale sprog, da tre kvinder uafhængigt af hinanden kommer ud af saunaen til højre.  

a) Opstil en binomialmodel med udgangspunkt i Earls oplevelse med saunaerne, hvor ”succes” er 

antallet af kvinder som går ud af saunaen til højre og stikprøvestørrelsen er 𝑛 = 3.   
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b) Earls undren om hvilken sauna han skal vælge, giver anledning til to hypoteser enten er saunaen 

til højre den sauna, som kun er forbeholdt kvinder �̂�𝐾 eller også er det den kønsneutrale sauna �̂�𝑁 =

0,5. Angiv estimatet �̂�𝐾.  

c) Hvis døren til højre er saunaen kun forbeholdt kvinder hvad er så sandsynligheden for, at alle tre 

personer der forlader saunaen, er kvinder. Det vil sige, at du skal bestemme 𝐿3(�̂�𝐾). 

d) Hvis døren til højre er den kønsneutrale sauna hvad er så sandsynliggeden for, at alle tre perso-

nen der forlader saunaen, er kvinder. Det vil sige, at du skal bestemme 𝐿3(�̂�𝑁). 

e) Bestem likelihood ration 
𝐿3(𝑝𝐾)

𝐿3(𝑝𝑁)
 og forklar hvad resultatet fortæller om de to hypoteser �̂�𝐾 og �̂�𝑁. 

f) Bestem hvor mange kvinder der skal forlade saunaen til højre før stikprøven, er 16 gange mere 

sandsynlig til at forekomme under hypotesen �̂�𝐾 end under hypotesen �̂�𝑁 
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B Note on Figures and Plots
Several figures and plots are made by me in Python or Latex as part of this thesis. A single

figure has been made by hand. Some figures and plots are used to highlight subject-didactic

perspectives, other plots are made for the textbook chapter and a few figures have been devel-

oped to create an overview of my didactical analyses. It has been agreed with my supervisor

Carl Winsløw, that any code for creating plots or figures should not be attached to the thesis.

C Brainstorm on Accessibility
In the initial part of my work on this thesis, I conducted a brainstorm based on Kirsch’s

notion of “making accessible”. The brainstorm can be found in table 3 below.

Intuition Application

to use one’s instinct to incorporate the real world

to use physical experiences to work with problem-solving

to use common sense to manipulate a concept

to guess to combine subjects

Recognizing Modes of representation

to recognize patterns to provide two explanations

to activate prior knowledge to switch approaches

to distinguish from to see different examples

to be aware of the next step to be verbal and graphical

Table 3: Concept-board on ’accessibility’ inspired by Kirsch .

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design
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D The Method of Mark and Recapture

To find the maximum of L(N), one can determine when the fractions L(N |r)
L(N−1|r) is strictly

smaller than 1 and when it is strictly larger than 1. By the calculations:

L(N |r)
L(N − 1|r)

=

(t
r
)(N−t

k−r
)

(N
k
)

(t
r
)(N−t−1

k−r
)

(N−1
k
)

=

(
N−t
k−r

)(
N−1
k

)(
N−t−1
k−r

)(
N
k

) =

(N−t)!
(K−r)!(N−t−k+r)!

(N−1)!
k!(N−k−1)!

(N−t−1)!
(k−r)!(N−t−k+r−1)!

(N−1)!
k!(N−k)!

Then by reducing the expression of the ratio, we get

L(N |r)
L(N − 1|r)

=
(N − t)!(N − 1)!(N − t− k + r − 1)!(N − k)!

(N − t− 1)!N !(N.t− k + r)!(N − k − 1)!
=

(N − t)(N − k)

N(N − t− k + r)
.

=
(N − t)(N − k)

N(N − t− k + r)
=

N2 −Nt−Nk + tk

N2 −Nt−Nk +Nr
=

tk

Nr
.

Then tk
Nr

> 1 implies tk
r
> N . One can see that

L(N)

L(N − 1)
> 1 ⇔ N <

tk

r
.

and
L(N)

L(N − 1)
≤ 1 ⇔ N ≥ tk

r
.

This shows that the function L(N) is maximized at N = b tk
r
c. So the MLE is N̂MLE =

b tk
r
c.

Maximum Likelihood Estimation: Subject Matter Didactic Analysis and Didactical Design


	Forside.pdf
	Maximum Likelihood Estimation_Subject matter didactic analysis and didactical design_Cæcilie Bøje Pedersen.pdf



