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Abstract 
This thesis gives a description of the development of the notion of vectors in the scientific 

fields of mathematics and physics respectively. It includes a description of the interrela-

tion between the notion in the two fields, because it gives some explanations why high 

school students struggle with the notion of vectors. Also the development of the notion 

of vectors in mathematics and physics in the context of high school teaching will be de-

scribed. This has contributed to an understanding of why mathematics and physics, that 

historically are highly interrelated, have separated more and more over the years.  

  The examination of curricula, written exam problems, and textbooks have revealed that 

the mathematical notion of vectors is divided into an algebraic and a geometric approach. 

Since vectors are used to model the two or three dimensional spaces in physics, the geo-

metric approach is more useful in physics than the algebraic. However, the geometric 

branch in mathematics does generally not include the approaches that are useful in phys-

ics.  

  These findings have been used to design a Study and Research Path on vectors. The idea 

was to combine mathematics and physics in the introduction to vectors, in order to utilise 

the motivations from physics and to make the applications in physics more obvious. The 

design was tested in a first year high school class, but it did not turn out as expected. None 

of the students developed a notion of vectors that was useful in the application to the 

physical problem they were asked to solve. However, the test of the design showed that 

it is highly relevant to keep working on alternative ways of teaching.   
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1. Introduction  
Mathematics and physics are two branches of science that have developed very closely 

throughout most of their history. Multiple important results in mathematics have roots in 

physical problems, while many theories in physics have had crucial benefits from math-

ematical developments. In the 17th, 18th, and 19th centuries it was often difficult to sepa-

rate mathematicians from physicists and mathematical results from physical results. Well-

known examples are Isaac Newton (1642-1727) and his work on fluxions that is one of 

the most important contributions to calculus or Joseph Fourier (1768-1830) and his work 

on heat conduction that led to the mathematical concept of Fourier series (Katz, 2009). 

Though the sciences of mathematics and physics have a long common (and sometime 

inseparable) history, it is well-known that in an educational context mathematics and 

physics suffer from an unfortunate (and escalating) disconnection. A majority of mathe-

matics teachers will be of the opinion that mathematics is taught for the mathematics 

itself, even though one of the purposes of the teaching of mathematics in Danish high 

schools is to obtain the qualifications necessary for further educations that require math-

ematics (Danish Ministry of Education, 2017a). And mathematics is important in other 

science, e.g. physics, but when it is taught without consideration of its applications, the 

students will have a hard time applying the mathematics correctly to physical problems. 

As a consequence, the necessary mathematical concepts are taught in both mathematics 

and physics at the same time in different versions, and the disconnection is even more 

distinct (Orton & Roper, 2000). This issue is the first thing that motivated this thesis. 

  A recent model for teaching designs addresses the problem with very bounded teaching 

subjects, where students are presented to theories and results one after the other, some-

times without any connection, by their teachers without any invitation to ask questions 

themselves. The model is called Study and Research Paths and is meant to let the students 

work with their learning process with less directions from their teacher. Teaching that is 

organised in this way is very suitable for interdisciplinary work, where the students can 

work with problems that can only be solved by drawing on and developing knowledge in 

more than one subject. An interest in this design model and its opportunities and limita-

tions in relation to interdisciplinary teaching is the second issue that motivated this thesis.  

  In August 2017 the Danish Ministry of Education implemented a new reform of the 

Danish high school. It implied a lot of changes in the organisational structure and in the 

curricula. In mathematics one of the changes concerned the topic vectors. Before, the 

teaching of vectors was reserved to students studying mathematics at A-level, but by the 

reform vectors were added to the C-level curriculum. The possible pedagogical chal-

lenges this restructuring can cause is the third issue that has motivated this thesis.  

 

Like differential calculus and Fourier series, the notion of vectors is a mathematical con-

cept that has evolved on the border of mathematics and physics. Furthermore, it is a nec-

essary concept in both mathematics and physics in high school. However, the problematic 
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disconnection of mathematics and physics is also present in relation to the teaching of 

vectors. This thesis has two parts that will both investigate this problem; a theoretical and 

an empirical. The aim of the theoretical part is to give a thorough description of the de-

velopment of the notion of vectors that have appeared in the mathematical and physical 

communities respectively and the development of the notion of vectors that have been 

taught in high school mathematics and high school physics respectively, whit the purpose 

of detecting the origin of the disconnection of the two subjects in the context of teaching. 

  The aim of the empirical part of the thesis is to design a Study and Research Path on 

vectors in mathematics and physics, and test if it is beneficial for the students to encounter 

the concept in a way where mathematics and physics are incorporated from the beginning. 

In the process of designing, the theoretical findings will be used to avoid the usual dis-

connected encounter with vectors. 
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I Theoretical framework 
 

2. The Anthropological Theory of Didactics  
The theoretical framework for this thesis is the anthropological theory of didactics (hence-

forth abbreviated as ATD). The theory was launched by the French didactician Yves Che-

vallard in the 1980’s. ATD builds on the assumption that “doing, teaching, learning, dif-

fusing, creating, and transposing mathematics, […], are considered as human activities 

taking place in institutional settings.” (Bosch & Gascón, 2014, p. 68). Hereby, an im-

portant part of research in the field of mathematical education conducted in the frame-

work of ATD is to describe the institutional settings in which a teaching sequence is de-

signed or in which a textbook is written. 

  One important step in the description is to analyse the path from the official mathemat-

ical knowledge to the curriculum. The researcher analyses the curriculum in the light of 

the official mathematical knowledge to see how it is organised. In a didactical study re-

searchers use an explicitly stated epistemological reference model (henceforth abbrevi-

ated ERM) as a framework. The ERM is necessary in order to be able to make general-

isable results, because empirical studies of didactical phenomena have a lot of uncontrol-

lable effects and interpretation barriers that stem from the fact that teaching and learning 

in general are very subjective activities. An ERM makes it possible to generalise results 

by giving objective descriptions of the mathematical knowledge that is a part of the study 

which would otherwise be interpreted subjectively by the individual reader.  

  The aim for the theoretical part of this thesis is to construct an ERM that describes the 

organisations of the scholarly notion of vectors and the teaching topic vectors. Also the 

relations and links between the two organisations will be included. The model will be 

serving as the theoretical reference in the empirical study in the second part of the thesis.  

  Before the ERM can be constructed, some basic notions from ATD will be introduced 

and elucidated. The first notion is the didactic transposition, which describes the path 

from the scholarly mathematical knowledge through the curriculum to the students. This 

is of course important in order to elucidate the relations and links between the two notions 

of vectors, in the mathematical community and in a high school context respectively, and 

it will be described in section 2.2. The second important notion from ATD that will be 

described is praxeologies and especially mathematical praxeologies. This is a model that 

helps researchers to analyse how the mathematical knowledge is organised in the curric-

ulum, textbooks, written exams, etc. A praxeological analysis of the notion of vectors in 

Danish high schools will be the foundation of the ERM. The notion of praxeologies will 

be described in section 2.3. 

  The notions mentioned above provides a framework for a theoretical analysis of the 

organisation of the mathematical content that is relevant in this thesis. Furthermore, the 

model study and research paths within ATD provides the framework for the empirical 
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part of the thesis. The model can and will be used for both design and analysis issues, and 

it will be presented in section 2.4 and used in the empirical part of the thesis. 

  The next subsection will introduce the first important notion in the theoretical frame-

work; the didactic transposition.  

 

2.1 The didactical contract 
The notion of the didactical contract is not developed within ATD, but it has turned out 

to be a necessary part of the theoretical framework in the analysis of the data material in 

the empirical part of the thesis, which is why it has to be described.  

  The didactical contract is an important notion in didactics, that covers the implicit ex-

pectations and commitments between the teacher and the students. It is a set of unwritten 

rules, that varies depending on the teacher and the students in a class. The didactical con-

tract can both affect the teaching and learning positively and negatively. A positive effect 

of the didactical contract is that the students know exactly what is expected from them in 

specific situations. A negative effect is that the students are only able to learn, when the 

teaching proceeds exactly as they are used to, since an alternative way of teaching will be 

a breach of the didactical contract. Furthermore, the didactical contract can affect stu-

dents’ approach to different problems. A classic example is the problem of the age of the 

captain. The problem reads: “A captain owns 26 sheep and 10 goats. How old is the cap-

tain?”. A general tendency across countries is that pupils in elementary school give the 

answer 36, even though the question does not make sense at all (Winsløw, 2006, p. 145-

150). In this case pupils are so tied to the didactical contract, that they do not reflect on 

the problem before they give an answer. Some of these negative issues had a negative 

impact on the work with the SRP in the test class. These will be described in section 8.4.  

 

2.2 The didactic transposition 
By the word mathematics different things can be referred to. One thing is the mathemat-

ical theories, theorems, and results, that has developed over time, from the old Egyptians 

to the ancient Greeks to Newton and Leibniz to Cauchy etc. to all the new mathematical 

results that are produced and published on a daily basis nowadays; the mathematical the-

ories, theorems, and results, new as well as old, that mathematicians in general agree on 

across countries.  

  Nowadays new mathematical results are mostly produced by professional mathemati-

cians and the “official” mathematics described above lives mostly in a scholarly environ-

ment. Henceforth, the term scholarly knowledge will be used, when referring to mathe-

matics as described above; the results, theorems, and theories that are generally agreed 

on by mathematicians.  

  Another meaning that can be attached to the word mathematics is the teaching subject 

mathematics. What this term precisely contain will then depend on the context, e.g. if it 

is a subject in primary school or high school and whether the high school is general, 
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business oriented or technical oriented. In didactics the “school mathematics” is divided 

into two, the first one is the official description of the teaching subject that contains cur-

ricula, textbooks etc. This part is called knowledge to be taught. The other part is the 

mathematics as it is actually taught in the class, which is called taught knowledge. The 

difference between the terms and their interrelation will be elaborated on below. 

 

The mathematics contained in curricula, textbooks, and written exams are not transferred 

directly from the scholarly community into a high school context without modifications. 

In the process of constructing these official documents a lot of choices have been made. 

A selection of the most important topics has to be picked out from the huge collection of 

all the mathematics that has ever been discovered. Within the chosen topics, the most 

important, useful, and suitable notions have to be picked out. Additionally, a selection of 

problems and solving methods within each topic is made. All these decisions and more 

are made as a part of the process of transforming the scholarly mathematics into the teach-

ing subject of mathematics that is both accessible and useful for the students. The process 

is very complicated and involves a lot of different people with different agendas and pro-

fessional backgrounds. The process where the mathematical notions are modelled to suit 

a high school context can be hard to describe, since is it very complex. However, the 

words transforming and transposing are sometimes used. Neither of the words are satis-

factory as a description in their own right, but together they do almost capture both the 

“movement” from a scholarly context to a high school context and the process of chang-

ing, fitting and modelling the mathematical content. Regardless of the words used to de-

scribe it, the process of transforming and transposing the scholarly mathematical 

knowledge into the teaching subject is very important in didactic research (Chevallard & 

Bosch, 2014). 

  Likewise, is the process where the curriculum and other official documents, e.g. written 

exams etc., are interpreted by the teacher and transformed into concrete teaching se-

quences. These two – the process of constructing a teaching subject from some scholarly 

knowledge and the process of designing concrete teaching sequences from this, respec-

tively – constitute the didactic transposition. Sometimes the model includes an additional 

process, namely the path that the knowledge undergoes on the way from the teaching 

situation into the student’s catalogue of available knowledge. This process is interesting, 

since the goal for most teaching situations is that students “learn something”. “To learn 

something” is very vaguely stated and difficult to grasp, but the reason for this is, that it 

is a hard task to define when somebody has “learned something”. To characterise some 

knowledge as “learned” or “available” different aspects have to be taken into account. 

Students need to be familiar with both the objects (definitions, properties, and theorems) 

but also the “tool aspect” of the knowledge (how to use the mathematical concepts in 

exercises etc.). Furthermore, the students need to be able to use their knowledge without 
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specific guidelines on how to do it, and they have to be able to blend new knowledge into 

their old knowledge (Robert, 2012).  

 

The didactic transposition can be depicted like in Figure 1.  

 

 
Figure 1 – The didactic transposition, simple version of illustration used in (Chevallard & Bosch, 2014, p. 171) 

The first step describes the process of selecting from, transforming and transposing the 

scholarly knowledge into the knowledge to be taught. In this step curricula, guiding writ-

ten exam problems, and textbooks are produced. Different people contributes to this pro-

cess, both scientist, teachers and those working with the design and production of curric-

ula. This group of people is called the noosphere. In other words, the noosphere is the 

collection of people who “’think about teaching” and participate in the process of picking 

out the mathematical subjects important and relevant to pupils or students at a given level 

of education and the transformation of the scholarly knowledge into a degree of difficulty 

that suits the target group (Chevallard & Bosch, 2014, p. 170).  

  The next step in the didactic transposition is made by the teachers and takes the 

knowledge to be taught to the taught knowledge. The process comprises an interpretation 

of the official documents and choices on the teaching material and teaching designs. It is 

the process of organising and carrying out the teaching sessions through which the stu-

dents (hopefully) achieve the goals described in the curriculum. Though the starting point 

– the knowledge to be taught – is the same for everyone in the same context of education, 

the taught knowledge varies depending on the teacher and to some extend the students. It 

depends on the focus in the chosen textbooks, the students’ abilities, etc.  

  The last step is a process that takes place in the students or groups of students and con-

cerns the transposition from the taught knowledge to the learned knowledge. It describes 

how the students receive the taught knowledge and to what extend the knowledge is avail-

able to them afterwards. 

  The arrows go both left and right in the diagram. The reason for this is that students and 

teacher may influence the production of the curriculum. An example of the mutual influ-

ence is the modern mathematics that was implemented in the curriculum of mathematics 

in a lot of European education systems in 1970’s and 1980’s. The modern mathematics 

renewed and reformed mathematics into a more abstract and formal discipline. The main 

reason for this was to reduce the gap between university mathematics and high school 

mathematics. A problem was, that the modern mathematics caused both students and 

teachers a lot of trouble. As a consequence, mathematics was changed gradually during 

the following years. This time from an abstract to a more concrete and application-ori-

ented approach. 
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The didactic transposition can be divided into two – the external and the internal didactic 

transposition. The external didactic transposition is a name for the first step in Figure 1. 

It is the transformation from the scholarly mathematics to the school subject mathematics. 

The internal didactic transposition is the second step in Figure 1. It describes the adjust-

ments made by the teacher, when the mathematical knowledge described in the curricu-

lum is organised in a way that fits the respective group of students. 

  This division shows both the division in the people involved in the two processes, but 

also that the interface between the players in the two processes is often very small. The 

teachers do most often not focus on how the scholarly knowledge is selected, transformed 

and transposed into the curriculum. This is in spite of the fact that the creation and organ-

isation of curricula are often influenced by tradition and practical reasons more than di-

dactical or intrinsic mathematical reasons (Winsløw, 2006, p. 19).  

 

The mathematical topic of interest in this thesis is vectors. Both the external and internal 

didactic transposition of this topic will be treated. Roughly, the external didactic transpo-

sition of vectors will be covered by section 3, while the internal didactic transposition of 

vectors will be covered in the second (the empirical part) of the thesis. 

  The next subsection will describe the framework in which the mathematical organisation 

of the knowledge on vectors will be analysed; praxeologies. 

 

2.3 Praxeologies 
In ATD “mathematics is seen as a human activity of study of types of problems.” (Barbé, 

Bosch, Espinoza & Gascón, 2005, p. 236). The first step in mathematics education re-

search is to construct a model of the mathematical activities that includes both the practi-

cal and theory-based ones. The notion of praxeologies provides a model for these activi-

ties in the framework of ATD. The aim for a praxeological description of knowledge is 

to combine practical and theoretical aspects in one model. The word praxeology is built 

from the words ‘praxis’ and ‘logos’. Here ‘praxis’ is referring to the “know-how” relating 

to the subject and ‘logos’ is the theoretical thinking and reasoning behind and the dis-

course on it.  

  A praxeology is composed of two blocks – a praxis block and a theoretical block – and 

each block is again divided into two parts. 

  The praxis block contains information about the practical part of a subject. This infor-

mation is divided into “types of tasks” and “techniques”. “Types of tasks” are the different 

kinds of problems and the “techniques” are the “ways of solving” the problems or in a 

broader sense “ways of doing” (see Figure 2 (a)). 

  The ‘logos’/theoretical block gives justification to and theoretical description of the 

praxis block. The two parts are “technology”, which is discourse on the techniques in the 

praxis block, and “theory” that is the theoretical foundation of the “technology” part of 

the block (see Figure 2 (b)). 
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Figure 2 – Structure of a praxeology 

The interrelation between and the mutual dependence of the two blocks is described by 

Chevallard in the following: “[…] no human action can exist without being, at least par-

tially, “explained”, made “intelligible”, “justified”, “accounted for”, in whatever style of 

“reasoning” such an explanation or justification may be cast. Praxis thus entails logos, 

which, in turn, backs up praxis” (as cited in Bosch & Gascón, 2014, p. 68).  

  Praxeologies are useful to model mathematical activities in particular, but they can also 

be used to model other activities, e.g. the didactical activity of creating and describing a 

mathematical praxeology. Especially the mathematical praxeologies are useful for this 

thesis, and they will be described more thoroughly in the following.  

 

2.3.1 Mathematical praxeologies 
A mathematical praxeology is, like any other praxeology, divided into the four T’s: “types 

of tasks”, “techniques”, “technology” and “theory”. 

  The “types of tasks” are denoted with 𝑇 and the techniques are denoted with 𝜏. Together 

they constitute the praxis block. The logos block is composed of the technology part, 

which provides a discourse of the techniques 𝜏. This is denoted with 𝜃. The technology 

𝜃 is justified by the theory in the logos block. The theory is denoted with Θ. The praxe-

ology can now be written in a very compact way: [𝑇, 𝜏, 𝜃, Θ] (see Figure 3). 

 

 
Figure 3 - Structure of mathematical praxeology 
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The praxis block is determined by the techniques, i.e. the types of tasks 𝑇 in a praxis block 

is determined by the technique 𝜏. For example the task 𝑡 ∈ 𝑇 (shown in Figure 4) can be 

solved by the three different techniques, 𝜏𝐴, 𝜏𝐺 , and 𝜏𝐶  (also shown in Figure 4). 

 

 
Figure 4 – Task, 𝑡, and different techniques,𝜏𝐴, 𝜏𝐺, and 𝜏𝐶 

The task 𝑡 is contained in three different praxis blocks, [𝑇𝐴, 𝜏𝐴], [𝑇𝐺 , 𝜏𝐺], and [𝑇𝐶 , 𝜏𝐶]. 

Each of these contains other tasks that can be solved by the three techniques respectively. 

For example both  [𝑇𝐴, 𝜏𝐴] and [𝑇𝐶 , 𝜏𝐶] contains the task shown in Figure 5.  

 

 
Figure 5 – Task 𝑡1 ∈ [𝑇, 𝜏𝐴], [𝑇, 𝜏𝐶] but ∉ [𝑇, 𝜏𝐺] 
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Also the task shown in Figure 6 is contained in [𝑇𝐴, 𝜏𝐴] and [𝑇𝐶 , 𝜏𝐶].  

 

 
Figure 6 – Task 𝑡2 ∈ [𝑇, 𝜏𝐴], [𝑇, 𝜏𝐶] but ∉ [𝑇, 𝜏𝐺] 

Neither 𝑡1 nor 𝑡2 are contained in the praxis block [𝑇, 𝜏𝐺], since neither four dimensional 

vectors nor abstractly given vectors can be drawn in a coordinate system. On the other 

hand, the task shown in Figure 7 is contained in [𝑇, 𝜏𝐺] but neither [𝑇, 𝜏𝐴] nor [𝑇, 𝜏𝐶].  

 

 
Figure 7 – Task 𝑡3 ∈ [𝑇, 𝜏𝐺] but ∉ [𝑇, 𝜏𝐴], [𝑇, 𝜏𝐶] 

The task 𝑡3 is neither contained in [𝑇, 𝜏𝐴] nor [𝑇, 𝜏𝐶] since the algebraic and computer 

assisted techniques cannot handle geometric vectors independent of coordinate systems. 

 

A praxeology is sometimes called a mathematical organisation (henceforth abbreviated 

as MO). Different praxeologies that contains the same type of task can be collected, and 

the collection will be called a punctual MO. All the praxeologies in a punctual MO have 

the same technique. If different punctual MO’s are described by the same technology, 

they can be collected, and the collection is called a local MO. If again some local MO’s 

share the theoretical discourse, the can be collected, and the collection is called a regional 

MO. 

  

A praxeological analysis of the mathematical topic vectors will be made in section 3 and 

presented as the ERM in section 4. 
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  The next section will describe the design/analysis model Study and Research Path, that 

will be used in the empirical part of this thesis.  

 

2.4 Design model: Study and Research Paths 
ATD provides a model for designing and analysing teaching that is called study and re-

search paths (henceforth abbreviated as SRP). The model is, like the whole theory itself, 

introduced by Chevallard and the central point in the model is to focus on the degree of 

autonomy with which the students work. This is due to the assumption most didacticians 

agree on: that learning is not a process of transferring knowledge from teacher to student 

but instead the process of constructing knowledge – a process taking place within the 

individual student (Winsløw, 2006, p. 105).  

  An important feature of the model is, that it differentiates between the process of “study” 

and the process of “research”. The “study” part is referring to the process of consulting 

and investigating already existing knowledge. This relates to the idea and assumption in 

ATD that teaching is taking place in an institutional setting, where a lot of knowledge is 

already provided to the students through books, the Internet etc. The “research” part is, 

on the other hand, problem solving activities, where the students work with exploration 

of challenging problems.  

  Studies show that “study” is often given a low priority compared to the “research” part, 

and that students in research activities most often work with problems raised by the 

teacher (Winsløw, Matheron & Mercier, 2013). As a design model, SRP proposes that 

more focus is laid on the “study” part, since this encourages students to work with a higher 

level of autonomy than they normally do, when they work in the “research” phase with 

questions posed by the teacher. 

   As an analysis tool, the model can be used in any kind of teaching situation where the 

students work with questions posed by either themselves or (as is most common) the 

teacher. The notion SRP then refers to the paths that students follow, when they work 

with the questions through study and research.  

 

When using the model as a designing tool the outcome are teaching sequences that are 

called SRPs. The purpose of the SRPs is to encourage the students to work autonomously 

with questions posed by themselves instead of the teacher. These SRPs are motivated or 

generated by a question that is called the generating question. To decide whether a ques-

tion is qualified as a generating question, the teacher must conduct an a priori analysis of 

it. During this analysis, the teacher puts herself in the place of the students, and tries to 

figure out how they would work with the question. The a priori analysis includes an anal-

ysis of the media that can help the students to answer the question, and in the end a de-

scription of the path of sub-questions, derived questions, partial and final answers the 

students are expected to pose. The a priori analysis can also be used to refine the gener-

ating question and to estimate the possible learning outcome.  
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A SRP (here in the meaning of a teaching sequence) can be used for different purposes 

and have different learning goals for the students. It can be conducted in an interdiscipli-

nary setting or in a monodisciplinary setting. Often generating questions in interdiscipli-

nary SRPs are more open while generating questions in monodisciplinary SRPs are more 

targeted.  

  The advantages of an interdisciplinary SRP with an open generating question are far-

reaching. The question can seem more relevant, realistic and motivating for the students 

to work with and it will potentially combine different disciplines in a way that reflects 

how “real” scientific work is conducted. On the other hand, the predominant disadvantage 

is that open SRPs demand a huge overview from the involved teacher/teachers (often the 

interdisciplinary reach out of the field that a single teacher master, and therefore more 

than one teacher have to be involved), but it can also be very hard to predict the directions 

for the students’ paths.  

  On the other hand, the more targeted, and potentially monodisciplinary, SRPs are more 

useful in everyday teaching, since they can lead the students towards the knowledge that 

is prescribed in the curriculum. Though the generating questions for targeted SRPs are 

more focused they can still be large such that they will call for derived questions and 

partial answers. This will potentially show off the interrelation and connection between 

the topics that often appear separated or disconnected when they are taught in the classic 

way, where topics are presented neatly in a row, one after the other.  

 

When students work on a SRP, from a generating question 𝑄, they make one or more of 

the following moves (Winsløw et al., 2013): 

 

1. The activity of “study”, where already existing knowledge is examined. This can be 

any “official” knowledge including books, the Internet and the knowledge that is availa-

ble from topics that have been studied prior to the SRP.  

2. The activity of “research”, where the students create answers to the generating question 

through their own reasoning. It is also the move where possible answers are justified, also 

through reasoning.  

3. Derivation of new questions, that comes in two categories: 

a. Sub-questions, that give partial answers to 𝑄. These are denoted 𝑄1, 𝑄2 etc. 

b. Derived questions, that can either be motivated by the original question or by an-

swers to the original question. The derived questions are not directly related to the 

original question in the sense that an answer to a derived question does not con-

tribute to the answer to 𝑄. Derived questions are denoted 𝑄∗.  

Though the three moves are distinguishable, they are very rarely made separately, but are 

closely linked. For example, the justification of an answer found in the study move has 

to be justified by some sort of critical reasoning, while possible answers often will be 
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posed in the “research” move after consulting existing knowledge in the “study” move. 

New questions will most likely evolve from some sort of answers, e.g. answers to the 

partial questions. 

 

In the empirical part of this thesis the design format SRP is crucial. First of all, it has been 

used in order to design a teaching sequence. This sequence has been tested empirically in 

a test class, and the data that came out will be analysed in the light of the analysis model 

SRP and the praxeological analysis of the mathematical organisation of vectors, that will 

be carried out in the next section.   

 

3. Vectors 
In this section the praxeological organisation of the mathematical topic vectors will be 

investigated. This includes both the scholarly knowledge, the knowledge to be taught, and 

the interrelation between these two. Furthermore, the notion of vectors used in physics 

will be investigated and included in this praxeological analysis in order to be able to de-

sign an interdisciplinary SRP on vectors in mathematics and physics. 

  The praxeological organisation found and described in this section will constitute the 

foundation of the analyses in the empirical part of the thesis. In order to guide the inves-

tigations of the praxeological organisation of vectors in mathematics and physics and in 

order to address the issues of lacking cooperation between mathematics and physics in 

high school teaching, some research questions have been posed. These are presented in 

section 3.1. 

 

3.1 Research Questions (I) 
As it was briefly mentioned in the introduction one of the issues that has motivated this 

thesis is the interrelation of mathematics and physics, that is fruitfully practiced in the 

scientific fields but almost never practiced successfully in high school teaching. Behind 

this issue hides a complex structure of interrelations (see Figure 8). Here it is depicted 

with the origin in the notion of vectors. The structure contains the relations between the 

scientific fields of mathematics and physics, the high school subjects mathematics and 

physics, the scientific field of mathematics and the high school subject mathematics, and 

the scientific field of physics and the high school subject physics. 
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Figure 8 – Four relations between scientific fields and school subjects (here regarding the topic vectors) 

 

In addition to the four arrows in Figure 8, the development over time plays a role, since 

neither the scientific fields nor the high school subjects have been static over time.  

  An analysis of the relations and their development over time, focusing on the organisa-

tion of vectors, will be the theoretical framework for the SRP-design in the empirical part 

of the thesis.  

  In order for the analysis of the relations to be useful, some research questions have been 

posed. These will serve the purpose of guiding the examination of the relations described 

above. The questions are categorised in two categories. The first category deals with the 

scholarly knowledge in mathematics and physics respectively and their interrelated de-

velopment. The second category deals with the knowledge to be taught in mathematics 

and physics respectively and the historical development in mathematics and its relation 

to physics. The research questions in the two categories are presented in Table 1.  

 

Research questions 1 Research questions 2 

𝑅𝑄1,1
𝐼 : How has the mathematical schol-

arly knowledge on vectors developed in 

relation to physics? 

𝑅𝑄2,1
𝐼 : How has the knowledge to be 

taught on vectors in mathematics devel-

oped in relation to the mathematical 

scholarly knowledge? 

𝑅𝑄1,2
𝐼 : How is the scholarly knowledge 

on vectors organised in mathematics? 

𝑅𝑄2,2
𝐼 : How has the knowledge to be 

taught on vectors in mathematics devel-

oped in relation to the knowledge to be 

taught in physics?  

𝑅𝑄1,3
𝐼 : How is the scholarly knowledge 

on vectors organised in physics? 

𝑅𝑄2,3
𝐼 : How is the knowledge to be taught 

on vectors currently organised in mathe-

matics?  

 𝑅𝑄2,4
𝐼 : How is the knowledge to be taught 

on vectors currently organised in phys-

ics? 
Table 1 – Theoretical research questions 



21 
 

The research questions with the primary lower index number 1 will be treated in section 

3.2 and the research question with the primary lower index number 2 will be treated in 

section 3.3. The research questions have the upper index number I, which is there to dis-

tinguish them from the research questions that will be posed in the empirical part of the 

thesis. These research questions will have the upper index number II.  

 

3.2 The scholarly knowledge on vectors 
This section will give answers to the research questions 𝑅𝑄1,1

𝐼 , 𝑅𝑄1,2
𝐼 , 𝑅𝑄1,3

𝐼 . Section 3.2.1 

will deal with 𝑅𝑄1,1
𝐼 , and it will focus on how a theory of vector analysis developed on 

the border of mathematics and physics. Another focus is the interplay between the geo-

metric and the algebraic approaches.  

  Section 3.2.2 will deal with 𝑅𝑄1,2
𝐼  focusing on the difference between ℝ2/ℝ3 and arbi-

trary abstract vector spaces. Furthermore, a few physical applications of vector spaces 

different from ℝ2/ℝ3 will be mentioned. 

  Section 3.2.3 will deal with 𝑅𝑄1,3
𝐼  and describe how the theory of vector analysis is used 

in physics. Again the interplay between the geometric and the algebraic approaches to the 

theory of vectors plays an important role.  

 

3.2.1 Historical perspective 

The notion of vectors has a long story that has played out on the border of mathematics 

and physics. Some of the important contributions will be described in the following.  

 

The parallelogram of forces 

In physics, the need for a theory on vectors emerged in the seventeenth century from an 

increasing interest in new physical quantities such as force and velocity (Crowe, 1967, p. 

1). These quantities are what we nowadays call vector quantities. Beforehand, the notions 

of main interest were, what we now call scalar quantities, such as mass and distance. The 

“new” quantities differ from the old ones by having both magnitude and direction. As 

early as in the ancient Greece, velocities were composed by the use of the “parallelogram 

of velocities” (see Figure 9).  

 

 
Figure 9 – The parallelogram of velocities. 𝑣1 and 𝑣2 being the components and 𝑣𝑟𝑒𝑠 being the resulting velocity 
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In the seventeenth century the parallelogram was very common in publications as a 

method for composing (or adding) vector quantities. However, this did not mean that 

everyone at that time was aware of the vector theory that was hiding behind it and it is 

very unlikely, that the idea of the parallelogram of velocities or forces stimulated further 

works on vectors. Though the idea did not directly entail any results, it had an important 

influence, since it is an obvious example that vector theory can be used to model physical 

tasks (Crowe, 1967, p. 2). In this period, the “vector property” of interest was primarily 

addition, and the fact that the sum of two vectors were again a vector. Furthermore, it is 

remarkable that the approach at this time was entirely geometric.  

  In this initial stage, vector addition appeared as a technique in the praxis block of the 

praxeological organisation of the physical knowledge on composition of vector quantities 

(see Figure 10). 

 

 
Figure 10 – Praxis block including geometric vectors in the technique 

The theoretical block consisted of empirical results showing that velocities/forces was 

composed by this rule.  

 

Leibniz and a geometry of situation 

Another important contribution to the development of a theory on vectors came from the 

German mathematician and physicist Gottfried Wilhelm Leibniz (1646-1716), who con-

cerned himself with the problem of constructing a geometry of situation. The idea was to 

create a system that would make spatial analysis easier and more direct. He was looking 

for a mathematical system that would do for “situation” (as he wrote) what algebra did 

for magnitude (Crowe, 1967, p. 3). Leibniz’ attempt to define vector-like objects was 

based on congruence of sets of points. The basic idea was to identify sets of points having 

some fixed distance to each other. Some of the geometric objects, that Leibniz was using 

his new premature vectors to operate on, were planes, lines and spheres. Leibniz can be 

said to have constructed a system in which coordinates plays an important role, and the 

pioneering idea was that geometric entities were represented by symbols. From these 

symbols calculations should be carried out algebraically. Though the idea was great, Leib-

niz’ system had some flaws, when it is compared to the modern system of vectors. Leib-

niz’ objects could neither be added nor subtracted nor multiplied, and these are important 

properties for the system to be useful.  Though Leibniz did not manage to accomplish this 
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project, his ideas motivated and inspired other mathematicians to work on similar ideas 

(Crowe, 1967, pp. 4-5), which is why his attempt deserves to be mentioned here. 

  In terms of praxeologies, Leibniz searched for techniques to solve geometric tasks. The 

technology and theory were supposed to build on the new objects that he wanted to de-

velop. However, his theory, and thereby technology, did not provide efficient techniques 

for all the relevant problems (e.g. addition, subtraction, and multiplication).  

 

Geometrical representation of complex numbers: Wessel and Gauss 

Most of the following work on vectors was related to complex numbers and the justifica-

tion and representation of these (Crowe, 1967, p. 5). A lot of mathematicians worked on 

this matter, among others Caspar Wessel (1745-1818), a Norwegian/Danish mathemati-

cian, and the German mathematician/astronomer/physicist/geodesist Carl Friedrich 

Gauss (1777-1855). Wessel and Gauss did both discover a geometric representation of 

complex numbers around the millennial change, but Wessel’s publication was not noticed 

until its republication in French 100 years later. From Wessel’s memoir it appears that 

the question he was working with was the following (as cited in Crowe, 1967, p. 6): 

How may we represent direction analytically; that is, how shall we express 

right lines so that in a single equation involving one unknown line and oth-

ers known, both the length and the direction of the unknown line may be ex-

pressed. 

 

Wessel dealt, among other things, with the addition of straight lines. He stated the fol-

lowing (as cited in Crowe, 1967, p. 7): 

Two straight lines are added if we unite them in such a way that the second 

line begins where the first one ends, and then pass a right line from the first 

to the last point of the united lines. This line is the sum of the united lines. 

 

What Wessel provides here, is a technique for solving tasks as shown in Figure 11.  

 

 
Figure 11 – Task solvable by the technique 𝜏𝐺,𝑊 
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As mentioned, Gauss worked on the justification and representation of complex numbers 

just like Wessel did. By virtue of his well-established name in the mathematical commu-

nity, Gauss managed, contrary to Wessel, to publish and spread his idea in 1831. Gauss’s 

main focus was on the chase for a concept similar to the geometric representation of com-

plex numbers, that could be used to describe and work with geometry in three dimensions 

(Crowe, 1967, pp. 8-9). 

 

Hamilton and quaternions 

Different mathematicians searched for the mathematical entities that could represent 

“higher dimensional complex numbers”, but one of the most successful and earliest at-

tempts was provided by the Irish mathematician and physicist William Rowan Hamilton. 

He was looking for numbers (in the beginning triplets, corresponding to the tuples that 

described ordinary complex numbers) that he hoped had some specific properties. The 

properties that he looked for are described in the following (Crowe, 1967, p. 28): 

1. The associative property for addition and multiplication. Thus if 𝑁, 𝑁′ 

and 𝑁′′ are three such numbers, then 𝑁 + (𝑁′ + 𝑁′′) = (𝑁 + 𝑁′) + 𝑁′′ and 

𝑁(𝑁′𝑁′′) = (𝑁𝑁′)𝑁′′.  

2. The commutative property for addition and multiplication. 𝑁 + 𝑁′ =

𝑁′ + 𝑁 and 𝑁𝑁′ = 𝑁′𝑁. 

3. The distributive property. 𝑁(𝑁′ + 𝑁′′) = 𝑁𝑁′ + 𝑁𝑁′′.  

4. The property that division is unambiguous. Thus if 𝑁 and 𝑁′ are any 

given complex numbers, it is always possible to find one and only one num-

ber 𝑋 (in general, a number of the same form as 𝑁 and 𝑁′) such that 𝑁𝑋 =

𝑁′.  

5. The property that the new numbers obey the law of the moduli. Thus if 

any three triplets combine so that  

(𝑎1 + 𝑏1𝑖 + 𝑐1𝑗)(𝑎2 + 𝑏2𝑖 + 𝑐2𝑗) = 𝑎3 + 𝑏3𝑖 + 𝑐3𝑗 

then 

(𝑎1
2 + 𝑏1

2 + 𝑐1
2)(𝑎2

2 + 𝑏2
2 + 𝑐2

2) = (𝑎3
2 + 𝑏3

2 + 𝑐3
2) 

6. The property that the new numbers would have a significant interpretation 

in terms of three dimensional space. 

 

These properties are all satisfied by “two-dimensional” complex numbers except from 

the last one. Instead it satisfies the corresponding property, that is has significant inter-

pretation in terms of two dimensional space. The above can be read as a first sketch of the 

axioms that Hamilton thought that a system of vector analysis should obey. Instead of a 
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system of triplets, Hamilton discovered the quaternions, that are elements of the form 

𝑤 + 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧. This is a system of quadruples that obeys all the above properties ex-

cept from the commutativity of the multiplication. Hamilton named the real part, 𝑤, the 

scalar of the quaternion and the imaginary part, 𝑖𝑥 + 𝑗𝑦 + 𝑘𝑧, the vector of the quater-

nion. He denoted a quaternion 𝑄 in the following way: 𝑄 = 𝑆𝑄 + 𝑉𝑄, read as the qua-

ternion equals the sum of the scalar part of the quaternion (𝑆𝑄) and the vector part of the 

quaternion (𝑉𝑄). Hamilton demonstrated the use of the symbols in an example: If two 

quaternions are given, 𝛼 = 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 and 𝛼′ = 𝑥′𝑖 + 𝑦′𝑗 + 𝑧′𝑘 (both scalar parts are 

0), then 𝑆. 𝛼𝛼′ = (𝑥𝑥′ + 𝑦𝑦′ + 𝑧𝑧′) and 𝑉. 𝛼𝛼′ = 𝑖(𝑦𝑧′ − 𝑧𝑦′) + 𝑗(𝑧𝑥′ − 𝑥𝑧′) +

𝑘(𝑥𝑦′ − 𝑦𝑥′). These two parts correspond to the negative of the modern scalar product 

and the modern vector product respectively (Crowe, 1967, p. 32).  

  Compared to the scalar product and vector product in modern vector theory Hamilton’s 

quaternions are simpler, because for the modern scalar product, the associative law for 

multiplication is not relevant, since 𝑎⃗ ∙ 𝑏⃗⃗ ∙ 𝑐 does not make any sense and neither the 

fourth nor the fifth axiom are satisfied by the modern vectors. Regarding the modern 

vector product, both the associative and the commutative properties, and again the fourth 

and fifth axiom are not satisfied. Though the quaternions are simpler (in the sense that 

they satisfy more of the “wanted” properties) than modern vectors, they are also less in-

novative. In Hamilton’s work, the axioms that the vector analysis was wanted to obey 

were the most important guidelines. In this period vectors were mostly represented alge-

braically instead of geometrically, though they were used for geometric purposes.  

 

Grassmann  

Simultaneously with Hamilton the German mathematician and physicist Hermann Gün-

ther Grassmann (1809-1877) developed another system of vector analysis. Though the 

Grassmannian vector analysis has major similarities with the modern vector analysis, and 

he demonstrated its usefulness in physical applications, his work was not spread and ap-

preciated by his contemporaries. This is mostly due to the fact that he did not have a name 

in the mathematical community back then, but also because his principal work on vector 

analysis had a very complex, abstract, and philosophical structure, which made it difficult 

to read, even for mathematicians.  

  Grassmann’s ideas of vector analysis was briefly introduced in the essay Theorie der 

Ebbe und Flut that he wrote as a part of his application for a position as a teacher at the 

University of Berlin in 1840. Four years later, in 1844, the ideas were elaborated and 

published in Ausdehnungslehren.  

  From the preface of Ausdehnungslehren it is revealed how the inspiration to the theory 

comes from geometric considerations (as cited in Crowe, 1967, p. 56): 

The first impulse came from the consideration of negatives in geometry; I 

was accustomed to viewing the distances 𝐴𝐵 and 𝐵𝐴 as opposite magni-

tudes. 
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This shows that though Grassmann’s ideas initially showed up in a more physical work 

on tides, his ideas were originally purely geometric in nature.  

  The most fundamental operation in Grassmann’s system of vector analysis is addition. 

The sequence of thoughts that led to the definition of addition is described in the preface 

of Ausdehnungslehren in the following way (as cited in Crowe, 1967, pp. 56): 

Arising from this idea was the conclusion that if 𝐴, 𝐵, 𝐶 are points of a 

straight line, then in all cases 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐶, this being true whether 𝐴𝐵 

and 𝐵𝐶 are directed in the same direction or in opposite directions (where 𝐶 

lies between 𝐴 and 𝐵). In the latter case 𝐴𝐵 and 𝐵𝐶 were not viewed as 

merely lengths, but simultaneously their directions were considered since 

they were oppositely directed. Thus dawned the distinction between the sum 

of lengths and the sum of distances which were fixed in direction. 

 

From this idea addition is defined similarly for distances that are not necessarily directed 

in the same or opposite directions.  

  Also multiplication of vectors is dealt with by Grassmann. Like in the modern vector 

analysis his system contains two different products. To Grassmann the geometric product 

of two vectors (similar to the modern vector product) is the most important compared to 

the linear product of two vectors (similar to the modern scalar product). The geometric 

product is defined in the following way (as cited in Crowe, 1967, p. 61): 

By the geometrical product of two vectors, we mean the surface content of 

the parallelogram determined by these vectors; we however fix the position 

of the plane in which the parallelogram lies. We refer to two surface areas as 

geometrically equal only when they are equal in content and lie in parallel 

planes. 

 

This product is similar to the modern vector product in a couple of ways, but is does also 

have one important difference. The numerical value of the two products are the same, and 

they will also have the same sign in both Grassmann’s and the modern vector analysis. 

Furthermore, they are both distributive and anti-commutative. The difference between the 

two is the nature of the product. In the modern vector product, the result is again a vector, 

but the result of Grassmann’s geometric product is a directed area (Crowe, 1967, p. 62).  

  The product that corresponds to the modern scalar product in the Grassmannian theory 

is called the linear product. It is defined in the following way (as cited in Crowe, 1967, 

p. 63): 

By the linear product of two vectors we mean the algebraic product of one 

vector multiplied by the perpendicular projection of the second onto it. 
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These two products provide some techniques that are similar to modern ones. However, 

the logos block of the praxeological organisation of the modern vector product is different 

form the logos block of Grassmann’s geometric product. The praxeological organisations 

of the modern scalar product and Grassmann’s linear product are very similar. 

  As mentioned Grassmann’s ideas were initially presented in a physical application in 

connection with his study of tides. This might have affected the process of development 

that the vector analysis went through, though Grassmann’s ideas were initially mathemat-

ically motivated (Crowe, 1967, p. 60). In the preface to Ausdehnungslehren Grassmann 

described how he had managed to carry out the calculation in Lagrange’s publication 

Méchanique analytique (a work that he had studied in connection with his own Theorie 

der Ebbe und Flut) ten times shorter with his new analysis. He stated the following about 

the usefulness of his theory (as cited in Crowe, 1967, p. 57): 

[…] I feel entitled to hope that I have found in this new analysis the only 

natural method according to which mathematics should be applied to nature, 

and according to which geometry may also be treated, whenever it leads to 

general and to fruitful results. 

 

Grassmann provided new techniques to solve some of the tasks that had been solved by 

other, and more extensive, methods before.  

  Though Grassmann was influenced by both physics and geometry, his ideas were fun-

damentally different from both the “parallelogram of forces”-tradition and the “geomet-

rical justification of complex numbers”-tradition, since he did work conceptually on ad-

dition of lines, and not just taking a geometrically determined line (the diagonal) as a 

representative of the resultant of two forces or representing the sum of two complex num-

bers as a line respectively (Crowe, 1967, p. 58). In Grassmann’s theory the notion vector 

described the distances with fixed lengths, and these were the objects of interest, contrary 

to Hamilton’s theory, where the object of interest was the quaternions, that contained the 

notion of vectors.  

  Through his work with physical issues Grassmann did in addition develop vector calcu-

lus, and later in his career his system of vector analysis contributed to his work on elec-

trodynamics (Crowe, 1967). These are examples of how Grassmann’s work on vectors 

and physics respectively was highly interrelated.  

 

The modern vector analysis 

The work on vector theory in the subsequent period was mostly inspired by Hamilton, 

though Grassmann’s theory was equally well-developed. This was most likely because 

Hamilton was more established as a mathematician than Grassmann. In the period from 

1865 to 1880 different mathematicians worked on Hamilton’s ideas, and one of the most 

important contributions came from the Scottish mathematician Peter Guthrie Tait (1831-
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1901) who focused on a development of quaternions as a tool for research in physics 

(Crowe, 1967, p. 117).  

  Inspired by Tait’s work the Scottish mathematician and physicist James Clerke Maxwell 

(1831-1879) developed and presented the theory of electricity and magnetism in his pub-

lication Treatise on electricity and magnetism in 1873, which is one of the most important 

in physics in the 19th century. Maxwell presented his famous equations that describes 

electromagnetism, using quaternionic notation, but he claimed that the quaternionic 

method did not provide a satisfactory system. This opinion was shared by other mathe-

maticians, and from this viewpoint the quaternionic system was improved and the modern 

system of vector analysis was developed on its foundation (Crowe, 1967, pp. 137-139).  

  The modern system of vector analysis is ascribed to the American mathematician Josiah 

Willard Gibbs (1839-1903) and the English mathematician Oliver Heaviside (1850-

1925). These two developed two almost identical systems independently which is why 

they both need to be mentioned. Gibbs introduced his work on the new theory in Elements 

of vector analysis, that was published in two parts in 1881 and 1884 respectively. Gibbs 

was a professor in mathematical physics at the University of Yale, and prior to the publi-

cation of his work, Gibbs had given a course in vector analysis with applications to both 

electricity and magnetism (Crowe, 1967, pp. 153-154). Gibbs developed his system by 

extracting essentials from among other Maxwell’s theory on quaternions, and he was 

moreover inspired by Tait. It has also been discussed whether Gibbs had read Grassmann, 

because his system is very similar to the Grassmannian, but this cannot be known with 

certainty (Crowe, 1967, pp. 153-154).  

  The path of Heaviside’s development is almost identical to Gibb’s, which can also ex-

plain why the systems that they presented in the 1880’s were so similar. Like Gibbs, 

Heaviside engaged in the study of electrical theory, and he got acquainted with quaterni-

ons and vectors through Maxwell’s Treatise on electricity and magnetism (Crowe, 1967, 

pp. 160-162). The two very similar versions of vector analysis make up the Gibbs/Heav-

iside system. 

  By the middle of the 1880’s “vector analysis” was divided into two different approaches. 

The first one was the quaternionic system introduced by Hamilton, and the other was the 

Gibbs/Heaviside vector system, that had emerged from a mix of Grassmannian and Ham-

iltonian ideas. Pioneers from each of the two systems, vectors and quaternion, fought for 

the diffusion of the respective approaches.  

  In 1910 the Gibbs/Heaviside vector system was dominating, which is why that version 

is used today. All the work presented above was mostly dealing with Euclidean vectors, 

meaning vectors in ℝ2 or ℝ3. The theory was generalised and by the end of the nineteenth 

century the modern definition of an abstract vector space was given by the Italian math-

ematician Guiseppe Peano (1838-1932), but the full development of the concept from an 

axiomatic approach was not made until the twentieth century (Katz, 2009, p. 865). 
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The praxeological view on the development has shown how vectors have been included 

in different organisations. Some of them have been more physical and some of them have 

been more mathematical. However, the outcome is a system of vector analysis for two 

and three dimensional spaces that is defined with mathematical precision, and is used to 

model countless physical situations e.g. in mechanics and electrodynamics. Figure 12 

shows how the early traditions in the development of vectors are reflected in the modern 

system of vector analysis.  

 

 
Figure 12 – The relation between the early traditions in the development of vectors and their relation to the modern 

vector analysis 

The development of vectors is, as described in the introduction, only one of the numerous 

examples of a very close and fruitful interrelation between mathematics and physics. A 

study of the interrelation between mathematics and physics, and the implications on the 

teaching and learning of them is given by Constantinos Tzanakis. His study provides three 

scenarios in which a development of concepts in mathematics and physics can happen. 

The first of these is defined in the following way (Tzanakis, 2016, p. 4): 

Parallel development: The physical problems asking for solution and the 

formulation of appropriate mathematics (concepts, methods, or theories) 

evolve in parallel. 

 

This is almost an exact description of what happened during the development of vector 

analysis.  

  The didactical implications, that this interrelation should have, according to Tzanakis 

are the following (Tzanakis, 2016, p. 3): 

[…] learning mathematics or physics includes not only the “polished prod-

ucts” of the associated intellectual activity, but also the understanding of im-

plicit motivations, the sense-making actions and the reflective processes of 

scientists, which aim to the construction of meaning. 

 

This citing provides justification for this thorough review of the development of vectors 

in relation to the purpose of this thesis. 
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3.2.2 Definition and applications  

The purpose of this section is to answer 𝑅𝑄1,2
𝐼  about the mathematical organisation of the 

scholarly knowledge on vectors (𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦). The introductory move in the examination 

of the organisation of the scholarly knowledge will be a description of the algebraisation 

of mathematics, since this have affected the development of the theory of vectors heavily.  

  The development of mathematical vectors is only one example of the algebraisation of 

mathematics. The general process has been studied by, among others, the American his-

torian Michael Sean Mahoney (1939-2008). He describes the algebraisation of mathe-

matics as the transition from “an old, traditional, geometric mode” to “a new, in many 

ways revolutionary, algebraic mode.” (Mahoney, 1980, p. 1). The algebraic mode is de-

scribed by three characteristics: (1): “Characterised by the use of an operative symbolism, 

that is, a symbolism that not only abbreviates the words but represents the workings of 

the combinatory operations, or, in other words, a symbolism with which one operates”, 

(2) “Deals with mathematical relations rather than objects. […] The subject of modern 

algebra is the structures defined by relations […]”, and (3) “It is free of ontological com-

mitment. Existence depends on consistent definitions within a given axiom system, and 

mutually compatible mathematical structures live in peaceful co-existence within mathe-

matics as a whole. In particular, this mode of thought is free of the intuitive ontology of 

the physical world”. Furthermore, it is characterised as an “abstract mode of thought, in 

contrast to an intuitive one” (Mahoney, 1980, p. 1).  

  The French mathematicians François Viète (1540-1603) and René Descartes (1596-

1650) were two of the pioneers of the algebraisation. One of the findings, that can be 

ascribed to the algebraisation, is complex numbers. In the beginning algebra was about 

“relations among quantities” in a new symbolic form, but it changed into being about 

“relations among other objects of knowledge” (Mahoney, 1980, p. 7).  

  The algebraisation is relevant to consider in many different mathematical fields, but one 

of them is the development of vector algebra. Regarding vectors, the algebraisation has 

two levels. The first level is constituted by the motivation for the development of a vector 

analysis. Among others Leibniz, Gauss, Hamilton, and Grassmann were motivated by a 

wish to develop a mathematical model of geometry, containing objects that could be op-

erated on directly. This level corresponds to the two characteristics (1) and (2) in Ma-

honey’s description and it was one of the focus points in the previous section. On the 

second level the properties of the vector spaces ℝ2 and ℝ3 are generalised, and the axio-

matic definition of an abstract vector space is given. This level corresponds to the char-

acteristic (3) in Mahoney’s description, and the process of generalising the theory and the 

connection between the special cases ℝ2/ℝ3 and a general vector space will be the main 

subject below.  

 

When Peano gave the definition of an abstract vector space, the study of vectors and their 

properties changed from concerning only two and three dimensional Euclidean vectors 
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(those that can be represented as tuples or triplets of numbers, or geometrically as arrows) 

to concerning elements in any space that satisfy the abstract definition. Taking the scalars 

from a field ℱ, the definition reads as follows (Halmos, 1958, pp. 3-4):  

DEFINITION: A vector space is a set 𝒱 of elements called vectors satisfy-

ing the following axioms. 

(A) To every pair, 𝑥 and 𝑦, of vectors in 𝒱 there corresponds a vector 𝑥 + 𝑦, 

called the sum of 𝑥 and 𝑦, in such a way that  

(1) addition is commutative, 𝑥 + 𝑦 = 𝑦 + 𝑥, 

(2) addition is associative, 𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧, 

(3) there exists in 𝒱 a unique vector 0 (called the origin) such that 𝑥 + 0 =

𝑥 for every vector 𝑥, and 

(4) to every vector 𝑥 in 𝒱 there corresponds a unique vector – 𝑥 such that 

𝑥 + (−𝑥) = 0 

(B) To every pair, 𝛼 and 𝑥, where 𝛼 is a scalar and 𝑥 is a vector in 𝒱, there 

corresponds a vector 𝛼𝑥 in 𝒱, called the product of 𝛼 and 𝑥, in such a way 

that 

(1) multiplication by scalars is associative, 𝛼(𝛽𝑥) = (𝛼𝛽)𝑥, and  

(2) 1𝑥 = 𝑥 for every vector 𝑥. 

(C) (1) Multiplication by scalars is distributive with respect to vector addi-

tion, 𝛼(𝑥 + 𝑦) = 𝛼𝑥 + 𝛼𝑦, and  

(2) multiplication by vectors is distributive with respect to scalar addition, 

(𝛼 + 𝛽)𝑥 = 𝛼𝑥 + 𝛽𝑥. 

 

As described in the previous section, the whole axiomatisation was initially motivated by 

the study of Euclidean vectors, which obviously satisfies the axioms. These are elements 

in ℝ2 or ℝ3 respectively, and can be represented algebraically by tuples, e.g. 𝑎⃗ = (
𝑎1

𝑎2
) 

or 𝑎⃗ = (𝑎1, 𝑎2) for 𝑎⃗ ∈ ℝ2 or 𝑏⃗⃗ = (

𝑏1

𝑏2

𝑏3

) or 𝑏⃗⃗ = (𝑏1, 𝑏2, 𝑏3) for 𝑏⃗⃗ ∈ ℝ3. Or they can be 

represented geometrically by arrows, either independent of a coordinate system (see Fig-

ure 13) or in a coordinate system (see Figure 14). 
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Figure 13 – Geometrically represented vector independent of coordinate system 

 
Figure 14 – Geometrically represented vector in coordinate system 

 

Other examples of mathematical vectors are functions in function spaces, that are added 

pointwise and multiplied by scalars pointwise, or polynomial rings 𝔽[𝑥], where the ele-

ments are polynomials: 

 

𝑓(𝑥) = 𝑟0 + 𝑟1𝑥 + ⋯ + 𝑟𝑛−1𝑥𝑛−1 + 𝑟𝑛𝑥𝑛 

 

with the 𝑟0, 𝑟1, … , 𝑟𝑛 ∈ 𝔽, where 𝔽 is a field.  The elements in these vector spaces are 

hardly representable in any other way than the very abstract 𝑓 ∈ 𝔽[𝑥] for example.  

 

As it has been described in the previous section, the question of multiplication of vectors 

was very important. Initially the motivation for the development of a vector analysis was 

primarily a wish for a system to carry out spatial analysis. Therefore the vector space of 

main interest was ℝ3. On ℝ3 two products can be defined, the scalar product and the 

vector product. The scalar product of two vectors is, as the name reveals, not a vector but 

a scalar. The scalar product is defined on every Euclidean space. The vector product of 

two vectors is again a vector, but because of the geometric property of chirality it can 

only be defined on the specific Euclidean vector space ℝ3. In physics the important prop-

erty of the vector product 𝑣⃗ × 𝑤⃗⃗⃗ is that it is perpendicular to both 𝑣⃗ and 𝑤⃗⃗⃗. This property 

is utilised in both rotational mechanics and electromagnetism.  

  In the theory of vector spaces the scalar product can be generalised, and the generalisa-

tion is called an inner product. The inner product is defined in the following way (Hal-

mos, 1958, p. 121): 
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DEFINITION. An inner product in a (real or complex) vector space is a (re-

spectively, real or complex) numerically valued function of the ordered pair 

of vectors 𝑥 and 𝑦, such that  

 

(1)    (𝑥, 𝑦) = (𝑦, 𝑥)̅̅ ̅̅ ̅̅ ̅ 

(2)  (𝛼1𝑥1 + 𝛼2𝑥2, 𝑦) = 𝛼1(𝑥1, 𝑦)+𝛼2(𝑥2, 𝑦) 

(3)  (𝑥, 𝑥) ≥ 0;   (𝑥, 𝑥) = 0 if and only if 𝑥 = 0 

 

A vector spaces that has an inner product is called an inner product space. Since the scalar 

product on ℝ2 and ℝ3 satisfy the definition these are both inner product spaces. A well-

known feature of Euclidean vectors is that the angle between two of them can be meas-

ured, and that the scalar product can be used to calculate it. By Cauchy-Schwarz’ inequal-

ity the notion of “angle between two vectors” can be generalised to any of the Euclidean 

spaces, ℝ𝑛 (Halmos, 1958, p. 126): 

(2) In the Euclidean space ℝ𝑛, the expression  

(𝑥, 𝑦)

‖𝑥‖ ∙ ‖𝑦‖
 

gives the cosine of the angle between 𝑥 and 𝑦 

 

In general, the inner product is used to define the length of a vector (Halmos, 1958, p. 

121): 

In an inner product space we shall use the notation  

√(𝑥, 𝑥) = ‖𝑥‖; 

the number ‖𝑥‖ is called the norm or length of the vector 𝑥. 

 

Likewise, for the distance between vectors (Halmos, 1958, p. 125): 

(1) In any inner product space we define the distance 𝛿(𝑥, 𝑦) = ‖𝑥 − 𝑦‖ =

√(𝑥 − 𝑦, 𝑥 − 𝑦) 

 

Since angles and orthogonality are closely related notions, the property that two vectors 

can be orthogonal is also attached to inner product spaces only.  
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  The generalisation of Euclidean spaces to higher (possibly infinite) dimensions is uni-

fied in the theory of Hilbert spaces. The inner product-structure provides a sort of geo-

metric intuition to infinite dimensional vector spaces. Hilbert spaces have important ap-

plications in physics, e.g. in the mathematical description of quantum mechanics.  

 

A description of the scholarly mathematical knowledge on vectors has been given. In the 

view of this description 𝑅𝑄1,2
𝐼  about the organisation of the scholarly knowledge on vec-

tors in mathematics can now be answered.  

  Because of the algebraisation the scholarly knowledge on vectors in mathematics is or-

ganised around the algebraic properties addition of vectors and multiplication of a vector 

by a scalar, which are the defining properties. In this organisation the vector spaces ℝ2 

and ℝ3 are only a diminutive part of the whole theory (see Figure 15). However, the 

structure of ℝ2/ℝ3, where a product of vectors (the scalar product) can be defined, has 

been crucial in the generalised theory as well. The inner product structure generalises 

some of the geometric properties that ℝ2 and ℝ3 have. These geometric properties are 

exactly the properties that make ℝ2/ℝ3 a suitable model for the plane/space. The gener-

alised inner product structure makes it reasonable to talk about geometric properties such 

as length, angles, and distances in higher dimensions.  

  In ℝ3 the vector product is an important property, but since it cannot be generalised it 

does not have any pronounced position in the organisation of the scholarly mathematical 

knowledge. 

 

 
Figure 15 – Nested structure of vector space-properties 

 

3.2.3 Vectors in physics 

The purpose of this section is to answer 𝑅𝑄1,3
𝐼  about the physical organisation of the 

scholarly knowledge on vectors (𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦). 

  Vectors are used to model physics in a lot of different fields. The initial application of 

ℝ3-vector analysis was in mechanics as a model for vector quantities such as velocity, 

force, acceleration, etc. Later on, when the mathematical concept was further developed, 
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vectors were applied in electromagnetism. In Table 2 some of the important algebraic 

properties of ℝ3-vector analysis are listed together with the physical applications of them.  

 

Algebraic prop-

erty 

Physical appli-

cation 

List of symbols 

Mechanics 

Scalar multiplica-

tion 
𝐹⃗ = 𝑚 ∙ 𝑎⃗ 𝐹⃗: the force that implies the acceleration 𝑎⃗ on 

a particle/body with the mass 𝑚. 

Vector addition 𝑣⃗ = 𝑣𝑥⃗⃗⃗⃗⃗ + 𝑣𝑦⃗⃗⃗⃗⃗ 

𝑎⃗ = 𝑎𝑥⃗⃗⃗⃗⃗ + 𝑎𝑦⃗⃗⃗⃗⃗ 

𝐹𝑟𝑒𝑠
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ = 𝐹1

⃗⃗ ⃗⃗ + 𝐹2
⃗⃗ ⃗⃗  

 

𝑣⃗: the “resulting” velocity of a particle/body 

having 𝑣𝑥⃗⃗⃗⃗⃗ as its horizontal velocity and 𝑣𝑦⃗⃗⃗⃗⃗ as 

its vertical velocity. 

𝑎⃗: the “resulting” acceleration of a parti-

cle/body having 𝑎𝑥⃗⃗⃗⃗⃗ as its horizontal accelera-

tion and 𝑎𝑦⃗⃗⃗⃗⃗ as its vertical acceleration. 

𝐹𝑟𝑒𝑠
⃗⃗ ⃗⃗⃗⃗ ⃗⃗ : the resulting force on a particle/body 

acted on by the two forces 𝐹1
⃗⃗ ⃗⃗  and 𝐹2

⃗⃗ ⃗⃗ . 

Scalar product 𝑊 = 𝐹⃗ ∙ Δ𝑠 𝑊: the work done by a force 𝐹⃗ on a parti-

cle/body over a displacement Δ𝑠. 

Vector product 𝐿⃗⃗ = 𝑟 × 𝑝⃗ 

𝜏 = 𝑟 × 𝐹⃗ 

𝐿⃗⃗: the angular momentum of a particle with 

linear momentum 𝑝⃗ rotating around an axis in 

the distance 𝑟 from it. 

𝜏: the moment of force on a particle caused 

by a force 𝐹⃗ and the lever arm vector 𝑟 

Electromagnetism 

Vector product 

and scalar multi-

plication in com-

bination 

𝐹⃗ = 𝐵⃗⃗ × 𝐼 ∙ 𝑙 𝐹⃗: the magnetic force on a current-carrying 

wire of length 𝑙 carrying a current 𝐼 in a mag-

netic field 𝐵⃗⃗ 

Vector product, 

vector addition 

and scalar multi-

plication in com-

bination 

𝐹⃗

= 𝑞(𝐸⃗⃗ + 𝑣⃗ × 𝐵⃗⃗) 

𝐹⃗: the Lorentz force (combined electric and 

magnetic force) on a point charge 𝑞 moving 

with velocity 𝑣⃗ in the presence of an electric 

field 𝐸⃗⃗ and a magnetic field 𝐵⃗⃗ 

Table 2 - Some applications of ℝ3-vectors in physics 

 

The table shows a selection of cases where vectors are used to model physical correla-

tions. It is the geometric properties of ℝ3-vectors that are crucial in the modelling. For 

example, the formula 𝑊 = 𝐹⃗ ∙ Δ𝑠 expresses the fact that it is only the component of the 

force that is parallel to the displacement that contributes to the work. Another example 

could be the formula 𝐹⃗ = 𝐵⃗⃗ × 𝐼 ∙ 𝑙, where the geometric property of chirality of ℝ3, ex-

pressed by vectors, is used to determine the direction of the force 𝐹⃗. As a consequence of 

the general and abstract definition of a vector space, a mathematical ℝ3-vector can be 
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represented by infinitely many arrows all having a fixed length and direction. This prop-

erty is very crucial in mathematics. In physics, on the other hand, the geometric interpre-

tation of this property can be misleading, since the forces 𝐹1 and 𝐹2 on Figure 16 will 

affect the block in two completely different ways, even though the arrows represent the 

exact same mathematical vector.  

 

 
Figure 16 – Two physical forces represented by the same mathematical vector 

Another example of how the algebraic properties are less crucial than the geometric con-

sequences they imply in ℝ3 is the property of commutativity of vector addition. Algebra-

ically this property is described by the following: 𝑣⃗ + 𝑤⃗⃗⃗ = 𝑤⃗⃗⃗ + 𝑣⃗. However, the im-

portant implication of this property in physics is, that the red path (𝑣⃗ followed by 𝑤⃗⃗⃗, 

written as 𝑣⃗ + 𝑤⃗⃗⃗) and the blue path (𝑤⃗⃗⃗ followed by 𝑣⃗, written as 𝑤⃗⃗⃗ + 𝑣⃗) on Figure 17 end 

in the same place.  

 

 
Figure 17 - Physical interpretation of the commutative property of vector addition 

As it has been mentioned, the more abstract Hilbert spaces are used in the modelling of 

quantum mechanics. Since neither Hilbert spaces nor quantum mechanics are a part of 

the high school physics curriculum nor in the scope of this thesis, the modelling of quan-

tum mechanics with the theory of Hilbert spaces will not be described further.  

 

In physics vectors are found in the technique part of the praxis block in the praxeological 

organisation. The technology part of the logos block will give a discourse on the model 

that vector analysis provides. In physics the more theoretical parts of the theory of vector 

analysis, such as the algebraic property of a vector space etc., are secondary. Instead it is 

the geometric properties of ℝ3 that makes it useful in the modelling of physical phenom-

ena such as force, velocity, acceleration, angular momentum, etc. 
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3.3 The knowledge to be taught on vectors  
This section will give answers to the research questions 𝑅𝑄2,1

𝐼 , 𝑅𝑄2,2
𝐼 , 𝑅𝑄2,3

𝐼 , and 𝑅𝑄2,4
𝐼 , 

which are all regarding the knowledge to be taught.  Section 3.3.1 will deal with the his-

torical development of 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 which includes both 𝑅𝑄2,1
𝐼  and 𝑅𝑄2,2

𝐼 . From a 

mathematical point of view, it will focus on how the theory of vectors is covered from 

both a geometric and an algebraic point of view, and how this is reflected in textbooks 

and written exam problems. From a more interdisciplinary view it will focus on the role 

that physics has played in the mathematical organisation of vectors. Furthermore, some 

sub-questions will be guiding the praxeological analysis: 

 

𝑅𝑄21
𝐼
: How are vectors introduced and defined? 

𝑅𝑄22
𝐼
: What types of tasks are found in the praxis block? 

𝑅𝑄23
𝐼
: What techniques are found in the praxis block? 

𝑅𝑄24
𝐼
: How is the theory part of the logos block organised? 

𝑅𝑄25
𝐼
: How do the 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 differ from the 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦? 

 

Section 3.3.2 will deal with 𝑅𝑄2,3
𝐼  where the crucial task is to answer the above sub-

questions in order to give a praxeological description.  

  Section 3.3.3 will deal with 𝑅𝑄2,4
𝐼  focusing on how mathematics has generally been 

heavily reduced in the organisation of the knowledge to be taught in physics the past 

years.  

 

About the structure of the analysis and the materials used 

The analysis of the mathematical organisation of vectors will be divided into two periods; 

the historical and the current. The historical period is taken to be the years from 1935 to 

2005. The starting point is chosen to be 1935, because vectors did not appear in the math-

ematics curricula before this year. The year 2005 is taken as the end of the historical 

period because the mathematical organisation of vectors in the 2005-curriculum is almost 

identical to the mathematical organisation of vectors in the 2013-curriculum. These two 

curricula are included in the current period, because the material that will give access to 

the mathematical organisation of vectors in the 2017-curriculum is still very limited. Fur-

thermore, the 2005/2013-curricula are very similar to the 2017-curriculum, which is why 

these are drawn into the analysis of the current mathematical organisation. The purpose 

of the analysis of the historical period is to describe the development of the mathematical 

organisation. Therefore, the analysis of the historical period is again divided into smaller 

periods. The periods are bounded by the years that the Danish high school changed re-

form, i.e. the first period is 1935-1953, because the Danish Ministry of Education passed 

a high school reform in 1935 and again in 1953.  
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  The material that will be used in the analyses are the official documents describing the 

curricula, and the guidelines for interpretation of the curricula (these have only been ac-

cessible for the years 2013 and 2017). Additionally, the written exam problems that re-

lates to the theory of vectors will be used in the description of the mathematical organi-

sation of vectors, since these will enlighten (especially) the praxis blocks in the respective 

praxeological organisations. For the questions about the more theoretical organisation 

textbooks will be used. For each period, the textbooks that were predominant and/or char-

acteristic for the period are drawn in. Since the written exam problems are comparable 

across reforms it has seemed reasonable to give a review of the findings in the written 

exam problems that include vectors before the presentation of mathematical organisation 

of vectors in the respective periods.  

  The historical development of the mathematical organisation of vectors will be treated 

in section 3.2.1 and the current mathematical organisation will be treated in section 3.2.2. 

Both sections will include the links to physics that might be mentioned in both curricula, 

guidelines for interpretation of curricula, written exams, and textbooks.  

 

The analysis of the organisation of vectors in physics is also divided into the same two 

periods as the analysis of the organisation in mathematics. In physics the material is un-

fortunately highly restricted, mostly because the material has not been as easy accessible 

as the corresponding material in mathematics. The official documents that have been 

available are curricula from 2013 and 2017, together with the guidelines for interpretation 

of the curricula, and the written exams from the period 2010-2017. A few textbooks from 

the historical period will be drawn into the analysis of the organisation of vectors in phys-

ics. The analysis of the current organisation of vectors will only include one textbook.  

  The historical development of the organisation of vectors in physics will be treated to-

gether with the historical development of the organisation of vectors in mathematics in 

section 3.3.1 and the current organisation in physics will be treated in section 3.3.3. Sec-

tion 3.3.3 will include the links to mathematics that will be mentioned in both curricula, 

guidelines for interpretation of curricula, and textbooks. 

 

3.3.1 Historical development  

A French study conducted by B. A. Cissé and Jean-Luc Dorier in 2014 (Cissé & Dorier, 

2014) that covers the period from 1852-2002 have showed how vectors have moved from 

the border of mathematics and physics into a more algebraic context, focusing on the 

axiomatic structure of ℝ2/ℝ3, with applications in geometric problems. A similar transfer 

can be observed in a Danish context and it will be enlightened throughout the following.  
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General structure of the written exam problems 

Vectors have appeared in written exams since 1966. Across reforms the vector problems 

that appear in the written exams can be divided into three categories that are listed and 

described in Table 3.  

 

Category Description 

Analytical-geometrical vector-problems Problems regarding geometric configura-

tions that are coordinate-based. Vectors 

are used in the formulation of the prob-

lem and required in the solution. The 

problems can be two or three dimen-

sional. The geometric properties of the 

vector spaces ℝ2/ℝ3 are utilised. 

Vector algebra-problems Problems regarding vectors without con-

nection to a geometric configuration. 

These problems are solved by purely al-

gebraic manipulations with vectors. the 

algebraic structure of ℝ2/ℝ3 are utilised. 

These problems can include coordinates 

or they can be coordinate-free. 

Vector function-problems Problems involving vector functions. 

Table 3 – The three categories of written exam problems including vectors 

In this thesis the last category will not be paid any attention because it is out of scope. 

Instead a thorough examination of the two other categories will be given.  

  The category analytical-geometrical vector-problems contains a huge number of differ-

ent types of tasks that are solved by a lot of different techniques. Instead of listing all the 

different techniques (as it is possible for the vector algebra-problems) it is more illustra-

tive to divide the analytical-geometrical vector-problems in subcategories depending on 

the technology. These are presented and described in Table 4. 

 

𝜃𝐼 The technology of techniques to determine intersections between e.g. two lines, 

line and plane, two planes, or circle and line 

𝜃𝐴 The technology of techniques to determine angles between e.g. two lines or two 

planes 

𝜃𝑃 The technology of techniques to determine the projection of e.g. point on line 

𝜃𝑅 The technology of techniques to determine representations (equations and par-

ametric representations) of planes and lines, and determination of direction/nor-

mal vectors from equations or parametric representations of lines and planes 
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𝜃𝐷 The technology of techniques to determine distance between e.g. point and 

plane or point and line 

𝜃𝑇 The technology of techniques to determine tangents and tangent planes 

𝜃∆ The technology of techniques to carry out calculations on triangles and quad-

rangles (area of them and angles in them) 

Table 4 – Technologies of techniques to solve analytical-geometrical vector-problems 

Each of the local MO’s that are organised around the technologies in Table 4 contain 

punctual MO’s organised around different techniques. The techniques that include vec-

tors are identical to techniques from the algebraic MO, and the technology provides a 

discourse on the vector spaces ℝ2/ℝ3 as a model for geometric objects in ℝ2/ℝ3.  

  A further discussion and some examples of problems will be given in the sections about 

the respective periods.  

 

The other important category is vector algebra-problems. As it has been described above 

the vector algebra-problems are divided into two subcategories; those that are coordinate-

free and those where coordinates are included. Both categories utilise some techniques 

that are not restricted to vector problems. These techniques will be categorised as “ordi-

nary algebra” techniques and are found in Table 5.  

 

Ordinary algebra techniques (no vectors) 

𝜏𝑒𝑞 Solve equation 

𝜏2 𝑒𝑞 Solve two equations with two unknowns 

𝜏3 𝑒𝑞 Solve three equations with three unknowns 

𝜏𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞 Solve quadratic equation 

𝜏𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 Determine the vertex of a parabola by 𝑥 = −
𝑏

2𝑎
, 𝑦 = −

𝑑

4𝑎
 

𝜏𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 Reduce an equation 

𝜏3𝑟𝑑 𝑑𝑒𝑔.𝑝𝑜𝑙. Solve a third degree polynomial 
Table 5 – ”Ordinary algebra” techniques that do not involve vectors 

Problems in the subcategory without coordinates can be solved by combining the tech-

niques from Table 5 above and Table 6 below:  

 

Vector techniques (no coordinates) 

𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒(+,∙) Use the distributive law of vector sum and scalar product. (𝑎⃗ + 𝑏⃗⃗) ∙

𝑐 = 𝑎⃗ ∙ 𝑐 + 𝑎⃗ ∙ 𝑐 

𝜏|∙|,∙ Use the identity |𝑎⃗|2 = 𝑎⃗2(= 𝑎⃗ ∙ 𝑎⃗) 

𝜏⊥,∙ Use that 𝑎⃗ ⊥ 𝑏⃗⃗ ⇔ 𝑎⃗ ∙ 𝑏⃗⃗ = 0 

𝜏∠,∙,|∙| 
 

Use the relation between scalar product, lengths of vectors and angle 

between vectors. 𝑎⃗ ∙ 𝑏⃗⃗ = |𝑎⃗| ∙ |𝑏⃗⃗| ∙ cos(𝑣) 
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𝜏𝑝𝑟𝑜𝑗,|∙|,∙ Use the relation between length of projection vector, numerical value 

of the scalar product and the length of the vector that is projected on. 

|𝑏𝑎
⃗⃗⃗⃗⃗| =

|𝑎⃗⃗∙𝑏⃗⃗|

|𝑎⃗⃗|
 

𝜏|∙| 𝑜𝑓⊥𝑣𝑒𝑐𝑡𝑜𝑟 Use the identity |𝑎̂⃗| = |𝑎⃗| 

𝜏𝑝𝑎𝑟,|∙|,∠ Use the relation between the lengths of and the angle between the 

two vectors that span a parallelogram. 𝐴𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 = |𝑎⃗| ∙ |𝑏⃗⃗| ∙

|sin(𝑣)| 
Table 6 – Techniques to solve vector algebra-problems with no coordinates 

The problems in the second subcategory can be solved by combining the techniques in 

Table 7.  

 

Vector techniques (coordinates) 

𝜏𝑠𝑢𝑚 
Use the coordinate formula for addition. (

𝑎1

𝑎2
) + (

𝑏1

𝑏2
) = (

𝑎1 + 𝑏1

𝑎2 + 𝑏2
) 

𝜏𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 
Use the coordinate formula for subtraction. (

𝑎1

𝑎2
) − (

𝑏1

𝑏2
) = (

𝑎1 − 𝑏1

𝑎2 − 𝑏2
) 

𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡 
Use the coordinate formula for scalar multiplication. 𝑘 (

𝑎1

𝑎2
) = (

𝑘𝑎1

𝑘𝑎2
) 

𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑑 
Use the formula for the scalar product. (

𝑎1

𝑎2
) ∙ (

𝑏1

𝑏2
) = 𝑎1𝑏1 + 𝑎2𝑏2 

𝜏|∙| Use that |𝑎⃗| = √𝑎1
2 + 𝑎2

2 

𝜏^ Use that 𝑎⃗ = (
𝑎1

𝑎2
) ⇒  𝑎̂⃗ = (

−𝑎2

𝑎1
) 

𝜏𝑝𝑟𝑜𝑗 
Use the coordinate formula for the projection vector. 𝑏𝑎

⃗⃗⃗⃗⃗ = (
𝑏𝑎1

𝑏𝑎2

) =

𝑎1𝑏1+𝑎2𝑏2

𝑎1
2+𝑎2

2 ∙ (
𝑎1

𝑎2
) 

𝜏⊥ 
Use that (

𝑎1

𝑎2
) = 𝑎⃗ ⊥ 𝑏⃗⃗ = (

𝑏1

𝑏2
) ⇔ 𝑎1𝑏1 + 𝑎2𝑏2 = 0 

𝜏∥ 
Use that (

𝑎1

𝑎2
) = 𝑎⃗ ∥ 𝑏⃗⃗ = (

𝑏1

𝑏2
) ⇔ 𝑎1𝑏2 − 𝑎2𝑏1 = 0 

𝜏∠,∙ 
Use that 𝑎1𝑏1 + 𝑎2𝑏2 = √𝑎1

2 + 𝑎2
2 ∙ √𝑏1

2 + 𝑏2
2 ∙ cos(𝑣) 

𝜏∠,𝑑𝑒𝑡 
Use that 𝑎1𝑏2 − 𝑎2𝑏1 = √𝑎1

2 + 𝑎2
2 ∙ √𝑏1

2 + 𝑏2
2 ∙ sin(𝑣) 

𝜏𝑑𝑒𝑡 Use the coordinate formula for determinant. det(𝑎⃗, 𝑏⃗⃗) = 𝑎1𝑏2 − 𝑎2𝑏1 

𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 Use the relation of the area of the parallelogram spanned by two vec-

tors and their coordinates. 𝐴𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 = |𝑎1𝑏2 − 𝑎2𝑏1| 

𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
 Use the coordinate formula for the vector from point 𝐴(𝑎1, 𝑎2) to 

point 𝐵(𝑏1, 𝑏2). 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (
𝑏1 − 𝑎1

𝑏2 − 𝑎2
) 

Table 7 – Techniques to solve vector algebra-problems with coordinates 
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Examples of problems, applications of the techniques, and a further discussion will be 

given in the sections about the respective periods.  

 

In the 2017-reform a new type of problems appeared in the guiding exam problems, where 

the approach is a little more geometric, though the problems are not categorised as ana-

lytical-geometrical vector-problems. Therefore, they have been put in the category with 

the vector algebra-problems. Some techniques that can possibly be used to solve them, 

are shown in Table 8.  

 

Geometric techniques 

𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚 

 

𝜏𝑔𝑒𝑜𝑚 𝑑𝑖𝑓𝑓 

 

𝜏𝑔𝑒𝑜𝑚 𝑠𝑐𝑎𝑙 𝑚𝑢𝑙𝑡 

 
Table 8 – Geometric techniques to solve the vector-algebra problems with a more geometric approach 

1935-1953 

During this period vectors were included in the curriculum, but they did not appear in the 

written exams. The curriculum was divided into two, arithmetic and plane geometry (in 

a broader meaning of the word arithmetic including also naive algebra, e.g. equations) 

and stereometry (spatial geometry) (Petersen & Vagner, 2003, pp. 187-188). Each part 

contained a list of the topics that should be covered, and under arithmetic and plane ge-

ometry the two topics “The composition and decomposition of vectors” and “Velocity in 

linear and curvilinear movement (in the plane). Acceleration in linear and circular move-

ment” (as cited in Petersen & Vagner, 2003, p. 188) appear. The second of them is con-

tained in kinematics, and will also be found in the physics curriculum rather than in the 

mathematics curriculum nowadays. A similar organisation was detected in France in the 

beginning of twentieth century (Cissé & Dorier, 2014, p.3).  

  The introduction of, motivations for, and definition of vectors will be described in the 

view of the textbook “Lærebog i matematik”, that was prevalent in that time (Petersen & 

Vagner, 2003, p. 193). Unfortunately, the first edition from 1937 have not been accessi-

ble. Instead the fourth edition, from 1949, is used.  

  The last chapter in the first book was dedicated to vectors. The opening example, that 

introduces and motivates the notion of vectors, comes from physics (Juul & Rønnau, 

1949, p. 216): 
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Ex. 1. In the physics curriculum from the middle school we have dealt with 

forces. To the determination of a force belongs three things: the size of the 

force, the direction (the line of action) of the force, and the point of action of 

the force. We depict a force as a line segment, which length denotes the size 

of the force, and which direction (denoted by an arrow) denotes the direction 

of the force, and which initial point is the point of action of the force. If two 

forces have the same point of action, the can be composed according to the 

rule of the parallelogram of forces (fig. 139) [see Figure 18]. The two forces 

𝐾1 and 𝐾2 (components) can be replaced by the force 𝑅 (the resultant). The 

correctness of this rule can be realised by experiments. Inversely, the resultant 

𝑅 can be decomposed in the forces 𝐾1 and 𝐾2. Directional quantities, e.g. 

forces, are called vectors, while quantities, that are not directional, e.g. area, 

volume, are called scalars. What we learn in the following about vector, ap-

plies to vectors in the same plane. 

 

 
Figure 18 – Fig. 139 from Ex. 1 in (Juul & Rønnau, 1949, p. 216) 

From this example a couple of interesting points can be highlighted.  

 

1. Physical applications were important in the teaching of vectors in this period. 

2. No distinction is made between the mathematical objects that are characterised as 

vectors and the quantities in physics that behave like vectors (vector quantities). 

This book puts equality sign between vectors and vector quantities. 

 

This geometric composition of forces is a technique. It has already been described in 

section 3.2.1, but in the context of 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 it will be denoted 𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚.  

 

The definition of a vector is given right after the example shown above (Juul & Rønnau, 

1949, p. 216): 

𝐴 and 𝐵 are two given points on a straight line 𝑙. If a point is moving on 𝑙 
from 𝐴 against 𝐵, 𝑙 is said to be run through in the direction 𝐴𝐵. The line 

segment 𝐴𝐵 that goes from 𝐴 to 𝐵 is called a vector. […] The vector 𝐴𝐵 is 

denoted 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ . 
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The definition is supplemented by an illustration, that is shown in Figure 19. From the 

definition and Figure 19 it is seen that no distinction between the concrete directed line 

segment 𝐴𝐵 and the vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  is made.  

 

 
Figure 19 - Figure illustrating the definition of a vector (in Juul & Rønnau, 1949, p. 216) 

The notion of “point bounded vector” does not correspond to anything from the scholarly 

mathematical organisation of vectors. However, the notion “point bounded vector” is 

more useful than the correct mathematical definition to model the situation described in 

section 3.2.3, where two forces are represented by the same mathematical vector, but the 

effects of the forces are different because the points of application are different. In the 

terminology of (Juul & Rønnau, 1949) the two vectors with different “points of applica-

tion” are different point bounded vectors. The notion “free vector” in (Juul & Rønnau, 

1949) is what corresponds to the scholarly notion of vectors, though the definition is way 

more geometric in (Juul & Rønnau, 1949) than the scholarly one. When defining a vector 

as a parallel displacement, the notion appears more dynamical, than the more static defi-

nition based on vector space properties, as in the scholarly definition. This reinforces the 

connection between vectors and their application in physics.  

  Remarkable, especially compared to the present mathematical organisation of the 

knowledge to be taught on vectors, is that vectors in (Juul & Rønnau, 1949) are not rep-

resented by coordinates at all. When calculations involve coordinates it is always the co-

ordinates of points, e.g. the end points of vectors.  

 

The very physical approach to vectors can explain some of the details in the mathematical 

organisation of vectors in this period. First of all, it explains why it was only “The com-

pound and decomposition of vectors” that was represented in the curriculum, since these 

are the only properties of vectors that are relevant in kinematics. Secondly, it will explain 

why vectors were removed from the curriculum in the succeeding period from 1953 to 

1961, where kinematics was no longer a part of the mathematics curriculum.  

  Exercises and problems are not a part of the content in (Juul & Rønnau, 1949), which 

means that it is difficult to make a detailed praxeological analysis, but a possible praxeo-

logical organisation of the knowledge to be taught on vectors is the following: The types 

of tasks are different physical problems regarding vector quantities (mostly velocity), the 
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techniques are centred around geometric composition and decomposition of vectors, the 

technology is a justification of vectors as a model for physical vector quantities, and the 

theory is the definition of vectors as mathematical objects (see Figure 20). 

 

 
Figure 20 – Praxeological organisation of vectors during the period 1935-1953 

1953-1961 

As mentioned above vectors were absent from the curriculum, so the period will not be 

paid further attention. 

 

1961-1971 

This period is interesting because vectors were added to the curriculum again, and be-

cause vectors appeared for the first time in a written exam in this period. In 1961 the 

modern mathematics was implemented in the Danish mathematics curriculum through 

“Den røde Betænkning”. The purpose was, like in France and the rest of Europe (Cissé 

& Dorier, 2014 pp. 5-6), to narrow down the gap between the scholarly knowledge and 

the knowledge to be taught. The gap had grown, since neither the topics in the curriculum 

nor the organisation of the knowledge to be taught had changed much over the years, 

while the mathematical community had made great progress in the scholarly knowledge 

during the same period. Two important changes in the scholarly knowledge had made the 

gap grow, because they had not affected the knowledge to be taught yet. The first one was 

the importance of sets, the second was the heavily algebraisation of almost every mathe-

matical field, that was described in section 3.2.2. An attempt to implement the changes, 

that were made in the scholarly knowledge, in the knowledge to be taught was made in 

the 1961-reform.  

 

“Den røde Betænkning” gave the following purpose of the mathematics teaching in high 

school (as cited in Petersen & Vagner, 2003, pp. 236-237):  

To let the students get acquainted with a number of fundamental mathematical 

notions and ways of thinking, to evoke their sense of clarity and coherence in 

mathematical argumentation and expression forms, to seek a development of 

their fantasy and inventiveness, to train them in the treatment of concrete 

problems, including the execution of numerical calculations, and to make 

them familiar with applications of mathematics within other scientific fields. 
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This purpose found its expression among other places in the mathematical topics that 

were included in the curriculum. Up to the 1961-reform, high school students had mostly 

been acquainted with different geometric topics, functions including calculus, equations, 

and some arithmetic. From 1961 the most fundamental notion in Danish high school 

mathematics became sets, which highly reflected the scholarly knowledge. Also equiva-

lence relations, logic, and algebra were new important notions in the curriculum. Vectors, 

and especially the vector space structure of ℝ2 and ℝ3, became the fundamental notion 

in geometry in both two and three dimensions. The curriculum stated the following about 

plane geometry for first year students (as cited in Petersen & Vagner, 2003, p. 237):  

Plane geometry. The right angled coordinate system. Change of coordinates. 

Vectors and their coordinates. Calculations with vectors, including the scalar 

product of two vectors. The analytic representation of the straight line. Dis-

tances and angles. The analytic representation of the circle. The area of trian-

gles and parallelograms. Definition and the analytic representation of parab-

ola, ellipse, and hyperbola. Mappings of the plane on itself: Parallel displace-

ment, rotation, reflection, multiplication and composition of these mappings. 

Affinity. 

 

And the following about spatial geometry for first year students (as cited in Petersen & 

Vagner, 2003, pp. 237-238): 

Spatial geometry. The right angled coordinates system. Vectors and their co-

ordinates. Calculation with vectors including the scalar product of two vec-

tors. The analytic representation of the straight line. The analytic representa-

tion of the plane. Distances and angles. The equation of the sphere. Spherical 

coordinates. The spherical distance between two points (the law of cosines). 

Polyhedrons, Euler’s polyhedron formula, the regular polyhedrons. Volume 

of prism, pyramid, cylinder of revolution, cone of revolution, and sphere; area 

of spherical triangles. Congruence and symmetry. 

 

Furthermore, vectors were mentioned in the paragraph in the curriculum about applica-

tions of infinitesimal calculus (as cited in Petersen & Vagner, 2003, p. 238): 

Applications of infinitesimal calculus. Determination of the range of a func-

tion and the conditions of the functions monotony. Simple examples of deter-

mination of the asymptotic properties of a function. Drawing of plane curves 

determined by explicitly given functions or by parametric representations. 

The velocity vector, speed, acceleration vector […] 

 

In the light of the curriculum alone, the context that it put vectors in, and the list of notions 

from vector theory that should be covered, it is obvious how vectors were mostly a tool 
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for geometric purposes in the period 1961-1971, though it was also mentioned as an ap-

plication of infinitesimal calculus. This is distinct from the purpose in the period 1935-

1953, where vectors were used only as a tool for physical purposes (kinematics). Due to 

the lack of the corresponding materials from physics, it is hard to know whether vectors 

were included in the physics curriculum in this period.  

  Contrary to the period 1935-1953 this period provides a collection of written exam prob-

lems that contribute to giving an insight in the organisation of the praxis block. The writ-

ten exam problems can, as described above, be divided into three categories. Problems in 

each category appeared in this period. The first vector problem ever was an analytical-

geometrical vector problem from the exam in 1966. The problem will be presented below 

and referred to as Problem 1. It will be included in an analysis of the whole category of 

analytical-geometrical vector-problems later. The first vector function-problem appeared 

in 1967, but since vector functions are out of scope of this thesis, the analysis will not 

include the category of vector function-problems.   

  The first vector algebra-problem appeared in 1970 (and it was actually the only vector 

algebra-problem in this period). It will be presented below and referred to as Problem 3. 

It will be included in an analysis of the whole category of vector algebra-problems later. 

The division of the written exam problems and a review of different textbooks from this 

and the following periods shows that the praxeological organisation of vectors in mathe-

matics can be divided into two regional MO’s. The first one is the one organised around 

the geometric properties of ℝ2/ℝ3, [𝑇, 𝜏, 𝜃, Θ𝐺]. The other one is organised around the 

algebraic properties of ℝ2/ℝ3, [𝑇, 𝜏, 𝜃, Θ𝐴]. In this period the praxis block of [𝑇, 𝜏, 𝜃, Θ𝐺] 

is predominant, while the textbooks reveals that the predominant logos block is taken 

from [𝑇, 𝜏, 𝜃, Θ𝐴]. 

 

Analytical-geometrical vector-problems 

Problem 1 – the first analytical-geometrical vector-problem from 1967 (Petersen & 

Vagner, 2003):   

In a coordinate system in the plane a quadrangle 𝐴𝐵𝐶𝐷 is given. The side 

𝐴𝐷 is situated on the line given by the equation 

𝑥 + 3𝑦 + 4 = 0 

and the side 𝐴𝐵 is situated on the line given by the equation  

11𝑥 − 8𝑦 + 44 = 0 

The point 𝐵 is situated on the second axis (𝑦-axis), 𝐵𝐶⃗⃗⃗⃗⃗⃗  has the coordinates 

(6, −
1

2
), and the point 𝐷 is situated on the perpendicular bisector of the di-

agonal 𝐴𝐶.  

  Determine the area of the quadrangle and the angles 𝐵 and 𝐷. 
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The problem is analytical-geometrical, since it is closely tied to a geometric configura-

tion. Referring to the general organisation of the analytical-geometrical vector-problems 

(Table 4) this problem belongs under the technology 𝜃∆ (the technology of techniques to 

carry out calculations on triangles and quadrangles). Problem 1 contain three tasks: 

 

𝑡1: Determine the area of the quadrangle 

𝑡2: Determine the angle 𝐵 

𝑡3: Determine the angle 𝐷 

 

𝑡2 and 𝑡3 are contained in the same type of task. As it has been described the vector 

techniques in [𝑇, 𝜏, 𝜃, Θ𝐺] are similar to some of the techniques in [𝑇, 𝜏, 𝜃, Θ𝐴]. For exam-

ple 𝑡1 is solved by combining some techniques from [𝑇, 𝜏, 𝜃𝑅 , Θ𝐺] that are not directly 

related to vectors and the technique 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 from [𝑇, 𝜏, 𝜃, Θ𝐴]. The tasks 𝑡2 and 𝑡3 

are similarly solved by a combination of some techniques from [𝑇, 𝜏, 𝜃𝑅 , Θ𝐺] that are not 

directly related to vectors and the technique 𝜏∠ from [𝑇, 𝜏, 𝜃, Θ𝐴].  

 

A closer look into the analytical-geometrical vector-problems from this period reveals 

that the tasks are most often in either [𝑇, 𝜏, 𝜃∆, Θ𝐺] (like Problem 2) or in [𝑇, 𝜏, θI, Θ𝐺] 

(tasks regarding intersections). An example could be the following problem from 1968, 

that will be referred to as Problem 2 (Petersen & Vagner, 2003): 

In the plane is given a coordinate system with the origin 𝑂. The line given 

by the equation 𝑦 = 𝛼𝑥 + 𝑞 intersects the parabola given by the equation 

𝑦 = 𝑥2 in the points 𝑃 and 𝑄.  

 Show that the scalar product 𝑂𝑃⃗⃗⃗⃗ ⃗⃗ ∙ 𝑂𝑄⃗⃗⃗⃗⃗⃗⃗ depends on 𝑞 but is independent 

of 𝛼.  

 About two points 𝐴 and 𝐵 on the parabola is given that 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ ∙ 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ = 6. 

Determine the coordinates to the intersection between the line 𝐴𝐵 and the 

secondary axis (𝑦-axis).  

 Determine the smallest value that 𝑂𝑆⃗⃗⃗⃗⃗⃗ ∙ 𝑂𝑇⃗⃗⃗⃗ ⃗⃗  can take when 𝑆 and 𝑇 are 

arbitrary points on the parabola.  

 

In addition to these two local MO’s, the regional MO [𝑇, 𝜏, 𝜃, Θ𝐺] contains other types of 

tasks that are solved by different techniques and justified by different technologies, but 

generally the problems are not as easy to categorise into a small bunch of types of tasks, 

as exam problems are nowadays. This variety in types of tasks require a well-developed 

logos block in order to be able to model many different mathematical configurations with 

vectors.  
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Vector algebra-problems 

Problem 3 – the first vector algebra-problem from 1970 (Petersen & Vagner, 2003): 

In an oriented plane two vectors 𝒂 and 𝒃 are given. The vectors satisfy 

|𝒂| = 1 and 𝒃 = 2𝒂̂ 

In the following 𝑅 is denoting the set of real numbers and 𝑁 the set of posi-

tive whole numbers.  

  Determine the set 𝑀1 of numbers 𝑡 ∈ 𝑅 that satisfies  

|𝑡𝒂 + 𝒃| = 6 

  Determine the set 𝑀2 of tuples (𝑠, 𝑡) ∈ 𝑅 × 𝑅, (𝑠, 𝑡) ≠ (0,0), that satisfies 

𝑠𝒂 + 𝑡𝒃 ⊥ 𝒂 − 𝒃 

  Determine the set 𝑀3 of tuples (𝑠, 𝑡) ∈ 𝑅 × 𝑅 that satisfies  

(𝑠 + 1)𝒂 + 𝒃 ⊥ 𝒂 + (𝑡 + 1)𝒃 

  Determine the set 𝑀4 that satisfies 

𝑀4 = 𝑀2 ∩ 𝑀3 

  Determine the set 𝑀5 of tuples (𝑠, 𝑡) ∈ 𝑁 × 𝑁 that satisfies  

(𝑠, 𝑡) ∈ 𝑀2  ∧  0 < |𝑠𝒂 + 𝑡𝒃| < 10 

 

Problem 3 is clearly different from the two analytical-geometrical vector-problems, since 

it does not require any geometric interpretation of the vectors or the set-up in general. The 

problem can be solved by application of the algebraic properties alone. As it has been 

mentioned it is the only problem in the MO [𝑇, 𝜏, 𝜃, Θ𝐴], but it is very interesting to ex-

amine for two reasons. First of all, the appearance of exam problems from this MO have 

increased over the years, and the past years they have appeared almost equally frequent 

as the geometric vector problems. Secondly, this specific problem, Problem 2, is almost 

an embodiment of the modern mathematics where sets played an important role. Since 

this was a general tendency across mathematical topics, and a style that was quickly aban-

doned in the vector problems, this detail will not be elaborated on. The tasks in Problem 

3 are solved by different techniques that have one thing in common; they are all applica-

tions of the algebraic properties of ℝ2.  

  As an example the first task 

 

𝑡1: Determine the set 𝑀1 of numbers 𝑡 ∈ 𝑅 that satisfies |𝑡𝒂 + 𝒃| = 6 
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is solved by a combination of the techniques 𝜏|∙|,∙, 𝜏⊥,∙, and 𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒(+,∙) that are vector 

techniques and 𝜏𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞 that is the “ordinary algebraic” technique of solving a quad-

ratic equation. The solution is sketched on Table 9.  

 

|𝑡𝒂 + 𝒃|2 = (𝑡𝒂 + 𝒃) ∙ (𝑡𝒂 + 𝒃) 𝜏|∙|,∙ 

|𝑡𝒂 + 𝒃|2 = 𝑡𝒂 ∙ 𝑡𝒂 + 𝑡𝒂 ∙ 𝒃 + 𝒃 ∙ 𝑡𝒂 + 𝒃 ∙ 𝒃 𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒(+,∙) 

|𝑡𝒂 + 𝒃|2 = 𝑡2|𝒂|2 + 𝑡(𝒂 ∙ 𝒃) + 𝒃2 𝜏|∙|,∙ 

|𝑡𝒂 + 𝒃|2 = 𝑡2 ∙ 1 + 𝑡 ∙ 0 + |2𝒂̂|2 𝜏⊥,∙ 

|𝑡𝒂 + 𝒃|2 = 𝑡2 + 4 Use the given information 

62 = 𝑡2 + 4 Use the given information 

𝑡 = ±√32 𝜏𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞 

Table 9 – A sketch of how the techniques 𝜏|∙|,∙, 𝜏⊥,∙, and 𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒(+,∙)are used to solve the algebraic task 𝑡1 

According to the written exams vectors were mostly a tool to be used in analytical-geo-

metrical problems, or a tool in the application of infinitesimal calculus in the vector func-

tion-problems. From 1970 the students were also tested in their knowledge of the alge-

braic structure of ℝ2 as a vector space. Vectors had obtained status in the written exams 

as objects in their own right, and not just as tools for geometric purposes.  

 

On the organisation of the exam problems 

The geometric branch of the mathematical organisation of vectors is the most frequently 

represented in the written exams. The types of tasks vary a lot, which requires a well-

developed logos block. On the other hand, it is difficult to conclude too much about the 

algebraic tasks, since only one single problem in this category appeared in this period. 

However, it is worth noticing that the vector algebra-problem is free from coordinates.  

 

Textbook 

A review of one of the textbooks of that time will reveal more about the logos blocks in 

the praxeological organisation of the topic vectors. In this period the prevalent textbook 

was “Matematik I” by Erik Kristensen and Ole Rindung (Petersen & Vagner, 2003, p. 

240). It was written in 1962 and to this day it has iconic status among many mathematics 

teachers as a treasure, because of its very concise and brief style. In addition to the prev-

alence of the book, the fact that both authors participated in the activities that led to the 

reform in 1961 (Petersen & Vagner, 2003, p. 236) serves as a justification of the use of 

exactly this book in the analysis of the mathematical organisation of vectors in this period.  

  The book covered all the topics for the first year at high school. The first chapters in the 

book have the headings “I. Sets and statements” and “II. Sets of numbers” (Kristensen & 

Rindung, p. V). On the foundation of these, the third chapter deals with vectors. It con-

tains the subsections shown in Table 10.  
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Chapter Subsections 

III. Vectors - The notion of vector 

- Parallel displacements 

- Addition and subtraction of vectors 

- Multiplication of vector by a number 

- Decomposition of a vector in given directions 

- The coordinates of vectors 

- The length of a vectors, the equation of the circle 

- The scalar product of two vectors 

- Geometric interpretation of the scalar product 

- Projection of vector on vector 

- Orthogonal vector 

- Rotation of the coordinate system 

- Other applications of the orthogonal vector 
Table 10 – Subsections in chapter III. Vectors in “Mathematics I” (Kristensen & Rindung, 1962, pp. V-VII) 

The significant status of set theory shows from the table of content, since the two intro-

ductory chapters are dedicated to this. It is also reflected in the organisation of the 

knowledge to be taught about vectors.  

  When looking into the first paragraph of the vector chapter, the definition of a vector is 

established. It is centred around the notions of direction of half-lines, oriented line seg-

ments, and equivalence relations. The definition of a vector in “Mathematics I” is stated 

in the following way “Any set on the form (4.1) is called a vector; and any oriented line 

segment that is contained in the set 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ , is said to represent the vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ .” (Kristensen 

& Rindung, 1962, p. 54). Here (4.1) is the following statement: 

 

𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = {𝑃𝑄̅̅ ̅̅ |𝑃𝑄̅̅ ̅̅ ≡ 𝐴𝐵̅̅ ̅̅ } 

 

In this the notation 𝐴𝐵̅̅ ̅̅  means the directed line segment from 𝐴 to 𝐵. The meaning of the 

equivalence sign, ≡, and the definition of equivalence has been given formally on the 

previous page (Kristensen & Rindung, p. 53): 

We call two oriented line segments 𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  equivalent and we write 

 

𝐴𝐵̅̅ ̅̅ ≡ 𝐶𝐷̅̅ ̅̅  

 

when the two line segments are unidirectional and have the same length. It is 

obvious that  

(1) 𝐴𝐵̅̅ ̅̅ ≡ 𝐴𝐵̅̅ ̅̅  

(2) 𝐴𝐵̅̅ ̅̅ ≡ 𝐶𝐷̅̅ ̅̅ ⇒  𝐶𝐷̅̅ ̅̅ ≡ 𝐴𝐵̅̅ ̅̅  

(3) (𝐴𝐵̅̅ ̅̅ ≡ 𝐶𝐷̅̅ ̅̅ )  ∧ (𝐶𝐷̅̅ ̅̅ ≡ 𝐸𝐹̅̅ ̅̅ ) ⇒ (𝐴𝐵̅̅ ̅̅ ≡ 𝐸𝐹̅̅ ̅̅ ) 
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The role of the directed line segment, 𝐴𝐵̅̅ ̅̅ , is also stated very explicitly as a “representative 

of the vector 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ ” (Kristensen & Rindung, 1962, p. 54). Without further explanations of 

the idea of vectors as an equivalence class that can be represented by directed line seg-

ments, or a clarification of the differences between the vector itself and its representative, 

a new notation for these abstract vectors is introduced: “Often we will use a single letter 

as the symbol for a vector, and we use small bold letters: 𝒂, 𝒃, 𝒙 etc.” (Kristensen & Rin-

dung, 1962, p 54).  

 

According to this book, a vector is “an equivalence class of directed line segments”. These 

can be represented by something that in everyday language would be called arrows 

(though this word is not used in the books). 

  In the next paragraph the interrelation between vectors and parallel displacements is 

established and defined very formally (Kristensen & Rindung, 1962, p. 55): “Q =

pa(P) ⇔  PQ̅̅ ̅̅  is a representative of 𝐚”. The definition is supplemented with the illustration 

shown in Figure 21.  

 

 
Figure 21 – Illustration of the relation between vectors and parallel displacements (Kristensen & Rindung, 1962, p. 

55) 

Here 𝑃 is an arbitrary point, 𝒂 is a given vector, and 𝑄 = 𝑝𝑎(𝑃) is the unique point that 

makes 𝑃𝑄̅̅ ̅̅  a representative for 𝒂. The relation is defined in the following way “𝑝𝑎 is called 

the by 𝒂 determined parallel displacement” (Kristensen & Rindung, 1962, p. 55). 

  In this a vector is identified with a parallel displacement, and in order to prove that the 

sum of two vectors is again a vector, the book shows that a composition of parallel dis-

placements (seen as functions) is again a parallel displacement.  

  In the beginning of the subsection “Addition and subtraction of vectors”, the sum of two 

vectors is constructed geometrically in two ways, by the “polygon-method” to the left in 

Figure 22, and by the “parallelogram-method” to the right in Figure 22.  
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Figure 22 – Constructions of the sum of two vectors in (Kristensen & Rindung, 1962, p. 61) 

After the geometric construction, an example establishes (very briefly) an opportunity of 

application of vectors in physics in the following way (Kristensen & Rindung, 1962, p. 

61):  

11.2 example. According to a theorem in the mechanical physics forces are 

compounded following a rule that is called “the parallelogram of forces”. This 

physical theorem shows that the geometric notion of vector combined with 

the definition of vector addition given above is suitable as a description of the 

physical notion of forces –Vectors can be applied as a mathematical model of 

many other physical notions (velocity, acceleration, field strength, and oth-

ers). These are objects, that can be described by arrows and that can be com-

pounded in a way that corresponds to vector addition. 

 

To a person engaging in teaching in the modern high school this example can seem su-

perficial and not easily accessible, mostly because the physical notions are not necessarily 

covered yet, by the time vectors are taught in mathematics.  

  The application example appears in a section about addition and subtraction of vectors. 

The following sections deals with multiplication of a vector with a scalar. As an example 

both commutativity and associativity of vector addition is proven formally, but the geo-

metric/physical interpretations of these results are never mentioned.  

  By looking into the scholarly knowledge, it reveals that the properties that are treated in 

these paragraphs are exactly the axioms that constitutes the definition of a vector space. 

Furthermore, it is noteworthy that most of the examples and exercises prove algebraic 

properties of vectors. For example, the following (Kristensen & Rindung, 1962, p. 64): 

15.5 example. The following holds 

−(𝒂 + 𝒃) = (−𝒂) + (−𝒃) 

because we have  

(𝒂 + 𝒃) + ((−𝒂) + (−𝒃)) = 𝒂 + (−𝒂) + 𝒃 + (−𝒃) = 𝒐 

 

Or the following exercise (Kristensen & Rindung, 1962, p. 64): 
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15.6 exercise. Prove the formula 

−(𝒂 + 𝒃) = (−𝒂) + (−𝒃) 

 

From this remark it is reinforced, that the approach to vectors in this period is more alge-

braic and focusing on the algebraic properties of the vector space ℝ2 instead of the geo-

metric properties that are the ones that makes ℝ2 a useful model in geometry and physics. 

This can seem to be conflicting with the prevalence of geometric tasks in the written 

exams. However, the algebraic approach shows how the modern mathematics has taken 

the knowledge to be taught closer to the scholarly knowledge.  

 

Almost 20 pages into the chapter, the coordinate system and coordinates are introduced. 

So far the vectors have been “living freely” in an unspecified space, and everything has 

been treated purely as algebraic objects obeying specific rules. The definition of the unit 

vectors from points, 𝐸 = (1,0) and 𝐹 = (0,1), is given as the first thing in the paragraph 

“The coordinates of vectors”. From a theorem proven in the previous paragraph about the 

uniqueness of the decomposition of vectors in given directions, it is proven that the coor-

dinates of a vector are uniquely determined in a given coordinate system.  

  The very abstract nature of the book does again show in the notation used. It says (Kris-

tensen & Rindung, 1962, p. 71): 

We could make some formulas clearer by denoting the coordinates (𝑥, 𝑦) for 

a vector in the following way: (
𝑥
𝑦). We will permit ourselves to use this no-

tation alternating with the usual notation (𝑥, 𝑦). 

 

It requires a high level of abstraction from first year students in order to separate the 

vector (𝑥, 𝑦) from the point (𝑥, 𝑦), but again this is closely related to the scholarly version 

of vectors (and mathematics in general) where the notation is more or less arbitrary com-

pared to the underlying concept. Therefore, an alternation between notations is easy for a 

mature mathematician, that identifies mathematical objects by their properties and not 

their notation, but for a student that is just learning a new concept, the notation plays an 

important role.  

  Throughout the section about the coordinates of vectors some of the notions that have 

been treated previously are related to the corresponding results in coordinate representa-

tion. Furthermore, it is interesting to take a look at the examples that appear in this section. 

One example is (Kristensen & Rindung, 1962, p. 74): 

25.4 example. 𝐴 and 𝐵 are two points given by coordinates (𝑎1, 𝑎2) and 

(𝑏1, 𝑏2) respectively. We want to determine the coordinates of the midpoint 

𝑀 of the line segment 𝐴𝐵. Since 𝐴𝑀⃗⃗⃗⃗⃗⃗⃗ =
1

2
𝐴𝐵⃗⃗⃗⃗ ⃗⃗  we have, when 𝑂 is the origin 

of the coordinate system 
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𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗ = 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝐴𝑀⃗⃗⃗⃗ ⃗⃗⃗ = 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ +
1

2
𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ +

1

2
(𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ ) 

=
1

2
(𝑂𝐴⃗⃗⃗⃗ ⃗⃗ + 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗ ) 

 

Since 𝑂𝑀⃗⃗⃗⃗ ⃗⃗⃗, 𝑂𝐴⃗⃗⃗⃗ ⃗⃗ , and 𝑂𝐵⃗⃗ ⃗⃗ ⃗⃗  are position vectors they have the same coordinates 

as the corresponding points 𝑀, 𝐴, and 𝐵. By using theorem (24.1) we get 

that 𝑀 has the coordinates  

 

(
𝑎1 + 𝑏1

2
,
𝑎2 + 𝑏2

2
) 

 

Theorem (24.1) has given the sum, the difference, and the product of a scalar and a con-

stant when the vectors are given by coordinates. In this example the algebraic properties 

of ℝ2 are linked to the geometric interpretation. The example shows (again abstractly in 

the sense that the coordinates do not have concrete values) how vectors can be used to 

solve analytical-geometrical problems. In this particular example how the mid-point of 

the line segment 𝐴𝐵 can be determined by the use of the coordinates of the point 𝐴 and 

𝐵. The next paragraph continues with the geometric application by relating the length of 

a vector, the distance formula, and the equation of the circle.  

  In the paragraph about the scalar product some properties of the scalar product are 

proven. The subsequent paragraph deals with the geometric interpretation of the scalar 

product, where the applications in physics are again mentioned in an example (Kristensen 

& Rindung, 1962, p. 82):  

32.9 example: The scalar product has many important applications in physics, 

e.g.:  

  If a particle, that is acted on by a constant force given by the vector 𝒂, is 

displaced that is given by the vector 𝒃, the scalar product 𝒂 ∙ 𝒃 denotes the 

work done by the force during the displacement. 

 

In (Kristensen & Rindung, 1962) the primary logos block is coming from the MO 

[𝑇, 𝜏, 𝜃, Θ𝐴]. A lot of the tasks are more abstract in character, compared to exercises in a 

modern textbook, e.g. proving activities instead of concrete calculations. In (Kristensen 

& Rindung, 1962) vectors are established as objects, that can be represented equivalently 

in different ways.  

  As it has been shown, the main purpose of vectors in the written exams during this period 

is in the analytical-geometrical problems, but in (Kristensen & Rindung, 1962) it is pri-

marily the algebraic properties of vectors that are of the main interest. A praxeological 

description of the mathematical organisation of vectors has to be divided into a geometric 
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approach and an algebraic approach. These two are shown in Figure 23 and Figure 24 

respectively. 

 

 
Figure 23 –  [𝑇, 𝜏, 𝜃, 𝛩𝐺] 

 

 
Figure 24 – [𝑇, 𝜏, 𝜃, 𝛩𝐴] 

 

Vectors in physics 

Since neither the physics curriculum nor the written exams have been available, the praxe-

ological organisation of vectors in physics will be described in the light of one of the 

prevalent physics textbooks of this period. The textbook series that has been chosen is 

“Lærebog i fysik” by Mogens Pihl and Henning Storm. The series consists of three books, 

Textbook for physics I, Textbook for physics II, and Textbook for physics III. The first 

edition of the books was published in the years 1963-1965. The first edition has been 

inaccessible, and therefore the second edition has been used. The second edition was pub-

lished in the years 1966-1970.  

  In the preface of “Lærebog i fysik” a comment on the use of vectors is made. It reads: 

“In the last chapters of the book the use of the notion of vectors is heavy, since it is cov-

ered early in the mathematics teaching.” (Pihl & Storm, 1966, p. VIII). The notion of 

vectors is used for the first time in chapter VII that is dedicated to Newton’s laws. It is 

introduced through the parallelogram of forces, that is assumed to have been covered in 

primary school. It reads: “For a body in rest forces can be regarded as vectors in the sense 

that the equilibrium does not change it, the two arbitrary forces are substituted by their 

vector sum.” (Pihl & Storm, 1966, p. 98). The rest of Newton’s laws are introduced using 

the notion of vectors. 

  In the next chapter, “VIII. Work and mechanical energy in the field of gravity” (Pihl & 

Storm, 1966, p. 101), the notion of work is defined as the scalar product of force and 
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displacement. In a footnote the scalar product is described in the following way: “The 

scalar product 𝒂 ∙ 𝒃 can be defined as the product of the projection of 𝒂 on 𝒃 (calculated 

with sign) and |𝒃|. It holds that 𝒂 ∙ 𝒃 = 𝒃 ∙ 𝒂 and 𝒂 ∙ (𝒃 + 𝒄) = 𝒂 ∙ 𝒃 + 𝒂 ∙ 𝒄.” (Pihl & 

Storm, 1966, p. 101). This definition differs from the primary mathematical definition, 

because it is more geometric, than the definition based on coordinates. Furthermore, a 

physical/geometrical interpretation of the distributive law is given (Pihl & Storm, 1966, 

p. 101):  

Nothing prevents the body from being affected by other forces than 𝑭. Is it 

for example affected by the two forces 𝑭𝟏 and 𝑭𝟐 these will do the work 

𝑭𝟏 ∙ 𝒓 and 𝑭𝟐 ∙ 𝒓 respectively. The sum of these two works is called the 

work done by the two forces. It equals 

 

(8,2) 𝑭𝟏 ∙ 𝒓 + 𝑭𝟐 ∙ 𝒓 = (𝑭𝟏 + 𝑭𝟐) ∙ 𝒓, 

 

since the scalar product is distributive. The work done by two forces equals 

the work done by their resultant. 

 

After some chapters dealing with scalar quantities, comes “X. The magnetic induction 

field” (Pihl & Storm, 1966, p. 133). In this chapter the following about magnetic induction 

is stated: “We will assume that there in every point of a magnetic field exist a vector 𝑩 

that is called the magnetic induction.” (Pihl & Storm, 1966, p. 134). It is further described 

how magnetic inductions can be added as vectors, and that this can be illustrated by ex-

periments. Also the chapter about steady state-current utilises vectors.  

  The second volume of the textbook series, “Lærebog i fysik II”, uses vectors too. In the 

preface, the standpoint regarding the use of mathematics in the book is given. It reads 

(Pihl & Storm, 1969, p. VII): 

In the endeavour of giving the presentation a clear and accessible shaping we 

have utilised the valuable support that mathematics affords. It is our experi-

ence that the use of the language of mathematics can have a deterrent effect, 

if it appears sporadic, while a systematic application gives confidence in the 

understanding, which is a definite pedagogical advantage. This presupposes 

that mathematical notions and symbols are given clear physical content, in 

which we have endeavoured. 

 

This citing reveals the highly mathematised style that the authors have chosen. The first 

chapter in the book deals with astronomy. In the first section the right angled coordinate 

system is introduced. This is done by the use of the position vector 𝑂𝑃⃗⃗⃗⃗ ⃗⃗  corresponding to 

a point 𝑃, and by the unit vectors 𝒊 and 𝒋 (and 𝒌 in three dimensions). The position vector 

is used in the chapters “I. Astronomy” and “II. The kinematic description of the propaga-

tion of waves” (Pihl & Storm, 1969). In the third chapter “III. The kinematic description 
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of the motion of particles” (Pihl & Storm, 1969) the use of vectors is extended. In the 

section about motion in two dimensions the velocity of a particle is defined as the deriv-

ative of the position vector with respect to time. The acceleration of the particle is defined 

in a similar way. 

  This series of textbooks reveal a highly mathematised style where vectors plays a crucial 

role in physics. A problem is, that the notion of vectors in mathematics is very algebraic 

and mostly coordinate-free, when it is more geometric and coordinate-based in physics. 

This issue can have caused students major problems with the transfer of the notion of 

vectors from mathematics to physics and the other way around.  

 

1971-1984 

The modern mathematics caused both students and teacher, because of the abstract and 

formal approach. Similar problems were detected in France (Cissé & Dorier, 2014, pp. 6-

8). The reform in 1971 changed the purpose of the mathematics teaching slightly and 

removed some of the topics in order to make room for an optional topic, that the teacher 

and/or students could choose. Except from these minor changes, the curriculum stayed 

almost the same as in 1961. The new purpose was (as cited in Petersen & Vagner, 2003, 

p. 265): 

To let the students get acquainted with a number of fundamental mathematical 

notions, ways of thinking, and methods, to train the students in applications 

of mathematical notions, ways of thinking, and methods for formulation, anal-

ysis, and solution of problems within different fields, to practise clearness and 

coherence in proofs and expression form, to develop fantasy and inventive-

ness, and to give an understanding of and the ability to analyse the ways that 

mathematics is applied within other fields critically. 

 

Though some topics were removed from the curriculum, the level of abstraction and for-

mality was not lowered, but as shown in the citing above, the focus on application was 

strengthened. One of the major changes concerned vectors, since spatial geometry, and 

thereby three dimensional vectors, was abandoned.  

 

Analytical-geometrical vector-problems 

The problems in this category are very similar to the ones in the previous reform, though 

the written exams do of course not contain spatial geometry-problems. It is still primarily 

tasks in the MO [𝑇, 𝜏, 𝜃∆, Θ𝐺]. An interesting example of a problem from this category in 

this period is the following, that will be referred to as Problem 5 (Petersen & Vagner, 

2003): 
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In an oriented plane a proper vector 𝒂 is given. About a quadrangle 𝐴𝐵𝐶𝐷 it 

is given that  

 

𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = 𝒂, 𝐵𝐶⃗⃗⃗⃗⃗⃗ = 𝒂 + 𝒂̂ and 𝐶𝐷⃗⃗⃗⃗ ⃗⃗ = −2𝒂 + 2𝒂̂ 

 

Determine the degree measure of the angles between the diagonals in the 

quadrangle.  

 

In this example there are no coordinates that gives indication of where in the coordinate 

system the quadrangle is situated.  

 

Vector algebra-problems 

The more interesting changes in exam problems occur in the vector algebra-problems. 

First of all, they appeared more frequently than before 1971, and furthermore the modern 

mathematics and its focus on sets and logic was heavily toned down in them, compared 

to the vector algebra-problem (Problem 3) from 1970 that. Some examples of vector al-

gebra-problems will be given. The first one will be referred to as Problem 5 (Petersen & 

Vagner, 2003):  

A coordinate system is given. Determine the numbers 𝑡, such that  

𝒂(2𝑡 + 5, −𝑡) and 𝒃(𝑡2 + 2𝑡 + 1,4𝑡 + 4) 

are proper vectors, that are parallel. 

 

The second will be referred to as Problem 6 (Petersen & Vagner, 2003):  

Two vectors 𝒂 and 𝒃 satisfy 

(𝒂 + 𝒃)2 = 13, 

(2𝒂 − 𝒃)2 = 7, and 

(𝒂 + 2𝒃)2 = 28. 

Determine the lengths of the vectors 𝒂 and 𝒃 and the degree measure of the 

angle between 𝒂 and 𝒃. 

 

The third will be referred to as Problem 7 (Petersen & Vagner, 2003):  

In an oriented plane, a proper vector 𝒗 is given.  

The vectors 𝒂 and 𝒃 are given by  

𝒂 = 2𝒗 − 3𝒗̂ and 𝒃 = 𝒗 + 2𝒗̂ 
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Determine the number t such that the length of the vector 𝒂 + 𝑡𝒃̂ is smallest. 

 

All these problems are vector-algebra problems but the differ in the level of abstraction. 

Though the vectors in Problem 5 are given abstractly in the sense that the coordinates 

depends on 𝑡 the two vectors are still somewhat closely related to the a concrete coordi-

nate system that is more geometric in appearance. This problem is furthermore interest-

ing, since this type of task has appeared frequently in the more recent written exams. It is 

solved by the technique 𝜏∥ (see Table 11) in combination with the “ordinary algebraic” 

techniques 𝜏𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 and 𝜏3𝑟𝑑 𝑑𝑒𝑔.𝑝𝑜𝑙.. 

 

(2𝑡 + 5) ∙ (4𝑡 + 4) − 𝑡 ∙ (𝑡2 + 2𝑡) = 0 𝜏∥ 

𝑡3 + 10𝑡2 + 29𝑡 + 20 = 0 𝜏𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝑡 = −1, 𝑡 = −4, 𝑡 = −5 𝜏3𝑟𝑑 𝑑𝑒𝑔.𝑝𝑜𝑙. 
Table 11 – The technique 𝜏∥ used on Problem 5 

In Problem 6 the vectors are not directly tied to the coordinate system, since the coordi-

nates are not given, but the vectors are still given by the scalar product of different linear 

combinations of them with themselves, which is closely tied to the geometric property 

length. The problem is solved by a combination of the techniques 𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒,(+,∙), 𝜏|∙|,∙, 

𝜏∠,∙,|∙|, and 𝜏3 𝑒𝑞 (see Table 12). These are all very algebraic, which means that the geo-

metric properties are not necessarily concerned by the students when the problem is 

solved.  

 

{

(𝒂 + 𝒃)2 = 13

(2𝒂 − 𝒃)2 = 7

(𝒂 + 2𝒃)2 = 28

⇔ {
𝒂2 + 𝒃2 + 2𝒂𝒃 = 13
4𝒂2 + 𝒃2 − 4𝒂𝒃 = 7

𝒂2 + 4𝒃2 + 4𝒂𝒃 = 28

 

𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒(+,∙) 

{
𝒂2 + 𝒃2 + 2𝒂𝒃 = 13
4𝒂2 + 𝒃2 − 4𝒂𝒃 = 7

𝒂2 + 4𝒃2 + 4𝒂𝒃 = 28

⇔ 𝒂2 = 4, 𝒃2 = 3, 𝒂𝒃 = 3 
𝜏3 𝑒𝑞 

𝒂2 = |𝒂|2 = 4 ⇒ |𝒂| = 2 

𝒃2 = |𝒃|2 = 3 ⇒ |𝒃| = √3 

𝒂𝒃 = 3 ⇒ 𝑣 = cos (
3

4 ∙ 3
) 

𝜏|∙|,∙ and 𝜏∠,∙,|∙| 

Table 12 – A sketch of how the techniques 𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 (+,∙), 𝜏|∙|,∙, 𝜏∠,∙,|∙|, and 𝜏3 𝑒𝑞 are used to solve Problem 6 

In Problem 7 the two vectors 𝒂 and 𝒃 are given without any connection or reference to 

the geometric context. It is solved by a combination of the purely algebraic techniques 

𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 (+,∙), 𝜏|∙|,∙, 𝜏|∙| 𝑜𝑓⊥𝑣𝑒𝑐𝑡𝑜𝑟, and 𝜏𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 (see Table 13). 
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|𝒂 + 𝑡𝒃̂|
2

= 𝒂2 + 𝑡2𝒃2 + 2𝑡𝒂𝒃 𝜏|∙|,∙ and 𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒(+,∙) 

|𝒂 + 𝑡𝒃̂|
2

= 4|𝒗|2 + 9|𝒗̂|2 + 𝑡2(|𝒗|2 + 4|𝒗̂|2)

+ 2𝑡(2|𝒗|2 − 6|𝒗̂|2) 

Use the given information and 

𝜏𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

|𝒂 + 𝑡𝒃̂|
2

= (5𝑡2 − 8𝑡 + 13)|𝒗|2 𝜏𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 and 𝜏|∙| 𝑜𝑓⊥𝑣𝑒𝑐𝑡𝑜𝑟 

Vertex in: 𝑡 =
8

10
 𝜏𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 

Table 13 – A sketch of how the techniques 𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒 (+,∙), 𝜏|∙|,∙, 𝜏|∙| 𝑜𝑓⊥𝑣𝑒𝑐𝑡𝑜𝑟, and 𝜏𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓 𝑝𝑎𝑟𝑎𝑏𝑜𝑙𝑎 are used to 

solve Problem 7 

The types of tasks in Problem 6 and Problem 7 have not appeared in the written exams in 

the recent period.  

 

On the organisation of the exam problems 

The geometric branch of the mathematical organisation of vectors is the most frequently 

represented in the written exams. The types of tasks vary a lot, which requires a well-

developed logos block. On the other hand, it is difficult to conclude so much about the 

algebraic tasks, since only one single problem in this category appeared in this period. 

However, it is worth noticing that the vector algebra-problem is free from coordinates.  

 

In this period the algebraic branch of the mathematical organisation of vectors is more 

frequently represented than in the previous period. Furthermore, the number of vector 

algebra-problems exceeded the number of analytical-geometrical vector-problems in this 

period.  

  The number of different types of tasks in the analytical-geometrical vector-problems is 

reduced compared to the previous period, but except from that, the nature of the problems 

is similar to the analytical-geometrical vector-problems in the period 1961-1971.  

  The category of vector algebra-problem is also easy to divide into types of tasks, and the 

number of different types of tasks is of course larger than in the previous period (where 

only one problem in this category appeared).  

 

Textbook 

In this period the predominant textbook was still the series “Matematik” from Kristensen 

and Rindung. As it has been mentioned it was republished several times over the years. 

In the examination of the mathematical organisation of vectors in this period the seventh 

edition of “Matematik I” from 1976 will be used. The table of content is not exactly the 

same as in the first edition. The first chapter is “Sets and statements”, the second chapter 

is “Real numbers”, the third chapter is “Powers, slide ruler, and logarithms”, and the 

fourth chapter is “Vectors” (Kristensen & Rindung, 1976, p. V).  

  There are some important changes from the first edition to the seventh edition. One of 

the most interesting of these is, that the notion of arrow is defined strictly from the notion 

of oriented line segments (Kristensen & Rindung, 1976, p. 76):  
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A line segment that is equipped with an ordering after which the end points 

are denoted initial point and terminal point respectively is called an oriented 

line segment or an arrow. The arrow that is determined by the tuple (𝐴, 𝐵) is 

denoted 𝐴𝐵̅̅ ̅̅ . 

 

Then the notion of arrow is related to the notion of parallel displacement and equivalence 

of arrows is defined from the relation between parallel displacements and arrows (Kris-

tensen & Rindung, 1976, p. 77): 

Two arrows 𝐴𝐵̅̅ ̅̅  and 𝐶𝐷̅̅ ̅̅  are equivalent when and only when the parallel dis-

placement 𝐴 ↷ 𝐵 is the same as the parallel displacement 𝐶 ↷ 𝐷. 

 

After this the notion of vector is defined (Kristensen & Rindung, 1976, 77):  

To a given parallel displacement that takes an arbitrary point 𝑄 to 𝑄𝑝 corre-

sponds a class of equivalent arrows 𝐴𝐴𝑝
̅̅ ̅̅ ̅̅ , 𝐵𝐵𝑝

̅̅ ̅̅ ̅, 𝐶𝐶𝑝
̅̅ ̅̅ ̅,… (fig. 2.II). The set of 

the arrows that in this way corresponds to a parallel displacement is called a 

vector. 

 

This definition comes with an illustration that is shown in Figure 25. 

 

 
Figure 25 – A class of equivalent arrows representing the same parallel displacement P in (Kristensen & Rindung, 

1976, p. 77) 

Vectors in physics 

In this period the same textbooks written by Henning Pihl and Mogens Storm were still 

used in the physics teaching. Since the written physics exams from this period has been 

unavailable, the 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 is therefore assumed to be similar to the one in the previ-

ous period.  

 

 



63 
 

1984-2005 

In this period some more radical changes were made. First of all, the calculator meant 

that some particular skills became unnecessary to practise. However, this did not influ-

ence the topic vectors to the same extend as some of the other topics. Furthermore, the 

nature of the problems posed in written exams changed. Contrary to what had been done 

before, the problems were more often related to everyday problems. The purpose was to 

show the students that mathematics was applicable. (Petersen & Vagner, 2003, pp. 272-

273). 

 During this period, the curriculum contained the following about vectors (Petersen & 

Vagner, 2003, p. 271): 

Plane and spatial geometry. The coordinate system. Vectors in the plane and 

space, the coordinates of vectors. Calculations with vectors, including scalar 

product of two vectors. Orthogonal vector, vector product. Projection of vec-

tor on vector. Analytic description of point sets in the plane including line, 

circle, and half plane. Distance between points and between point and line. 

Intersection between lines and between line and circle. Sine, cosine, and tan-

gent. Calculations on sides and angles in triangles. Area of triangle and par-

allelogram. Analytic description of point sets in space, including straight line, 

plane, and sphere. Distance, angle and intersection between two point sets in 

space. 

 

Compared to the 1971-reform the 1984-reform did only change the vector part by adding 

spatial geometry again and removing vector functions.  

 

Analytical-geometrical vector-problems 

During this period the organisation of the analytical-geometrical vector problems begin 

to look very similar to the recent organisation. In the previous period most of the problems 

were geometry problems contained in the MO determined by the technology 𝜃∆. In this 

period, the problems started spreading over the different local MOs determined by the 

technologies in Table 4.  

  An example from the early years of this period is the following problem from 1988, that 

will be referred to as Problem 8 (Petersen & Vagner, 2003): 

In an oriented plane is given a vector 𝒂 with the length 6.  

The quadrangle 𝐴𝐵𝐶𝐷 is given by  

𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = 𝒂, 𝐴𝐷⃗⃗ ⃗⃗ ⃗⃗ = −𝒂 +
2

3
𝒂̂ and 𝐵𝐶⃗⃗⃗⃗⃗⃗ = −

1

2
𝒂 +

5

3
𝒂̂ 

Determine 𝐷𝐶⃗⃗⃗⃗ ⃗⃗  given by 𝒂 and 𝒂̂.  

Determine ∠𝐴 and ∠𝐷 in the quadrangle 𝐴𝐵𝐶𝐷.  

Determine the area of the quadrangle 𝐴𝐵𝐶𝐷. 
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This problem is contained in the MO determined by the technology 𝜃Δ. Another problem 

from later in the period is the following from 1999, that will be referred to as Problem 9 

(Petersen & Vagner, 2003): 

I a coordinate system in space is given a point 𝑃(5, −1,4) and a plane 𝛼 

given by the equation 

𝛼: 2𝑥 − 2𝑦 + 𝑧 + 2 = 0 

 
Determine the distance from the point 𝑃 to the plane 𝛼. 

A line 𝑙 passes through 𝑃 and has the direction vector 𝑟 = (
1
2
3

). 

Determine the coordinates of the intersection between 𝑙 and 𝛼. 

Determine the acute angle between 𝑙 and 𝛼. 

A plane 𝛽 passes through the points 𝐴(0,0,4), 𝐵(2,0,0), and 𝐶(1,1,4). 

Determine the equation of the plane 𝛽. 

The planes 𝛼 and 𝛽 are both tangent planes to a sphere 𝐾. The centre 

of the sphere, its points of tangency with 𝛼 and 𝛽, and the point 𝑃 are 

situated on a straight line.  

Determine an equation of the sphere 𝐾.  

This problem contains tasks from different local MOs. The first sub-question is contained 

in the MO determined by 𝜃𝐷, the second is in the MO determined by 𝜃𝐼, the third is in 

the MO determined by 𝜃𝐴, and the last two are contained in the MO determined by 𝜃𝑅. 

In general, the analytical-geometrical problems started including a lot of different sub-

questions solved by techniques in a lot of different local MOs in this period. This idea of 

combining a lot of different types of tasks in one extensive analytical-geometrical vector-

problem is still used in the current mathematical organisation.  

 

Vector algebra-problems 

In this period the most abstract vector algebra-problems (like Problem 8) start appearing 

very rarely. Problems that are similar to Problem 7, where vectors are given by different 

geometric properties such as length, appear frequently like in the previous period. The 

vector algebra-problems where the vectors are given by coordinates starts appearing more 

and more frequent. An interesting example of a coordinate-based vector algebra-problem 

is shown below. The problem is from 1991 and will be referred to as Problem 10 (Petersen 

& Vagner, 2003):  

In a coordinate system in the plane two vectors are given  

𝑎⃗ = (
3
4

) and 𝑏⃗⃗ = (
1

−1
) 

Determine the angle between the vectors 𝑎⃗ and 𝑏⃗⃗. 

Determine the value of the number 𝑡, such that 𝑎⃗ + 𝑡𝑏⃗⃗ is perpendicular to 𝑎⃗. 
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Determine the value of the number 𝑡, such that the length of the vector  

𝑎⃗ + 𝑡𝑏⃗⃗ is as small as possible. 

 

This problem is interesting, since the vectors are given by coordinates, which is the most 

concrete representation of a vector in a written exam. The first sub-question could easily 

have appeared in the recent period, but the two last sub-questions would not.  

 

Textbook  

In the wake of a reform of the primary school, where mathematics became more experi-

ence-based than rigorous, the textbooks for high school mathematics changed into a more 

application-oriented focus. One of the new textbooks containing the theory of vectors that 

were used in this period was “Funktioner og vektorer: Teori og redskab” by Steffen Jen-

sen and Karin Sørensen (Vagner & Petersen, 2003, pp. 266-267). The book was published 

in 1981 and had a very special and new structure, where the first part of the book covered 

the theory and the second part gave examples of applications.  

  The introduction to the notion of vectors is given in the following way (Jensen & Søren-

sen, 1981, p. 31):  

We will in this chapter introduce a mathematical quantity, that is character-

ised by having both a direction and a numerical value, a vector, and some 

computation rules of vectors. From physics a number of quantities being 

characterised by a direction and a numerical value is known.  

 

After this introduction an example is given (Jensen & Sørensen, 1981, p. 31): 

1.1 Example The physical notion velocity is an example of a quantity that is 

determined by a number (the speed) and a direction; that a particle has a par-

ticular velocity means that it is moving by a given speed in a given direction.  

Forces are in the same manner determined by a numerical value and a direc-

tion.  

 

This example shows how the physical applications plays a role in the introduction to vec-

tors in the mathematical organisation in this period. The definition of a vector shows signs 

of being the successor of the Kristensen and Rindung books. First the notion of an arrow 

is defined (Jensen & Sørensen, 1981, p. 31): 

1.2 Definition By an arrow is understood a line segment of a given length 

equipped with a given direction. One says that the line segment is oriented. 

If 𝐴 and 𝐵 are two points in the plane we will denote the arrow from 𝐴 to 𝐵 

by 𝐴𝐵̅̅ ̅̅  
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The next definition is of the notion vector. The definition says (Jensen & Sørensen, 1981, 

p. 32): 

1.4 Definition By a vector is understood the set of unidirectional arrows hav-

ing the same length. Every arrow in the set is said to be a representative of 

the vector.  

As symbols for vectors lower-case letters with an arrow over them are usu-

ally used: 𝑎⃗, 𝑏⃗⃗, … (In some books lower-case letters set up in bold-face). 

 

Before this definition both the notions of unidirectional and opposite arrows are defined. 

Of course most of the notions that are defined are the same as in the books by Kristensen 

and Rindung, but generally Jensen and Sørensen are using more geometric illustrations 

in definitions and proofs. An example could be the following theorem and the correspond-

ing proof (Jensen & Sørensen, 1981, pp. 41-43):  

2.2 Theorem For arbitrary vectors 𝑎⃗, 𝑏⃗⃗, and 𝑐 the associative law holds 

(𝑎⃗ + 𝑏⃗⃗) + 𝑐 = 𝑎⃗ + (𝑏⃗⃗ + 𝑐) 

Proof: The first figure [see Figure 26] shows that  

(𝑎⃗ + 𝑏⃗⃗) + 𝑐 = 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  

and the second figure [see Figure 27] shows that  

𝑎⃗ + (𝑏⃗⃗ + 𝑐) = 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  

With that the desired is shown.   

 

The first figure that is mentioned in the proof is shown on Figure 26. 

 

 
Figure 26 – The first figure mentioned in the proof of the associative law in (Jensen & Sørensen, 1981, p. 41) 

Figure 27 shows the second figure that is mentioned in the proof.  
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Figure 27 – The second figure in the proof of the associative law in (Jensen & Sørensen, 1981, p. 43) 

Also in the discussion of the parallelogram spanned by two vectors the approach is more 

geometric than in Kristensen and Rindung (Jensen & Sørensen, 1981, p. 87): 

9.9 Example We consider two proper non-parallel vectors 𝑎⃗ and 𝑏⃗⃗. 

The two vectors span a parallelogram 𝐴𝐵𝐶𝐷, which area we want to deter-

mine. 

The base of the parallelogram is |𝑎⃗| and its height is the length of the projec-

tion of 𝑏⃗⃗, 𝑏1
⃗⃗ ⃗⃗ , on 𝑎̂⃗ (see the figure [see Figure 28]). 

The wanted area is then 

|𝑎⃗||𝑏1
⃗⃗ ⃗⃗ | = |𝑎̂⃗||𝑏1

⃗⃗ ⃗⃗ | = |𝑎̂⃗ ∙ 𝑏1
⃗⃗ ⃗⃗ |, since 𝑎⃗ ∥ 𝑏1

⃗⃗ ⃗⃗   

= |𝑎̂⃗ ∙ 𝑏⃗⃗| = |det(𝑎⃗, 𝑏⃗⃗)| 

 

The figure mentioned in the example is shown in Figure 28. 

 

 
Figure 28 – Figure that illustrates example 9.9 in (Jensen & Sørensen, 1981, p. 87) 

In the application part of the book physics is important. One of the examples is the defi-

nition of work, which was also mentioned in Kristensen and Rindung. However, in this 
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book it is described similarly as in the physics book by Pihl and Storm. Another interest-

ing example is the following (Jensen & Sørensen, 1981, p. 353): 

A 54 A body is affected by a force that in a given coordinate system has the 

coordinates 

𝐹⃗ = (
4
5

) 

The body is moving from the point having the coordinates (−5, −2) to the 

point having the coordinates (7,3). 𝐹 is measured in N and the distance in 

m. Determine the work that the force makes.  

 

Theoretically, the idea of this application is good, but as it has been discussed earlier, 

physicist do not use the coordinate representation of vector quantities such as force, which 

means that this is an example of how mathematics teaching and physics teaching is very 

disconnected in praxis, even though the mathematics textbook tries to include physical 

applications. 

 

“Funktioner og vektorer: Teori og redskab” is still algebraic in its approach to vectors, 

but contrary to Kristensen and Rindung, the authors give more illustrations linking the 

algebraic properties to a geometric interpretation. Furthermore, the style of this textbook 

puts more importance into examples of applications in for example physics. However, 

some of the examples are a bit synthetic, and therefore not helpful in the purpose of in-

terrelate the notion of vectors in mathematics and physics.  

 

Vectors in physics 

During this period, some different approaches to the teaching of vector quantities appear 

in different textbooks. The following will examine the two very different textbooks 

“Fysikkens spor” and “Fysik for 3.G: Hverdag, videnskab og verdensbillede”. The first 

one is written by Claus Christensen, Carsten Claussen, and Bjørn Felsager and published 

in the first edition in 1990. The second is written by Esper Fogh and Knud Erik Nielsen 

and published in 1991. The two books take completely different positions regarding the 

use of vectors.  

  “Fysik for 3.G” presents the theory of vector quantities without the use of vectors. In the 

preface an explanation of this choice is given (Fogh & Nielsen, 1991, preface): 

Physics at high level is to some extend chosen by students without a 

knowledge of vectors. Therefore, we have chosen a presentation that does not 

assume such knowledge. Out of consideration of those who prefer to use vec-

tors we have put “grey frames” containing a parallel presentation of the con-

tent in the language of vectors.                                                 
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One example of this “parallel presentation” is found under the heading “3. The energy of 

mechanics” (Fogh & Nielsen, 1991, p. 56). Here the notion of work is defined in the 

ordinary text in the following: 

Work is force times displacement. A constant force 𝐹, that is affecting an 

object, that is displaced by Δ𝑠 in the direction of the force, does the work:  

Δ𝐴 = 𝐹 ∙ Δ𝑠 

The SI unit of work is 𝑁 ∙ 𝑚, that is valled 𝐽 (joule).   

 

Right next to this definition, a “grey frame” gives an alternative vector definition (Fogh 

& Nielsen, 1991, p. 56): 

The vector formulation of the definition of work:  

If the force 𝐹⃗ displaces a particle with Δ𝑠⃗⃗⃗⃗⃗, it does the work:  

 

Δ𝐴 = 𝐹⃗ ∙ Δ𝑠⃗⃗⃗⃗⃗ 

= |𝐹⃗| ∙ |Δ𝑠⃗⃗⃗⃗⃗| ∙ cos (𝑣) 

 

where 𝑣 is the angle between Δ𝑠⃗⃗⃗⃗⃗ and 𝐹⃗.  

 

In this particular example, the two definition do actually differ, by the fact that the one 

without vectors is only working, when force and displacement have the same direction. 

The definition that utilises vectors can also be used in situations where force and displace-

ment have an angle between them. 

  Aside from the two-sided definition of work, there are only two other “grey frames” in 

the book, both in kinematics. The first one describes how movement in two dimensions 

can be represented by the use of vectors and the other one describes how the notion of 

position vectors can be used to represent circular motion.  

 

Contrary to “Fysik for 3.G” the authors of the book “Fysikkens spor” have chosen to use 

vectors to describe directional quantities (Christensen, Claussen, & Felsager, 1990, p. 7): 

We have chosen to describe directional physical quantities by vectors. The 

few necessary prerequisites are presented in appendix A.   

 

This citing is interesting, because it shows how the use of vectors is something that text-

book authors needed to take a stand on during this period, contrary to the previous peri-

ods, where the use of vectors was the automatic choice.  

  The appendix, that is used to present the necessary prerequisites, spends two pages de-

fining vector addition, multiplication of a vector by a scalar, the scalar product, and the 

vector product. Vector addition is introduced by geometric addition by the parallelogram-
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rule, but also the polygon-rule. Both descriptions are equipped with illustrations, linking 

the algebraic properties to the geometric properties. The description of multiplication by 

a scalar is also illustrated by its geometric interpretation, and additionally a physical ex-

ample, where the momentum of a particle is given as the product of its mass (that is a 

scalar quantity) with its velocity (that is a vector quantity).  

  The definition of the scalar product is also linked to a physical example, namely the 

definition of work. And the definition of the vector product is linked to the physical notion 

of spin, that is the vector product of the direction vector and the momentum vector.  

 

In this period the teaching of vectors in physics depends on the teacher’s standpoint and 

the choice of textbook, because some prefer more mathematised presentation of vector 

quantities, while some prefer a presentation where words instead of mathematical nota-

tion describes the difference between vector quantities and scalar quantities.  

 

3.3.2 Current mathematical organisation 

This period covers the three reforms from 2005, 2013, and 2017. In 2005 the curriculum 

contained the following about vectors (Danish Ministry of Education, 2005): 

Proportion calculations in similar triangles and trigonometric calculations in 

arbitrary triangles, vectors in two and three dimensions given by coordinates, 

applications of vector based coordinate geometry for plane and spatial geo-

metric problems.  

 

In 2013 the curriculum contained the exact same about vectors. In addition to the curric-

ulum, the guidelines for interpretation of the curriculum will be used in the analysis of 

the mathematical organisation. It reads the following about vectors (Danish Ministry of 

Education, 2013a): 

The students are required to master the computation rules for vectors and the 

operations such as 

- to find the orthogonal vectors to a given vector in the plane 

- to determine the scalar product  

- to determine the determinant between two vectors and to be able to inter-

pret this number 

- to determine the cross product between two spatial vectors and to be able 

to interpret this vector 

- to find the projection of a vector on a vector 

 

The analytical geometry is covered in both two and three dimensions as a 

vector based coordinate geometry, where the students at a written exam are 

required to be able to  

- set up and rearrange equations for circles and spheres and to be able to de-

termine tangents and tangent planes 



71 
 

- translate back and forth between equation and parametric representation of 

lines in the plane 

- determine the equation of planes and parametric equations of lines in space 

- determine potential intersections between lines, between lines and planes, 

and between lines and circles, lines and sphere respectively 

- detemine angles between lines, between lines and planes, and between two 

planes 

- determine distances between points and in the plane: the distance from 

point to line and in space from point to plane. 

 

The first requirements reveal some of the organisation of the algebraic branch while the 

last requirements reveal some of the organisation of the geometric branch. They are also 

reflected in the written exam problems. 

 

The 2017-curriculum describes the organisation of the theory of vectors in the following 

way (Danish Ministry of Education, 2017a): 

Vectors in two dimensions given by coordinates, including scalar product, 

determinant, projection, angles, area, line, circle, intersections, and distance 

calculations, and application of vector based coordinate geometry for plane 

geometric problems, including trigonometric problems 

 

Vector functions, graphical paths of trajectories, including determination of 

tangents, and applications of vector functions. 

 

It is noteworthy that vector functions are added to the curriculum again after around 30 

years of absence. However, it will not be paid more attention, since it is out of scope of 

this thesis.  

  In the guideline for interpretation of the curriculum the properties and applications of 

vectors mentioned in the curriculum are elaborated on under the heading “geometry and 

vectors” (Danish Ministry of Education, 2018a): 

Vectors in the curriculum are serving different purposes. Through their work 

with vectors the students are developing their numeracy, conceptual 

knowledge, and algebra, when they set up and solve geometric problems in 

and outside the coordinate system. Vector algebra will contribute to the 

students’ maintenance and development of the algebraic and calculation 

skills, that they have from primary school, while they learn something 

quite new and study the geometric notions in depth. The introduction to 

the notion of vectors should be given by an alternation between construc-

tion and calculation, and an alternation between paper/pencil-activities 

and computer assisted activities 
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Furthermore, the guidelines for interpretation of the curriculum describes what is re-

quired from first year students (Danish Ministry of Education, 2018a): 

The students are expected to be able to operate with the notions zero vector, 

unit vector, position vector, connection vector, orthogonal vector, and they 

are required to be able to determine the angle between vectors, including the 

handling of orthogonal and parallel vectors. Furthermore, they are expected 

to be able to apply the simple transition formulas, that are necessary to handle 

obtuse angles between vectors. Furthermore, the students are expected to be 

able to carry out calculations in right-angled triangles from the trigonometric 

formulas, that can be deduced from the unit circle. In calculation and in geo-

metric interpretation by construction the students are required to be able to 

use the elementary operations of vectors (addition, subtraction, and ‘multipli-

cation by a constant’) and the other operations: to determine the length of a 

vector, the orthogonal vector to a given vector, the scalar product of two vec-

tors, and the determinant between two vectors, the angle between two vectors, 

and the projection of a vector on a vector. Similarly, the students are required 

to be able to handle calculations involving the laws of cosine and sine, that 

can be deduced from the scalar product and determinant respectively, and that 

can simplify the calculation in some trigonometric problems. Furthermore, 

the height, the median, and the bisector in triangles are assumed well-known. 

 

For the students on second year there are the following additional requirements (Danish 

Ministry of Education, 2018a): 

On B-level the calculations with vectors are extended to containing the part 

of the analytical geometry, that deals with the analytical description of the 

objects line and circle. In this phase as well, it is important as a support of the 

students’ conceptual knowledge, that the teaching varies between construc-

tion and calculation and between paper/pencil activities and activities with 

mathematical CAS-tools. The students should obtain skills and competences 

in setting up and rewriting equations of circles (completing the square) and 

determining the equations of circle tangents and rewriting back and forth be-

tween the equation and the parametric representation of a straight line. Fur-

thermore, the students are required to be able to determine the intersection 

between lines and between lines and circles and angles between lines and dis-

tance from point to line. Connected with the angle between lines is also the 

relation between angle of inclination (with the first axis) and the slope of a 

straight line.   

 

This shows that the division into an algebraic and a geometric branch is still valid in the 

new reform. Compared to the reforms in the historical periods the algebraic branch is 

more concrete since it is mostly based on coordinates instead of a more abstract coordi-

nate-free approach, as it was prevalent in the 60’s, 70’s, and 80’s. A new feature is, that 
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the students are required to be able to geometrically construct the sum and the difference 

of vectors, and the multiplication of a vector by a constant.  

  The geometric branch looks very similar to especially the one in the previous period. 

The students will still primarily be working with lines and circles (not planes, since spatial 

geometry was removed with the 2017-reform), and angles, representations, intersections, 

distances, and tangents. An examination of the written exam problems will elaborate both 

the algebraic and the geometric branch.   

 

Analytical-geometrical vector-problems 

The analytical-geometrical vector-problems from the current period are primarily con-

cerning three dimensional configurations. Often the problems are equipped with a sketch 

showing the situation. An example from 2011 is shown below. The problem will be re-

ferred to as Problem 11 (Danish Ministry of Education, 2018c):  

A sphere in a coordinate system in space has its centre in 𝐶(0,0,5), and the 

point 𝑃(2, −1,3) is situated on the sphere.  

 

a) Determine an equation of the sphere and determine an equation for the 

tangent plane in 𝑃. 

 

Another tangent plane to the sphere is given by the equation  

 

𝛼: 3𝑥 + 6𝑦 − 6𝑧 + 3 = 0 
 

b) Determine the coordinates of the point of tangency 𝑄 between the sphere 

and 𝛼.  

 

The problem is equipped with the illustration shown in Figure 29.  

 
Figure 29 – Sketch of the situation in Problem 12 (Danish Ministry of Education, 2018c) 
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The style of exam problems, where the text is equipped with a figures, is new compared 

to the historical periods. Except from that, analytical-geometrical vector-problems are 

very similar in style compared to problems that appeared in the end of the previous period, 

where multiple technologies are invoked in the same problem.  

 

Vector algebra-problems 

Since 2005 the vector algebra-problems have always been coordinate-based and they are 

mostly two dimensional. They are often posed in the part of the exam that do not allow 

any aids. The tasks can easily be categorised in a handful of different types of tasks. They 

are solved by combinations of the vector techniques 𝜏|∙|, 𝜏𝑝𝑟𝑜𝑗, 𝜏⊥, 𝜏∥, 𝜏𝑑𝑒𝑡, 

𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚, and 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
, and the ordinary algebra techniques 𝜏𝑒𝑞 and 𝜏𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞. Some 

examples are shown below. The first one is from 2010 and will be referred to as Problem 

12 (Danish Ministry of Education, 2018c):  

In a coordinate system two vectors are given by 

 

𝑎⃗ = (
𝑡 − 1

2
) and 𝑏⃗⃗ = (

3
𝑡

) 

 

where 𝑡 is a number.  

 

a) For 𝑡 = 4 determine the angle between 𝑎⃗ and 𝑏⃗⃗.  

b) Determine the values of 𝑡 for which 𝑎⃗ and 𝑏⃗⃗ are parallel. 

 

Sub-question a) is solved by the technique 𝜏∠ in combination with 𝜏𝑒𝑞. This problem is 

posed in the part of the exam that allows aids. A sketch of the solution is shown in Ta-

ble 14.  

 

3 ∙ 3 + 2 ∙ 4 = √32 + 22 ∙ √32 + 42

∙ cos (𝑣) 

𝜏∠ 

𝑣 = cos−1 (
3 ∙ 3 + 2 ∙ 4

√32 + 22 ∙ √32 + 42
) = 19,44° 

𝜏𝑒𝑞 

Table 14 – A sketch of how the techniques 𝜏∠,∙and 𝜏𝑒𝑞 are used to solve a) in Problem 12 

Sub-question b) is solved by the technique 𝜏∥ in combination with 𝜏𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞. The so-

lution is shown in Table 15.  

 

(𝑡 − 1) ∙ 𝑡 − 2 ∙ 3 = 0 𝜏∥ 

𝑡2 − 𝑡 − 6 = 0 𝜏𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

𝑡 = −2 ∧ 𝑡 = 3 𝜏𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞 
Table 15 – A sketch of how the techniques 𝜏∥ and 𝜏𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑒𝑞  are used to solve b) in Problem 12 
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In the guiding exam problems from the 2017-reform a new type of task showed up. In 

this task the algebraic approach is mixed with the geometric approach. The problem is 

shown below, and will be referred to as Problem 13 (Danish Ministry of Education, 

2018c):  

The figure [see Figure 30] shows representatives for three vectors 𝑎⃗, 𝑏⃗⃗, and 

𝑐. 

 

a) Draw a representative of the vector 2 ∙ 𝑎⃗ + 𝑏⃗⃗ − 𝑐. 

 

If convenient use the enclosed.  

 

The figure that is mentioned is shown in Figure 30. 

 

 
Figure 30 – Figure from Problem 14 

 

Since this type of task is new in the context of written exams, it is not unambiguous how 

this task is solved. It can either be solved by the algebraic coordinate-based techniques 

𝜏𝑠𝑢𝑚, 𝜏𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, and 𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡, if the coordinates are determined from the figure. 

Alternatively, a more geometric solution could be given by the use of a combination of 

the three geometric/algebraic techniques 𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚, 𝜏𝑔𝑒𝑜𝑚 𝑑𝑖𝑓𝑓, and 𝜏𝑔𝑒𝑜𝑚 𝑠𝑐𝑎𝑙 𝑚𝑢𝑙𝑡. The 

geometric solution is shown in Figure 31. 
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Figure 31 – Geometric solution to the algebraic/geometric problem from the guiding exam problems from the 2017-

reform 

 

Textbook 

In the recent period a lot of different textbooks have been used. One of the most prevalent 

is “Gyldendals Gymnasiematematik” written by Flemming Clausen, Gert Schomacker, 

and Jesper Tolnø and the second edition, that will be used here, was published in 2012. 

In this textbook, the need for the notion of vectors is established by the following example 

(Clausen, Schomacker, & Tolnø, 2012, p. 91): 

When one needs to report the position of a school, a church, or an ancient 

monument, both a distance and a direction is needed: That the way to school 

is 5 km long, does only tell, that the school 𝑆 is situated within a circle with 

the home 𝐻 as centre and 5 km as the radius (figure 401). On the other hand, 

the following information tells exactly where the school is situated: The 

school is situated 3,5 km from 𝐻 north by east (figure 402).  

 

The figures that are mentioned in the example are shown in Figure 32, corresponding to 

figure 401 and Figure 33, corresponding to figure 402.  
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Figure 32 – Figure 401  from (Clausen et al., 2012, p. 91) 

 

 
Figure 33 – Figure 402 from (Clausen et al., p. 91) 

An additional example is given. This is even more physical, since it is centred around 

the velocity of a particle. After these two examples, the notion of vector is defined 

(Clausen et al., 2012, p. 91): 
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A length together with a direction is called a vector. In a coordinate system a 

length and a direction can be denoted by a set of coordinates, e.g. 𝑣⃗ = (
2
3

). 

A representative of a vector 𝑣⃗ is obtained by choosing a point 𝑃 and from 

this moving “2 horizontally and 3 vertically”. By doing this, one ends in a 

point 𝑄. The arrow from 𝑃 to 𝑄 represents the vector.  

 

This definition is equipped with two figures that show a representative of vector 𝑣⃗. There 

are two interesting remarks that can be made in relation to this definition. The first one 

is, that this book introduces the chapter on vectors with an example that serves the purpose 

of motivating the theory. This is different from many of the textbooks that were used in 

the previous periods, where the motivation was given after the definition. The other in-

teresting remark, that makes the treatment of vectors very different from the ones in the 

previous periods, is the introduction to coordinates on the very first paper. This shows 

how the algebraic branch of the current mathematical organisation of vectors is coordi-

nate-based alone. Almost all the definitions, formulas, theorems, and proofs are coordi-

nate-based, and the same counts for exercises.  

  Furthermore, this book differs from the previous textbooks by having an extensive part 

about the applications to analytical-geometrical vector-problems, which have not been 

taking up a lot of space in the other books.  

 

3.3.3 Current physical organisation  

This analysis of the current physical organisation of vectors include the curricula from 

2013 and 2017 and the respective guidelines for interpretation.  

  None of the curricula mention vectors and the guidelines for interpretation from 2013 

states that (Danish Ministry of Education, 2010): 

It is not a requirement that the traditional vector formulation is used in the 

description of motion in two dimensions. It can even, in many cases, be an 

advantage to carry out calculations coordinate-wise. Aside from this, the de-

scription must match the students’ mathematical preconditions.  

 

This citing shows how the physics teaching is almost fully detached from mathematics, 

at least regarding the teaching and use of vectors in physics.  

 

Written exams  

In the written exams throughout the years vector-like objects have appeared in the dis-

guise of arrows. An example could be the following from the written exam in August 

2012 (Danish Ministry of Education, 2018c): 
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A Segway has the maximal speed of 5,6
m

s
.  

 

a) How much time will a Segway use to travel 800 m, when it is driving at 

its maximal speed?  

 

A Segway is driving with the speed 4,2
m

s
. The Segway is braking with a 

constant acceleration at the magnitude of 4,7
m

s2.  

 

b) How long is the braking distance for a Segway in this situation? 

 

A Segway is driving at constant speed up a hill that has an inclination of 

8,0° from horizontal. The total mass of the Segway with driver is 145 kg. 

The air resistance, friction in bearings, and the rolling resistance gives a 

force with the magnitude 130 N that is facing backwards. 

 

c) Sketch in on appendix 1 arrows that show the magnitude and direction of 

the forces that affect the Segway while it is driving uphill.   

 

The mentioned appendix 1 is shown on Figure 34.   

 
Figure 34 – Appendix 1 that is needed for the vector-related physics problem 

This type of physics tasks, that involves vectors has appeared in written exams at least 

since the 1990’s, and it is the only type of task that includes vectors.  

 

Textbook  

Though the guidelines for interpretation of the curriculum is almost advising against using 

vectors in the treatment of motion in two dimensions one of the most prevalent textbook 
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in physics, “Vejen til fysik A”, that is written by Knud Erik Nielsen and Esper Fogh and 

published in the first edition in 2007, do mention how two-dimensional motion can be 

described by the use of vectors. This is done by creating the coordinate function 𝑟(𝑡) =

(
𝑥(𝑡)
𝑦(𝑡)

). From this both velocity and acceleration on coordinate functions are derived. 

However, most calculations are made by the use of coordinates instead of vectors.  

  In the chapter about forces and movement vectors play a more important role. After a 

short introduction to the notion of forces, a section about the composition of forces intro-

duces the notion of vectors (Nielsen & Fogh, 2011, p. 212): 

When we describe the effect of a force on a particle we need to specify both 

the direction and the magnitude of the force. In praxis this is done by repre-

senting the force by an arrow. The direction of the arrow gives the direction 

of the force and the length of the arrow gives the magnitude. Such an arrow 

is called a vector, here a force vector. When a particle is affected by multiple 

forces at the same time, we can determine the magnitude and direction of 

one single force, that has the same effect as the forces altogether. This is 

called the resultant of the single forces or their resulting force.  

 

In the following the rule for composition of forces and the parallelogram of forces are 

described. Also a brief general description of vectors is given. However, vectors are 

mostly used in this book to depict especially the directions of different forces. Calcula-

tions are generally made with scalars. This is in line with the use of vectors in the written 

exam problems.  

 

4. The Epistemological Reference Model 
The examination of the mathematical organisation and the physical organisation of the 

scholarly knowledge on vectors, and the mathematical organisation and the physical or-

ganisation of the knowledge to be taught on vectors has shown how these four organisa-

tions are woven together in an inseparable constellation (see Figure 35). 

 

 
Figure 35 – The interrelation between the different organisations described in section 3 

As shown on Figure 35 it is especially the interrelation between 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 and 

𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 (marked in grey) that is important to the empirical part of the thesis, but 
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alto the interrelations 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦, 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡, and 

𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 are necessary to include in the ERM.  

 

The relation 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 

The relation between these two organisations is important in order to explain the potential 

in an interdisciplinary approach to the teaching of vectors in high school. As it has been 

shown in section 3, these two have developed along parallel tracks and in close interrela-

tion. The two primary focus points in 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 are the algebraic representation of the 

geometry of ℝ2/ℝ3 and the generalisation of the geometric properties of ℝ2/ℝ3 to higher 

dimensions. Furthermore, but not so important to this thesis, some of the tasks in 

𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 are to use the most general theory of vector spaces to prove results in spaces 

(such as function spaces etc.) that do not have a geometric structure.  

  In 𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 the mathematical theory of vector spaces is used to carry out calculations 

in a compact manner (as it was described by e.g. Grassmann, who was able to shorten 

down extensive calculations). It is used in both classical mechanics to model vector quan-

tities such as velocity, acceleration, and forces, or quantities from rotational mechanics 

such as angular momentum or moment of force, in electrodynamics to model vector quan-

tities such as current or magnetic field, or in quantum mechanics in the shape of Hilbert 

spaces.  

  The potential in the relation between 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦, in the context of high 

school teaching, is to provide motivation for the theory of vectors by the various applica-

tions. Furthermore, the development of the relation between 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 

shows an example of how the algebraisation and generalisation of a theory have implied 

new results in physics, e.g. some of the findings in electrical theory as mentioned in sec-

tion 3.2.1. Though 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 gives the algebraic representations and methods a higher 

priority than the more geometric/visual representations and methods, it is mostly the ge-

ometric approach (that was also one of the initial approaches in mathematics) that is used 

for practical purposes in physics. This circumstance can beneficially be taken into account 

in an analysis of where problems in an interdisciplinary approach to vectors in high school 

comes from.  

 

The relation 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 

This relation, and especially the development of it, is important in order to understand 

and justify the 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡. Furthermore, a deeper understanding of this relation can 

help to explain why high school students struggle with the notion of vectors. As it has 

been shown in section 3.3.1 the relation has gone through a development illustrated in 

Table 16. 
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Period Relation between 

MO’s/PO’s 

Techniques 

1935-1953 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 very far 

from 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 but al-

most containing the 

𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 of that time. 

𝜏𝑔𝑒𝑜𝑚,𝑐𝑜𝑚𝑝, 𝜏𝑔𝑒𝑜𝑚,𝑑𝑒𝑐𝑜𝑚𝑝 

1961-2005 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 close to the 

praxis and the logos block 

of the algebraic structure 

of the part of 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 

that contains the vector 

space ℝ2(/ℝ3) combined 

with the praxis block the 

geometric applications of 

ℝ2(/ℝ3) in 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦. 

𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 and 

𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 outdistanc-

ing from each other. 

𝜏𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑣𝑒(+,∙), 𝜏|∙|,∙, 𝜏⊥,∙, 

𝜏∠,∙,|∙|, 𝜏𝑝𝑟𝑜𝑗,|∙|,∙, 

𝜏|∙| 𝑜𝑓⊥𝑣𝑒𝑐𝑡𝑜𝑟, 𝜏𝑝𝑎𝑟,|∙|,∠, 

𝜏𝑠𝑢𝑚, 𝜏𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 

𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡, 𝜏|∙|, 𝜏^, 𝜏𝑝𝑟𝑜𝑗, 

𝜏⊥, 𝜏∥, 𝜏𝑑𝑒𝑡, 

𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚, 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
 

2005-2017 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 containing 

primarily the coordinate 

based praxis block of the 

part of 𝑀𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 that 

contains the vector space 

ℝ2 and the praxis block of 

its geometric applications. 

𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 and 

𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 very far 

from each other, especially 

because 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 is 

almost non-existing. 

𝜏𝑠𝑢𝑚, 𝜏𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 

𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡, 𝜏|∙|, 𝜏^, 𝜏𝑝𝑟𝑜𝑗, 

𝜏⊥, 𝜏∥, 𝜏𝑑𝑒𝑡, 

𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚, 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
 

(In guiding exam  prob-

lems from 2017 also 

𝜏𝑔𝑒𝑜𝑚,𝑠𝑢𝑚, 𝜏𝑔𝑒𝑜𝑚,𝑑𝑖𝑓𝑓, 

𝜏𝑔𝑒𝑜𝑚,𝑠𝑐𝑎𝑙,𝑚𝑢𝑙𝑡) 

Table 16 – Development of the relations between the organisations of vectors 

The change from the period 1961-2005 to the period 2005-2017 has happened gradually, 

and the table shows how both the more abstract part of the praxis block (the coordinate-

free tasks and techniques) has been removed while most of the logos block has been re-

moved from 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 too. Along with the reduction of the content in the 

𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 some of the techniques have become instrumented and together with the 
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higher focus on written exams that has caused a minimised focus on the logos block the 

justification and understanding of vectors as objects has almost disappeared.  

 

The relation 𝑃𝑂𝑠𝑐ℎ𝑜𝑙𝑎𝑟𝑙𝑦 ↔ 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 

This relation is not the most necessary to describe in the ERM, but one thing is important 

to include. As it has been described the scholarly physics is highly mathematised, which 

the development of vector analysis has also a part of. In the periods 1961-1971 and 1971-

1984 the 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 showed that this mathematisation of physics was also valid in 

high school physics. In these periods a lot of two and three dimensional mechanics was 

coordinate based and calculations were carried out with vectors. However, teachers ex-

perienced how students struggled with the heavy mathematised physics, and 

𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 gradually abandoned vectors (and mathematics) more and more. A conse-

quence of this might be a vicious circle where mathematics teachers and physics teachers 

and the mathematics and physics to be taught interacted less and less due to the students 

lack of interdisciplinary skills that was caused by less focus on it and so on and so forth.  

 

The current 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 

The current 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 is composed of the regional MO’s [𝑇, 𝜏, 𝜃, Θ𝐴] and 

[𝑇, 𝜏, 𝜃, Θ𝐺]. The praxis block of the algebraic branch is primarily coordinate based and 

consists of the tasks that can be solved by the techniques 𝜏𝑠𝑢𝑚, 𝜏𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡, 

𝜏|∙|, 𝜏^, 𝜏𝑝𝑟𝑜𝑗, 𝜏⊥, 𝜏∥, 𝜏𝑑𝑒𝑡, 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚, and 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
. In the 2017-reform the geometric 

techniques 𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚, 𝜏𝑔𝑒𝑜𝑚 𝑑𝑖𝑓𝑓, and 𝜏𝑔𝑒𝑜𝑚 𝑠𝑐𝑎𝑙 𝑚𝑢𝑙𝑡 to solve algebraic tasks are re-

quired to be mastered. The logos block of the algebraic branch has a lower priority, and 

is also primarily coordinate based. The applications and the motivation comes from the 

praxis block of the MO [𝑇, 𝜏, 𝜃, Θ𝐺] and is very similar to the corresponding organisations 

from previous periods. Furthermore, it is more explicitly treated in current textbooks, 

compared to e.g. (Kristensen & Rindung, 1966) or (Jensen & Sørensen, 1981).  

 

The current 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 

The current 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 is very limited. Only one type of task is included in the written 

exams (𝑡: draw the arrows that represents the forces that acts on a given body), and most 

often these tasks are easier solved by methods that are not vector-based. 

  The logos block has contained vectors as a model for vector quantities but this approach 

has gradually been abandoned, and the guidelines for interpretation of the 2013-curricu-

lum recommended that the presentation of motion in two dimensions (which is one of the 

most obvious applications of vectors) is made without the use of vectors. This means that 

the 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 does not promote the interrelation or recommend an interdisciplinary 

approach to vectors and vector quantities, mostly because the mathematicised physics 

teaching has gradually been abandoned.  
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The relation 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 ↔ 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 

As it has been mentioned this relation is the most important in the ERM. The relation 

suffers, primarily because the techniques that potentially could be useful in 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 

(𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚 and 𝜏𝑔𝑒𝑜𝑚 𝑑𝑖𝑓𝑓) have a low priority in 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡. Instead most of the 

techniques in 𝑀𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 are coordinate-based, and these techniques are not included in 

𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡.  

  A general observation made in the examination of the organisation of vectors in mathe-

matics and physics was, that it is primarily the geometric properties of ℝ2/ℝ3 that are 

useful in physics, but that the techniques in the regional MO [𝑇, 𝜏, 𝜃, Θ𝐺] are not included 

in 𝑃𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡. Furthermore, the geometric interpretations of the algebraic properties 

and the techniques 𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚, 𝜏𝑔𝑒𝑜𝑚 𝑑𝑖𝑓𝑓, and 𝜏𝑔𝑒𝑜𝑚 𝑠𝑐𝑎𝑙 𝑚𝑢𝑙𝑡 are useful in physics, but 

they have not been prioritised in the 𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 before the 2017-reform. Instead the 

𝑀𝑂𝑡𝑜 𝑏𝑒 𝑡𝑎𝑢𝑔ℎ𝑡 have preferred the coordinate-based techniques over the geometric tech-

niques. 
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II The Study and Research Path 

 

5. Design  
The backbone in the empirical part of this thesis is an interdisciplinary Study and Re-

search Path in mathematics and physics on vectors. The aim for the SRP is to introduce 

the students to vectors in a setting, that focuses more on the geometric and physical inter-

pretation of the properties that vectors have, than on the algebraic properties themselves.  

  The rest of section 5 will describe the process of designing the SRP. It will contain the 

context of the teaching sequence, some of the considerations that has been taken into 

account during the designing process, the purpose and learning goals of the teaching se-

quence, and the final SRP that has been the outcome of the a priori analysis of the gener-

ating question.   

 

5.1 Context 
As described in the introduction, one of the issues that has motivated this thesis is the new 

reform that was implemented by the Danish Ministry of Education in August 2017. There-

fore, the target group for the SRP will be a Danish first year class at STX. Because of the 

interdisciplinary approach to vectors, the test class should preferably include students that 

are interested in physics and maybe even considering to upgrade physics to A-level. This 

requirement is due to the fact that no two-dimensional quantities are included in the C- 

and B-level physics curricula. Based on these requirements a test class was chosen.  

 

5.2 The test class 
The test class has mathematics at A-level, physics at B-level, and chemistry at B-level as 

their primary disciplines. It consists of 27 students, 10 of them males and 17 females. 

They entered high school in August and spent the period from August 7th to November 

3rd in temporary classes. During this period all the first year students attended (intention-

ally) identical (or at least comparable) basic training courses in all subjects. After three 

months of basic training courses the students chose their main subjects and based on these 

choices the classes were reorganised. From November 6th, the class has been in the same 

constellation as it was on April 3rd when the test was launched.  
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5.2.1 Mathematical topics covered 

The basic training course in mathematics was based on a compendium, that was used 

across the whole year group. The compendium covered some different mathematical top-

ics. They are all listed in Table 17, because the whole content might have affected the 

students’ work with the SRP: 

 

Topic Content 

Variables  Variables 

 Independent and dependent varia-

ble 

Variable relations  Coordinate system 

 The four representations of rela-

tions of variables 

 Translation between representa-

tions of relations of variable 

Linear functions  Linear regression 

 Linear functions  

Functions   What is a function? 
Table 17 – Topics covered in the basic training course in mathematics 

Roughly speaking, the mathematical content in the basic training course is collected in a 

regional MO based on the theory of functions, Θ𝑓𝑐𝑡. The MO [𝑇, 𝜏, 𝜃, Θ𝑓𝑐𝑡] contains dif-

ferent local MO’s, one of the primary being the one collected under the technology of 

translation between the four representations (graph, table, equation, and language). This 

technology will be denoted 𝜃𝑡𝑟𝑎𝑛𝑠,𝑟𝑒𝑝. The local MO [𝑇, 𝜏, 𝜃𝑡𝑟𝑎𝑛𝑠,𝑟𝑒𝑝Θ𝑓𝑐𝑡] contains dif-

ferent punctual MO’s collected under different techniques, e.g. 𝜏𝑔→𝑡 (the translation be-

tween graph and table), 𝜏𝑒→𝑡 (the translation between equation and table), 𝜏𝑒→𝑔 (the trans-

lation between equation and graph), etc..  

  Nested in the MO [𝑇, 𝜏, 𝜃, Θ𝑓𝑐𝑡] is the MO [𝑇, 𝜏, 𝜃, Θ𝑙𝑖𝑛,𝑓𝑐𝑡] that is collected under the 

theory of linear functions, which is a part of the theory of more general functions 

(Θ𝑙𝑖𝑛,𝑓𝑐𝑡 ∈ Θ𝑓𝑐𝑡). The regional MO [𝑇, 𝜏, 𝜃, Θ𝑙𝑖𝑛,𝑓𝑐𝑡] contains a local MO collected under 

the technology of linear regression, 𝜃𝑙𝑖𝑛,𝑟𝑒𝑔. The local MO [𝑇, 𝜏, 𝜃𝑙𝑖𝑛,𝑟𝑒𝑔, Θ𝑙𝑖𝑛,𝑓𝑐𝑡] con-

tains different punctual MO’s [𝑇, 𝜏𝑒𝑞 , 𝜃𝑙𝑖𝑛,𝑟𝑒𝑔, Θ𝑙𝑖𝑛,𝑓𝑐𝑡] and [𝑇, 𝜏𝐶𝐴𝑆, 𝜃𝑙𝑖𝑛,𝑟𝑒𝑔, Θ𝑙𝑖𝑛,𝑓𝑐𝑡], 

where the two techniques 𝜏𝑒𝑞 and 𝜏𝐶𝐴𝑆 are the manual and computer assisted techniques 

to carry out linear regression. A sketch of the praxeological structure of the basic training 

course is shown in Figure 36.  
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Figure 36 – Sketch of the praxeological organisation of the mathematical content in the basic training course 

During the period from November 6th to March 23rd the class worked with different math-

ematical topics. Again they are all listed in Table 18, because they might have affected 

the students’ work with the SRP: 

 

Topic and duration Content 

Variable relations, functions, growth  

(25 lessons) 
 The hierarchy of arithmetic opera-

tions 

 Manipulation with symbols 

 Inverse proportionality 

 Absolute value 

 Piecewise defined function 

 Composite functions  

 Inverse function 

 Absolute and relative growth 

 Index numbers  

 Percent and computation of rate of 

interest 

 Logarithmic functions 

 Exponential functions and expo-

nential growth 

 Exponential regression 

Statistics 

(15 lessons) 

Descriptive statistics 

 Simple statistical descriptors 

 Simple representations of data 

with and without CAS 

 Examples of the use of statistics 

Variable relations, functions, growth 

(12 lessons) 
 Power functions and growth based 

on power functions 
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 Power regression  

 Transformation of data 

 Description of graphs 
Table 18 - Topics covered in mathematics after the basic training course and until the test of the teaching design 

The topic ‘Variable relations, functions, growth’ that is covered over two periods ex-

tends the MO [𝑇, 𝜏, 𝜃, Θ𝑓𝑐𝑡]. The topic ‘Statistics’ is contained in another regional MO 

[𝑡, 𝜏, 𝜃, Θ𝑠𝑡𝑎𝑡]. A more detailed structure of this MO is not relevant for this study, and 

will not be dealt further with.  

  It will also be necessary to mention the technique of plotting data. In mathematics it 

has been taught and used in TI-Nspire in connection with regression. This technique 

will be denoted 𝜏𝑝𝑙𝑜𝑡 𝑁𝑠𝑝𝑖𝑟𝑒. In physics a similar technique has been taught in Excel. 

This will be denoted 𝜏𝑝𝑙𝑜𝑡 𝐸𝑥𝑐𝑒𝑙. Both techniques are relevant in the analysis of the de-

sign.  

 

5.2.2 The students’ mathematical abilities  

The mathematics teacher is experienced in teaching classes with the same combination 

of main subjects as the test class (mathematics at A-level, physics and chemistry at B-

level). The teacher claimed, that in comparison to previous years’ first year science-clas-

ses, the test class’ mathematical abilities were lower. However, she did also claim that a 

decline in first year students’ abilities has been a tendency over the past years. An addi-

tional claim was, that two circumstances in the new reform can have affected the students’ 

progress negatively compared to previous years. The first problem that is claimed to be 

caused by new structure is that the students cannot necessarily build new mathematical 

knowledge on the same foundation. This seems to be conflicting with the idea of a com-

mon basic training course building on the same compendium, but however, the teacher 

has observed that the students’ mathematical foundation varies depending on what 

teacher they have been taught by during the basic training course. The second problem is 

that the basic training course did not cover the same amount of material that has been 

covered by this teacher in the sciences classes through the first three months the previous 

years. 

 

5.2.3 Organisation of ordinary mathematics lessons 

The test class has been using the CAS-tool TI-Nspire since the beginning of November. 

They have not been instructed in how to use Excel in the mathematics lessons, but some 

of the students might be familiar with it from primary school. Furthermore, they have 

used it at least once in the basic training course in physics. 

  For most mathematics lessons the students have had a homework consisting of a few 

problems that they had to solve. In the beginning of the lessons the students were asked 

if they had difficulties solving the homework, and the potential difficulties and questions 

would be discussed.   
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5.2.4 Physical topics covered 

Like in mathematics, the students attended a basic training course in physics during the 

first three months. The material that constituted the basic training course in physics across 

the year group was collected on a web page. The electronic compendium covered a list 

of topics. The ones that might have affected the students’ work with the SRP are listed in 

Table 19:  

 

Topic Content 

What is physics?  SI base units 

 Definition of velocity 

 Mandatory experimental exercise: 

Velocity of bubbles  

 Excel template: linear regression 

for 3 data sets in same graph 

 Guidelines for journals 

 Alternative experiment: Energy of 

rolling ball 

 Alternative experiment: Bouncing 

ball 
Table 19  – Topics covered in the basic training course in physics 

For the purpose of this thesis, the important topic is mostly the first one, where the stu-

dents encounter the notion of velocity for the first time. The definition of velocity is 

given in the following way (Stenhus Gymnasium, 2017): 

Figure 3.1 shows a (𝑡, 𝑠)-graph of a linear motion. In the time span from 𝑡1 

to 𝑡2 the position changes from 𝑠1 to 𝑠2. For this time span we define the av-

erage velocity 𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 by the formula 

3.1 𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑠2−𝑠1

𝑡2−𝑡1
 

From this we see that the SI-unit of average velocity is 𝑚/𝑠: 

3.2 [𝑣𝑎𝑣𝑒𝑟𝑎𝑔𝑒] =
𝑚

𝑠
 

 

The figure that is referred to is shown in Figure 37. 
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Figure 37 – Figure 3.1 from the basic training course-material (Stenhus Gymnasium, 2017) 

Furthermore, the notions momentary velocity and speed are introduced. The experiments 

in the rest of the topic are centred around the notion of velocity.  

 

During the period from November 6th to March 23rd the class worked with different top-

ics. The ones that might have affected the students’ work with the SRP are listed in Ta-

ble 20: 

 

Topic and duration  Content 

Motion with respect to position, speed, 

and acceleration 

(8 lessons) 

 Length 

 Time 

 SI base units 

 Speed 

 Experiment: Free fall 

 Force (gravitation) 

 Acceleration (gravitation) 

 Energy 

 LoggerPro (for data collection and 

analysis) 

Energy including repetition from the 

basic training course 

(5 lessons) 

 Experiment: Free fall 

 Potential energy 

 Kinetic energy 
Table 20 – Topics covered in physics after the basic training course and until the test of the teaching de-

sign 

Again it is mostly the first topic that is relevant to this thesis. A relevant part of the ma-

terial that was covered is another definition of speed (Claussen, Both, Hartling, 2011, p. 

15): 

Speed The speed 𝑣 of an object is the travel distance per time unit. The 

speed is calculated by dividing the total distance by the time, that the ride 

takes: 

𝑣 =
strækning

varighed
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The SI unit is: m/s.  

 

At first glance, the topics “Force (gravitation)” and “Acceleration (gravitation)” could 

seem to be relevant, but neither of these focus on direction or anything else that relates to 

vectors.  

 

5.2.5 NV (the basic training course in natural sciences)  

The topics covered in the basic training course in natural sciences have been reviewed in 

order to see if they contained anything that could be relevant in the SRP, but everything 

was either covered by the topics in mathematics or physics.  

 

5.2.6 Social environment 

The class has a good social environment. The students seem to care about each other, e.g. 

by noticing who is attending and who is absent. There is a comfortable atmosphere, and 

the students help each other with both practical issues and questions regarding mathemat-

ics. Generally, the students have a positive attitude towards group work and they are con-

scientious in that context.  

  Two students were repeaters. Both had entered high school one year before the others 

but started over in August 2017.  

 

5.3 The purpose of the teaching sequence 
The SRP has two main purposes. The first one is to create a necessity of the notion vector 

in the students, that will motivate their autonomous study and research. The second pur-

pose is to reinforce the tie between mathematical vectors and physics, which will be done 

by changing the focus from an algebraic coordinate-based approach (which is the most 

common) to a combination of a more geometric but still coordinate-based approach.  

  Additionally, the teaching sequence have some more specific learning goals, that will 

make sure that it covers some of the notions in the curriculum and the guidelines for 

interpretation of the curriculum, that were presented in section 3.3.2. The learning goals 

are, that the students know the general notion of vector, the notions of zero vector, posi-

tion vector, connection vector (vector from one point to another), orthogonal vector, and 

angle between vectors. Furthermore, the students are desired to be able to add vectors 

(both algebraic from coordinates and geometric), subtract vectors (both algebraic from 

coordinates and geometric), multiply a vector by a constant, determine the length of a 

vector, determine the coordinates of the vector from one point to another, determine the 

scalar product between two vectors, determine the determinant of two vectors, and deter-

mine the area of the parallelogram spanned by two vectors.  

  Some of the more praxis-oriented learning goals can be represented by tasks and tech-

niques. These are presented in Table 21.  
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Task  Technique 

Determine the sum of two vec-

tors (geometric) 

 
Determine the sum of two vec-

tors (algebraic) 
𝑢⃗⃗ = (

𝑢1

𝑢2
) , 𝑣⃗ = (

𝑣1

𝑣2
) , 𝑢⃗⃗ + 𝑣⃗ = (

𝑢1 + 𝑣1

𝑢2 + 𝑣2
), (𝜏𝑠𝑢𝑚) 

Multiply a vector by a number  
𝑢⃗⃗ = (

𝑢1

𝑢2
) , 𝑘 ∈ ℝ, 𝑘 ∙ 𝑢⃗⃗ = 𝑘 ∙ (

𝑘 ∙ 𝑢1

𝑘 ∙ 𝑢2
), (𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑚𝑢𝑙𝑡) 

Determine the length of a vec-

tor that is given by coordinates 
𝑢⃗⃗ = (

𝑢1

𝑢2
) , |𝑢⃗⃗| = √𝑢1

2 + 𝑢2
2, (𝜏|∙|) 

Determine the coordinates of a 

vector from one point to an-

other (algebraic) 

𝐴(𝑎1, 𝑎2), 𝐵(𝑏1, 𝑏2), 𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (
𝑏1 − 𝑎1

𝑏2 − 𝑎2
), (𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗

) 

Determine the scalar product 

of two vectors (algebraic) 
𝑢⃗⃗ = (

𝑢1

𝑢2
) , 𝑣⃗ = (

𝑣1

𝑣2
) , 𝑢⃗⃗ ∙ 𝑣⃗ = (

𝑢1

𝑢2
) ∙ (

𝑣1

𝑣2
) = 𝑢1𝑣1 +

𝑢2𝑣2, (𝜏𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑑) 

Determine the determinant of 

two vectors (algebraic)  
𝑢⃗⃗ = (

𝑢1

𝑢2
) , 𝑣⃗ = (

𝑣1

𝑣2
) , det(𝑢⃗⃗, 𝑣⃗) = 𝑢1𝑣2 − 𝑢2𝑣1, 

(𝜏𝑑𝑒𝑡) 

Determine the area of the par-

allelogram spanned by two 

vectors (algebraic) 

𝑢⃗⃗ = (
𝑢1

𝑢2
) , 𝑣⃗ = (

𝑣1

𝑣2
) , 𝐴𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 =

|det(𝑢⃗⃗, 𝑣⃗)| = |𝑢1𝑣2 − 𝑢2𝑣1|, (𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚) 

Table 21 – Learning goals in terms of tasks and techniques 

In addition to the purely mathematical learning goals that has been described above, the 

students are desired to be able to apply especially the techniques 𝜏|∙|, 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
, 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚, 

and 𝜏𝑠𝑢𝑚 to the physical setting, that will be the framework of the SRP.  

 

5.4 Considerations 
During the designing process a lot of considerations have been made. First of all, it has 

not been easy to find examples of Study and Research Paths, or teaching designs in gen-

eral, that combines mathematics and physics in the teaching of vectors. Examples of 

teaching sequences combining vectors in mathematics and forces in physics are available 

(e.g. (Doerr, 1996)), but the notion of forces is only in the A-level curriculum, and will 

certainly not have been covered within the first months of the first year. The test class had 

briefly touched the notion when dealing with motion in one dimension, but it had not been 

enough to contribute in an interdisciplinary teaching sequence on vectors.  

  The lack of SRPs on vectors in mathematics and physics has meant, that the main work 

has been put into the process of coming up with ideas for a suitable topic that contains 

the relevant use of vectors and some physics that is not too complicated for first year 

students.  
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  The original aim was to design a Study and Research Path that could guide the students 

to the notion of vectors by themselves for example by offering a collection of media, that 

would be the object of study in the SRP. Since the notion of vectors is very complicated, 

new and abstract compared to the other topics the students had already been working with 

so far, this idea was abandoned.  

  Instead, the idea of a motivating setting with a problem that would be solvable with the 

use of vectors, and an introduction to vectors made by the teacher in the middle, was 

preferred.    

  In the preliminary phases of the designing process, it was considered whether the physics 

teacher should be involved and to what extension. Time pressure and the physics teacher’s 

absence from work due to illness caused the decision not to use the physics teacher. An-

other reason for this decision was, that the eight mathematics lessons seemed to be a 

suitable amount of time to carry out a teaching sequence that should introduce vectors.  

  Table 22 shows how the lessons are spread over the two weeks: 

 

 Week 1 Week 2 

Monday Day off due to Whit Monday No mathematics lessons 

Tuesday Lesson 1: 1150-1245 Lesson 5: 1150-1245 

Wednes-

day 

No mathematics lessons No mathematics lessons 

Thursday Lesson 2: 1150-1245 Lesson 6: 1150-1245 

Friday Lesson 3+4. First 3: 815-910. Ten 

minutes’ break. Second lesson: 920-

1015 

Lesson 7+8. First lesson: 815-910. 

Ten minutes’ break. Second les-

son: 920-1015 
Table 22 – Distribution of mathematics lessons 

In the process of designing the SRP, the theoretical study of the development of vectors 

in mathematics and physics respectively was taken into account. Since the theoretical 

study showed, that the algebraic branch of the mathematical organisation of vectors is 

very far from the physical organisation of vectors, one of the requirements in the gener-

ating question is to use the coordinate-based techniques on a physical task.  

  Furthermore, the geometric techniques from mathematics will be introduced in a physi-

cal setting as well, such that the students get used to representing vector quantities from 

physics by vectors. Also the geometric technique, 𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚, will be devoted attention in 

a physical context.  

 

5.4.1 The final generating question and SRP  

The result of the considerations that were made in the preliminary phase of the designing 

process is a generating question in the setting of a problem that is constructed for the 

purpose of the teaching sequence, but formulated in an authentic framework. The setting 

is that the students are recruited by Malaysia Airlines to assist them in the investigations 

of a plane-crash. The generating question in the first part of the investigation is: 



94 
 

 

𝑄0,𝐼: What has happened to the aeroplane? 

 

In addition to this, the students get some different pieces of information, that can be used 

(see Appendix A):  

 

 A map showing the intended route from departure to arrival  

 The distance from the starting point to the ending point 

 The duration of the flight under normal circumstances 

 A spreadsheet containing the position (sets of 𝑥- and 𝑦-coordinates) of the aero-

plane every minute during the flight 

 

The students will then work with this question during two lessons (Lesson 1 and Lesson 

2). As a built-in task the students will have to produce a poster, and present their results 

orally to the rest of the class. 

  In Lesson 3+4 the students will have a break from the investigations, to be introduced 

to the theory of vectors by their teacher. These two lessons are classical “whiteboard-

teaching”-lessons, but to keep the connection to the aeroplane-problem the examples that 

are chosen to illustrate vector quantities are related to velocity and aviation. As an exer-

cise, the students are asked to consider what happens to an aeroplane that is flying in 

crosswind. This example is used to illustrate geometric vector addition. Furthermore, the 

students are asked to work with an interactive “game-like” exercise, where they have to 

land an aeroplane safely while flying in a very strong crosswind (see Figure 38) (Bourne, 

M. (2017, August 21)).   

 

 
Figure 38 – Game to illustrate vector addition by the example of velocity and crosswind 
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After the introduction to vector theory, the students will get additional information in 

lesson 5 and a more specific generating question to lead the second part of the investiga-

tions. The question is: 

 

𝑄0,𝐼𝐼: How big is the area that has to be searched in order to find the aeroplane? 

 

The additional information, that is meant to call for the application of vector theory, is: 

 

 The amount of fuel and an estimate on how far this amount can take the aero-

plane 

 Wind conditions during the last part of the flight  

 

The handouts that are made to guide the students are found in Appendix A. 

 

5.5 Lesson plan 
While working with the generating questions, the students are divided into nine groups 

containing three persons each. The groups were formed by the teacher beforehand.  

 

Time Time ac-

cumulated 

Students Teacher 

Lesson 1 

5 min. 5 min.  Listening (+ researcher) introducing the 

project  

5 min. 10 min. Asking questions about the 

project 

Dividing groups, handing out 

materials, asking questions 

about the project 

35 min. 45 min. Working on the problem and 

writing logbooks 

Circulating the classroom to 

get an overview of the process 

10 min. 55 min. Preparing the poster and oral 

presentation 

Circulating the classroom to 

get an overview of the process 

Lesson 2 

15 min. 15 min. Presenting posters and asking 

questions 

Listening, directing order etc. 

20 min. 35 min. Working on the problem, up-

dating posters, preparing 

presentations and writing log-

books 

Circulating the classroom to 

get an overview of the process 

20 min. 55 min. Presenting posters and asking 

questions 

Listening, directing order etc. 

Lesson 3+4 

55 min. 55 min. Listening and asking ques-

tions 

Presenting vector theory on 

the whiteboard (see section 

5.4.1 for more details)  
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10 min.  Break Break 

55 min. 110 min. Listening and asking ques-

tions 

Presenting vector theory on 

the whiteboard (see section 

5.4.1 for more details) 

Lesson 5 

5 min. 5 min. Listening Handing out materials 

50 min. 55 min. Working on the problem and 

writing logbooks 

Circulating the classroom to 

get an overview of the process 

Lesson 6 

50 min. 50 min. Writing reports Circulating the classroom to 

get an overview of the process 

5 min. 55 min. Listening and asking ques-

tions 

Briefing students about feed-

back procedure for Lesson 

7+8 

Lesson 7+8 

35 min. 35 min. Reading and discussing re-

ports and preparing feedback 

Circulating the classroom to 

get an overview of the process 

15 min. 50 min. Giving/receiving feedback Circulating the classroom to 

get an overview of the process 

10 min.  Break  Break  

15 min.  65 min. Giving/receiving feedback Circulating the classroom to 

get an overview of the process 

15 min. 80 min. Giving/receiving feedback Circulating the classroom to 

get an overview of the process 

20 min. 100 min. Adjusting reports in view of 

feedback 

Circulating the classroom to 

get an overview of the process 

10 min. 110 min. Listening and asking ques-

tions 

(Researcher) rounding of the 

project 
Table 23 – Lesson plan 

5.5.1 The teaching sequence about vector theory 

Lesson 3+4 was planned to be a break from the plane crash-investigations. Instead of 

working independently with the generating question, the students were given a presenta-

tion of some, hopefully useful, theory on vectors. 

  In the teaching sequence vectors will be defined and the motivation will be the study 

of physical quantities having both magnitude and direction. The properties and notions 

that will be introduced are: geometric vectors, the coordinates of vectors, the zero vec-

tor, lengths of vectors, the sum of vectors from coordinates, scalar multiplication, geo-

metric vector-addition, opposite vector, geometric vector-subtraction, the difference of 

two vectors from coordinates, position vector, coordinates of a vector from a point 𝐴 to 

a point 𝐵, scalar product, angle between two vectors, orthogonal vectors, the orthogonal 

vector, determinant, parallelogram spanned by two vectors, and area of parallelogram 

spanned by two vectors.  
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  These notions are exactly the notions that were included as learning goals for the 

teaching sequence.  

 

6. A priori analysis  
In this section an a priori analysis of the generating questions will be presented. This 

represents the paths that the students are expected to follow. Since the SRP is separated 

into two parts, one before and one after the introduction to vectors, there will be two 

Q&A-diagrams. The first diagram will represent the expected questions and answers 

coming from the information presented in the first hand out (see Appendix A.1.1). The 

second diagram will represent the expected questions and answers coming from the stu-

dents’ new knowledge about vector theory and the second hand out (see Appendix A.2).  

 

6.1 Q&A-diagram for the first part of the SRP 
The generating question for the first part of the SRP is the following:  

 

𝑄0,𝐼: What has happened to the aeroplane? 

 

An a priori analysis of this question leads to the expected path described below (see also 

Figure 39):  

 

𝑄1: How does the route, that the aeroplane followed, look?  

𝑄1,1: What is remarkable about the route?  

𝑄1,1,1: Why did the aeroplane make a “loop”?  

𝑄1,1,2: Why did the plane suddenly make the change in course in minute 56?  

𝑄1,2: How far from Farawayistan Airport is the aeroplane, when it disappears from the 

radar? 

𝑄1,2,1: How is the distance to Farawayistan Airport calculated from the 𝑥- and 𝑦-coordi-

nates?  

𝑄1,3: How far from Neverland Airport is the aeroplane, when it disappears from the radar?  

𝑄2: By what speed/velocity did the aeroplane fly during the flight?  

𝑄2,1: How is speed/velocity calculated from position and time?  

𝑄2,1,1: How is the fact that the aeroplane is moving in two directions taken into account, 

when calculation speed/velocity?  

𝑄2,2: How fast does an Airbus a320 fly? 

𝑄2,3: What can be derived about the flight from its velocities?  

𝑄2,3,1: Why was the speed lowered by the end of the monitored part of the flight?  
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Figure 39 – Tree diagram showing the a priori analysis of the first part of the SRP 

 

Based on the prerequisites from the mathematics teaching the question 𝑄1 is very likely 

to be posed (either implicitly or explicitly) and answered by making a scatter plot in Excel 

or TI-Nspire (technique 𝜏𝑝𝑙𝑜𝑡). A scatter plot of the data is shown in Figure 40.  

 

 
Figure 40 – Scatter plot of the data that is given to the students 

A scatter plot of the data will be denoted 𝐴1, since it is the answer to the question 𝑄1. The 

scatter plot reveals some remarkable moves that the aeroplane has made. These moves 
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are the “loop” (the red mark on Figure 41) and the two sharp changes in direction (the 

green and the yellow mark on Figure 41).  

 

 
Figure 41 – Scatter plot with remarking details marked 

Since the students are mostly used to work with linear, exponential, and power functions 

all or some of these irregularities will be mentioned in the answer to the question 𝑄1,1. 

The answer will be denoted 𝐴1,1. Most likely the students will ask the question 𝑄1,1,1 and 

if their answer to 𝑄1,1 includes the rapid change in direction after 56 minutes maybe also 

the question 𝑄1,1,2. All three “irregularities” (the red, the green, and the yellow marks on 

Figure 41) are put in the data set to make the students consider the difference between 

speed and velocity, since this will produce a need for the theory of vectors.  

  The questions 𝑄1,1,1 and 𝑄1,1,2 are not directly necessary for the students to pose and 

answer in order to answer the generating question, but however they are in the diagram 

because the students will most likely wonder where these irregularities come from. Some 

students might search the internet for reasons why aeroplanes make these strange moves. 
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Whatever the students might find on the internet will be denoted 𝐴1,1,1 and 𝐴1,1,2 respec-

tively. Some groups might include wind conditions in 𝐴1,1,2, which would be good for the 

introduction to vectors and for the second part of the SRP. 

 

Another branch of questions rising from 𝑄1 is about the distance that the aeroplane has 

travelled. This is highly relevant for the generating question to be answered, and it seems 

very likely that the students will pose the question 𝑄1,2 (or similar, e.g. 𝑄1,3, or both). 

Since the students have not worked with motion in two dimensions the question 𝑄1,2 will 

probably lead to the sub-question 𝑄1,2,1 about how the travelled distance is calculated 

from the 𝑥- and 𝑦-coordinates. Some students will probably know about the Pythagorean 

theorem and use this to calculate the distance, otherwise it will probably be found on the 

internet and applied. The Pythagorean theorem will be denoted 𝐴1,2,1 and the answer 

√452,782 + 477,502 = 658,04 will be denoted 𝐴1,2. Some groups might answer 𝑄1,3 

by subtracting 658,04 from 1000 (1000 − 658,04 = 341,96). Other groups might an-

swer it by calculating the coordinates of Neverland Airport and then carry out the calcu-

lation: √(707,11 − 452,78)2 + (707,11 − 477,50)2 = 342,64.  

  The questions with primary index number 1 are all about distance. The other main 

branch in the first part of the SRP that has primary index number 2 and all the questions 

are about velocity. These questions are important for the transition into the theory of vec-

tors, since the introductory example will be about velocities. However, it will probably 

only be the fastest working groups that make it that far in the first lesson.  

  The students have worked with both speed and velocity shortly, and therefore the ques-

tion 𝑄2 is likely to be posed. Since the students have only touched the notions velocity 

and speed briefly some groups might need to look up the formula for velocity – they ask 

the question 𝑄2,1. This question will either be answered by notes from their physics teach-

ing or by searching the internet for the formula. The formula 𝑣 =
Δs

Δt
 will be denoted 𝐴2,1. 

Since the students have not worked with motion in two dimension they will need to look 

up how this formula is translated into the two dimensional setting that they work in. They 

will probably find out that velocities in two dimensions can be calculated in the directions 

of the axes, such that 𝑣𝑥 =
Δ𝑠𝑥

Δ𝑡
 and 𝑣𝑦 =

Δ𝑠𝑦

Δ𝑡
, and maybe also that the speed, |𝑣|, is calcu-

lated from |𝑣| = √𝑣𝑥
2 + 𝑣𝑦

2. These formulas are denoted 𝐴2,1,1. From these formulas 

the students will be able to answer 𝑄2. The answer is that the aeroplane keeps the speed 

835
𝑘𝑚

ℎ
 for most of the flight, but that it lowered twice. The first time (about minute 51) 

to 765
𝑘𝑚

ℎ
 and the second time (about minute 57) to 745

𝑘𝑚

ℎ
. This answer will be denoted 

𝐴2.  

  Some groups might want to compare the velocities, that they have calculated to the nor-

mal speed of an Airbus a320 to see if there is something remarkable about the velocities. 
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On the internet the students might find that an Airbus a320 has the normal speed 835
𝑘𝑚

ℎ
 

and that the maximal speed is 900
𝑘𝑚

ℎ
. This answer will be denoted 𝐴2,2. The students 

might want to compare the calculated velocities to the normal speed of an Airbus a320. 

They will probably ask the question 𝑄2,3. The answer to this question will be that the 

aeroplane flies at normal speed for the first 50 minutes and after that it is lowered. This 

answer is denoted 𝐴2,3. Some groups might ask why the speed is lowered (𝑄2,3,1). How-

ever, this question cannot be answered from the information that is provided.  

 

This Q&A-diagram for the first part of the SRP might be quite ambitious, and all the 

questions and answers will probably not be posed by all groups. Hopefully, the class as a 

whole will cover both some of the “distance”-branch (the questions with primary index 

number 1) and some of the “velocity”-branch (the questions with primary index number 

2), because this will constitute a good foundation of the discussion of vectors.  

  After the first part of the SRP the class will be taught some vector theory, that they will 

need to apply in order to answer the generating question in the second part of the SRP. 

The content of the teaching sequence has been described in section 5.5.1. 

 

6.2 Q&A-diagram for the second part of the SRP 
The second part of the SRP will be directed by the following question together with the 

additional information described in section 5.4.1:  

 

𝑄0,𝐼𝐼: How big is the area that has to be searched in order to find the aeroplane? 

 

An a priori analysis of this question leads to the expected path described below (see also 

Figure 42): 

 

𝑄3: How can vector theory be applied to calculate the area that has to be searched in order 

to find the aeroplane? 

𝑄3,1: Which two vectors should form the parallelogram? 

𝑄4: How can the information about cross wind be used? 

𝑄4,1: How are wind conditions taken into account, when calculating the velocity of an 

aeroplane? 

𝑄4,1,1: What is the “true airspeed” of the aeroplane, when it is flying in the cross wind? 

𝑄5: How can the information about the amount of fuel be used? 

𝑄5,1: For how many kilometres will the remaining fuel last?  

𝑄5,1,1: How big a distance has the aeroplane been travelling from take-off and until it 

disappears from the radar?  
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Figure 42 - Tree diagram showing the a priori analysis of the second part of the SRP 

Since the students have been taught vector theory prior to the second part of the SRP they 

will most likely pose question 𝑄3 or something similar. In the light of the teaching se-

quence on vectors the answer to question 𝑄3 will probably be that they can use the area 

of the parallelogram spanned by two vectors. This answer will be denoted 𝐴3. An obvious 

sub-question to 𝑄3 and 𝐴3 will be 𝑄3,1. The answer to this question will depend on the 

assumptions that the students make, but the questions 𝑄4 and 𝑄5 are very likely to be 

posed in order to make the assumptions explicit. A possible sub-question to 𝑄4 is 𝑄4,1. 

When answering this question some of the groups will maybe search the internet and find 

out that pilots operate with more than one speed measure, namely “true airspeed” and 

“groundspeed” respectively. Some groups might have encountered this distinction al-

ready in the first part, or have considered it in connection with the little computer game 

that was incorporated in the teaching sequence. A possible answer to 𝑄4,1 could be that 

the velocity of an aeroplane can be measured relative to either the ground (where the 

velocity is lower in head-wind and higher in tail-wind) or to the surrounding air (where 

the velocity is independent of wind-conditions). This answer will be denoted 𝐴4,1. With 

this information the students will probably ask 𝑄4,1,1 about the true airspeed. To answer 

this question the students will need to use the technique 𝜏𝑠𝑢𝑚 that they have been taught 

in the teaching sequence. The answer that is produced by the use of this technique will be 

denoted 𝐴4,1,1. From the answers to the sub-question a possible answer to 𝑄4 could be 

that the information about the crosswind can be used to determine the directions of the 

two vectors that span the parallelogram that they want to determine the area of. This an-

swer will be denoted 𝐴4.  

  An obvious sub-question to question 𝑄5 is 𝑄5,1. This is very likely to be posed by most 

of the groups. For this question to be answered the groups will need to answer the sub-

question 𝑄5,1,1. This question can be answered by an application of their new knowledge 

on vector theory, since the distance can be calculated as the sum of the lengths of the 

vectors from point to point (by the technique 𝜏|∙|). The answer to this question is that the 

aeroplane had travelled around 870 km before it disappeared from the radar. This answer 

is denoted 𝐴5,1,1. From this answer the students will be able to answer 𝑄5,1 by subtracting 

the number 870 km from the maximal distance that the total amount of fuel can take the 
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aeroplane. In the light of the answers 𝐴5,1,1 and 𝐴5,1 the question 𝑄5 can be answered. 

The information about the amount of fuel can be used to determine the lengths of the 

vectors which span the parallelogram that they want to determine the area of. 

 

This a priori analysis of the generating questions shows how 𝑄0,𝐼 will plant a need for the 

theory of vectors in the students by considerations about velocity, and how they will be 

able to apply vector theory both in the calculations of the travelled distance in the second 

part, in the considerations about true airspeed and groundspeed, and when they determine 

the area where the search for the crashed aeroplane should be made as the area of a par-

allelogram spanned by two vectors.  

 

7. Methodology  
This section will describe the circumstances of the execution of the teaching sequence 

and the collection and presentation of the data material.  

 

7.1 Execution of the SRP 
The teaching of the SRP and the built in teaching sequence was assigned to the teacher 

that was usually responsible for the mathematics teaching in the test class. This decision 

has both advantages and disadvantages. The first advantage is, that the students will most 

likely behave in a way that is relatable to an ordinary teaching situation, when they are 

taught by their ordinary teacher. Another advantage of assigning the teaching to another 

person is, that it will free the researcher to make and note down the necessary observa-

tions.  

  A disadvantage of this decision is, that when the responsibility of the teaching of the 

sequence is assigned to another person it is more difficult to control concrete teaching 

situations. Furthermore, the teacher will need a very thorough introduction to the teaching 

sequence, the a priori analysis of the generating questions, the potential of the generating 

question, and instructions in how to act on the different moves that the students will pos-

sibly make.  

  The teaching design was discussed with the teacher both beforehand and during the two 

weeks of teaching, but section 8 will show how this was not done carefully enough. Fur-

thermore, the consequences of this problem will be presented.  

 

7.2 Data collection  
In the design different kinds of assignments were included. This counted logbooks, re-

ports, and a poster. These assignments constitute the data material, that will be analysed 

in section 8. It would have been preferable to be able to include audio recordings in the 

analysis in addition to the written data material, but the recording of the conversations did 

generally fail in most cases. 
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  Requirements for, the nature of, and volume of each of the four types of data material 

are described below: 

 

 Logbooks: Each group handed in logbooks after both the first and the second les-

son. The logbooks contained the thoughts, questions, and calculations that the 

groups had worked with during each lesson. The logbooks are found in Appendix 

B, which include 17 items, since Group 3 did not hand in the second logbook.  

 Poster: Each group handed in a poster in the second lesson. The poster was sup-

porting an oral presentation of the results that the groups had found so far. The 

posters did not contain any results or calculations that cannot be found in the log-

books, and have therefore not been attached to the appendix.  

 Reports: Each group handed in a report by the end of the sixth lesson. The report 

presented all the results that they had found, including calculations and arguments. 

After a feedback-session with two other groups and the study of a guiding solution 

to the generating questions (see Appendix A.3) the groups rewrote the reports and 

handed them in. Both the first and the second version of the reports are found in 

Appendix C, that contains 18 items.  

 Audio recordings: The students were asked to record their conversations during 

their work with the questions. A lot of groups did this, but it turned out to be 

impossible to share the files in most cases. One group (group 7) managed to record 

their work with the first generating question in the first lesson and share the file. 

This recording has been supporting the a posteriori analysis of the SRP made by 

group 7.   

 

7.3 Detection of questions that are not explicitly posed 
Though the students are requested directly to pose questions in their logbooks, they do 

not always do this explicitly. However, it is still possible to detect the underlying ques-

tions from the answers that they give.  

  An example of an implicitly posed question is found in the first logbook by group 4 (see 

Appendix B.6):  

By drawing the graph on TI-Nspire we have found out that the aero-

plane flew in a circle (i.e. that it has been flying forwards, backwards, 

and forwards again). The beginning of the circle is in the point 

(259.33; 286.77). The end is in the point (267.77; 289.37). We can 

also see that the aeroplane crashed in the point (452.78; 477.5). We 

can see that after the point (396.26; 381.2), the aeroplane leans to-

wards the left on the route. 
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No questions are posed before the group states this, but it is clearly the answer to the two 

questions “How does the route, that the aeroplane followed, look?” and “What is remark-

able about the route?”, since they do at first make a scatter plot of the data to get a visual 

overview of the situation, and afterwards point out some of the coordinates in which the 

aeroplane makes some remarkable changes in direction.  

 

Similar interpretations of the text in logbooks and reports are made over and over again 

to detect the implicitly stated questions in order to get an overview of the realised SRPs.  

 

7.4 Diagrams and notation 
The groups’ realised SRPs will be presented in section 8. The presentation will include 

the list of sub-questions they have posed (explicitly or implicitly) but also the more visu-

ally illustrative tree diagrams. In section 2.4 a distinction between sub-questions and de-

rived questions were made. It has not been possible to include this distinction in the a 

posteriori analysis of the groups’ SRPs. A discussion of this issue is included in section 

8.6.   

  The sub-questions are denoted on the form 𝑄𝑥,𝑥,𝑥,𝑥,𝑥. Questions that do only have num-

bers instead of the 𝑥’s are questions that are found in the a priori analysis. When some of 

the groups pose questions that are not found in the a priori analysis, they contain letters 

in them. As an example, the sub-question 𝑄2,1 is a part of the a priori SRP, while the 

question 𝑄2,𝑎 is a part of the SRP of some of the groups, but not of the a priori SRP. Both 

𝑄2,1 and 𝑄2,𝑎 are sub-questions to the question 𝑄2. By this method of indexing, the ques-

tions can be bundled.  

  In Appendix D, a list of all the questions is found. This list will hopefully give the reader 

an overview of the questions and their relations if necessary.  

 

8. Data and a posteriori analysis 
The following section will describe how the teaching sequence developed in reality. Not 

all of the lesson plans were followed to the letter all the way through the two weeks caused 

by both time pressure and the fact that the students did not apply their knowledge on 

vectors as expected in the second part of the SRP. The deviations and revised lesson plans 

will be described in section 8.1.  

  In section 8.2 some empirical research questions will be posed. These research questions 

will guide the analysis of the students’ work with the generating question. Section 8.3 is 

dedicated to a description and analysis of the SRPs that the students followed during the 

teaching sequence. The realised SRPs will be compared to the expected SRP that was 

described in section 6.1 and 6.2.  
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8.1 The realisation of the teaching sequence 
Teaching is rarely following the lesson plan exactly to the point, and the same applies for 

the test of this design. In order to give an overview of what happened in the classroom, 

the following section will contain tables that presents the activities that took place during 

each of the lessons. The tables contain three columns. One reports the duration of the 

activity, one reports the students’ actions, and one reports the teacher’s actions. Each sec-

tion will furthermore contain a more elaborated description of the activities if it is neces-

sary.  

  It will be obvious from the following sections, that some of the lesson plans needed a 

revision, caused by deviations from the previous lesson’s lesson plans. These revised les-

son plans will be included in the end of the subsections where it is relevant after a de-

scription of the realised teaching.  

   

8.1.1 Lesson 1 

Time Students  Teacher 

2 min. Listening and marking attendance Registering attendance 

5 min. Listening  (+ researcher) introducing the project 

5 min. Listening and rearranging Dividing groups and handing out the 

first hand out 

10 min.  Reading, preparing themselves to 

get started and asking questions 

Answering questions 

5 min.  Trying to download data file and 

helping the other groups to get the 

data file 

Organising sharing of the data file 

30 min. Working in groups on the task and 

writing logbooks. Some are working 

on the posters 

Circulating the classroom to get an 

overview of the process 

1 min. Asking questions about the posters Conferring the researcher for deci-

sion 
Table 24 – Activities in Lesson 1 

The internet connection was very unstable which made the process of downloading the 

data file very complicated. The teacher suggested the students to share the data file in 

their intern Facebook group, which was done. Finally, all the groups had the data file 

downloaded to at least one computer, and the investigations could start. However, most 

groups had lost five minutes from the time that should have been spent on the task. Fur-

thermore, some of the groups ran into more troubles. The data file was provided in Excel 

format and most of the groups wanted to work in TI-Nspire. Some of the groups, espe-

cially those working on MacBooks, spent a lot of time trying to replace the decimal point 

in Excel, which is a comma, with the decimal point required in TI-Nspire, which is a dot. 

This problem was unexpected and took time away from the actual work with the task.  
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  Though the hand out told the students very explicitly to finish their posters within the 

first lesson, most of the groups did not manage to do so. Some groups asked for five 

minutes in the beginning of Lesson 2 to finish the poster. The request was agreed upon.  

 

Due to the time pressure, that was caused by the issues described above, the plan for the 

second lesson needed a revision. The revised plan for Lesson 2 is shown in Table 25.  

 

Time  Time ac-

cumulated 

Students Teacher  

5 min. 5 min. Finishing posters Circulating the classroom to 

get an overview of the process 

15 min. 20 min. Presenting posters Listening, directing order etc.  

20 min. 40 min. Working on the problem, up-

dating posters, preparing 

presentations and writing log-

books 

Circulating the classroom to 

get an overview of the process 

15 min. 55 min. Presenting posters and asking 

questions 

Listening, directing order etc. 

Table 25 – Revised plan for Lesson 2 

8.1.2 Lesson 2 

Time Students  Teacher 

2 min. Listening and marking attendance Registering attendance and asking 

for questions regarding the home-

work 

5 min. Finishing posters Circulating the classroom to get an 

overview of the process 

2 min. Arranging posters on the whiteboard 

and preparing for presentations 

Directing the arrangement of the 

posters 

10 min.  Presenting the posters Listening and directing the order 

35 min.  Working in groups on the task and 

writing logbooks 

Circulating the classroom to get an 

overview of the process. Conferring 

the researcher regarding second 

presentation 

1 min. Finishing and handing in logbooks Circulating the classroom to get an 

overview of the process 
Table 26 – Activities in Lesson 2 

In the beginning of the lesson the teacher used a few minutes to ask and note down if the 

students had questions for the homework that had been posted on the intranet. The ques-

tions were not asked or answered in this lesson, but postponed until after the project. 

Before the students were ready to present their posters almost ten minutes had passed.  
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  Though 15 minutes were set aside for the presentations the students did only use ten 

minutes. It had not been clear to the students that they should ask questions and be a part 

of the presentations given by the other groups.   

  Since the quality of the first presentations was not as high as hoped for and since the 

students had not had enough time to work continuously on the task for a longer period the 

second poster presentation was skipped. The decision was made by the researcher.   

 

8.1.3 Lesson 3+4 

Time Students Teacher 

1 min. Listening and marking attendance Registering attendance 

2 min. Listening and asking questions 

about a homework problem 

Answering questions 

4 min. Listening and asking questions (not 

directly related to the teaching sub-

ject) 

Moving on to the teaching sequence 

18 min. Listening, taking notes, and asking 

questions (related to the teaching 

subject) 

Teaching vector theory on the white-

board  

8 min. Playing with the applet on the inter-

net 

Circulating the classroom to get an 

overview of the process 

22 min. Listening, taking notes, and asking 

questions (related to the teaching 

subject) 

Teaching vector theory on the white-

board 

10 min. Break Break  

1 min. Asking questions (not directly re-

lated to the teaching subject)  

Answering questions 

54 min. Listening, taking notes, and asking 

questions related to the teaching 

subject) 

Teaching vector theory on the white-

board 

Table 27 - Activities in Lesson 3+4 

While a problem with the lack of chairs in the classroom was fixed the teacher spent two 

minutes to answer a question about a homework problem, that a majority of the students 

had had difficulties answering. The homework problem had no connection to the project. 

  When the students were finally settled the teaching sequence could start. Regarding the 

order in which things were presented, the plan was followed to the letter, but it took more 

time than expected.  

 

In order to cover all of the theory in the teaching sequence about vectors, the lesson plan 

for Lesson 5 needed a revision. The teacher claimed that it could possibly be done in 30 

minutes. The revised plan for Lesson 5 is shown in Table 28: 
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Time Time ac-

cumulated 

Students Teacher 

30 min.  30 min. Listening and asking ques-

tions  

Teaching vector theory on the 

whiteboard 

25 min. 55 min. Working on the problem and 

writing logbooks 

Circulating the classroom to 

get an overview of the process 
Table 28 – Revised plan for Lesson 5 

8.1.4 Lesson 5 

Time  Students  Teacher 

2 min. Listening and marking attendance Registering attendance and checking 

up on home work 

12 min. Listening and asking questions 

about the homework problems 

Answering questions about the 

homework problems  

47 min. Listening, taking notes, and asking 

questions related to the teaching 

subject) 

Teaching vector theory on the white-

board 

Table 29 - Activities in Lesson 5 

Like for the other lessons the teacher had posted some homework for the students on the 

intranet. This time the problems were related to the vector theory that they had been pre-

sented to in the previous lessons. After the attendance registrations the teacher spent 12 

minutes answering the students’ question regarding the homework problems.  

  After this the teacher continued the teaching sequence, but it took another 47 minutes to 

finish, which meant that the students could not get started on the second part of the inves-

tigations before Lesson 6.  

 

Since the students had not had time in Lesson 5 to get started on the second part of the 

SRP, the plan for Lesson 6 needed a revision. The revised plan for Lesson 6 is shown in 

Table 30:  

 

Time Time ac-

cumulated 

Students  Teacher 

55 min 55 min. Working with the problem 

and writing reports 

Circulating the classroom to 

get an overview of the process 
Table 30 – Revised plan for Lesson 6 

8.1.5 Lesson 6 

Time Students Teacher 

2 min. Listening and marking attendance Registering attendance 

10 min. Reading hand out Handing out the second hand out 

and waiting while the students read 

40 min. Working in groups on the task and 

writing reports. Asking questions 

Circulating the classroom to get an 

overview of the process and answer-

ing questions 
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about the requirements for the con-

tent in the reports 

3 min. Listening  Briefing students about the feedback 

procedure for next day 
Table 31 - Activities in Lesson 6 

The students started out by reading the second hand out. When they had finished the 

students worked on the problem and their reports, but it was hard for them to grasp what 

they were expected to write in the reports. Some of the groups asked a lot of questions in 

order to make the requirements clearer and more specific.  

  From the observations made during Lesson 6, it was decided to let the students read a 

solution of the task after the feedback session and before they worked through the reports 

again in order to rewrite them. The revised plan for Lesson 7+8 is shown in Table 32: 

 

Time Time ac-

cumulated 

Students Teacher 

20 min. 20 min. Reading reports and preparing 

feedback 

Circulating the classroom to 

get an overview of the process 

10 min. 30 min. Giving feedback to the first 

group 

Circulating the classroom to 

get an overview of the process 

10 min. 40 min. Giving feedback to the second 

group 

Circulating the classroom to 

get an overview of the process 

10 min. 50 min. Giving feedback to the third 

group 

Circulating the classroom to 

get an overview of the process 

10 min.  Break Break 

25 min. 75 min. Reading and discussing the 

handed out solution 

Circulating the classroom to 

get an overview of the process 

25 min. 110 min. Adjusting the reports in view 

of feedback and solution 

Circulating the classroom to 

get an overview of the process 

10 min. 120 min. Listening and asking ques-

tions 

(Researcher) rounding off the 

project 
Table 32 – Revised plan for Lesson 7+8 

8.1.6 Lesson 7+8 
Time Students Teacher 

1 min. Listening and marking attendance Registering attendance 

4 min. Sending and downloading reports Directing the students 

1 min. Listening Giving instructions on the feedback 

procedure 

15 min. Reading reports and preparing feed-

back 

Circulating the classroom to get an 

overview of the process 

15 min. Giving and receiving feedback in 

groups to/from other groups 

Circulating the classroom to get an 

overview of the process 

2 min. Listening  Handing out the guiding solution 
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17 min. Reading the hand out Circulating the classroom to get an 

overview of the process 

10 min. Break  Break  

45 min. Working in groups on the final re-

port and handing in 

Circulating the classroom to get an 

overview of the process 

10 min. Listening (Researcher) rounding off the pro-

ject  
Table 33 – Activities in Lesson 7+8 

It had not been arranged how the reports should be shared in the feedback groups. There-

fore, it took five minutes before the students could start reading and discussing feedback. 

After 15 minutes the students started talking about irrelevant subjects, so the preparation 

of the feedback was shortened down with five minutes. When the students had been in 

feedback groups for 15 minutes, they did again start to talk about irrelevant subjects. 

Therefore, the solution was handed out, and the students spent the last 17 minutes before 

the break reading the and discussing the solution.  

  After the break the students made some adjustments to their reports and handed in the 

final versions. 

 

8.2 Research Questions (II) 
From an analysis of the collected data, and in the light of the realised SRPs, the following 

questions will be answered: 

 

𝑅𝑄1
𝐼𝐼

: What questions do the groups develop from the generating questions 𝑄0,𝐼 and 

𝑄0,𝐼𝐼? 

𝑅𝑄2
𝐼𝐼

: How and why do the realised SRPs deviate from the expected SRPs? 

𝑅𝑄3
𝐼𝐼

: What praxeological organisation of vectors reveals from the groups’ work with 

the second generating question (𝑄0,𝐼𝐼)? 

 

8.3 The realised SRPs 
Since the class was divided into nine groups during the test of the design, the data material 

is extensive. Some interesting parts of the SRPs have been picked out and analysed. These 

parts can either be representative for more groups or show how the design and the a priori 

analysis has been on point or off compared to the students’ realised SRPs. The parts that 

are picked out will be analysed with the purpose of answering the research questions.  

 

8.3.1 Group 4 

This group has been picked out for three reasons. The first reason is, that they work with 

scales relating to the map that was handed out in the first part of the SRP. Group 7 did 

also work with scales. The second reason is that they calculate the “expected speed” of 
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the aeroplane from the expected distance and time. Group 1, 3, and 7 did something sim-

ilar in the first or second logbook The last reason is, that the second report made by this 

group contains a misunderstanding in the praxeological organisation of vectors.  

 

Logbook 1 

From the first logbook the following questions reveal: 

 

𝑄1,2,𝑎: In what part of the flight did the aeroplane crash? 

𝑄1: How does the route, that the aeroplane followed, look?  

𝑄1,1: What is remarkable about the route?  

𝑄1,1,1: Why did the aeroplane make a “loop”?  

𝑄𝑎: Why did the aeroplane crash after 65 minutes?  

𝑄0,𝐼𝐼,𝑎: Where did the aeroplane crash?  

 

It seems like the overall question for this group in the first lesson is 𝑄1, however it is not 

posed explicitly in the logbook. Neither are the questions 𝑄1,2,𝑎 and 𝑄1,1, and it seems 

like 𝑄1,2,𝑎 and partly 𝑄1,1 are answered without plotting the data. The group gives the 

following answers to these two questions in the logbook (see Appendix B.6): 

 

𝐴1,2,𝑎: “We have found out, that it crashed on the last third of the flight. We have found 

out that it crashed on the last 350 km of the flight. 90 − 65 = 25 min. It is approximately 

1 3⁄ . Then we measured 1 3⁄  of 20 cm = 6,666 cm. Then we found that 6,5 cm in the 

map = 350 km. The aeroplane would have crashed after 650 km.” 

 

𝐴1,1: “We have found out that it is following the intended route for the first 23 min. and 

after that it starts to lurch.” (It seems like this answer is given before the group has plotted 

the data). “By drawing the graph on TI-Nspire we have found out that the aeroplane flew 

in a circle (i.e. that it has been flying forwards, backwards, and forwards again). The 

beginning of the circle is in the point (259.33; 286.77). The end is in the point 

(267.77; 289.37). We can also see that the aeroplane crashed in the point 

(452.78; 477.5). We can see that after the point (396.26; 381.2), the aeroplane leans 

towards the left on the route.”  

 

The questions 𝑄1,1,1, 𝑄𝑎, and 𝑄0,𝐼𝐼,𝑎 are stated explicitly at the end of the logbook as the 

questions that the group want to work with in Lesson 2.  

 

On the poster the group has marked a circle around the point where the aeroplane disap-

peared.  
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Logbook 2 

In logbook 2 the group tries to answer the three questions that they posed in the end of 

logbook 1. After that they (implicitly) poses the following question:  

 

𝑄2,𝑎: What speed corresponds to the expected time and distance?  

 

The group gives the following answer to this question in the logbook (see Appendix B.7): 

 

𝐴2,𝑎: “Distance = 1000 km = 1000 ∙ 1000 = 1000000 m. Time = 90 min. = 90 ∙

60 = 5400 s. Speed =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒
→ Speed =

1000000 m

5400 s
→ Speed = 185,185 

m

s
.”  

 

The group wants to calculate this speed in order to compare it to the actual speed of the 

aeroplane. They pose the following question as the primary for the next lesson:  

 

𝑄2: By what speed did the aeroplane fly during the flight?  

 

The tree diagram of the first part of the SRP of group 4 is shown in Figure 43. 

 

 
Figure 43 – Tree diagram showing the first part of the SRP of group 4 

 

Report 1 

In the first report the group works with the following (implicitly posed) questions:  

 

𝑄5: How can the information about the amount of fuel be used?  

𝑄5,𝑎: How much longer than the expected distance can the aeroplane travel on the addi-

tional fuel? 

𝑄5,𝑏: How much did the aeroplane weigh?  

𝑄4: How can the information about cross wind be used? 

𝑄4,𝑎: Where would the aeroplane have ended if the cross wind had affected it from exactly 

minute 50?  

 

Questions 𝑄5,𝑎 and 𝑄5,𝑏 are answered by the following (see Appendix C.7): 
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𝐴5,𝑎: “[…] it can fly 1300 km. Therefore, it can fly 300 km more.”  

𝐴5,𝑏: “The maximal start weight of an airbus 320 is 77 t with passengers. I this case the 

fuel tank was not filled up […] which is why the aeroplane will weigh 74 t with passen-

gers.”  

 

The question 𝑄4,𝑎 is interesting, since the answer would potentially involve some of the 

vector theory that they had been taught prior to this second part of the SRP. The answer 

given in the report is (see Appendix C.7): 

 

𝐴4,𝑎: “We have calculated the coordinate where the aeroplane would have ended if the 

wind had affected it from exactly the 50th minute. 326,25 + 3,33 = 329,58. 324,03 −

32,33 = 291,7. But on the graph it shows that it got off course later…” 

 

Report 2 

In the second report, that is made after the students have read the handed out solution, 

they reproduce some of the results that are presented in the guiding solutions (see Appen-

dix A.3). The first two calculations are about the speed and the acceleration, but they are 

not that interesting, since they are just copied from the hand out. However, an interesting 

misunderstanding appears in the third calculation they make. They want to show how the 

vector from a point 𝐴 to a point 𝐵 can be found, but the calculation is the following (see 

Appendix C.8): 

 

“By using the coordinates, where 𝐴 is 𝑥 and 𝐵 is 𝑦, we can use the vector formula to find 

the vector of 𝐴𝐵: 𝐴𝐵(vector) = (
𝑏1−𝑎1

𝑏2−𝑎2
). 𝐴𝐵(vector) =

226,77−225,02

237,77−233,51
=

1,75

4,26
= 0,4.”  

 

The tree diagram of the second part of the SRP of group 4 is shown in Figure 44.  

 

 
Figure 44 – Tree diagram showing the second part of the SRP of group 4 

8.3.2 Group 6  

This group has been picked out for two reasons. The first one is, that they used the internet 

a lot, e.g. to look up specifications for the particular type of aeroplane and other conditions 

that they thought could be relevant. That this way of working with the design is repre-

sented, shows the importance and potential of a very, very detailed a priori analysis of a 
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generating question. Also the groups 1, 3, 4, 7, and 8 used the internet to look for speci-

fications of the aeroplane or possible reasons for an aeroplane crash. The second reason 

is, that this group made a sketch of the wind vector in the first report. The groups 7 and 9 

did also make a sketch of the wind vector in the first report.  

 

Logbook 1 

In the first logbook this group poses (some explicitly and some implicitly) the following 

questions (see Appendix B.10): 

 

𝑄1: How does the route, that the aeroplane followed, look? 

𝑄1,1: What is remarkable about the route?  

𝑄3,1,𝑎: How can it be determined where the aeroplane crashed?  

𝑄3,1,𝑎,𝑎: How far can an aeroplane glide?  

𝑄0,𝐼𝐼,𝑏: Where did the aeroplane land? 

𝑄0: What happened to the aeroplane?  

 

The first four questions, are the questions that the group worked with during the first 

lesson. They are all posed implicitly. The first question, 𝑄1, is answered by plotting the 

data points in TI-Nspire (𝐴1). 𝑄1,1 is answered by looking at the scatter plot. The answer 

is: 

 

𝐴1,1: “The route should have been a straight line from Farawayistan to Neverland, but by 

the scatter plot we can read that the aeroplane has been flying in a circle during the flight.” 

 

The other two details that were described in the a priori analysis are not mentioned. The 

question 𝑄3,1,𝑎 is answered by a possible guess: 

 

𝐴3,1,𝑎: “The aeroplane might have crashed straight ahead of where it disappeared from 

the radar.”  

 

The last question that the group managed to work with in the first lesson was 𝑄3,1,𝑎,𝑎. The 

answer to this is: 

 

𝐴3,1,𝑎,𝑎: “An aeroplane can glide for 150 km.” 

 

This answer is equipped with a link to a web-page, where a pilot can be asked questions 

about aviation. On this page the group has found this question and an answer to it.  
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At the end of the logbook the group poses the questions 𝑄0,𝐼𝐼,𝑏 and 𝑄0 explicitly. These 

are the questions that they want to work with during the second lesson.  

 

Logbook 2 

In the second lesson the group worked with some sub-questions relating to the questions 

they posed in the end of the first lesson (see Appendix B.11): 

 

𝑄0,𝐼,𝑎: Why did the aeroplane not follow the intended route?  

𝑄3,1,𝑎,𝑎,𝑎: What is the lift-drag ratio for an Airbus a320 when it is turning?  

 

As the answer to 𝑄0,𝐼,𝑎 the group takes the following guess: 

 

𝐴0,𝐼,𝑎: “We read about the aeroplane a320. [web-link]. We could read that this aeroplane 

model has a defect that in 2008 37 times turned off the electronic screens and instruments 

in the cockpit. This means that the pilots do not know where they should fly or by what 

speed they fly. This can have caused the remarkable route. In the article it says that they 

in previous cases have tried to turn around and return home. Maybe our pilots tried that, 

but found out that they were too far from land that they could neither orientate towards 

Farawayistan.”  

 

The web-link that the groups has put in the logbook is an article about this defect and the 

consequences that it has had.  

 

The second question, 𝑄3,1,𝑎,𝑎,𝑎, is not answered because of a lack of time. The question is 

posed with the explanation: “We have looked at these two links in order to try to calculate 

the lift-drag ratio for an a320 when it is turning and by this number to reduce the area 

where the aeroplane could have landed.” Before this explanation the group has put two 

links to pages where the lift-drag ratio is described.  

 

The tree diagram of the first part of the SRP of group 6 is shown in Figure 45. 

 

 
Figure 45 – Tree diagram showing the first part of the SRP of group 4 
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Report 1 

In this first report the group works with the following questions (that are both posed im-

plicitly, see Appendix C.11):  

 

𝑄4,𝑏: How has the cross wind affected the route of the aeroplane?  

𝑄2: By what velocity did the aeroplane fly during the flight?  

 

As a part of the answer to 𝑄4,𝑏 the group states that wind is blowing with the velocity 

1,95
km

min.
   in the direction that they show on a sketch (see Figure 46).   

 

 
Figure 46 – A sketch of the wind vector made by group 6 (see Appendix C.11) 

 

Report 2 

In the second report the group does primarily follow some of the calculation made in the 

guiding solution that was handed out prior to their work with the second report. They did 

not work with anything interesting in connection to vectors (see Appendix C.12).  

 

The tree diagram of the second part of the SRP of group 6 is shown in Figure 47.  
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Figure 47 – Tree diagram showing the second part of the SRP of group 6 

 

8.3.3 Group 7 

This group has been picked out for three reasons. The first one is, that they use the Py-

thagorean theorem to determine the distance before they have been taught vector theory. 

None of the other groups did anything similar. The second reason is, that they try to apply 

some different techniques from the vector theory they have been taught autonomously in 

the first report, and that they do not just reproduce results from the third hand out (see 

Appendix A.3) in the second report. The third reason is, that the data material for this 

group includes an audio recording from the first lesson. 

 

Logbook 1 

During the first lesson the work of this group is divided into two parts. The first part does 

not involve the data set at all, while the second part is all about investigating the data set. 

This division was detected from the audio recording. The questions posed for the first 

part are: 

 

𝑄5,1,1: How big a distance has the aeroplane been travelling from take-off and until it 

disappears from the radar?  

𝑄2: By what speed did the aeroplane fly during the flight?  

𝑄5,1,1,𝑎: What does this distance correspond to on the map? 

𝑄5,1,1,𝑎,𝑎: What is the scale of the map? 

  

This group starts the investigations without opening the data set. They start by asking 

question 𝑄5,1,1. In order to answer this question the students ask the question 𝑄2. The 

answer to this is given in the logbook (see Appendix B.12):  

 

𝐴2: “
1000 km

1,5 h
= 666,667

km

h
“  

 

From this, the group calculates the answer to 𝑄5,1,1:  

 

𝐴5,1,1: “
13

12
∙ 666,667 = 722,223” 

 

The speed is multiplied with 
13

12
 because 65 min. =

13

12
 h (detected from the audio record-

ing). After this, the group makes some measurements on the map that is included in the 
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hand out, in order to answer question 𝑄5,1,1,𝑎,𝑎 (detected from the audio recording). The 

answer is: 

 

𝐴5,1,1,𝑎,𝑎: “
1000

20
= 50”. Where the group have measured the 1000 km-distance to be equal 

to 20 cm on the map.  

 

After this the group gives the answer to 𝑄5,1,1,𝑎:  

 

𝐴5,1,1,𝑎: “
722,23

50
= 14,4445. The radio contact closed down after 14,5 cm on the paper.”   

 

The work with the data set is not included in the first logbook.  

 

Logbook 2 

In the second lesson the group has worked with the questions: 

 

𝑄1,2: How far from Farawayistan Airport is the aeroplane, when it disappears from the 

radar? 

𝑄1,1,1,𝑎: Why did the aeroplane first disappear from the radar 36 minutes after it made the 

”loop”? 

 

Neither of the questions are posed explicitly, and from the answer to 𝑄1,2 it reveals that 

the formulation is maybe a little different. The answer is: 

 

𝐴1,2: “We have calculated how far the aeroplane would have reached if it had not made a 

loop, and determined how far it has reached by saying √4752 + 4502 =how far it has 

reached.”  

 

This answer is equipped with a little sketch, that is shown in Figure 48.  

 

 
Figure 48 – A sketch connected to a calculation made by group 7 (see Appendix B.13) 
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The tree diagram of the first part of the SRP of group 7 is shown in Figure 49.  

 
Figure 49 – Tree diagram showing the first part of the SRP of group 7 

 

Report 1 

In the first report the group works with the following questions:  

 

𝑄1,𝑎: How far did the aeroplane travel after it made the “loop”? 

𝑄3: How can vector theory be applied to calculate the area that has to be searched in order 

to find the aeroplane? 

𝑄4,𝑑: How far has the aeroplane travelled in the strong wind?  

𝑄4,𝑐: What is the length of the wind vector? 

𝑄4,𝑑,𝑎: How far would the aeroplane have travelled if the strong wind had not been there?  

𝑄4,𝑑,𝑎,𝑎: What is the area of the triangle spanned by the wind vector and the distance that 

the aeroplane would have travelled if the strong wind had not been there?  

𝑄4,𝑑,𝑎,𝑏: [A question of the area of a circle that is drawn. Due to a bad picture resolution 

it is impossible to figure out the thoughts behind the circle and its area] 

 

Neither of the questions are posed explicitly, and it is only a few calculations that are 

included in the report. The answer 𝐴1,2 is elaborated in the report:  

 

𝐴1,𝑎: “The length of the flight: 654 km” 

 

The number 654 is the result of √4752 + 4502, that was written in Logbook 2. The an-

swer to the question 𝑄1,𝑎 is the following: 

 

𝐴1,𝑎: “The length after the aeroplane made a “loop”: 394 km”.  

 

The number 394 is √267,772 + 289,372 (or something similar) where the two numbers 

in the square root are the coordinates of the aeroplane after it had finished the “loop”. 

After this, the answer to 𝑄4,𝑑 is given:  
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𝐴4,𝑑: “654 − 394 =How much has the aeroplane travelled in the strong wind= 260 km” 

 

After this the question 𝑄4,𝑐 is answered: 

 

𝐴4,𝑐: [
3.33

−32.33
]

m

s
 then is the length √(3.33)2 + (−32.33)2 = 32.501 km” 

 

And 𝑄4,𝑑,𝑎is answered: 

 

𝐴4,𝑑,𝑎: “√2602 − (32.5)2 = 257.961 is how much the aeroplane would fly if the wind 

was not there.”   

 

From this answer the question 𝑄4,𝑑,𝑎,𝑎 can be answered: 

 

𝐴4,𝑑,𝑎,𝑎: “The area of the triangle: 
258∙32.5

2
= 4192.5 cm2” 

 

And to the answer to the question 𝑄4,𝑑,𝑎,𝑏 is the following: 

 

𝐴4,𝑑,𝑎,𝑏: “The area of the circle: 2602 ∙ 𝜋 = 67600 ∙ 𝜋 = 212371.66 cm2” 

 

Report 2 

Contrary to the majority of ‘Report 2’s this report does contain some interesting actions. 

First of all, the group changed the area that they wanted to calculate, to a parallelogram. 

This is most likely because of the hand out, but though the hand out did contain calcula-

tions of the area, this group makes their own calculations. In the report group 9 writes the 

following (see Appendix C.18): 

 

We assume that the aeroplane started to fly downwards after the last point on 

the graph. From this assumption, we have drawn a parallelogram from the 

following calculations. √56,512 + 96,232 = 111,60 km is the vertical vec-

tor. √15,382 + (−149,23)2 = 150 km corresponds to the influence form the 

wind on the direction of the aeroplane. From the parallelogram, we have cal-

culated the area of the parallelogram: 
150∙111,6

2
= 8370 km2. We have moved 

the orange triangle in the appendix up, because we think that the aeroplane 

changed its course after the last coordinate: the green triangle. 

  

The appendix that is mentioned is shown on Figure 50  
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Figure 50 – Appendix in Report 2 made by group 7 

 

The tree diagram of the second part of the SRP of group 7 is shown in Figure 51. 

 
Figure 51 – Tree diagram showing the second part of the SRP of group 7 

 

8.3.4 Group 9 

This group has been picked out for two reasons. The first one is their very first encounter 

with the generating question, because they cling to the techniques that they have used to 

solve tasks with prior to this project. Group 7 did something similar when they first started 

working with the data set. The second reason is, that they are the only group that is pri-

marily working with velocity in the first lesson.  
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Logbook 1 

This group makes an interesting remark in the beginning of their logbook. They write: 

”We start by applying the things that we have been taught. E.g. linear regression, bar chart 

in Excel”. This is a significant example of the didactical contract; since they have not 

been taught anything new relating to this project, they assume that the teacher must except 

them to use some techniques that they are already familiar with. These actions are not 

motivated by questions relating to the generating question. After this they work with the 

following questions:  

 

𝑄2: By what speed is the aeroplane flying during the flight?  

𝑄2,3: What can be derived about the flight from its velocities?  

 

The group has not included any calculations in their logbook, and they do not give an 

explicit answer to 𝑄2, but 𝑄2,3 is answered by the following: 

 

𝐴2,3: “We could conclude, by looking at the time and calculating the 
km

h
 on the flight, that 

there has been weather-related conditions that has caused the crash. E.g. turbulence.”  

 

By the end of the logbook they posed an additional question that they want to answer in 

the next lesson. This is the question: 

 

𝑄2,3,𝑎: Did the aeroplane increase its velocity when it started crashing compared to the 

velocity when it was heading towards Neverland? And has it influenced where the aero-

plane has crashed?  

 

Logbook 2 

In the second lesson the group works with the question that they posed in the first logbook 

(𝑄2,3,𝑎). Before they give the answer to the question they implicitly pose the following 

sub-question: 

 

𝑄2,1: How is velocity calculated from position and time?  

 

The group does not show any calculations, and no numbers are included in the answer. 

Instead they give the following answer: 

 

𝐴2,1: “We used a velocity formula, to calculate whether the velocity increased, that we 

found on the home page [web-link].”  

 

And from this, they give the answer to the original question 𝑄2,3,2:  
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𝐴2,3,𝑎: “By this we found that the velocity increased after 23 minutes.”  

 

No further comments are added to this, and this answer is wrong, since the velocity is 

steady until minute 51. In this situation it is very unfortunate that their work was not 

audio recorded, since it is very difficult to analyse the path they have followed, when they 

do not include any calculations or more elaborated answers to the questions.  

 

The tree diagram of the first part of the SRP of group 9 is shown in Figure 52.  

 

 
Figure 52 – Tree diagram showing the first part of the SRP of group 9 

 

Report 1 

In the first report the group has implicitly posed the following questions:  

 

𝑄1: How does the route, that the aeroplane followed, look? 

𝑄4,𝑏: How has the cross wind affected the route of the aeroplane? 

𝑄5: How can the information about the fuel be used?  

𝑄4,𝑐: What is the length of the wind vector?  

 

The first question (𝑄1) is answered by a scatter plot from TI-Nspire. The group has not 

made any comments on it. The second question 𝑄4,𝑏 is answered by the following: 

 

𝐴4,𝑏: “By reading the coordinates one can see that the strong wind has affected the aero-

plane from around 56 − 57 min., since the 𝑥-values are not increased with around 10 per 

min. but by 6 − 7 per min.” 

 

The question 𝑄5 is answered by the following:  

 

𝐴5: “We assume that the aeroplane is using more fuel when the strong wind starts to 

create turbulence.” 

 

After this the last question is answered:  
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𝐴4,𝑐: “To find out where the aeroplane has crashed we determine the length of the vector 

of the wind velocity. It is 32.” 

 

The answer is equipped with an illustration, that is shown in Figure 53.  

 

 

 
Figure 53 – Illustration from Report 2, group 9 

Report 2 

In the second report this group is following the handed out solution closely, and the work 

does not contribute to the answer to the research questions, and therefore the second re-

port will not be described further.  

 

The tree diagram of the second part of the SRP of group 9 is shown in Figure 54.  
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Figure 54 – Tree diagram showing the second part of the SRP of group 6 

8.4 The impact of the didactical contract 
It became clear within the first ten minutes of the first lesson, that this teaching design 

was a major breach on the didactical contract in the test class. Both the teacher and the 

researcher were asked a lot of questions in the category “What do you want us to do?”. 

The questions were mostly raised in the first lesson where the generating question was 

more open in nature than the second generating question. But also in the second part of 

the SRP, the students had a hard time grasping the purpose of the teaching sequence. This 

issue ended up taking a lot of time from the actual work with the problem. A consequence 

that can possibly be ascribed to it, is the fact that most groups did not ask as many ques-

tions as expected, because the students spend much time being frustrated that the format 

of the teaching did not look similar to anything they were used to from the mathematics 

lessons. Another consequence was, that the groups did not write down all of their ques-

tions even though they were explicitly requested to do that.  

  Furthermore, many of the groups’ actions were highly affected by the didactical con-

tract. Some different examples support this claim. One of them comes from an exchange 

of words in group 7 in the first lesson. After discussing shortly what they are expected to 

do, one of the students reads aloud from the hand out that they are asked to analyse the 

flight based on its coordinates. The answer from one of the other group members is the 

following question: “How do you analyse mathematics?”. This citing shows how a part 

of the didactical contract in the mathematics lessons is that doing mathematics does not 

involve the action of analysing. 

  Another example is found in the first logbook by group 9. The logbook is introduced by 

an interesting comment: “We start by trying the things that we have learned. E.g. linear 

regression, bar chart in Excel.” This citing shows how the students immediately link a 

data set containing a list of 𝑥- and 𝑦-coordinates to linear regression in the context of 

mathematics. The bar chart is maybe a leftover from primary school or from some other 

subject at high school.  

  The last example that will be mentioned here, in order to support the statement, that the 

class was highly restricted by the didactical contract, showed up in the majority of the 

logbooks. A lot of the groups used the expected distance and the expected time to calcu-

late “the speed”. Group 4 and group 9 were aware that the “expected speed” was not equal 

to the actual speed during the flight, but the other three groups that worked with the speed 

of the aeroplane did not realise, or at least mention, that there is a difference between the 

“speed” that they calculate from the expected distance and time and the actual speed of 

the aeroplane. This might be a consequence of the didactical contract again, because they 
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are used to problems where the information that is given is necessarily included in the 

solution.  

 

8.5 Comparison of the a priori and the realised SRPs 

The realised SRPs deviate a lot from the a priori SRP on several points. The first and 

most obvious difference is, that most of the groups asked fewer questions than expected. 

There are two primary reasons for this. The first one is the general time pressure that has 

been described in section 8.1 and the second is that the students struggled with the frame-

work of the teaching sequence, that deviated a lot from what they were used to as de-

scribed in the previous section.   

  In the first part of the SRP, that is generated from question 𝑄0,𝐼, most groups asked the 

questions relating to the 𝑄1,1-branch. Only group 1 and group 9 did not include a scatter 

plot in their logbooks nor comment on any of the remarkable changes that can be observed 

from such a plot (see Appendix B.1 and B.16). However, group 9 wrote that they had 

tried to make a linear regression, which indicates that they did actually make a scatter 

plot, but just did not include it in the logbook. In relation to the question 𝑄1,1 the majority 

of the groups pointed out the loop as being remarkable, but only a few groups mention 

the two rapid changes, that was described in the a priori analysis as a part of the answer 

to 𝑄1,1. The groups 1, 3, 7, and 9 did not state anything about the loop or any other re-

markable details. The answer to the question 𝑄1,1 is most thorough in the logbook from 

group 4. They pointed out the coordinates of both the beginning and the end of the loop, 

and the last point where the aeroplane makes a rapid change in direction. Though group 

4 made a remark on the change in direction in minute 56, they do not ask the question 

𝑄1,1,2. The rapid changes in direction were put in the data set to make the students con-

sider the wind conditions. It was unfortunate that only a few groups pointed out these 

points, since it removed a potential self-detected need for the vector techniques 𝜏𝑔𝑒𝑜𝑚 𝑠𝑢𝑚 

and 𝜏𝑔𝑒𝑜𝑚 𝑑𝑖𝑓𝑓 in the second part of the SRP.  

  The 𝑄1,2-branch is also well-represented in the realised SRPs. All the groups 1, 2, 3, 4, 

and 7 ask questions about the distance that the aeroplane has travelled in the first part of 

the SRP. These questions and especially the struggles that the students would most likely 

meet when they tried to answer them where crucial in the teaching design, since they were 

assumed to create a need for the vector techniques 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
 and 𝜏|∙|. Instead the groups did 

either resort to some of their available techniques from their work with calculation of 

percentage, that they had worked with in the mathematics lessons (see Table 18), and 

techniques from calculations with scales, which has not been detectable in neither the 

mathematics teaching nor the physics teaching, but might be techniques from either an-

other subject in high school or a technique that they have acquired in primary school. The 

calculation of percentage technique was used by group 1, 3, 4, and 7. These groups did 
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all make their calculations from the information about expected time and expected dis-

tance and did not include the data set. The groups 4 and 7 brought in scales in their cal-

culations (see section 8.3.? and 8.3.?). Neither of the groups realised, that they had not 

calculated the actual distance, which turned out to be crucial in the second part of the 

SRP, and for the potential of the learning outcome of the SRP. The reason is, that one of 

the obvious applications of the theory of vectors, that the students should come across, 

was the use of the techniques 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
 and 𝜏|∙| to calculate the travelled distance, and eventu-

ally the distance from the point where the radar contact to the two airports was interrupted. 

  Another consequence of students ignoring the data set in the calculation of speed was, 

that the students did not pose so many of the questions from the 𝑄2-branch of the SRP. 

The questions 𝑄2,3 and 𝑄2,3,1 might have been another clue leading the students to con-

siderations of wind conditions, that might have motivated the teaching of vector theory, 

like the question 𝑄1,1,2.  

  

In the second part of the SRP, the students had been taught vector theory, and the a priori 

analysis of the second generating question suggested a couple of obvious applications of 

vector theory based on the new pieces of information that were included in the second 

hand out (see Appendix A.2).  

  Especially in the second part of the SRP the a priori and the a posteriori analyses differ. 

It is highly restricted what can be said about the second part of the students’ SRPs, be-

cause they did only have very short time to work with the second generating question. 

The few things that can be said will be presented in the following. First of all, there are 

two groups that do not at all include anything related to vectors in their answers to the 

second generating question. All seven groups that tried to use the vector theory they have 

been taught works with the wind vector. Some groups draw it either in TI-Nspire or by 

pencil. This counts group 4 (see Figure 46), group 8 (see Appendix C.15), and group 9 

(see Figure 53). Other groups tried to do some calculations on the coordinates based on 

the wind vector, e.g. group 4, that calculated where the aeroplane would have ended if 

the wind had started affecting the aeroplane in exactly the 50th minute as it was described 

in section 8.3.2. A similar observation was made by group 5 (see Appendix C.10). The 

way that group 7 deals with the information about the wind is interesting. As it has been 

described in section 8.3.3, they correctly calculate the length of the wind vector. After 

that they tried to calculate the distance that the aeroplane would have travelled if the wind 

had not been there. These calculations were also described in section 8.3.3. In the report 

the two numbers 32,5, that is the length of the wind vector, and 258 that is the distance 

that the aeroplane would have travelled constitute the two sides enclosing the right angle 

in a right-angled triangle. This shows that the group did implicitly pose the question 𝑄3, 

which was very crucial in order for the technique 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 to be applied. However, 

they decide to use a right-angled triangle as the area instead, and they did not use the 
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technique 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚, but the formula for the area of a triangle, that is something 

coming from their primary school teaching.  

  Only a few groups worked with the travelled distance in the second part of the SRP, 

though the information about the amount of fuel had seemed to highly suggest that, in the 

a priori analysis of the question. A possible reason that they did not work with the trav-

elled distance in the second part is, that most of them had already made some of the cal-

culations in the first part. Even though the calculations were not exact they were not aware 

of that, and they kept believing that they had made the right computations, which might 

be a reason why they did not return to it in the second part where they had the vector 

techniques to carry out the calculations correctly.  

  The vector techniques that were used autonomously in the second part of the SRP are 

primarily the basic technique of drawing a vector from its coordinates and calculating the 

length of a vector (𝜏|∙|). A few groups have tried to conclude something about the coordi-

nates of the aeroplane by adding the coordinates of the wind vector, to the 𝑥- and 𝑦-

coordinates of the aeroplane.  

  In the second report, the students have read a guiding solution, which makes it difficult 

to detect their praxeological organisation of vectors. However, the second reports from 

group 4 and group 9 are interesting. In the second report made by group 4 (see Appendix 

C.8), they tried to show how the vector from one point to another is calculated. At first 

they write the formula: “𝐴𝐵(vector) = (
𝑏1−𝑎1

𝑏2−𝑎2
)”. After this they substitute the coordi-

nates of two points into the formula and make the following calculation: “𝐴𝐵(vector) =
226,77−225,02

237,77−233,51
=

1,75

4,26
= 0,4”. This reveals a misunderstanding of the notation, where the 

two numbers on top of each other is interpreted as being divided by each other, and not 

as the coordinates of a vector. Except from this, the calculations in the second report are 

primarily reproductions of the calculations shown in the hand out.  

  Group 7 did actually try to calculate the area of a parallelogram spanned by two vectors 

in order to determine the size of the area in which the aeroplane might be found. However, 

they did not use the technique 𝜏𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚, but instead they made the calculation 
150∙111,6

2
= 8370 km2.  

 

All in all, the realised SRPs differ heavily from the a priori SRP. Some of the reasons are 

(1) that the students did not have enough time to work with the generating questions, (2) 

that the teaching sequence on vectors was too disconnected from the SRP, and (3) that 

the students had a hard time grasping what was expected from them, which has something 

to do with the didactical contract, but also with the quality of the generating question, that 

will be discussed below.    

 

 



130 
 

8.6 The quality of the generating question 
The previous section has showed how the work with the SRP did not make the students 

develop a correct and useful praxeology of vectors. Neither did the first part of the SRP 

evoke the needs for vector theory that were expected from the a priori analysis.  

  Three main reasons have to be mentioned in relation to the unsuccessful outcome of the 

SRP. The first one is the complexity of the setup. When the SRP was designed a lot of 

considerations were made, among others whether the data set should be provided in Excel 

or TI-Nspire, whether the units of the data set and the wind vector could be different, and 

whether it should include the dimension of altitude. The decisions were made, building 

on the assumptions that the students would easily be able to transfer the data set from 

Excel to TI-Nspire if they wanted, that they could easily convert the units, and that, even 

though it took away an important part of the realistic setup, it would be easier for the 

students to deal with a two dimensional problem, and that it would not produce problems 

to leave out the altitude. However, all three of these issues did cause problems. The first 

one took away time from a lot of the groups. The second caused some mistakes in the 

calculations in the second part of the SRP, and the last made some groups spend time 

focussing on some parts of the SRP that did not contribute to anything vector-related. As 

an example group 6 can be mentioned. They spend almost a whole lesson trying to cal-

culate how long it would take for the aeroplane to crash. Furthermore, the complexity of 

aviation made it difficult in both the a priori and a posteriori analysis to distinguish sub-

questions, that would contribute directly to the answer to the generating questions, and 

derived questions, that are motivated by sub-questions or answers to sub-questions. At 

first glance it can seem like a minor problem, that sub-questions and derived questions 

cannot be distinguished, but it is a symptom of a very problematic issue, that is one of the 

main reasons why this SRP is not good. The problem is, that an answer to the generating 

questions require that the students know what assumptions and simplifications that have 

been made during the designing process. Since this was not a part of the material that was 

handed out, the students were not able to answer the question fully. The implicit assump-

tions made it hard for the students to know what techniques they should apply, where they 

should apply them, and how they should apply them.  

 

Another problem is, that the teaching sequence in the middle was not adjusted to the 

physical setting in which the rest of the project took place. Despite a few initiatives, such 

as focusing on aviation when introducing geometric addition and the little game where 

the students worked implicitly with geometric vector addition when they tried to land an 

aeroplane in cross wind, the teaching sequence kept the algebraic approach to vectors that 

is normally used. Also the amount of points in the data set can have made it difficult for 

the students to know how the vector techniques could be applied. In the teaching sequence 

they had only been working with either two points or two vectors at a time, but suddenly 

they had a list of 65 points. Certainly it required some skills of how to manipulate a 
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spreadsheet to work with this amount of points that the students did not have. This can 

possibly be another reason why they did not apply the vector technique 𝜏𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗
.  

 

9. Discussion 
This thesis has worked with some different issues. First of all, the interrelation between 

vectors in mathematics and physics has been examined. Both the development of the in-

terrelation between the scholarly notion of vectors in the two fields, and the development 

of the interrelation between the knowledge to be taught on vectors in the two fields have 

been examined. The investigations were guided by some research questions. It showed 

that the scholarly notion of vectors in mathematics and in physics evolved in a very close 

relation in the beginning, when the motivation for the development of a theory of vectors 

was still primarily coming from physical problems. At that time the geometric approach 

to vectors was prevalent, since this approach is closer to the one used in physics. This 

close relation can be used as an inspiration in the teaching of vectors in high school, if it 

utilised, that the need for vector analysis came from physics in the beginning.  

  The next phase in the development was the first step in the separation of the physical 

notion of vectors from the mathematical notion of vectors. In this phase an algebraic ap-

proach became prevalent, and vectors were beginning to be algebraic objects defined by 

axioms alone. The geometric properties of vectors, that were crucial in the relation to 

physics receded into the background, while the algebraic properties where developed. The 

next step was an axiomatisation of vector analysis, and a generalisation to the abstract 

notion of vector spaces. Though algebra and mathematics were dominating in this phase, 

applications of the more and more general vector notion in physics was still an important 

issue.  

  Nowadays, the scholarly notion of vectors is centred around the general definition of 

vector spaces, but one of the most important special cases is Hilbert spaces, that in some 

sense generalises geometry to higher (and possibly infinite) dimensions. This shows how 

the geometric properties are still relevant, though the mathematical definition had been 

through a heavy algebraisation. 

  In physics it is almost only the geometric properties of ℝ2/ℝ3 that are relevant. Some-

times the algebraic properties can even be misleading, when they are interpreted in a 

physical setting. It is worth noticing this difference, because it is often reflected in the 

organisation of the knowledge to be taught in high schools, and it can contribute to some 

of the struggles that the students are dealing with.  

 

In the context of high school teaching, the notion of vectors has also moved from the 

border of mathematics and physics, where it was situated in the period from 1935-1953, 

to being almost fully separated in the two subjects in the current organisation. One of the 

reasons is the entry of the modern mathematics, where the knowledge to be taught was 
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attempted to be neared the scholarly notion. In this period, that lasted from 1961-1984, 

vectors were primarily treated as algebraic objects that satisfied certain properties. The 

majority of the exercises dealt with proofs of the properties, and most of it was done with 

abstract symbols and no coordinates. However, the written exams, that constitute a great 

part of the praxis block in the praxeological organisation, where primarily containing an-

alytical-geometrical vector-problems. These are the problems that utilise the geometric 

interpretation of the algebraic properties.  

  In the same period physics was generally highly mathematised in high school. Among 

other things, this included the representation of directional quantities by vectors. How-

ever, the use of vectors in physics was not particularly compatible with the very algebraic 

notion of vectors that was practised in mathematics. This is exactly the reflection of some 

of the problems that the scholarly notions of vectors in mathematics and physics suffer 

from.  

  During the next period, from 1984-2005, the mathematics teaching in high school started 

being more and more application-oriented. Also in the teaching of vectors this sneaked 

into the textbooks, though some of the applications that were mentioned was artificial and 

not reflecting any actual physical application. The coordinate-based techniques took up 

more and more space while the analytical-geometrical applications where also dealt with 

in the textbooks. The written exam problems where divided into the vector-algebra prob-

lems and the analytical-geometrical problems. The vector algebra-problems were more 

and more often coordinate-based, and the analytical-geometrical vector-problems became 

very extensive and involved multiple different technologies. At the same time, it started 

to be more and more prevalent in physics to introduce directional quantities without the 

use of vectors. This might be caused by the unsuccessful attempts of interrelating mathe-

matics and physics during the modern mathematics. 

  In the recent period, the mathematical organisation of vectors has looked very similar to 

the one in the previous period. However, the introduction of vectors in textbooks does 

often use examples from physics as a motivation. Also the focus on coordinates have 

extended from the period 1984-2005 to the recent period. Modern textbooks introduce 

coordinates right away, where historical books did most often spend a lot of pages dealing 

with coordinate-free algebraic properties.  

  Regarding the modern organisation of vectors in physics, the guidelines for interpreta-

tion of the curriculum from 2013 recommended to avoid the use of vectors when dealing 

with motion in two dimensions.  

 

The examination of the organisation of the knowledge to be taught on vectors in mathe-

matics revealed a division into a geometric and an algebraic branch that has been valid 

since 1961. In the beginning the algebraic branch was prevalent in the logos block, while 

the geometric branch was prevalent in the praxis block. As the years went by, the alge-

braic branch entered the praxis block more and more, while the geometric branch entered 
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the logos block. The algebraic branch of the logos block was almost coordinate-free in 

the beginning, but in the modern organisation, it is almost fully coordinate-based.  

 

The empirical part of the thesis wanted to examine if and how the theoretical findings 

could contribute to a Study and Research Path on vectors, that would introduce the notion 

of vectors in a way, that would make it useful in both mathematics and physics. The ideas 

that were used are (1) to motivate the introduction of vectors by a physical problem, (2) 

to focus on geometric properties in mathematics, such as geometric addition of vectors 

and the interpretation of the numerical value of the determinant of two vectors as the area 

of the parallelogram spanned by them, and (3) to make physical calculations on coordi-

nates.   

  A SRP was designed on the foundation of the three ideas above. The a priori analysis 

showed, that the generating question would most likely invoke some sub-questions that 

would motivate the notion of vectors, and after a short teaching sequence, the second 

generating question would most likely invoke sub-questions that required the application 

of some of the vector techniques that the students had been taught.  

  During the execution of the SRP a lot of troubles showed up. The collection of audio 

recordings did generally fail, which made the data material strictly limited. Also the time 

became an important player, since different issues made it pass faster than expected. The 

lesson plans needed extensive revisions, which changed the work with the SRP. An im-

portant consequence was, that the students did not have enough time to try and apply their 

newly acquired vector theory to the data set. Before the revision of the reports, that the 

students had to make, it was necessary to hand out a guiding solution, to make sure that 

the students did learn something. A consequence of this was, that the second report was 

almost useless for the analysis, because most of the groups did just reproduce fragments 

of the hand out.  

  The analysis of the data material was guided by the research questions (𝑅𝑄1
𝐼𝐼

-𝑅𝑄3
𝐼𝐼

). It 

showed how the students ask fewer questions than they were expected to, that they did 

actually ask some of the questions that were expected to motivate the teaching of vector 

theory, but that they answered them by other methods. This is possibly the reason why 

the vector techniques were not used to calculate the travelled distance or the velocity that 

the aeroplane was flying at. One of the flaws in the design was that the teacher was not 

involved enough. Instead of letting the students pass the wrong results of the travelled 

distance or the velocity, the teacher should have been instructed in how to make the stu-

dents consider their answers. By that, they would maybe have realised, that they needed 

the theory of vectors to solve the question.  

  From the data material, especially the reports, it became clear, that the students had not 

developed a praxeology of vectors, that was useful in the SRP. They might have been 

able to solve some of the vector-algebra problems from written exams, with the tech-

niques that they were taught in the sequence about vectors.  



134 
 

 

If a similar SRP should be used in connection with the theory of vectors, some extensive 

adjustments have to be made. Generally, it would be preferable that the students have 

engaged in study and research paths before they get such a complex generating question. 

An idea would also be to sort out the conversion of unit, transfer of data from one com-

puter program to another, and some of the presentations or assignments, such that the 

students can focus on the core of the SRP, namely the vector theory.  

  It would also be important to make it clearer what details that are relevant and which 

that are not, since aviation is generally very complex. E.g. it should be explicitly stated, 

that the height dimension should not be taken into account. It would also be an idea to 

introduce the students to the notion of “true airspeed” (that is the speed of the aeroplane 

relative to the surrounding air) and “groundspeed” (that is the speed of the aeroplane rel-

ative to the ground), since these notions will be useful to invoke the notion of vectors in 

relation to velocity and wind conditions. 

  As it has already been mentioned, the role of the teacher should have been prioritised a 

lot more. The teacher should have been used to make the students realise when they pro-

duced incorrect results, that kept them from having the maximal benefit of the teaching 

sequence.   

 

Last but not least, a citing “How do you analyse mathematics?” from one of the students 

underline the importance of alternative teaching. If students never do anything else than 

reproducing the results and techniques that their teacher have shown them, they will not 

be able to use their knowledge outside of the mathematics classroom. If this scenario can 

be prevented, by working with interdisciplinary problems, it is clearly worth it to keep 

developing a SRP like the one that has been designed in this thesis to make it work in 

practice. 

 

10. Conclusion 
The aim for this thesis was to examine the development of vectors in mathematics and 

physics respectively, together with their interrelation and its effects on the teaching and 

learning of vectors in high school. The analysis of the two teaching subjects should con-

stitute the foundation of the design of a Study and Research Path on vectors in mathemat-

ics and physics. The teaching design was later tested in a test class and the data has been 

analysed in order to determine whether it had given the students some available 

knowledge on vectors, that hopefully could be used in both mathematics and physics.  

 

The praxeological analysis of the physical organisation of the knowledge to be taught on 

vectors showed that vectors in physics are mostly regarded as geometric objects that are 

represented by an arrow. Furthermore, the coordinate representation of vectors can be 

used to represent motion in two dimensions. This was the prevalent approach to motions 
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in two dimensions through many years, but in the recent periods, this approach has been 

advised against in the guidelines for interpretation of the curriculum.  

 

The praxeological analysis of the mathematical organisation of vectors showed, that, ex-

cept from the very early teaching of vectors in the period from 1935-1953, the approach 

has been divided into two branches. The first branch is the algebraic, where ℝ2 and ℝ3 

are treated from the view of a vector space that is defined by axioms. The other branch is 

the geometric, where ℝ2 and ℝ3 are treated from a more geometric point of view. This 

means that the special geometric properties, that are not general in every vector space, are 

utilised in order to solve different geometric problems. In both branches vectors are 

mostly represented in a more algebraic way, either abstractly by a symbol representing a 

vector or by coordinates. In the early years of the teaching of vectors, the theory block in 

the praxeological organisation was primarily algebraic, while at the same time the ana-

lytical-geometrical vector-problems in the written exams were highly overrepresented 

compared to the vector algebra-problems. Gradually, the vector algebra-problems started 

to show up more frequently in the written exams, while the geometric branch took up 

more and more space in the logos block in the praxeological organisation. 

  While mathematics was gradually toned down in the physics teaching, examples and 

motivation from physics, or a combination of physics and geometry, started to increase 

in importance in the textbooks and analytical-geometrical vector-problems in the written 

exams.  

 

These uncoordinated developments in mathematics and physics respectively might be one 

of the reasons why the students struggle in applying the vector theory that they are taught 

in mathematics when they are taught physics.  

 

On the foundation of these analyses, the SRP was designed. The purpose was to ask the 

students an initial generating question being physical in nature, that would create a need 

for vector theory in order to carry out calculations on coordinates. After the need had been 

created, the students should be taught vector theory in a more classical teaching situation. 

The next part of the SRP would then be initiated by a second generating question. The 

purpose of this question was to invoke the newly learned vector theory, in order to answer 

it. A SRP like this should leave the students with a feeling that the theory of vectors is 

useful in physics, and that vectors in mathematics are objects that can be utilised in real 

problems. 

 

The analysis of the teaching showed that a more physical approach to a new mathematical 

subject was motivating to the students, though they were still frustrated with the alterna-

tive way of working, but that the design contained too many problems to create a useful 

praxeology of vectors.   
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Appendix A 
 
Hand outs  

 

A.1 First hand out, Tuesday 3 April 2018 
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Assistancemelding til 1w 

 
Kort overblik 

 

Flyselskabet Malaysian Airlines er kommet i problemer. De har mistet kontakten til et af deres fly, 

Dumbo04, på en rute fra Langbortistan til Ønskeøen. Dette er meget, meget uheldigt, set i lyset af 

katastrofen i 2014, hvor et fly forsvandt på en tur fra Kuala Lumpur i Singapore til Beijing i Kina. 

Sagen har været massivt dækket i pressen siden den dag flyet forsvandt (se f.eks. den vedlagte arti-

kel). Det er endnu ikke fundet og først efter tre år er det lykkedes eksperter at give et fornuftigt bud 

på hvor flyet er styrtet ned. 

 

Denne gang vil Malaysian Airlines meget gerne have tingene under kontrol hurtigst muligt, så det 

ikke bliver lige så dramatisk som MH370-sagen fra 2014. Derfor beder de om assistance fra jer. 

Med udgangspunkt i et sæt af baggrundsoplysninger om flyveturen, skal I forsøge at få et overblik 

over flyvningen. Dette overblik skal præsenteres og dokumenteres i en rapport, der skal afleveres 

torsdag d. 12. april. Undervejs i forløbet skal I understøtte hinandens arbejde, ved at fremlægge 

jeres foreløbige resultater og derefter modtage feedback.  

   

Oplysninger om turen 

 

Distance: Turen fra Langbortistan til Ønskeøen er ca. 1000 km lang, og foregår over hav det meste 

af vejen (se det vedlagte kort).  

 

Tid: Under normale vejrforhold tager det 90 min. at tilbagelægge de 1000 km.  

 

Maskine: Dumbo-04 er en Airbus a320 

 

Position: Flyets koordinater (i hhv. 𝑥- og 𝑦-retning) registreres én gang i minuttet. Efter 65 minutter 

flyvning mister kontroltårnet radarkontakten med flyet og siden er der ingen oplysninger om flyets 

position. 

 

Opgave: På baggrund af de ovenstående oplysninger samt et datasæt bestående af flyets koordinater 

skal I analysere flyveturen. Datasættet får I udleveret i Excel, men det kan overføres til TI-Nspire 

og analysere dér, alt efter hvilket program i foretrækker.  

  



141 
 

Arbejdsgang for første del af undersøgelsen 

 

Tirsdag d. 3. april: I arbejder i grupper med datasættet. Som dokumentation skal I føre en logbog, 

hvor I noterer hvilke observationer I gør, hvilke spørgsmål/teorier I arbejder med samt hvilke 

svar/konklusioner I finder. Ved timens afslutning skal I have et svar/en konklusion klar sammen 

med et spørgsmål, som I kunne tænke jer at arbejde videre med torsdag d. 5. april.  

Torsdag d. 5. april: Timen begynder med at I, sammen i grupperne, præsenterer jeres svar og 

spørgsmål (dette skal ske mundtligt, men understøttet af posteren). Grupperne beslutter sig i fælles-

skab for et eller to spørgsmål, som skal undersøges i løbet af timen. I skal stadig dokumentere jeres 

arbejde i en logbog.  

 

 

 

Produktkrav for timen:  

Følgende skal være klar til præsentation ved timens afslutning tirsdag d. 3. april (præsentatio-

nen foregår torsdag d. 5. april) 

1. Jeres bedste bud på et resultat, med begrundelse 

2. Et spørgsmål, som I kunne være interesserede i at arbejde videre med i timen 

Begge dele skal præsenteres på en poster, som kan understøtte en mundtlige præsentation.  

Desuden: Jeres logbog sendes i Lectio til UG ved timens afslutning tirsdag d. 3. april 

Produktkrav for timen: 

Følgende skal være klar til præsentation 20 min. før timens afslutning torsdag d. 5. april 

1. Jeres besvarelse/forsøg på en besvarelse af spørgsmålet 

2. Noget I undrer jer over, som kunne være interessant at undersøge nærmere 

Desuden: Jeres logbog sendes i Lectio til UG ved timens afslutning torsdag d. 5. april 
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A.2 Second hand out – Thursday 12 April 2018 
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Assistancemelding til 1w – del 2 

 
Kort overblik 

 

Malaysian Airlines er meget glade for det arbejde I har udført indtil videre. I den sidste fase af un-

dersøgelserne er målsætningen at bestemme arealet af det område, hvor der skal ledes efter det ned-

styrtede fly.  

  Som nævnt tidligere, skal dette præsenteres i en rapport, som skal afleveres i slutningen af timen 

torsdag d. 12. april. Rapporten skal være målrettet Malaysian Airlines, og skal indeholde alle de 

resultater/konklusioner I har fundet sammen med velargumenterede begrundelser for disse.  

 

Fejlrettelse 

 

Ved nærmere eftersyn har det vist sig, at der er en lille fejl i det udleverede datasæt. Det drejer sig 

om 𝑦-koordinaten i minut 53. Den er ikke 357,31, men i stedet 357,53.  

 

Oplysninger om turen 

 

Vejr: Vejrforholdene på turen er blevet undersøgt, og det viser sig, at flyet efter ca. 50 min. (dvs. 

efter det har lavet sit ”loop”) er havnet i en meget kraftig vind, (
3,33

−32,33
)

𝑚

𝑠
.  

 

Brændstof: Under normale omstændigheder vil et fly som Dumbo-04 bruge ca. 4 ton brændstof på 

en tur på 1000 km. Der vil dog være tanket ca. 8 ton brændstof, så piloterne kan være næsten helt 

sikre på at redde sig ud af en eventuel nødssituation. Det viser sig desværre at der er sket en fejl un-

der tankningen og Dumbo-04 har kun haft 5 ton brændstof med. Det betyder, at den maksimale fly-

vedistance for flyet er 1300 km.  

 

Arbejdsgang for anden del af undersøgelsen 

 

Torsdag d. 12. april: Med udgangspunkt i jeres tidligere arbejde, samt de nye informationer I har 

fået, skal I arbejde med at forsøge at bestemme arealet af det område, hvor der skal ledes efter flyet.  

  Sideløbende skal I udarbejde en rapport til Malaysian Airlines, som på en tydelig og velargumen-

tet måde præsenterer de resultater/konklusioner I har fundet igennem de sidste to uger. (Dette kan 

sandsynligvis gøres på 2-4 sider inkl. grafer/figurer, udregninger m.m.) 

  Da det skriftlige produktkrav er en rapport, skal I ikke skrive logbog, men til gengæld skal I op-

tage lyd fra dagens arbejde, medmindre at det er helt umuligt.  

  Rapporten skal afleveres ved timens afslutning i en afleveringsmappe i Lectio.  

 

Fredag d. 13. april: I disse to timer, skal hver gruppe give feedback til to andre gruppers rapporter, 

samt modtage feedback på deres egen rapport fra de to grupper.  

  Når I har modtaget og givet feedback, skal I rette jeres rapport til ved at inddrage det relevante 

feedback og genaflevere den.  
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Tidsplan:  

- Alle grupper læser, diskuterer og udarbejder feedback til to andre grupper (ca. 35 min.) 

- Første rapport gives feedback af to grupper (ca. 15 min.) 

- Anden rapport gives feedback af to grupper (ca. 15 min.) 

- Tredje rapport gives feedback af to grupper (ca. 15 min.) 

- Tilretning af rapporter på baggrund af feedback samt genaflevering (ca. 20 min) 
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A.3 Third hand out – Friday 13 April 2018 
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Hvad er der sket med Dumbo-04? 

 

 
Figur 1 – Turen inddelt i sektioner 
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Første del af turen (I på Figur 1) 

 

Efter at have accelereret op til en passende hastighed, holder 

Dumbo-04 sin kurs med en konstant fart indtil minut 22 (se Figur 

2). Denne fart er på 13,90
𝑘𝑚

𝑚𝑖𝑛.
 eller 834,10

𝑘𝑚

𝑡
. Farten er bestemt 

ved formlen: 

 

|𝑣| = √𝑣𝑥
2 + 𝑣𝑦

2 

 

Hvor gennemsnitshastighederne (over et tidsinterval) i hhv. 𝑥- og 

𝑦-retningerne er bestemt ved at benytte formlen for hastighed:  

 

𝑣 =
Δ𝑠

Δ𝑡
=

𝑠𝑠𝑙𝑢𝑡 − 𝑠𝑠𝑡𝑎𝑟𝑡

𝑡𝑠𝑙𝑢𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡
 

 

Et konkret eksempel på en udregning af gennemsnitshastigheden i 

det første minut i 𝑥-retningen:  

 

Farten 834,10
𝑘𝑚

𝑡
 er normalt for en Airbus a320, så det tyder på, at alt var under kontrol til og med 

minut 22.  

  Vi kan desuden se at Dumbo-04 er nået ca. 292 𝑘𝑚 væk fra Langbortistan Lufthavn, hvilket er 

den samme afstand, som det flyet har tilbagelagt, da flyet har fløjet efter en ret linje. Denne afstand 

kan bestemmes ved brug af vektorregning, ved at bestemme længeden af stedvektoren til punktet 

med koordinaterne for flyets position i minut 22: 

Vi ønsker at bestemme gennemsnitshastigheden i 𝑥-retningen i 

det første minut. Vi ved at Δ𝑡 = 1 𝑚𝑖𝑛., da vi modtager et sig-

nal hvert minut. Vi bestemmer Δ𝑠𝑥: 

Δ𝑠𝑥 = 𝑠𝑥,𝑠𝑙𝑢𝑡 − 𝑠𝑥,𝑠𝑡𝑎𝑟𝑡 = 3,5 𝑘𝑚 − 0,0 𝑘𝑚 = 3,5 𝑘𝑚 

Og vi kan nu bestemme gennemsnitshastigheden, 𝑣𝑥: 

𝑣𝑥 =
3,5 𝑘𝑚

1 𝑚𝑖𝑛.
= 3,5

𝑘𝑚

𝑚𝑖𝑛.
 

For at omregne til 
𝑘𝑚

𝑡
 skal værdien ganges med faktoren 

60
𝑚𝑖𝑛.

𝑡
 . 

I minut 22 er flyet i punktet 𝑃 med koordinatsættet 𝑃(206,27; 206,27). Vi har altså stedvekto-

ren:  

𝑂𝑃⃗⃗⃗⃗ ⃗⃗ = (
206,27
206,27

) 

Denne vektor har længden: 

|𝑂𝑃⃗⃗ ⃗⃗ ⃗⃗ | = √206,272 + 206,272 = 291,71 

Figur 2 – Gennemsnitshastighe-

der for de første 23 min. 
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Anden del af turen (II på Figur 1) 

 

I minut 23 begynder Dumbo-04 at krænge mod nord og dermed ud af 

kurs. Det ser altså ud til at der er opstået problemer, men ser man på 

de gennemsnitlige hastighedsændringer over intervallerne – altså 

gennemsnitsaccelerationerne – vil man observere, at de ser forholds-

vist kontrollerede ud. På baggrund af dette er det sandsynligt at flyet 

stadig har været i kontrol. 

 

Gennemsnitsaccelerationerne (over et tidsinterval) i hhv. 𝑥- og 𝑦-ret-

ningerne er bestemt ved formlen: 

 

𝑎 =
Δ𝑣

Δ𝑡
=

𝑣𝑠𝑙𝑢𝑡 − 𝑣𝑠𝑡𝑎𝑟𝑡

𝑡𝑠𝑙𝑢𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡
 

 

Et konkret eksempel på en udregning af gennemsnitsaccelerationen i 

minut 23 i 𝑥-retningen:  

 

 

 

 

Grundet den ”kontrollerede” måde flyet er kommet på afveje, er det sandsynligt, at flyet har haft 

problemer med de instrumenter, som bruges til navigation. Noget lignende er sket før, f.eks. med 

flyet Aeroperú Flight 603, som havde problemer med fart- og højdemålere under en flyvning i 1996 

(se evt. https://www.youtube.com/watch?v=FUKGqBlKQvA).  

 

Da vi ved at brændstofmængden kan have givet flyet problemer, er det relevant at vide, hvor lang 

en ”ekstrastrækning” flyet har tilbagelagt ved at lave sit ”loop”. Fra flyet kommer på afveje, og til 

det havner i den stærke vind, har det tilbagelagt ca. 389 𝑘𝑚. Denne strækning kan bestemmes ved 

at lægge længderne af vektorerne mellem koordinat-punkterne sammen.  

 

 

 

 

Figur 3 – Gennemsnitsaccelerationer 

for minut 23 til minut 42 

Vi ønsker at bestemme gennemsnitsaccelerationen i 𝑥-retnin-

gen i minut 23. Vi ved at Δ𝑡 = 1 𝑚𝑖𝑛., da vi modtager et signal 

hvert minut. Vi bestemmer Δ𝑣𝑥: 

Δ𝑣𝑥 = 𝑣𝑥,𝑠𝑙𝑢𝑡 − 𝑣𝑥,𝑠𝑡𝑎𝑟𝑡 = 9,65
𝑘𝑚

𝑚𝑖𝑛.
− 9,83

𝑘𝑚

𝑚𝑖𝑛.

= −0,18
𝑘𝑚

𝑚𝑖𝑛.
 

Og vi kan nu bestemme gennemsnitsaccelerationen, 𝑎𝑥: 

𝑎𝑥 =
−0,18

𝑘𝑚
𝑚𝑖𝑛.

1 𝑚𝑖𝑛.
= −0,18

𝑘𝑚

𝑚𝑖𝑛.2
 

 

https://www.youtube.com/watch?v=FUKGqBlKQvA
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Ved at lægge alle vektorernes længder sammen, kan vi se at flyet har tilbagelagt ca. 681 𝑘𝑚 fra det 

lettede og indtil det kommer ind i den stærke vind.  

  Desuden ved vi, at flyet i minut 50 er ca. 474 𝑘𝑚 fra Langbortistan Lufthavn. Dette er igen be-

stemt ved at finde længden af stedvektoren, ligesom ovenfor.  

 

Tredje del af turen (III på Figur 1) 

 

Her har vi information om vindforholdene. Gennemsnitshastighederne lige inden flyet kommer ind i 

den stærke vind, er det samme, som før det begyndte at gå galt for Dumbo-04. Det er altså sandsyn-

ligt at piloten har haft opfattelsen af, at han var på rette kurs igen.  

  Hvis piloten har problemer med instrumenterne i cockpittet, kan han have problemer med at vide 

hvor han flyver og hvor hurtigt han flyver.    

  Når et fly flyver i sidevind er der forskel 

på, den hastighed piloten har indstillet flyet 

til at flyve med og så den hastighed flyet 

reelt set flyver med, når sidevinden er i spil 

(se Figur 4).  

  Den hastighed vi kan bestemme ud fra da-

tasættet er den realiserede hastighed. Men 

når vi kender vinden, kan vi udregne den 

hastighed piloten har indstillet flyet til at 

flyve med. Dette gøres ved at trække side-

vindsvektoren fra den realiserede ha-

stighedsvektor.  

 

For at kunne udregne pilotens indstillede 

hastighed, omregnes vindhastigheden til 

Hvis vi har koordinatsættene for to punkter efter hinanden – f.eks. koordinatsættet for minut 23 

(vi kalder punktet for 𝐴) og koordinatsættet for minut 24 (vi kalder punktet for 𝐵) – kan vi finde 

vektoren 𝐴𝐵⃗⃗⃗⃗ ⃗⃗  ved at benytte formlen: 

 

𝐴𝐵⃗⃗⃗⃗ ⃗⃗ = (
𝑏1 − 𝑎1

𝑏2 − 𝑎2
) 

 

Herefter kan vi finde ud af hvor stor en afstand flyet har tilbagelagt fra minut 23 til minut 24 ved 

at bestemme længden af denne vektor: 

 

|𝐴𝐵⃗⃗⃗⃗ ⃗⃗ | = √(𝑏1 − 𝑎1)2 + (𝑏2 − 𝑎2)2 

 

Ved at gøre dette for alle minutterne fra minut 23 til minut 50 og lægge alle disse længder sam-

men, kan vi bestemme den afstand flyet har tilbagelagt undervejs i sit loop og indtil det ryger 

ind i den stærke vind.  

 

Lægger vi i stedet længderne sammen for alle minutterne, kan vi bestemme hvor mange kilome-

ter flyet har fløjet i alt.  

Figur 4 – Hastigheder med sidevind 
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enheden 
𝑘𝑚

𝑚𝑖𝑛.
, da datasættet indeholder enhederne 𝑘𝑚 og 𝑚𝑖𝑛.: 

 

Vi kan nu udregne pilotens hastighed, ved at trække vinden 

fra. Hvis vi antager at vinden bliver ved med at være lige så 

stærk resten af turen, så vil pilotens hastigheder de sidste 15 

min. ligge på hhv. (
9,83
9,83

)
𝑘𝑚

𝑚𝑖𝑛.
 fra og med minut 51 til og 

med minut 56, og (
6,08

12,64
)

𝑘𝑚

𝑚𝑖𝑛.
 fra og med minut 57 til og 

med minut 65.  

Vi kan altså se, at piloten holder samme hastighed de første 

minutter, efter at flyet er kommet ind i den stærke vind.  

  I minut 57 ændres hastigheden igen, men holdes konstant 

indtil radarkontakten ophører.  

 

I hvor stort et område skal vi lede efter Dumbo-04? 

 

Vi kan vælge at afgrænse afsøgningsområdet ved to grænsesituationer. De to grænsetilfælde kan 

hver repræsenteres ved en vektor, med en længde svarende til den distance flyet flyver inden det 

For at komme fra 
𝑚

𝑠
 til 

𝑘𝑚

𝑚𝑖𝑛.
 skal vi gange med faktoren: 

60
𝑠

𝑚𝑖𝑛.

1000
𝑚

𝑘𝑚

 

 

For at bestemme vindens hastighed i 
𝑘𝑚

𝑚𝑖𝑛.
 skal vi altså gange hastighedsvektoren med konstanten 

(skalaren) 
60

𝑠

𝑚𝑖𝑛.

1000
𝑚

𝑘𝑚

: 

(
3,33

−32,33
)

𝑚

𝑠
 ∙

60
𝑠

𝑚𝑖𝑛.

1000
𝑚

𝑘𝑚

= (
0,20

−1,94
)

𝑘𝑚

𝑚𝑖𝑛.
 

 

Pilotens hastighed i f.eks. minut 53 bestemmes ved at 

benytte formlen: 

 

𝑣𝑝𝑖𝑙𝑜𝑡 = (
𝑣𝑝𝑖𝑙𝑜𝑡,1

𝑣𝑝𝑖𝑙𝑜𝑡,2
) = 𝑣𝑓𝑙𝑦 − 𝑣𝑣𝑖𝑛𝑑 

= (
𝑣𝑓𝑙𝑦,1

𝑣𝑓𝑙𝑦,2
) − (

𝑣𝑣𝑖𝑛𝑑,1

𝑣𝑣𝑖𝑛𝑑,2
) = (

𝑣𝑓𝑙𝑦,1 − 𝑣𝑣𝑖𝑛𝑑,1

𝑣𝑓𝑙𝑦,2 − 𝑣𝑣𝑖𝑛𝑑,2
) 

 

Og ved at indsætte værdierne fås: 
 

𝑣𝑝𝑖𝑙𝑜𝑡 = (
10,03 − 0,2

7,89 − (−1,94)
) = (

9,83
9,83

) 

Figur 5 – Gennemsnitshastigheder for minut 51 

til minut 65 
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lander. Da kan vi bestemme arealet af afsøgningsområdet som arealet af den ene halvdel af det pa-

rallelogram, der udspændes af de to vektorer. 

 

I den ene 

grænse kan vi 

forestille os, at 

flyet holder den 

samme ha-

stighed, som 

det fløj med 

umiddelbart in-

den radarkon-

taktens afbry-

delse, indtil det 

løber tør for 

brændstof.  

Som den anden 

grænse kan vi 

antage, at flyets 

motorer sluk-

kede, da radar-

kontakten op-

hørte, og at 

flyet svæver 

med vinden, 

indtil det lander 

(se Figur 6).  

 

 

Som det første 

bestemmes den distance, som flyet har brændstof til. Dette gøres ved først at bestemme den distance 

flyet allerede har tilbagelagt. Det gøres ved at lægge længderne af alle vektorerne mellem koordi-

natpunkterne sammen (metoden er beskrevet i boksen på side 4). Denne udregning giver os, at flyet 

har tilbagelagt en distance på 869 𝑘𝑚. Da flyet kan flyve maksimalt 1300 𝑘𝑚, kan det altså nå 

(1300 − 869) = 431 𝑘𝑚.  

  Som det næste skal vi bestemme den vektor, som er parallel med den retning flyet flyver i lige før 

radiokontakten mistes og som har længden 431 𝑘𝑚: 

 

 

Figur 6 – Parallelogram udspændt af de to grænsetilfælde 
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Som det næste bestemmes den vektor, som svarer til den retning og distance, som flyet kan drive 

med vinden, hvis motorerne er stoppet, da radarkontakten ophørte. På baggrund af følgende antager 

vi, at flyet kan glide 150 𝑘𝑚, og at det med det samme glider i samme retning som vinden. 

Endnu en gang skal vi bestemme længden af den vektor, som beskriver den retning og distance flyet 

tilbagelægger, mens det glider.  

 

Hvis flyet fortsætter med den samme hastighed: På ét minut kommer tilbagelægger flyet en di-

stance svarende til længden af hastighedsvektoren (
6,28

10,70
)

𝑘𝑚

𝑚𝑖𝑛.
. Den bestemmes ved at benytte 

formlen for længden af en vektor:  

 

|𝑣⃗| = √𝑣1
1 + 𝑣2

2 

= √6,282 + 10,702 = 12,41 

 

Vi skal nu bestemme den, hvilken konstant, 𝑘, vi skal gange denne vektor med, for at den får 

længden 431: 

 

𝑘 =
431 𝑘𝑚

12,41 𝑘𝑚
= 34,73 

 

Denne konstant er desuden et udtryk for, hvor længe flyet maksimalt vil kunne flyve. Vi skal 

altså gange hastighedsvektoren op med konstanten 𝑘 = 34,73 for at få den vektor, som beskri-

ver den retning og distance flyet maksimalt kan flyve på det resterende brændstof: 

 

𝑠𝑏𝑙å⃗⃗ ⃗⃗ ⃗⃗ ⃗ = (
6,28

10,70
)

𝑘𝑚

𝑚𝑖𝑛.
∙ 34,73 𝑚𝑖𝑛. = (

218,10
371,61

)  𝑘𝑚 

 

Den blå vektor på Figur 6, skrives altså  (
218,10
371,61

)  𝑘𝑚.  

Figur 7 – Et bud på flyets glidelængde: https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-

oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/ 

https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
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Som det sidste, kan vi nu bestemme arealet af parallelogrammet udspændt af de to vektorer. Dette 

gøres ved at benytte formlen:  

 

𝐴𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑜𝑔𝑟𝑎𝑚 = |det(𝑠𝑏𝑙å⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑠𝑟ø𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )| 

= ||
218,10 15,38
371,61 −149,23

|| = |218,10 ∙ (−149,23) − 15,38 ∙ 371,61| = |−38262,42| = 38262,42 

 

Da de to vektorer er grænsetilfældene, skal vi kun lede efter flyet i den halvdel af parallelogrammet, 

som er tættest på det punkt, hvor radarkontakten ophørte. Vi får arealet af dette område (som er en 

trekant) ved at dividere med 2: 

 

𝐴𝑎𝑓𝑠ø𝑔𝑛𝑖𝑛𝑔𝑠𝑜𝑚𝑟å𝑑𝑒 =
38262,42

2
= 19131,21 

 

Dvs. at arealet af det område, som skal afsøges, er på ca. 19131 𝑘𝑚2.  

Hvis flyet glider med vinden: Som det første bestemmer vi længden af vindvektoren, for at be-

stemme koordinaterne til en parallel vektor med længde 150 𝑘𝑚: 

 

|𝑣𝑣𝑖𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗| = √0,22 + (−1,94)2 = 1,95 

 

Vi bestemmer konstanten, 𝑘1, som vi skal gange op med, for at få en parallel vektor, med læng-

den 150 𝑘𝑚: 

 

𝑘1 =
150

1,95
= 76,92 

 

Vi kan nu bestemme den vektor, som beskriver den tilbagelagte strækning: 

 

𝑠𝑟ø𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = (
0,2

−1,94
) ∙ 76,92 = (

15,38
−149,23

) 

 

Den røde vektor på Figur 6 skrives altså (
15,38

−149,23
)  𝑘𝑚. 
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Appendix B 
 
Logbooks  

 

B.1 Logbook 1, group 1 
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Louises projekt omkring Malaysia flyet. 

3. April 2018 

Vi kan se hvor stor en procentdel af turen flyet aflagde på den tid der er gået.  

Vi kan finde dens fart 
𝑚

𝑠
 

For at finde dens efterfølgende svævetid, hvis flyet gik i ”stå”. 

Undersøge dens tsunami flyvetrick.  

 

Næste gang 

Hvor meget
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B.2 Logbook 2, group 1
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Louises projekt omkring Malaysia flyet. 

3. april 2018 

Vi kan se hvor stor en procentdel af turen flyet aflagde på den tid der er gået.  

Vi kan finde dens fart 
𝑚

𝑠
 

For at finde dens efterfølgende svævetid, hvis flyet gik i ”stå”. 

Undersøge dens tsunami flyvetrick.  

5. april 2018 

 

Det tager 90min (5400s) at flyve 1000km (1.000.000m) 

Det er en gennemsnitsfart på 
1000000𝑚

5400𝑠
=

5000

27
= 185,1852 

𝑚

𝑠
 => 185,1852 · 3600 = 666666,7

𝑚

ℎ
 

Dvs. at flyet flyver med ca. 667 
𝑘𝑚

ℎ
 

Indtil det 23. minut, flyver flyet u besværet ifølge dets placering på koordinaterne. 

23 minutter er 
23𝑚𝑖𝑛

90𝑚𝑖𝑛
· 100% = 25,55556% 

Dvs. at de har nået omkring 25.6 % af turens forløb, før der begynder at være vanskeligheder. 
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Bevidsløshed 

Hvis man går ud fra at piloterne måske er blevet bevidstløs her, ligesom i en artikel vi læste om, så er 

det jo ikke er i stand til at styre flyet. Men hvis det stadigvæk har en form for auto-/fartpilot sat til, 

sænkes farten ikke. 

Så fra det 23. minut til det 57. minut, hvor der sker forstyrrelser på ruten, og de bl.a. laver et loop, vil 

det altså sige, at med en fart på 185,1852
𝑚

𝑠
 over en tid på 57 − 23 = 34 minutter,  

185,1852
𝑚

𝑠
· (34 · 60)𝑠 = 377777,8𝑚 => 378 𝑘𝑚 

har de fløjet en længde på 378 km. 

Den ekstra flyvetid kan have medfølger i hvor langt flyet kunne have være nået i enhver retning. Fly 

bliver ikke tanket helt op, kun omkring det nødvendige til selve ruten, og måske lidt ekstra for en sik-

kerhedsskyld. Men ellers ville en for fyldt tank være skyld i en større brug af brændstof, fordi flyet er 

tungere. 

Storm 

I et andet eksempel, fandt vi at et fly havde lavet en sådanne cirkel manøvre, for at øge flyvehøjden, 

fordi de mødte en storm. Det samme kan være grunden til at de laver den her, og det efterfølgende 

ujævne flyvemønster, kan være grundet at de stadigvæk påvirkes af selve stormen. 

Søgehistorik 



159 
 

B.3 Logbook 1, group 2



Marie-Madeleine, Holger og Sara 1.W  
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Gruppe 2: Logbog 

 

Tirsdag d. 3 april 2018: 

Ud fra vores graf som vi lavede ud fra datasættet, kan vi konkludere at flyet ikke er 

fløjet i en lineær bane gennem hele turen, men har lavet et loop undervejs. Vores 

tanker er at flyet enden er blevet ramt af et vindstød, eller har prøvet at undgå at 

styrte ind i noget.  

 

 

 

Til næste gang vil vi gerne undersøge, hvorfor flyet har lavet dette loop. 
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B.4 Logbook 2, group 2 



Marie-Madeleine, Holger og Sara 1.W  
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Gruppe 2: Logbog 
 

Tirsdag d. 3 april 2018: 
Ud fra vores graf som vi lavede ud fra datasættet, kan vi konkludere at flyet ikke er 
fløjet i en lineær bane gennem hele turen (kun de første 23 minutter), men har lavet 
et loop undervejs. Vores tanker er at flyet enden er blevet ramt af et vindstød, eller 
har prøvet at undgå at styrte ind i noget.  
 

 

 

Til næste gang vil vi gerne undersøge, hvorfor flyet har lavet dette loop.  
 
Torsdag d. 5 april 2018: 
Vi valgte ikke at besvare vores spørgsmål fra tirsdags, da vi ikke ville kunne bruge vo-
res oplysninger om turen. I stedet valgte vi at finde et nyt spørgsmål: 
 
”Hvor lang og hvor lang tid har flyet fløjet før det lavede loopet?” 
 
Vi fandt ud af at flyet er fløjet i 25,5% af tiden, før de lavede loopet. Dvs. det har flø-
jet 255 km.  
 



Marie-Madeleine, Holger og Sara 1.W  
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På de første 23 minutter kan man se at flyet har fløjet fint, hvilket tyder på at vejret 
har været fint.
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B.5 Logbook 1, group 3
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LOGBOG _Mark, Mia og Laura 

Flyet ligger nord for Ønskeøen eftersom y-koordinatet stiger. 

Flyet kan ligge 3800km længere ud fra Ønskeøen, da motoren i alt kun holder til at 4800km ifølge 

en AirBus320a’s spefikationer. - Svævetiden vil tilføje endnu mere distance.  

Flyets hastighed har vi regnet ud til at være 666,667km/t. 

Derudover fandt vi ud af at flyet manglede 27,7% resterende af turen også svarende til 277km.  

Altså vil der gå noget tid, før at de vil opdage, at de er langt fra ruten og land, og der vil blive gjort 

noget ved retningen 

 

Hvad vil vi finde ud af til næste gang: 

Undersøge nærmere og se om vi kan komme tættere på, hvilket område flyet kunne være. 
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B.6 Logbook 1, group 4
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Logbog d. 3/4-2018          Matematik forløb Gruppe 4 
 
Vi har fundet ud af at den styrtede ned på den sidste tredjedel af flyveturen. 
 
Vi har fundet ud af at den flyver lige efter ruten de første 23 minutter og derefter begynder den at 
slingre. 
 
Vi har fundet ud af at den styrtede ned på de sidste 350 km af flyveturen. 
 
90-65= 25 min 
Det er ca. 1/3  
 
Så målte vi 1/3 af 20 cm= 6,666 cm 
 
Så fandt vi ud af at 6,5 cm på kortet = 350 km. Flyet vil altså have styrtet ned efter 650 km 
 
Ved at tegne grafen på TI-Nspire har vi fundet ud af, flyet i en cirkel (dvs. den har fløjet frem, til-
bage og frem igen). Starten på cirklen sker i punktet (259.33;286.77). Slutningen sker i punktet 
(267.77;289.37). Så kan vi også se, at flyet styrter ned i punktet (452.78;477.5). Vi kan se, at efter 
punktet (396.26;381.2) hælder flyet mere til venstre på ruten. 
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De spørgsmål vi gerne vil arbejde videre med er: 

 Hvorfor fløj flyet tilbage (lavede en cirkel)? 

 Hvorfor styrtede flyet ned efter 65 min? 

 Hvor styrter flyet ned? 
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B.7 Logbook 2, group 4
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Logbog d. 3/4-2018          Matematik forløb Gruppe 4 
 
Vi har fundet ud af at den styrtede ned på den sidste tredjedel af flyveturen. 
 
Vi har fundet ud af at den flyver lige efter ruten de første 23 minutter og derefter begynder den at 
slingre. 
 
Vi har fundet ud af at den styrtede ned på de sidste 350 km af flyveturen. 
 
90-65= 25 min 
Det er ca. 1/3  
 
Så målte vi 1/3 af 20 cm= 6,666 cm 
 
Så fandt vi ud af at 6,5 cm på kortet = 350 km. Flyet vil altså have styrtet ned efter 650 km 
 
Ved at tegne grafen på TI-Nspire har vi fundet ud af, flyet i en cirkel (dvs. den har fløjet frem, til-
bage og frem igen). Starten på cirklen sker i punktet (259.33;286.77). Slutningen sker i punktet 
(267.77;289.37). Så kan vi også se, at flyet styrter ned i punktet (452.78;477.5). Vi kan se, at efter 
punktet (396.26;381.2) hælder flyet mere til venstre på ruten. 
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De spørgsmål vi gerne vil arbejde videre med er: 

 Hvorfor fløj flyet tilbage (lavede en cirkel)? 

 Hvorfor styrtede flyet ned efter 65 min? 

 Hvor styrter flyet ned? 
 
5/4-18 
Vi har fundet ud af, at et almindeligt passagerfly som Dumbo_04 har en svævetid på ca. 150 km 
(hvor der ikke er medregnet vejr og andet, der kan nedsætte svævetiden), når motoren er gået i 
stå. Det har vi fundet ud af ved følgende hjemmeside: 
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-ople-
vede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-
kunne-holde-sig-i-luften/ 
 
Til det første spørgsmål om hvorfor flyet fløj tilbage, tænker vi, at det kan være fordi at piloterne i 
cockpittet har indset, at det af en eller anden ukendt årsag ikke kan nå hele vejen ud til Ønskeøen. 
Derfor er de vendt om, men da det indser der også er for langt tilbage til at de kan nå det, drejer 
de tilbage på kurs igen.  
 
Der kan igen være mange årsager til, at flyet styrtede ned, men ca. 50% af de flystyrt, der sker i 
moderne tid er forårsaget af tekniske problemer, hvilket vi også tænker kan have været tilfældet 
her. Vi tænker, at de har slukket motoren for eventuelt at flyet ikke skulle gå op i brænd og derfor 
har radarne mistet forbindelsen til flyet.  
 
Vi kunne godt tænke os at beregne flyets fart ud fra den tid, det brude have taget og så perspekti-
vere til den tid, det faktisk har taget for at finde et mere præcist område, flyet er styrtet ned i og 
evt. en årsag: 
 
Distance = 1000 km = 1000 * 1000 = 1 000 000 m 
Tid = 90 min = 90 * 60 = 5400 sek. 
 

Fart = 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑑
  Fart = 

1 000 000 𝑚

5400 𝑠𝑒𝑘
  Fart = 185,185 

𝑚

𝑠𝑒𝑘
 

 
Vi vil i næste time finde ud af, hvor hurtigt Dumbo_04 har fløjet og derefter beregne mere præcist, 
hvor det er styrtet ned henne og evt. af hvilke årsager.

https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
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B.8 Logbook 1, group 5
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B.9 Logbook 2, group 5
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B.10 Logbook 1, group 6
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Den egetnlige rute skulle være en lige linje fra langbortistan til ønske øen. 
 

 
 
Men ved hjælp af et punktdiagram kan vi aflæse at flyet undervejs er fløjet i en cirkel. 
Flyet er måske styrtet ned lige fremme for hvor vi mistede kontakten 
 
Et fly kan cirka svæve 150 km 
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-ople-
vede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-
kunne-holde-sig-i-luften/ 
 
Hvor er flyet landet? 
Hvad er der sket? 

https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
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B.11 Logbook 2, group 6
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Tirsdag 3/4 2018 
Den egetnlige rute skulle være en lige linje fra langbortistan til ønske øen. 
 

 
 
Men ved hjælp af et punktdiagram kan vi aflæse at flyet undervejs er fløjet i en cirkel. 
Flyet er måske styrtet ned lige fremme for hvor vi mistede kontakten 
 
Et fly kan cirka svæve 150 km 
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-ople-
vede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-
kunne-holde-sig-i-luften/ 
 
Hvor er flyet landet? 
Hvad er der sket? 
 
Torsdag 5/4 2018 
Vi læste om flyet a320. 
https://ing.dk/artikel/livsfarlig-fejl-slukker-instrumenter-pa-airbus-320-fly-90024 
Her kunne vi læse at det fly før har en defekt der i 2008 37 gange har slukket de elektroniske 

skærme og instrumenter i cockpittet.  
Det betyder piloterne ikke ved hvor de skal flyve hen eller hvor hurtigt de flyver. Det kan 
være grunden til flyets bemærkelsesværdige rute.  
I artiklen står der også at de i tidligere tilfælde har forsøgt at vende om at flyve hjem. Det 
kan være vores piloter også prøvede det, men de var så tilpas langt væk fra land at de 
ikke kunne orientere sig tilbage til Langtbortistan. 
 
http://www.pilotfriend.com/training/flight_training/aero/gliding.htm 

 

https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-

estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa 

Vi har kigget på disse to links for at prøve at regne glidetallet ud for et a320 når det drejer og der-

ved indskrænke området flyet kunne lande. 

https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://l.facebook.com/l.php?u=https%3A%2F%2Fing.dk%2Fartikel%2Flivsfarlig-fejl-slukker-instrumenter-pa-airbus-320-fly-90024&h=ATNb6cXgB340-zt_UHm10C7VfI0pWXe25ouGW9m3W-ujo1UPynnooT3dQqIxerS9rqKKWZneO0OqVT5y2IBKMHdLbAnGHha62IkV3VAboKOMQG4Vje2UIvHbXvM
http://www.pilotfriend.com/training/flight_training/aero/gliding.htm
https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
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Vi havde ikke nok tid til at undersøge det ordentligt. Det vil vi gøre hvis vi skulle arbejde med det 

igen. 
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B.12 Logbook 1, group 7
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B.13 Logbook 2, group 7
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B.14 Logbook 1, group 8
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B.15 Logbook 2, group 8
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B.16 Logbook 1, group 9
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Logbog: 
Vi starter med at prøve med de ting lært om. 
Fx: lineær regression, søjle diagram inde på Excel.  
Vi kunne konkludere, ved at se på tiden, og ved at udregne km/t på flyveturen, at der har været 
vejrmæssige forhold, som har påvirket styrtet. F.eks. turbulens.  
 
Spørgsmål: Har flyveren, fået en højere hastighed da det begyndte at styrte, end da det var i gang 
med at flyve imod ønskeøen? Og har det påvirket hvor flyet er styrtet ned?
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B.17 Logbook 2, group 9
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Logbog: 
Vi starter med at prøve med de ting lært om. 
Fx: lineær regression, søjle diagram inde på Excel.  
Vi kunne konkludere, ved at se på tiden, og ved at udregne km/t på flyveturen, at der har været 
vejrmæssige forhold, som har påvirket styrtet. F.eks. turbulens.  
 
Spørgsmål: Har flyveren, fået en højere hastighed da det begyndte at styrte, end da det var i gang 
med at flyve imod ønskeøen? Og har det påvirket hvor flyet er styrtet ned? 

- Vi brugte en hastighedsformel for at finde ud af om hastigheden blev højere som vi fandt 
på hjemmesiden: http://fysikleksikon.nbi.ku.dk/h/hastighed/ 

- Drmed fandt vi ud af at hastigheden blev højere efter 23 minutter

http://fysikleksikon.nbi.ku.dk/h/hastighed/
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Appendix C 
 
Reports 

 

C.1 Report 1, group 1



Hannah, Alexander, Danni 
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Louises projekt omkring Malaysia flyet. 

3. april 2018 

Vi kan se hvor stor en procentdel af turen flyet aflagde på den tid der er gået.  

Vi kan finde dens fart 
𝑚

𝑠
 

For at finde dens efterfølgende svævetid, hvis flyet gik i ”stå”. 

Undersøge dens tsunami flyvetrick.  

5. april 2018 

 

Det tager 90min (5400s) at flyve 1000km (1.000.000m) 

Det er en gennemsnitsfart på 
1000000𝑚

5400𝑠
=

5000

27
= 185,1852 

𝑚

𝑠
 => 185,1852 · 3600 = 666666,7

𝑚

ℎ
 

Dvs. at flyet flyver med ca. 667 
𝑘𝑚

ℎ
 

Indtil det 23. minut, flyver flyet u besværet ifølge dets placering på koordinaterne. 

23 minutter er 
23𝑚𝑖𝑛

90𝑚𝑖𝑛
· 100% = 25,55556% 

Dvs. at de har nået omkring 25.6 % af turens forløb, før der begynder at være vanskeligheder. 
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Bevidsløshed 

Hvis man går ud fra at piloterne måske er blevet bevidstløs her, ligesom i en artikel vi læste om, så er 

det jo ikke er i stand til at styre flyet. Men hvis det stadigvæk har en form for auto-/fartpilot sat til, 

sænkes farten ikke. 

Så fra det 23. minut til det 57. minut, hvor der sker forstyrrelser på ruten, og de bl.a. laver et loop, vil 

det altså sige, at med en fart på 185,1852
𝑚

𝑠
 over en tid på 57 − 23 = 34 minutter,  

185,1852
𝑚

𝑠
· (34 · 60)𝑠 = 377777,8𝑚 => 378 𝑘𝑚 

har de fløjet en længde på 378 km. 

Den ekstra flyvetid kan have medfølger i hvor langt flyet kunne have være nået i enhver retning. Fly 

bliver ikke tanket helt op, kun omkring det nødvendige til selve ruten, og måske lidt ekstra for en sik-

kerhedsskyld. Men ellers ville en for fyldt tank være skyld i en større brug af brændstof, fordi flyet er 

tungere. 

Storm 

I et andet eksempel, fandt vi at et fly havde lavet en sådanne cirkel manøvre, for at øge flyvehøjden, 

fordi de mødte en storm. Det samme kan være grunden til at de laver den her, og det efterfølgende 

ujævne flyvemønster, kan være grundet at de stadigvæk påvirkes af selve stormen. 

Søgehistorik 
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Hvis man går ud fra at farten er konstant, har vi fundet ud af ruten fløjet og den resterende længde 

flyet kan flyve. 

Længde 1: 2min -> 

 

 

Længde fløjet = Gennemsnitsfart · Tid gået 

185.1852 
𝑚

𝑠
 · 3660 s = 677.78 km 

Flyvelængde tilbage = Maks flyvelængde - Længde fløjet. 

1300 km · 677,78 km = 622,22 km 

Loop = Gennemsnitsfart · Looptid 

185.1852 
𝑚

𝑠
 · 900 s = 166.67 km 

Rute fløjet = Længde fløjet  - Loop  

677.78 km - 166.67 km = 511.11 km 
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Louises projekt omkring Malaysia flyet. 

3. april 2018 

Vi kan se hvor stor en procentdel af turen flyet aflagde på den tid der er gået.  

Vi kan finde dens fart 
𝑚

𝑠
 

For at finde dens efterfølgende svævetid, hvis flyet gik i ”stå”. 

Undersøge dens tsunami flyvetrick.  

5. april 2018 

 

Det tager 90min (5400s) at flyve 1000km (1.000.000m) 

Det er en gennemsnitsfart på 
1000000𝑚

5400𝑠
=

5000

27
= 185,1852 

𝑚

𝑠
 => 185,1852 · 3600 = 666666,7

𝑚

ℎ
 

Dvs. at flyet flyver med ca. 667 
𝑘𝑚

ℎ
 

Indtil det 23. minut, flyver flyet u besværet ifølge dets placering på koordinaterne. 

23 minutter er 
23𝑚𝑖𝑛

90𝑚𝑖𝑛
· 100% = 25,55556% 

Dvs. at de har nået omkring 25.6 % af turens forløb, før der begynder at være vanskeligheder. 
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Bevidsløshed 

Hvis man går ud fra at piloterne måske er blevet bevidstløs her, ligesom i en artikel vi læste om, så er 

det jo ikke er i stand til at styre flyet. Men hvis det stadigvæk har en form for auto-/fartpilot sat til, 

sænkes farten ikke. 

Så fra det 23. minut til det 57. minut, hvor der sker forstyrrelser på ruten, og de bl.a. laver et loop, vil 

det altså sige, at med en fart på 185,1852
𝑚

𝑠
 over en tid på 57 − 23 = 34 minutter,  

185,1852
𝑚

𝑠
· (34 · 60)𝑠 = 377777,8𝑚 => 378 𝑘𝑚 

har de fløjet en længde på 378 km. 

Den ekstra flyvetid kan have medfølger i hvor langt flyet kunne have være nået i enhver retning. Fly 

bliver ikke tanket helt op, kun omkring det nødvendige til selve ruten, og måske lidt ekstra for en sik-

kerhedsskyld. Men ellers ville en for fyldt tank være skyld i en større brug af brændstof, fordi flyet er 

tungere. 

Storm 

I et andet eksempel, fandt vi at et fly havde lavet en sådanne cirkel manøvre, for at øge flyvehøjden, 

fordi de mødte en storm. Det samme kan være grunden til at de laver den her, og det efterfølgende 

ujævne flyvemønster, kan være grundet at de stadigvæk påvirkes af selve stormen. 

Søgehistorik 
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Hvis man går ud fra at farten er konstant, har vi fundet ud af ruten fløjet og den resterende længde 

flyet kan flyve. 

Længde 1: 2min -> 

 

 

Længde fløjet = Gennemsnitsfart · Tid gået 

185.1852 
𝑚

𝑠
 · 3660 s = 677.78 km 

Flyvelængde tilbage = Maks flyvelængde - Længde fløjet. 

1300 km · 677,78 km = 622,22 km 

Loop = Gennemsnitsfart · Looptid 

185.1852 
𝑚

𝑠
 · 900 s = 166.67 km 

Rute fløjet = Længde fløjet  - Loop  

677.78 km - 166.67 km = 511.11 km 

 

Og så kan man lave en radius på resterende længde der er mulig at flyve, og fra hvor flyet forsvinder. 

Og vha. vinden. Kan man komme endnu tættere på hvilken retning man brude lede. 
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Den sorte boks: http://illvid.dk/transport/fly/den-sorte-boks-hvordan-virker-den 

Siden den sorte boks stopper med at sende signal,

http://illvid.dk/transport/fly/den-sorte-boks-hvordan-virker-den
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Rapport til Malaysia Airline: 
 

Tirsdag d. 3 april 2018: 

 

Ud fr datasættet som vi fik, har vi lavet en graf som viser Dumbo-04’s fly tur. Ud fra 

grafen kan vi konkludere, at flyet ikke er fløjet i en lineær bane gennem hele turen 

(kun de første 23 minutter), men har lavet et loop undervejs.  

 

 

 

Torsdag d. 5 april 2018: 

 

Vi fandt ud af at flyet er fløjet i 25,5% af tiden, før det lavede loopet. Flyet har fløjet  

ca. 350 km. 
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Torsdag d. 12 april 2018: 

 

 

Vi har fundet ud af at flyet i alt har tilbagelagt ca. 800 km, hvilket vil sige at den sta-

dig havde brændstof nok til at tilbagelægge 500 km. (Hvilket vil have været nok til at 

få den fløjet hen til målet). 

 

4522 + 4772 =  √431833 (Udregning for samlede længde uden loop) 

 

2502 + 2502 =  √125000 (Udregning for samlede længde før loop)  

 

Da den flyver lineær og perfekt i starten har vi antaget at den har fløjet i godt vejr, og 

efter er den havnet i en storm.  

 

Vi har læst at et fly der flyver i ca. 10 km højde, vil være ca. 16,5 minutter om at 

falde til jorden. Hvis vi antager at vindmodstanden er konstant (3.33,-32,33) 
𝑚

𝑠
 vil 

flyet havde været havnet ca. 32 km sydøst for hvor det sidst udsendte et signal. Vi 

ved at hvis flyets motor er gået ud, så kan den flyve ca. 150 km videre.  

 

Loopet kunne skyldes at piloten så en storm, og valgte at cirkulere for at se om stor-

men aftog, og derefter køre ind i den. Et lyn eller noget andet kunne havde slukket 

motoren, hvilket ville kunne forklare det stoppende signal.  

 

 
(Skitse) 
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Rapport til Malaysia Airline: 
 

Tirsdag d. 3 april 2018: 

 

Ud fr datasættet som vi fik, har vi lavet en graf som viser Dumbo-04’s fly tur. Ud fra 

grafen kan vi konkludere, at flyet ikke er fløjet i en lineær bane gennem hele turen 

(kun de første 23 minutter), men har lavet et loop undervejs.  

 

 

 

Torsdag d. 5 april 2018: 

 

Vi fandt ud af at flyet er fløjet i 25,5% af tiden, før det lavede loopet. Flyet har fløjet  

ca. 350 km. 
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Torsdag d. 12 april 2018: 

 

 

Vi har fundet ud af at flyet i alt har tilbagelagt ca. 800 km, hvilket vil sige at den sta-

dig havde brændstof nok til at tilbagelægge 500 km. (Hvilket vil have været nok til at 

få den fløjet hen til målet). 

 

4522 + 4772 =  √431833 (Udregning for samlede længde uden loop) 

 

2502 + 2502 =  √125000 (Udregning for samlede længde før loop)  

 

Da den flyver lineær og perfekt i starten har vi antaget at den har fløjet i godt vejr, og 

efter er den havnet i en storm.  

 

Vi har læst at et fly der flyver i ca. 10 km højde, vil være ca. 16,5 minutter om at 

falde til jorden. Hvis vi antager at vindmodstanden er konstant (3.33,-32,33) 
𝑚

𝑠
 vil 

flyet havde været havnet ca. 32 km sydøst for hvor det sidst udsendte et signal. Vi 

ved at hvis flyets motor er gået ud, så kan den flyve ca. 150 km videre.  

 

Loopet kunne skyldes at piloten så en storm, og valgte at cirkulere for at se om stor-

men aftog, og derefter køre ind i den. Et lyn eller noget andet kunne havde slukket 

motoren, hvilket ville kunne forklare det stoppende signal.  

 

 
(Skitse) 
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Fredag d. 13 april: 

 

Hvis vi antager at flyet efter sidst udsendte data, blev ved med at flyve i en konstant 

retning i samme fart til der ikke var mere brændstof tilbage (431 km) og at vinden fik 

flyet til at svæve 150 km, ville man kunne tegne et parallelogram og finde ud af at 

arealet af det område der skal undersøges er på ca. 19131 𝑘𝑚2 

 

=‖
218,10 15,38
371,61 −149,23

‖ = (
218,1 15,38

371,61 −149,23
) = |−38262,42|= 38262,42 = 

38262,42

2
= 19131,21 𝑘𝑚2 

 

 
Det burde være hele parallelogrammet der skulle undersøges! 
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RAPPORT 

Malaysian Airlines fly Airbus A320 skulle have fløjet fra Langbortistan Lufthavn til Ønskeøen, men 

er på vejen derhen kommet i problemer. 

 

Efter 65 min er der blevet fløjet … km og det der svarer til 2,86 tons brændstof. Ud af de 5 tons 

brændstof den i alt havde var 2,86 tons blevet brugt efter de 65 min, hvilket vil sige at der var 2,14 

tons tilbage. 
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RAPPORT Mark, Mia og Laura 1.W 

Malaysian Airlines fly Airbus A320 skulle have fløjet fra Langbortistan Lufthavn til Ønskeøen, men 

er på vejen derhen kommet i problemer. 

 

Første del af turen: 

Farten indtil minut 22 er på 843,1 km/t, hvilket er normalt for en Airbus a320, da dens spefikatio-

ner siger at den maks kan flyve med 903 km/t. 

Længden for den første del af turen er regnet til at være: √206,262 + 206,262 = 291,71𝑘𝑚. 

 

Anden og tredje del af turen: 

Længden for den anden del af turen tog vi fra datasættet, men hvis man skulle regne det ville man 

tage fra punkt til punkt af den givet rute: f.eks. fra minut 24 (
225,02
226,77

) til minut 25 (
233,51
237,77

) ville 

man bruge vektorformlen mellem to punkter som hedder: AB(
𝑏1 − 𝑎1

𝑏2 − 𝑎2
) så det ville hedde 

(
233,51 − 225,02
237,77 − 226,77

), som giver (
8,49
11

), hvor vi herefter tager kvadratroden: √8,492 + 112 =

13,9km hvilket vil sige at fra minut 24 til minut 25 ville der være 13,9km. 

Men hele ruten svarer til 869,24km. 

Selve hele flyet kunne flyve 1300km i alt, hvilket vil sige at Airbus a320 ville have 1300km-

869,24km = 430,76km længere at have fløjet efter mistet kontakt. 
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Malaysia airlines 
 
 
 

Flytypen er en airbus 320 
 
Der blev kun tanket 5 ton brændstof på i en tank der kunne rumme 8 ton = den kan flyve 1300 km. 
Den kan derfor flyve 300 km længere. 
 
Der er kraftig vind (3,33   -32,33) m/s som har ramt flyet efter 50 min (efter den har lavet sit loop) 
 
Maks startvægt på en airbus 320 er 77 ton med passagerer. I vores tilfælde blev tanken ikke tanket 
helt op (der blev tanket 5 ton og ikke 8) derfor vil flyet veje 74 ton med passagerer.  
 
1000000 m/5400 sek = 185,2 m/s (som er farten på flyet) 
 
 
Her ses ruten for flyet på et kort: 
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Her ses ruten for flyet i et diagram: 

 
 
  

 
Vi har regnet ud de koordinater hvor flyet ville være endt hvis vinden ramte på præcis 50 min.  
 
326,25 + 3,33 = 329,58 
 
324,03 - 32,33 = 291,7 
 
Men på grafen viser den at det er senere at den kommer ud af kurs…. 
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Malaysia Airlines 
 
 
 

Flytypen er en Airbus 320 
 
Der blev kun tanket 5 ton brændstof på i en tank der kunne rumme 8 ton = den kan flyve 1300 km. 
Den kan derfor flyve 300 km længere. 
 
Der er kraftig vind (3,33   -32,33) m/s som har ramt flyet efter 50 min (efter den har lavet sit loop) 
 
Maks startvægt på en Airbus 320 er 77 ton med passagerer. I vores tilfælde blev tanken ikke tan-
ket helt op (der blev tanket 5 ton og ikke 8) derfor vil flyet veje 74 ton med passagerer.  
 
1000000 m/5400 sek. = 185,2 m/s (som er farten på flyet) 
 
 
Her ses ruten for flyet på et kort: 
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Her ses ruten for flyet i et diagram: 

 
 
  

 
Vi har regnet ud de koordinater hvor flyet ville være endt hvis vinden ramte på præcis 50 min.  
 
326,25 + 3,33 = 329,58 
 
324,03 - 32,33 = 291,7 
 
Men på grafen viser den at det er senere at den kommer ud af kurs…. 
 
Ved at bobservere koordinaterne, kan man se, at koordinaterne er ens indtil minut 22. Det vil sige, 
at den indtil minut 22 har holdt sin kurs. Vi bestemmer farten ved hjælp af vektorformlen: 

v = √𝑣(𝑥)2 + 𝑣(𝑦)2 

v = √9,832 + 9,832 = 13,90 km/min. For at få km /min i km/t, ganger vi med 60: 
13,90 km/min * 60 = 834,10 km/t. 
 
For at finde et mere nøjagtigt sted, hvor flyet er styrtet ned, beregner vi gennemsnitsacceleratio-
nen ved hjælp af vektorformlen: 

a = 
𝑣

𝑡
 = 

𝑣(𝑠𝑙𝑢𝑡)−𝑣(𝑠𝑡𝑎𝑟𝑡)

𝑡(𝑠𝑙𝑢𝑡)−𝑡(𝑠𝑡𝑎𝑟𝑡)
 

t = 1 min 

v = 9,65 km/min-9,83 km/min = -0,18 km/min 

a = 
−0,18 𝑘𝑚/𝑚𝑖𝑛

1 𝑚𝑖𝑛
 = -0,18 km/min2 
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Ved at bruge koordinaterne, hvor A er x og B er y, kan vi bruge vektorformlen for at finde vektoren 
for AB: 

AB (vektor) = (
𝑏1−𝑎1

𝑏2−𝑎2
) 

AB (vektor) = 
226,77−225,02

237,77−233,51
 = 

1,75

4,26
 = 0,4 

Vi finder afstanden vha. vektorformlen: 

AB (vektor) = √(𝑏1 − 𝑎1)2 + (𝑏2 − 𝑎2)2 

AB (vektor) = √(226,77 − 225,02)2 + (237,77 − 226,77)2 = √3,06 +  121 = √124,06 = 11,13 
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Malaysian Arilines 
 
 

Malaysian Airlines flyver fra Langtbortistan lufthavn til Ønskeøens lufthavn. En tur der tager 90 mi-
nutter i det rigtige vejr.  
 
Turen er 1000 km lang. Flyet  hedder Dumbo-04 og er en Airbus a320 model som kan have 8 tons 
brændstof i tanken. Men bruger kun 4 ton på turen til ønskeørnen. Ved en fejl er flyet kun blevet 
tanket med 5 ton brændstof. 
 
Flyet skal efter planen flyve i en linenær linje til ønske øen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Malaysian Airlines opdatere flyet koordinater hvert minut. Men efter 65 minutter mister kontrol-
centret signalet med flyet.  
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Flyets koordinater er: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Her ser vi flyet koordinater og det loop som flyet laver et 23 minutter af turen.  
 
Vi har udregnet af flyet mister 14 minutter i loop så der for er flyet nye tid til det ankommer 104 
minutter hvis flyet altså retter op og holder kursen resten af turen:  

14 + 90 = 104 
 
Ud fra oplysningerne skulle flyet havne i en meget kraftig vind ved ca. 50 min. Hvis flyet havde 
ramt den kraftige vind, præcis i det 50 min. skulle det ud fra vektorens kordinater ende ved punk-
tet der skiller sig ud, ved at være under den rette linje.  
Dog kan man ved at aflæse på grafen, se at flyet ved ca. 50 minut, kan havde ramt en kraftig vind, 
da tallene på x-aksen indtil da er steget med ca. 10 km/min, men nu stiger med ca 6-7 km/min.  
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Malaysian Arilines 
 
 

Malaysian Airlines flyver fra Langtbortistan lufthavn til Ønskeøens lufthavn. En tur der tager 90 mi-
nutter i det rigtige vejr.  
 
Turen er 1000 km lang. Flyet  hedder Dumbo-04 og er en Airbus a320 model som kan have 8 tons 
brændstof i tanken. Men bruger kun 4 ton på turen til ønskeørnen. Ved en fejl er flyet kun blevet 
tanket med 5 ton brændstof. 
 
Flyet skal efter planen flyve i en linenær linje til ønske øen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Malaysian Airlines opdatere flyet koordinater hvert minut. Men efter 65 minutter mister kontrol-
centret signalet med flyet.  
 
 
 
 
 
 
Flyets koordinater er: 
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Her ser vi flyet koordinater og det loop som flyet laver et 23 minutter af turen.  
 
Vi har udregnet af flyet mister 14 minutter i loop så der for er flyet nye tid til det ankommer 104 
minutter hvis flyet altså retter op og holder kursen resten af turen:  

14 + 90 = 104 
 
Ud fra oplysningerne skulle flyet havne i en meget kraftig vind ved ca. 50 min. Hvis flyet havde 
ramt den kraftige vind, præcis i det 50 min. skulle det ud fra vektorens kordinater ende ved punk-
tet der skiller sig ud, ved at være under den rette linje.  
Dog kan man ved at aflæse på grafen, se at flyet ved ca. 50 minut, kan havde ramt en kraftig vind, 
da tallene på x-aksen indtil da er steget med ca. 10 km/min, men nu stiger med ca 6-7 km/min.  
 
Vi regner vores vind hastighed om fra m/s til til km/min  

(
3,33

−32,33
)

𝑚

𝑠
·

60
𝑠

𝑚𝑖𝑛

1000
𝑚

𝑘𝑚

= (
0,20

−1,94
)

𝑘𝑚

𝑚𝑖𝑛
 

Vi antager at vindhastigheden er den sammen resten af turen.   
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På billede ser vi det område flyet kan lande i. Vi antager at piloten har synes han holdte den rette 
kurs, og derfor bare er fløjet lige ud indtil han løb tør for brændsel. Hvis vi også tænker på at vin-
den har haft indflydelse på flyet rute tænker vi at flyet ligger et sted i det midterste Felt 
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Den egetnlige rute skulle være en lige linje fra langbortistan til ønske øen. 
 

 
 

Men ved hjælp af et punktdiagram kan vi aflæse at flyet undervejs er fløjet i en cirkel. 
Flyet er måske styrtet ned lige fremme for hvor vi mistede kontakten 
 

Et fly kan cirka svæve 150 km 
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-ople-
vede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-
kunne-holde-sig-i-luften/ 
 

Vi læste om flyet a320. 
https://ing.dk/artikel/livsfarlig-fejl-slukker-instrumenter-pa-airbus-320-fly-90024 
Her kunne vi læse at det fly før har en defekt der i 2008 37 gange har slukket de elektroniske 

skærme og instrumenter i cockpittet.  
Det betyder piloterne ikke ved hvor de skal flyve hen eller hvor hurtigt de flyver. Det kan 
være grunden til flyets bemærkelsesværdige rute.  
I artiklen står der også at de i tidligere tilfælde har forsøgt at vende om at flyve hjem. Det 
kan være vores piloter også prøvede det, men de var så tilpas langt væk fra land at de 
ikke kunne orientere sig tilbage til Langtbortistan. 
 

http://www.pilotfriend.com/training/flight_training/aero/gliding.htm 

 

https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-

estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa 

Vi har kigget på disse to links for at prøve at regne glidetallet ud for et a320 når det drejer og der-

ved indskrænke området flyet kunne lande. 

Vi havde ikke nok tid til at undersøge det ordentligt. Det vil vi gøre hvis vi skulle arbejde med det 

igen. 

 
Blæser med 1.95 km/m den retning. 
 
 

https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://l.facebook.com/l.php?u=https%3A%2F%2Fing.dk%2Fartikel%2Flivsfarlig-fejl-slukker-instrumenter-pa-airbus-320-fly-90024&h=ATNb6cXgB340-zt_UHm10C7VfI0pWXe25ouGW9m3W-ujo1UPynnooT3dQqIxerS9rqKKWZneO0OqVT5y2IBKMHdLbAnGHha62IkV3VAboKOMQG4Vje2UIvHbXvM
http://www.pilotfriend.com/training/flight_training/aero/gliding.htm
https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
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Vier i gang med et udregne hastigheden flyet har fløjet med og hvilken effekt faktoren har haft på 
flyet rute. 
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Dumbo-04 
Den egentlige rute skulle være en lige linje fra Langbortistan til Ønske øen. 
 

 
 

Men ved hjælp af et punktdiagram kan vi aflæse at flyet undervejs er fløjet i en cirkel. 
Flyet er måske styrtet ned lige fremme for hvor vi mistede kontakten 
 
Et fly kan cirka svæve 150 km 
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-ople-
vede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-
kunne-holde-sig-i-luften/ 
 
Vi læste om flyet a320. 
https://ing.dk/artikel/livsfarlig-fejl-slukker-instrumenter-pa-airbus-320-fly-90024 
Her kunne vi læse at det fly før har en defekt der i 2008 37 gange har slukket de elektroniske 

skærme og instrumenter i cockpittet.  
Det betyder piloterne ikke ved hvor de skal flyve hen eller hvor hurtigt de flyver. Det kan 
være grunden til flyets bemærkelsesværdige rute.  
I artiklen står der også at de i tidligere tilfælde har forsøgt at vende om at flyve hjem. Det 
kan være vores piloter også prøvede det, men de var så tilpas langt væk fra land at de 
ikke kunne orientere sig tilbage til Langtbortistan. 
 
http://www.pilotfriend.com/training/flight_training/aero/gliding.htm 

 

https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-

estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa 

Vi har kigget på disse to links for at prøve at regne glidetallet ud for et a320 når det drejer og der-

ved indskrænke området flyet kunne lande. 

Vi havde ikke nok tid til at undersøge det ordentligt. Det vil vi gøre hvis vi skulle arbejde med det 

igen. 

 
 
 

https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://spoerg-piloten.dk/hvis-en-boeing-777-eller-737-altsa-et-fly-i-passagerfly-storrelse-oplevede-at-alle-motorer-stopper-med-at-virke-hvordan-vil-flyet-sa-falde-og-hvor-lang-tid-ville-det-kunne-holde-sig-i-luften/
https://l.facebook.com/l.php?u=https%3A%2F%2Fing.dk%2Fartikel%2Flivsfarlig-fejl-slukker-instrumenter-pa-airbus-320-fly-90024&h=ATNb6cXgB340-zt_UHm10C7VfI0pWXe25ouGW9m3W-ujo1UPynnooT3dQqIxerS9rqKKWZneO0OqVT5y2IBKMHdLbAnGHha62IkV3VAboKOMQG4Vje2UIvHbXvM
http://www.pilotfriend.com/training/flight_training/aero/gliding.htm
https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://aviation.stackexchange.com/questions/14425/how-can-the-glide-ratio-in-a-balanced-turn-be-estimated?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
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Blæser med 1.95 km/m den retning. 

(
0.2

−1.94
)

Km

min
 

 
 

 
 
 

Området hvor man skal lede efter Dumbo-04 
Vi har udregning i Excel ark at flyet har tilbagelagt en distance på 869 Km. Flyet kan maksimalt 
flyve 1300 km, med det brændstof det har fået tanket. Så vi kan derfor finde ud af hvor langt flyet 
kan komme videre efter vi har mistet kontakten.  

1300 − 869 = 431Km 
Flyet kan derfor flyve 431 km efter at man har mistet kontakten med det. Derfor kan vi lave en pa-
rallel med den retning flyet flyver lige inden radiokontakten mistes.  
 

Vindhastigheden har vi fået at vide, at den er (
3.33

−32.33
)

𝑚

𝑠
, vi skal omregne enheden til 

𝐾𝑚

𝑚𝑖𝑛
, da vo-

res Excel ark indeholder enhederne Km og min: 
 

Når man skal omregne fra 
𝑚

𝑠
 til 

𝑘𝑚

𝑚𝑖𝑛
 skal vi gange med 

60
𝑠

𝑚𝑖𝑛

1000
𝑚

𝑘𝑚

  

For at bestemme vindens hastighed i 
𝑘𝑚

𝑚𝑖𝑛
, ganger vi hastighedsvektoren med konstanten 

60
𝑠

𝑚𝑖𝑛

1000
𝑚

𝑘𝑚
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(
3.33

−32.33
)

𝑚

𝑠
·

60
𝑠

𝑚𝑖𝑛

1000
𝑚

𝑘𝑚 

= (
0.20

−1.94
)

𝑘𝑚

𝑚𝑖𝑛
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Rapport (Assistancemelding) 

Hypotese: 

Der kunne være sket en teknisk fejl, i en af de venstre motorer.  

En anden hypotese vi har foretaget os er at vejret har påvirkede dombo-04 og dermed har flyet fore-

taget et loop.  

 

Oplysninger om flyveturen: 

Vejrforholdene er blevet undersøgt og det viser sig at flyet efter ca 50 min er havnet i en meget 

kraftig vind (
3,33

−32,33
)

𝑚

𝑠
  

Senere har man fundet ud af at der er sket en fejl under benzintakningen af flyet Dumbo-04. Nor-

malt skal et fly have 8 ton brændstof til en tur på 1000 km, for at være sikker på at flyet kan holde 

ruten og at flyet ikke løber tør for brændstof. Der er dog sket en fejl ved benzintankningen og derfor 

har flyet Dumbo-04, fået 5 ton brændstof tanket i stedet for 8 ton.   

 

Resultater: 

Maks km= 1300 km  

Flyveruten= 1000 km 

√452,782 + 477,52
 = 658,04 km  

658,04

1000
 = 0,63805  0,63805 · 100= 63,805% 

63,8% af 1000 km   
63,8·1000

100
 = 688 km  

1300 km - 688 km = 612 km  

612+ svævelængden (150 km) = 762 

Flyet kan styrte ned fra en radius af 762 km inklusive svævefasen  
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Grafer: 

Grafen over flyruten for Dumbo-04.  

 

 

Der er foregået en fejl i det udleverede datasæt og derfor er y-koordinatet i min 53 ikke 357,31 og i 

stedet 357,53 og i grafen vises der også vindretningen efter det foretagende loop. 

Bevis ses på grafen.   
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Rapport (Assistancemelding) 

Hypotese: 

Der kunne være sket en teknisk fejl, i en af de venstre motorer.  

En anden hypotese vi har foretaget os er at vejret har påvirket Dumbo-04 og dermed har flyet fore-

taget et loop.  

 

Oplysninger om flyveturen: 

Vejrforholdene er blevet undersøgt og det viser sig at flyet efter ca. 50 min er havnet i en meget 

kraftig vind (
3,33

−32,33
)

𝑚

𝑠
  

Senere har man fundet ud af at der er sket en fejl under benzintakningen af flyet Dumbo-04. Nor-

malt skal et fly have 8 ton brændstof til en tur på 1000 km, for at være sikker på at flyet kan holde 

ruten og at flyet ikke løber tør for brændstof. Der er dog sket en fejl ved benzintankningen og derfor 

har flyet Dumbo-04, fået 5 ton brændstof tanket i stedet for 8 ton.   

 

Resultater: 

Vi udregner vektoren [
→

𝐴𝐵
], hvor punkt A er lufthavnen og punkt B er, hvor man har mistet kontakt 

til flyet dumbo-04. 

Maks km= 1300 km  

Flyveruten= 1000 km 

√452,782 + 477,52
 = 658,04 km  

658,04

1000
 = 0,63805  0,63805 · 100= 63,805% 

63,8% af 1000 km   
63,8·1000

100
 = 688 km  

1300 km - 688 km = 612 km  

612+ svævelængden (150 km) = 762 

 

Udregning af loopet fra 29. min til 44. min.: 

(13,9 𝑘𝑚 · 10) + 14 𝑘𝑚 + (13,89 𝑘𝑚 · 5) = 𝟐𝟐𝟐, 𝟒𝟓 𝒌𝒎  
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Udregning af antal km flyet Dumbo-04 har fløjet:  

658,04 𝑘𝑚 + 222,45 𝑘𝑚= 880,49 km    

 

Udregning af hvor mange km flyet Dumbo-04 kan flyve, før man har mistet kontakten til flyet: 

1300 𝑘𝑚 − 880,49 𝑘𝑚 = 𝟒𝟏𝟗, 𝟓𝟏  

 

Arealet flyet Dumbo-04 kunne søges efter:  

419,512 · 3,14 = 𝟓𝟓𝟐𝟔𝟎𝟒, 𝟑𝟒 𝒌𝒎𝟐 

552604,34

4
= 𝟏𝟑𝟖𝟏𝟓𝟏, 𝟎𝟖 𝒌𝒎𝟐  

Vi dividerer med 4, for at indsnævre søgefeltet, da det ikke er så relevant at lede bag ved flyets rute  

Grafer: 

Grafen over flyruten for Dumbo-04.  

 

 

 

 

 

 

 

 

 

 



  

248 
 

Der er foregået en fejl i det udleverede datasæt og derfor er y-koordinatet i min. 53 ikke 357,31 men 

i stedet 357,53. Grafen viser det nye koordinat og vindretningen efter det foretagende loop. 

Bevis ses på grafen.   
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Rapport  

Koordinater for Dumbo-04 
   

Tid x y 
[min,] [km] [km] 

0 0,00 0,00 
1 3,50 3,50 
2 10,50 10,50 
3 19,50 19,50 
4 29,33 29,33 
5 39,16 39,16 
6 48,99 48,99 
7 58,82 58,82 
8 68,65 68,65 
9 78,48 78,48 

10 88,31 88,31 
11 98,14 98,14 
12 107,97 107,97 
13 117,80 117,80 
14 127,63 127,63 
15 137,46 137,46 
16 147,29 147,29 
17 157,12 157,12 
18 166,95 166,95 
19 176,78 176,78 
20 186,61 186,61 
21 196,44 196,44 
22 206,27 206,27 
23 215,92 216,27 
24 225,02 226,77 
25 233,51 237,77 
26 241,32 249,27 
27 248,33 261,27 
28 254,41 273,77 
29 259,33 286,77 
30 262,64 300,27 
31 262,64 314,27 
32 252,99 324,27 
33 240,45 330,27 
34 226,70 332,27 
35 212,95 330,27 
36 200,41 324,27 
37 190,76 314,27 
38 190,76 300,37 
39 200,41 290,37 
40 212,95 284,37 
41 226,70 282,37 
42 240,45 284,37 
43 254,20 286,37 
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44 267,77 289,37 
45 281,08 293,37 
46 294,05 298,37 
47 306,59 304,20 
48 316,42 314,20 
49 326,25 324,03 
50 336,08 333,86 
51 346,11 341,75 
52 356,14 349,64 
53 366,17 357,53 
54 376,20 365,42 
55 386,23 373,31 
56 396,26 381,20 
57 402,54 391,90 
58 408,82 402,60 
59 415,10 413,30 
60 421,38 424,00 
61 427,66 434,70 
62 433,94 445,40 
63 440,22 456,10 
64 446,50 466,80 
65 452,78 477,50 

 

 

 

Ved at aflæse på koordinatsættene kan man se, at den kraftige vind påvirker flyet ved ca. 56-57 minutter, 

da x-værdierne ikke stiger med ca. 10 pr. minut. men med 6-7 pr. minut.   

Vi antager at flyet bruger mere brændstof når den kraftige vind begynder at skabe turbulens. 

0,00
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Afbilding af punkterne for den rettede version af Dumbo-04
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For at finde ud af hvor flyet er styrtet, finder vi først længden af vektoren for vindens hastighed. Den er på 

32, 

 

 

 



  

253 
 

C.18 Report 2, group 9



  

254 
 

Rapport 

 

Man kan inddele grafen i 3 faser, og derefter undersøge enkelte fase. 

 

Ved at aflæse på koordinatsættene kan man se, at den kraftige vind påvirker flyet ved ca. 56-57 minutter, 

da x-værdierne ikke stiger med ca. 10 pr. minut. men med 6-7 pr. minut.   

Vi antager at flyet bruger mere brændstof når den kraftige vind begynder at skabe turbulens. 

Hypotese: Har flyveren, fået en højere hastighed da det begyndte at styrte, end da det var i gang med at 

flyve imod ønskeøen? Og har det påvirket hvor flyet er styrtet ned? 

 

Dumbo-04 holder sin kurs med en fart indtil minut 22, 

Vi inddeler grafen i tre faser. I den første fase forløber flyveturen som planlagt. Det er først i den anden 

fase at der går kage i den. Derfor vil vi vælge at fokusere på den anden fase og den tredje fase.  

Man kan aflæse på punkterne at Dumbo-04 krænger mod nord når der er gået 23 minutter. Der opstår gen-

nemsnitlige hastighedsændringer over intervallerne.  

  

𝑎 =  
∆𝑣

∆𝑡
=  

𝑣𝑠𝑙𝑢𝑡 − 𝑣𝑠𝑡𝑎𝑟𝑡

𝑡𝑠𝑙𝑢𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡
 

Vi indsætter derefter værdierne. 

∆𝑣𝑥 = 𝑣𝑥,𝑠𝑡𝑎𝑟𝑡 = 9,65
𝑘𝑚

𝑚𝑖𝑛
− 9,83

𝑘𝑚

𝑚𝑖𝑛
= −0,18

𝑘𝑚

𝑚𝑖𝑛
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Afbilding af punkterne for den rettede version af Dumbo-04
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Gennemsnitsaccelerationen i minut 23 aftager med 0,18 
𝑘𝑚

𝑚𝑖𝑛
. 

Derefter bestemmer vi gennemsnitsaccelerationen, 𝑎𝑥:  

𝑎𝑥 =
−0,18

𝑘𝑚
𝑚𝑖𝑛

1 𝑚𝑖𝑛
= −0,18

𝑘𝑚

𝑚𝑖𝑛2
 

𝐴𝐵⃗⃗⃗⃗ ⃗⃗  = (
𝑏1 − 𝑎1

𝑏2 − 𝑎2
) 
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Appendix D 
 
Lists of questions 
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𝑄0,𝐼: What has happened to the aeroplane? 

𝑄0,𝐼,𝑎: Why did the aeroplane not follow the intended route? 

𝑄0,𝐼𝐼: How big is the area that has to be searched in order to find the aeroplane?  

𝑄0,𝐼𝐼,𝑎: Where did the aeroplane crash?  

𝑄0,𝐼𝐼,𝑏: Where did the aeroplane land? 

 

𝑄1: How does the route, that the aeroplane followed, look? 

𝑄1,1: What is remarkable about the route? 

𝑄1,1,1: Why did the aeroplane make a “loop”? 

𝑄1,1,1,𝑎: Why did the aeroplane first disappear from the radar 36 minutes after it made a 

”loop”? 

𝑄1,1,2: Why did the aeroplane suddenly make the change in course in minute 56?  

𝑄1,2: How far from Farawayistan Airport is the aeroplane, when it disappears from the 

radar? 

𝑄1,2,1: How is the distance to Farawayistan Airport calculated from the 𝑥- and 𝑦-coordi-

nates? 

𝑄1,2,𝑎: In what part of the flight did the aeroplane crash? 

𝑄1,3: How far from Neverland Airport is the aeroplane, when it disappears from the radar? 

𝑄1,𝑎: How far did the aeroplane travel after it made the “loop”?  

 

𝑄2: By what speed/velocity did the aeroplane fly during the flight? 

𝑄2,1: How is speed/velocity calculated from position and time? 

𝑄2,1,1: How is the fact that the aeroplane is moving in two directions taken into account, 

when calculation speed/velocity? 

𝑄2,2: How fast does an Airbus a320 fly? 

𝑄2,3: What can be derived about the flight from its velocities? 

𝑄2,3,1: Why was the speed lowered by the end of the monitored part of the flight? 

𝑄2,3,𝑎: Did the aeroplane increase its velocity when it started crashing compared to the 

velocity when it was heading towards Neverland? And has it influenced where the aero-

plane has crashed? 

𝑄2,𝑎: What speed corresponds to the expected time and distance? 

 

𝑄3: How can vector theory be applied to calculate the area that has to be searched in order 

to find the aeroplane? 

𝑄3,1: Which two vectors should form the parallelogram? 

𝑄3,1,𝑎: How can it be determined where the aeroplane crashed? 

𝑄3,1,𝑎,𝑎: How far can an aeroplane glide? 

𝑄3,1,𝑎,𝑎,𝑎: What is the lift-drag ratio for an Airbus a320 when it is turning? 

 

𝑄4: How can the information about cross wind be used? 

𝑄4,1: How are wind conditions taken into account, when calculating the velocity of an 

aeroplane? 

𝑄4,1,1: What is the “true airspeed” of the aeroplane, when it is flying in the cross wind? 
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𝑄4,𝑎: Where would the aeroplane have ended if the cross wind had affected it from exactly 

minute 50? 

𝑄4,𝑏: How has the cross wind affected the route of the aeroplane?  

𝑄4,𝑐: What is the length of the wind vector? 

𝑄4,𝑑: How far has the aeroplane travelled in the strong wind?  

𝑄4,𝑑,𝑎: How far would the aeroplane have travelled if the strong wind had not been there?  

𝑄4,𝑑,𝑎,𝑎: What is the area of the triangle spanned by the distance that the aeroplane would 

have travelled if the strong wind had not been there and the wind vector?  

 

𝑄5: How can the information about the amount of fuel be used? 

𝑄5,1: For how many kilometres will the remaining fuel last? 

𝑄5,1,1: How big a distance has the aeroplane been travelling from take-off and until it 

disappears from the radar? 

𝑄5,1,1,𝑎: What does this distance correspond to on the map? 

𝑄5,1,1,𝑎,𝑎 What is the scale of the map? 

𝑄5,𝑎: How much longer than the expected distance can the aeroplane travel on the addi-

tional fuel? 

𝑄5,𝑏: How much did the aeroplane weigh? 

 

𝑄𝑎: Why did the aeroplane crash after 65 minutes?  

 


