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Abstract

This thesis gives a description of the development of the notion of vectors in the scientific
fields of mathematics and physics respectively. It includes a description of the interrela-
tion between the notion in the two fields, because it gives some explanations why high
school students struggle with the notion of vectors. Also the development of the notion
of vectors in mathematics and physics in the context of high school teaching will be de-
scribed. This has contributed to an understanding of why mathematics and physics, that
historically are highly interrelated, have separated more and more over the years.

The examination of curricula, written exam problems, and textbooks have revealed that
the mathematical notion of vectors is divided into an algebraic and a geometric approach.
Since vectors are used to model the two or three dimensional spaces in physics, the geo-
metric approach is more useful in physics than the algebraic. However, the geometric
branch in mathematics does generally not include the approaches that are useful in phys-
ics.

These findings have been used to design a Study and Research Path on vectors. The idea
was to combine mathematics and physics in the introduction to vectors, in order to utilise
the motivations from physics and to make the applications in physics more obvious. The
design was tested in a first year high school class, but it did not turn out as expected. None
of the students developed a notion of vectors that was useful in the application to the
physical problem they were asked to solve. However, the test of the design showed that
it is highly relevant to keep working on alternative ways of teaching.
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1. Introduction

Mathematics and physics are two branches of science that have developed very closely
throughout most of their history. Multiple important results in mathematics have roots in
physical problems, while many theories in physics have had crucial benefits from math-
ematical developments. In the 17%, 18" and 19" centuries it was often difficult to sepa-
rate mathematicians from physicists and mathematical results from physical results. Well-
known examples are Isaac Newton (1642-1727) and his work on fluxions that is one of
the most important contributions to calculus or Joseph Fourier (1768-1830) and his work
on heat conduction that led to the mathematical concept of Fourier series (Katz, 2009).
Though the sciences of mathematics and physics have a long common (and sometime
inseparable) history, it is well-known that in an educational context mathematics and
physics suffer from an unfortunate (and escalating) disconnection. A majority of mathe-
matics teachers will be of the opinion that mathematics is taught for the mathematics
itself, even though one of the purposes of the teaching of mathematics in Danish high
schools is to obtain the qualifications necessary for further educations that require math-
ematics (Danish Ministry of Education, 2017a). And mathematics is important in other
science, e.g. physics, but when it is taught without consideration of its applications, the
students will have a hard time applying the mathematics correctly to physical problems.
As a consequence, the necessary mathematical concepts are taught in both mathematics
and physics at the same time in different versions, and the disconnection is even more
distinct (Orton & Roper, 2000). This issue is the first thing that motivated this thesis.

A recent model for teaching designs addresses the problem with very bounded teaching
subjects, where students are presented to theories and results one after the other, some-
times without any connection, by their teachers without any invitation to ask questions
themselves. The model is called Study and Research Paths and is meant to let the students
work with their learning process with less directions from their teacher. Teaching that is
organised in this way is very suitable for interdisciplinary work, where the students can
work with problems that can only be solved by drawing on and developing knowledge in
more than one subject. An interest in this design model and its opportunities and limita-
tions in relation to interdisciplinary teaching is the second issue that motivated this thesis.

In August 2017 the Danish Ministry of Education implemented a new reform of the
Danish high school. It implied a lot of changes in the organisational structure and in the
curricula. In mathematics one of the changes concerned the topic vectors. Before, the
teaching of vectors was reserved to students studying mathematics at A-level, but by the
reform vectors were added to the C-level curriculum. The possible pedagogical chal-
lenges this restructuring can cause is the third issue that has motivated this thesis.

Like differential calculus and Fourier series, the notion of vectors is a mathematical con-
cept that has evolved on the border of mathematics and physics. Furthermore, it is a nec-
essary concept in both mathematics and physics in high school. However, the problematic



disconnection of mathematics and physics is also present in relation to the teaching of
vectors. This thesis has two parts that will both investigate this problem; a theoretical and
an empirical. The aim of the theoretical part is to give a thorough description of the de-
velopment of the notion of vectors that have appeared in the mathematical and physical
communities respectively and the development of the notion of vectors that have been
taught in high school mathematics and high school physics respectively, whit the purpose
of detecting the origin of the disconnection of the two subjects in the context of teaching.

The aim of the empirical part of the thesis is to design a Study and Research Path on
vectors in mathematics and physics, and test if it is beneficial for the students to encounter
the concept in a way where mathematics and physics are incorporated from the beginning.
In the process of designing, the theoretical findings will be used to avoid the usual dis-
connected encounter with vectors.



| Theoretical framework

2. The Anthropological Theory of Didactics

The theoretical framework for this thesis is the anthropological theory of didactics (hence-
forth abbreviated as ATD). The theory was launched by the French didactician Yves Che-
vallard in the 1980’s. ATD builds on the assumption that “doing, teaching, learning, dif-
fusing, creating, and transposing mathematics, [...], are considered as human activities
taking place in institutional settings.” (Bosch & Gascon, 2014, p. 68). Hereby, an im-
portant part of research in the field of mathematical education conducted in the frame-
work of ATD is to describe the institutional settings in which a teaching sequence is de-
signed or in which a textbook is written.

One important step in the description is to analyse the path from the official mathemat-
ical knowledge to the curriculum. The researcher analyses the curriculum in the light of
the official mathematical knowledge to see how it is organised. In a didactical study re-
searchers use an explicitly stated epistemological reference model (henceforth abbrevi-
ated ERM) as a framework. The ERM is necessary in order to be able to make general-
isable results, because empirical studies of didactical phenomena have a lot of uncontrol-
lable effects and interpretation barriers that stem from the fact that teaching and learning
in general are very subjective activities. An ERM makes it possible to generalise results
by giving objective descriptions of the mathematical knowledge that is a part of the study
which would otherwise be interpreted subjectively by the individual reader.

The aim for the theoretical part of this thesis is to construct an ERM that describes the
organisations of the scholarly notion of vectors and the teaching topic vectors. Also the
relations and links between the two organisations will be included. The model will be
serving as the theoretical reference in the empirical study in the second part of the thesis.

Before the ERM can be constructed, some basic notions from ATD will be introduced
and elucidated. The first notion is the didactic transposition, which describes the path
from the scholarly mathematical knowledge through the curriculum to the students. This
is of course important in order to elucidate the relations and links between the two notions
of vectors, in the mathematical community and in a high school context respectively, and
it will be described in section 2.2. The second important notion from ATD that will be
described is praxeologies and especially mathematical praxeologies. This is a model that
helps researchers to analyse how the mathematical knowledge is organised in the curric-
ulum, textbooks, written exams, etc. A praxeological analysis of the notion of vectors in
Danish high schools will be the foundation of the ERM. The notion of praxeologies will
be described in section 2.3.

The notions mentioned above provides a framework for a theoretical analysis of the
organisation of the mathematical content that is relevant in this thesis. Furthermore, the
model study and research paths within ATD provides the framework for the empirical



part of the thesis. The model can and will be used for both design and analysis issues, and
it will be presented in section 2.4 and used in the empirical part of the thesis.

The next subsection will introduce the first important notion in the theoretical frame-
work; the didactic transposition.

2.1 The didactical contract

The notion of the didactical contract is not developed within ATD, but it has turned out
to be a necessary part of the theoretical framework in the analysis of the data material in
the empirical part of the thesis, which is why it has to be described.

The didactical contract is an important notion in didactics, that covers the implicit ex-
pectations and commitments between the teacher and the students. It is a set of unwritten
rules, that varies depending on the teacher and the students in a class. The didactical con-
tract can both affect the teaching and learning positively and negatively. A positive effect
of the didactical contract is that the students know exactly what is expected from them in
specific situations. A negative effect is that the students are only able to learn, when the
teaching proceeds exactly as they are used to, since an alternative way of teaching will be
a breach of the didactical contract. Furthermore, the didactical contract can affect stu-
dents’ approach to different problems. A classic example is the problem of the age of the
captain. The problem reads: “A captain owns 26 sheep and 10 goats. How old is the cap-
tain?”. A general tendency across countries is that pupils in elementary school give the
answer 36, even though the question does not make sense at all (Winslgw, 2006, p. 145-
150). In this case pupils are so tied to the didactical contract, that they do not reflect on
the problem before they give an answer. Some of these negative issues had a negative
impact on the work with the SRP in the test class. These will be described in section 8.4.

2.2 The didactic transposition

By the word mathematics different things can be referred to. One thing is the mathemat-
ical theories, theorems, and results, that has developed over time, from the old Egyptians
to the ancient Greeks to Newton and Leibniz to Cauchy etc. to all the new mathematical
results that are produced and published on a daily basis nowadays; the mathematical the-
ories, theorems, and results, new as well as old, that mathematicians in general agree on
across countries.

Nowadays new mathematical results are mostly produced by professional mathemati-
cians and the “official” mathematics described above lives mostly in a scholarly environ-
ment. Henceforth, the term scholarly knowledge will be used, when referring to mathe-
matics as described above; the results, theorems, and theories that are generally agreed
on by mathematicians.

Another meaning that can be attached to the word mathematics is the teaching subject
mathematics. What this term precisely contain will then depend on the context, e.g. if it
is a subject in primary school or high school and whether the high school is general,

10



business oriented or technical oriented. In didactics the “school mathematics™ is divided
into two, the first one is the official description of the teaching subject that contains cur-
ricula, textbooks etc. This part is called knowledge to be taught. The other part is the
mathematics as it is actually taught in the class, which is called taught knowledge. The
difference between the terms and their interrelation will be elaborated on below.

The mathematics contained in curricula, textbooks, and written exams are not transferred
directly from the scholarly community into a high school context without modifications.
In the process of constructing these official documents a lot of choices have been made.
A selection of the most important topics has to be picked out from the huge collection of
all the mathematics that has ever been discovered. Within the chosen topics, the most
important, useful, and suitable notions have to be picked out. Additionally, a selection of
problems and solving methods within each topic is made. All these decisions and more
are made as a part of the process of transforming the scholarly mathematics into the teach-
ing subject of mathematics that is both accessible and useful for the students. The process
is very complicated and involves a lot of different people with different agendas and pro-
fessional backgrounds. The process where the mathematical notions are modelled to suit
a high school context can be hard to describe, since is it very complex. However, the
words transforming and transposing are sometimes used. Neither of the words are satis-
factory as a description in their own right, but together they do almost capture both the
“movement” from a scholarly context to a high school context and the process of chang-
ing, fitting and modelling the mathematical content. Regardless of the words used to de-
scribe it, the process of transforming and transposing the scholarly mathematical
knowledge into the teaching subject is very important in didactic research (Chevallard &
Bosch, 2014).

Likewise, is the process where the curriculum and other official documents, e.g. written
exams etc., are interpreted by the teacher and transformed into concrete teaching se-
quences. These two — the process of constructing a teaching subject from some scholarly
knowledge and the process of designing concrete teaching sequences from this, respec-
tively — constitute the didactic transposition. Sometimes the model includes an additional
process, namely the path that the knowledge undergoes on the way from the teaching
situation into the student’s catalogue of available knowledge. This process is interesting,
since the goal for most teaching situations is that students “learn something”. “To learn
something” is very vaguely stated and difficult to grasp, but the reason for this is, that it
is a hard task to define when somebody has “learned something”. To characterise some
knowledge as “learned” or “available” different aspects have to be taken into account.
Students need to be familiar with both the objects (definitions, properties, and theorems)
but also the “tool aspect” of the knowledge (how to use the mathematical concepts in
exercises etc.). Furthermore, the students need to be able to use their knowledge without
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specific guidelines on how to do it, and they have to be able to blend new knowledge into
their old knowledge (Robert, 2012).

The didactic transposition can be depicted like in Figure 1.

Scholatly knowledge % Knowledge to be taught % Taught knowledge 2 Learned knowledge

Figure 1 — The didactic transposition, simple version of illustration used in (Chevallard & Bosch, 2014, p. 171)

The first step describes the process of selecting from, transforming and transposing the
scholarly knowledge into the knowledge to be taught. In this step curricula, guiding writ-
ten exam problems, and textbooks are produced. Different people contributes to this pro-
cess, both scientist, teachers and those working with the design and production of curric-
ula. This group of people is called the noosphere. In other words, the noosphere is the
collection of people who “’think about teaching” and participate in the process of picking
out the mathematical subjects important and relevant to pupils or students at a given level
of education and the transformation of the scholarly knowledge into a degree of difficulty
that suits the target group (Chevallard & Bosch, 2014, p. 170).

The next step in the didactic transposition is made by the teachers and takes the
knowledge to be taught to the taught knowledge. The process comprises an interpretation
of the official documents and choices on the teaching material and teaching designs. It is
the process of organising and carrying out the teaching sessions through which the stu-
dents (hopefully) achieve the goals described in the curriculum. Though the starting point
—the knowledge to be taught — is the same for everyone in the same context of education,
the taught knowledge varies depending on the teacher and to some extend the students. It
depends on the focus in the chosen textbooks, the students’ abilities, etc.

The last step is a process that takes place in the students or groups of students and con-
cerns the transposition from the taught knowledge to the learned knowledge. It describes
how the students receive the taught knowledge and to what extend the knowledge is avail-
able to them afterwards.

The arrows go both left and right in the diagram. The reason for this is that students and
teacher may influence the production of the curriculum. An example of the mutual influ-
ence is the modern mathematics that was implemented in the curriculum of mathematics
in a lot of European education systems in 1970°s and 1980°s. The modern mathematics
renewed and reformed mathematics into a more abstract and formal discipline. The main
reason for this was to reduce the gap between university mathematics and high school
mathematics. A problem was, that the modern mathematics caused both students and
teachers a lot of trouble. As a consequence, mathematics was changed gradually during
the following years. This time from an abstract to a more concrete and application-ori-
ented approach.

12



The didactic transposition can be divided into two — the external and the internal didactic
transposition. The external didactic transposition is a name for the first step in Figure 1.
It is the transformation from the scholarly mathematics to the school subject mathematics.
The internal didactic transposition is the second step in Figure 1. It describes the adjust-
ments made by the teacher, when the mathematical knowledge described in the curricu-
lum is organised in a way that fits the respective group of students.

This division shows both the division in the people involved in the two processes, but
also that the interface between the players in the two processes is often very small. The
teachers do most often not focus on how the scholarly knowledge is selected, transformed
and transposed into the curriculum. This is in spite of the fact that the creation and organ-
isation of curricula are often influenced by tradition and practical reasons more than di-
dactical or intrinsic mathematical reasons (Winslgw, 2006, p. 19).

The mathematical topic of interest in this thesis is vectors. Both the external and internal
didactic transposition of this topic will be treated. Roughly, the external didactic transpo-
sition of vectors will be covered by section 3, while the internal didactic transposition of
vectors will be covered in the second (the empirical part) of the thesis.

The next subsection will describe the framework in which the mathematical organisation
of the knowledge on vectors will be analysed; praxeologies.

2.3 Praxeologies

In ATD “mathematics is seen as a human activity of study of types of problems.” (Barbg,
Bosch, Espinoza & Gascon, 2005, p. 236). The first step in mathematics education re-
search is to construct a model of the mathematical activities that includes both the practi-
cal and theory-based ones. The notion of praxeologies provides a model for these activi-
ties in the framework of ATD. The aim for a praxeological description of knowledge is
to combine practical and theoretical aspects in one model. The word praxeology is built
from the words ‘praxis’ and ‘logos’. Here ‘praxis’ is referring to the “know-how” relating
to the subject and ‘logos’ is the theoretical thinking and reasoning behind and the dis-
course on it.

A praxeology is composed of two blocks — a praxis block and a theoretical block — and
each block is again divided into two parts.

The praxis block contains information about the practical part of a subject. This infor-
mation is divided into “types of tasks™ and “techniques”. “Types of tasks” are the different
kinds of problems and the “techniques” are the “ways of solving” the problems or in a
broader sense “ways of doing” (see Figure 2 (a)).

The ‘logos’/theoretical block gives justification to and theoretical description of the
praxis block. The two parts are “technology”, which is discourse on the techniques in the
praxis block, and “theory” that is the theoretical foundation of the “technology” part of
the block (see Figure 2 (b)).

13



Praxis Logos

Tvpes of tasks Technology
Techniques Theory
(@) (b)

Figure 2 — Structure of a praxeology

The interrelation between and the mutual dependence of the two blocks is described by
Chevallard in the following: “[...] no human action can exist without being, at least par-
tially, “explained”, made “intelligible”, “justified”, “accounted for”, in whatever style of
“reasoning” such an explanation or justification may be cast. Praxis thus entails logos,
which, in turn, backs up praxis” (as cited in Bosch & Gascon, 2014, p. 68).

Praxeologies are useful to model mathematical activities in particular, but they can also
be used to model other activities, e.g. the didactical activity of creating and describing a
mathematical praxeology. Especially the mathematical praxeologies are useful for this

thesis, and they will be described more thoroughly in the following.

2.3.1 Mathematical praxeologies
A mathematical praxeology is, like any other praxeology, divided into the four T’s: “types
of tasks”, “techniques”, “technology” and “theory”.

The “types of tasks” are denoted with T and the techniques are denoted with t. Together
they constitute the praxis block. The logos block is composed of the technology part,
which provides a discourse of the techniques 7. This is denoted with 6. The technology
6 is justified by the theory in the logos block. The theory is denoted with ©. The praxe-

ology can now be written in a very compact way: [T, t, 8, 0] (see Figure 3).

Praxis [T, 7] Logos [6, 0]
Tvpes of tasks Technology
T g
Techniques Theory
T (5]

Figure 3 - Structure of mathematical praxeology
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The praxis block is determined by the techniques, i.e. the types of tasks T in a praxis block
Is determined by the technique 7. For example the task t € T (shown in Figure 4) can be
solved by the three different techniques, 4, %, and 7¢ (also shown in Figure 4).

t:Foru = (_21) and

L=

) determine u + v

74: Algebraic technique

7%: Geometric technique

=

7¢- Computer assisted technique

Figure 4 — Task, t, and different techniques,z4, ¢, and t¢

The task t is contained in three different praxis blocks, [T4,t4], [T¢,7¢], and [T¢, t¢].
Each of these contains other tasks that can be solved by the three techniques respectively.
For example both [T4,74] and [T¢, T¢] contains the task shown in Figure 5.

1
. -_ (2 5
ty:Foru = 3 and v =
4

4
(g) determine it + v
1

T4 Algebraic technique Uy vy u; + vy
T I T N I I I o -
1 _<u;)’p_<v3)= t+v= ug + vs . and u

Uy Vy ty + 1y

t°: Computer assisted technique

S e e e W —

utv

= bd s L

o

(%]

Figure 5 — Task t;
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Also the task shown in Figure 6 is contained in [T4,74] and [T¢, t¢].

ITH . (1 S .
rz:qu=(u)andv=( )dete:rmmeu-l—u
1
2

t4: Algebraic technique 3 (u )} 3 (T':'i) N S Gj 1 zj)

t¢: Computer assisted technique [

|12

v

~

Vo

wi+vl

u2+v2?

Figure 6 — Task t, € [T, 74],[T,t¢] but & [T, 7]

Neither ¢, nor t, are contained in the praxis block [T, 7¢], since neither four dimensional
vectors nor abstractly given vectors can be drawn in a coordinate system. On the other
hand, the task shown in Figure 7 is contained in [T, %] but neither [T, 74] nor [T, 7¢].

. . = 5 —
ty: Given geometrical vectors v and v determine u 4+ v

Bl
=e

1% Geometric technique

Figure 7 — Task t3 € [T, %] but & [T, 4], [T, 7¢]

The task t5 is neither contained in [T, t4] nor [T, t¢] since the algebraic and computer
assisted techniques cannot handle geometric vectors independent of coordinate systems.

A praxeology is sometimes called a mathematical organisation (henceforth abbreviated
as MO). Different praxeologies that contains the same type of task can be collected, and
the collection will be called a punctual MO. All the praxeologies in a punctual MO have
the same technique. If different punctual MO’s are described by the same technology,
they can be collected, and the collection is called a local MO. If again some local MO’s
share the theoretical discourse, the can be collected, and the collection is called a regional
MO.

A praxeological analysis of the mathematical topic vectors will be made in section 3 and
presented as the ERM in section 4.
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The next section will describe the design/analysis model Study and Research Path, that
will be used in the empirical part of this thesis.

2.4 Design model: Study and Research Paths

ATD provides a model for designing and analysing teaching that is called study and re-
search paths (henceforth abbreviated as SRP). The model is, like the whole theory itself,
introduced by Chevallard and the central point in the model is to focus on the degree of
autonomy with which the students work. This is due to the assumption most didacticians
agree on: that learning is not a process of transferring knowledge from teacher to student
but instead the process of constructing knowledge — a process taking place within the
individual student (Winslgw, 2006, p. 105).

An important feature of the model is, that it differentiates between the process of “study”
and the process of “research”. The “study” part is referring to the process of consulting
and investigating already existing knowledge. This relates to the idea and assumption in
ATD that teaching is taking place in an institutional setting, where a lot of knowledge is
already provided to the students through books, the Internet etc. The “research” part is,
on the other hand, problem solving activities, where the students work with exploration
of challenging problems.

Studies show that “study” is often given a low priority compared to the “research” part,
and that students in research activities most often work with problems raised by the
teacher (Winslgw, Matheron & Mercier, 2013). As a design model, SRP proposes that
more focus is laid on the “study” part, since this encourages students to work with a higher
level of autonomy than they normally do, when they work in the “research” phase with
questions posed by the teacher.

As an analysis tool, the model can be used in any kind of teaching situation where the
students work with questions posed by either themselves or (as is most common) the
teacher. The notion SRP then refers to the paths that students follow, when they work
with the questions through study and research.

When using the model as a designing tool the outcome are teaching sequences that are
called SRPs. The purpose of the SRPs is to encourage the students to work autonomously
with questions posed by themselves instead of the teacher. These SRPs are motivated or
generated by a question that is called the generating question. To decide whether a ques-
tion is qualified as a generating question, the teacher must conduct an a priori analysis of
it. During this analysis, the teacher puts herself in the place of the students, and tries to
figure out how they would work with the question. The a priori analysis includes an anal-
ysis of the media that can help the students to answer the question, and in the end a de-
scription of the path of sub-questions, derived questions, partial and final answers the
students are expected to pose. The a priori analysis can also be used to refine the gener-
ating question and to estimate the possible learning outcome.
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A SRP (here in the meaning of a teaching sequence) can be used for different purposes
and have different learning goals for the students. It can be conducted in an interdiscipli-
nary setting or in a monodisciplinary setting. Often generating questions in interdiscipli-
nary SRPs are more open while generating questions in monodisciplinary SRPs are more
targeted.

The advantages of an interdisciplinary SRP with an open generating question are far-
reaching. The question can seem more relevant, realistic and motivating for the students
to work with and it will potentially combine different disciplines in a way that reflects
how “real” scientific work is conducted. On the other hand, the predominant disadvantage
Is that open SRPs demand a huge overview from the involved teacher/teachers (often the
interdisciplinary reach out of the field that a single teacher master, and therefore more
than one teacher have to be involved), but it can also be very hard to predict the directions
for the students’ paths.

On the other hand, the more targeted, and potentially monodisciplinary, SRPs are more
useful in everyday teaching, since they can lead the students towards the knowledge that
is prescribed in the curriculum. Though the generating questions for targeted SRPs are
more focused they can still be large such that they will call for derived questions and
partial answers. This will potentially show off the interrelation and connection between
the topics that often appear separated or disconnected when they are taught in the classic
way, where topics are presented neatly in a row, one after the other.

When students work on a SRP, from a generating question @, they make one or more of
the following moves (Winslgw et al., 2013):

1. The activity of “study”, where already existing knowledge is examined. This can be
any “official” knowledge including books, the Internet and the knowledge that is availa-
ble from topics that have been studied prior to the SRP.

2. The activity of “research”, where the students create answers to the generating question
through their own reasoning. It is also the move where possible answers are justified, also
through reasoning.

3. Derivation of new questions, that comes in two categories:

a. Sub-questions, that give partial answers to Q. These are denoted Q,, Q- etc.

b. Derived questions, that can either be motivated by the original question or by an-
swers to the original question. The derived questions are not directly related to the
original question in the sense that an answer to a derived question does not con-
tribute to the answer to Q. Derived questions are denoted Q*.

Though the three moves are distinguishable, they are very rarely made separately, but are
closely linked. For example, the justification of an answer found in the study move has
to be justified by some sort of critical reasoning, while possible answers often will be
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posed in the “research” move after consulting existing knowledge in the “study” move.
New questions will most likely evolve from some sort of answers, e.g. answers to the
partial questions.

In the empirical part of this thesis the design format SRP is crucial. First of all, it has been
used in order to design a teaching sequence. This sequence has been tested empirically in
a test class, and the data that came out will be analysed in the light of the analysis model
SRP and the praxeological analysis of the mathematical organisation of vectors, that will
be carried out in the next section.

3. VVectors

In this section the praxeological organisation of the mathematical topic vectors will be
investigated. This includes both the scholarly knowledge, the knowledge to be taught, and
the interrelation between these two. Furthermore, the notion of vectors used in physics
will be investigated and included in this praxeological analysis in order to be able to de-
sign an interdisciplinary SRP on vectors in mathematics and physics.

The praxeological organisation found and described in this section will constitute the
foundation of the analyses in the empirical part of the thesis. In order to guide the inves-
tigations of the praxeological organisation of vectors in mathematics and physics and in
order to address the issues of lacking cooperation between mathematics and physics in
high school teaching, some research questions have been posed. These are presented in
section 3.1.

3.1 Research Questions (1)

As it was briefly mentioned in the introduction one of the issues that has motivated this
thesis is the interrelation of mathematics and physics, that is fruitfully practiced in the
scientific fields but almost never practiced successfully in high school teaching. Behind
this issue hides a complex structure of interrelations (see Figure 8). Here it is depicted
with the origin in the notion of vectors. The structure contains the relations between the
scientific fields of mathematics and physics, the high school subjects mathematics and
physics, the scientific field of mathematics and the high school subject mathematics, and
the scientific field of physics and the high school subject physics.

19



Scholarly knowledge Knowledge to be taught

Didactic transposition
Mathematics Vectors ( ) Wectors

7 7

Diidactic transposition
Physics Vectors < ) Vectors

Figure 8 — Four relations between scientific fields and school subjects (here regarding the topic vectors)

In addition to the four arrows in Figure 8, the development over time plays a role, since
neither the scientific fields nor the high school subjects have been static over time.

An analysis of the relations and their development over time, focusing on the organisa-
tion of vectors, will be the theoretical framework for the SRP-design in the empirical part
of the thesis.

In order for the analysis of the relations to be useful, some research questions have been
posed. These will serve the purpose of guiding the examination of the relations described
above. The questions are categorised in two categories. The first category deals with the
scholarly knowledge in mathematics and physics respectively and their interrelated de-
velopment. The second category deals with the knowledge to be taught in mathematics
and physics respectively and the historical development in mathematics and its relation
to physics. The research questions in the two categories are presented in Table 1.

Research questions 1 Research questions 2
RQ1 ;: How has the mathematical schol- RQJ ,: How has the knowledge to be
arly knowledge on vectors developed in | taught on vectors in mathematics devel-
relation to physics? oped in relation to the mathematical
scholarly knowledge?
RQ1 ,: How is the scholarly knowledge RQJ ,: How has the knowledge to be
on vectors organised in mathematics? taught on vectors in mathematics devel-

oped in relation to the knowledge to be
taught in physics?
RQ1 5: How is the scholarly knowledge | RQJ 5: How is the knowledge to be taught
on vectors organised in physics? on vectors currently organised in mathe-
matics?
RQj ,: How is the knowledge to be taught
on vectors currently organised in phys-
ics?

Table 1 — Theoretical research questions
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The research questions with the primary lower index number 1 will be treated in section
3.2 and the research question with the primary lower index number 2 will be treated in
section 3.3. The research questions have the upper index number I, which is there to dis-
tinguish them from the research questions that will be posed in the empirical part of the
thesis. These research questions will have the upper index number I1.

3.2 The scholarly knowledge on vectors

This section will give answers to the research questions RQ1 ;, RQ1 5, RQ1 5. Section 3.2.1
will deal with RQ1 ;, and it will focus on how a theory of vector analysis developed on
the border of mathematics and physics. Another focus is the interplay between the geo-
metric and the algebraic approaches.

Section 3.2.2 will deal with RQ1 , focusing on the difference between R?/R* and arbi-
trary abstract vector spaces. Furthermore, a few physical applications of vector spaces
different from R?/R3 will be mentioned.

Section 3.2.3 will deal with RQ{ 5 and describe how the theory of vector analysis is used
in physics. Again the interplay between the geometric and the algebraic approaches to the
theory of vectors plays an important role.

3.2.1 Historical perspective
The notion of vectors has a long story that has played out on the border of mathematics
and physics. Some of the important contributions will be described in the following.

The parallelogram of forces

In physics, the need for a theory on vectors emerged in the seventeenth century from an
increasing interest in new physical quantities such as force and velocity (Crowe, 1967, p.
1). These quantities are what we nowadays call vector quantities. Beforehand, the notions
of main interest were, what we now call scalar quantities, such as mass and distance. The
“new” quantities differ from the old ones by having both magnitude and direction. As
early as in the ancient Greece, velocities were composed by the use of the “parallelogram
of velocities” (see Figure 9).

Vs

Figure 9 — The parallelogram of velocities. v, and v, being the components and v,.; being the resulting velocity
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In the seventeenth century the parallelogram was very common in publications as a
method for composing (or adding) vector quantities. However, this did not mean that
everyone at that time was aware of the vector theory that was hiding behind it and it is
very unlikely, that the idea of the parallelogram of velocities or forces stimulated further
works on vectors. Though the idea did not directly entail any results, it had an important
influence, since it is an obvious example that vector theory can be used to model physical
tasks (Crowe, 1967, p. 2). In this period, the “vector property” of interest was primarily
addition, and the fact that the sum of two vectors were again a vector. Furthermore, it is
remarkable that the approach at this time was entirely geometric.

In this initial stage, vector addition appeared as a technique in the praxis block of the
praxeological organisation of the physical knowledge on composition of vector quantities
(see Figure 10).

T: What 1s the resulting force, F on a particle acted on by the two forces F; and F,7

tPoF - “The parallelogram of forces™ | = _,  pgp======-=

—
F,
“

Figure 10 — Praxis block including geometric vectors in the technique

The theoretical block consisted of empirical results showing that velocities/forces was
composed by this rule.

Leibniz and a geometry of situation

Another important contribution to the development of a theory on vectors came from the
German mathematician and physicist Gottfried Wilhelm Leibniz (1646-1716), who con-
cerned himself with the problem of constructing a geometry of situation. The idea was to
create a system that would make spatial analysis easier and more direct. He was looking
for a mathematical system that would do for “situation” (as he wrote) what algebra did
for magnitude (Crowe, 1967, p. 3). Leibniz’ attempt to define vector-like objects was
based on congruence of sets of points. The basic idea was to identify sets of points having
some fixed distance to each other. Some of the geometric objects, that Leibniz was using
his new premature vectors to operate on, were planes, lines and spheres. Leibniz can be
said to have constructed a system in which coordinates plays an important role, and the
pioneering idea was that geometric entities were represented by symbols. From these
symbols calculations should be carried out algebraically. Though the idea was great, Leib-
niz’ system had some flaws, when it is compared to the modern system of vectors. Leib-
niz’ objects could neither be added nor subtracted nor multiplied, and these are important
properties for the system to be useful. Though Leibniz did not manage to accomplish this
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project, his ideas motivated and inspired other mathematicians to work on similar ideas
(Crowe, 1967, pp. 4-5), which is why his attempt deserves to be mentioned here.

In terms of praxeologies, Leibniz searched for techniques to solve geometric tasks. The
technology and theory were supposed to build on the new objects that he wanted to de-
velop. However, his theory, and thereby technology, did not provide efficient techniques
for all the relevant problems (e.g. addition, subtraction, and multiplication).

Geometrical representation of complex numbers: Wessel and Gauss

Most of the following work on vectors was related to complex numbers and the justifica-
tion and representation of these (Crowe, 1967, p. 5). A lot of mathematicians worked on
this matter, among others Caspar Wessel (1745-1818), a Norwegian/Danish mathemati-
cian, and the German mathematician/astronomer/physicist/geodesist Carl Friedrich
Gauss (1777-1855). Wessel and Gauss did both discover a geometric representation of
complex numbers around the millennial change, but Wessel’s publication was not noticed
until its republication in French 100 years later. From Wessel’s memoir it appears that
the question he was working with was the following (as cited in Crowe, 1967, p. 6):

How may we represent direction analytically; that is, how shall we express
right lines so that in a single equation involving one unknown line and oth-
ers known, both the length and the direction of the unknown line may be ex-
pressed.

Wessel dealt, among other things, with the addition of straight lines. He stated the fol-
lowing (as cited in Crowe, 1967, p. 7):

Two straight lines are added if we unite them in such a way that the second
line begins where the first one ends, and then pass a right line from the first
to the last point of the united lines. This line is the sum of the united lines.

What Wessel provides here, is a technigue for solving tasks as shown in Figure 11.

t: Determine the sum of the two directed line segments

NG

5" Geometric technique provided by Wessel

Figure 11 — Task solvable by the technique 7¢W
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As mentioned, Gauss worked on the justification and representation of complex numbers
just like Wessel did. By virtue of his well-established name in the mathematical commu-
nity, Gauss managed, contrary to Wessel, to publish and spread his idea in 1831. Gauss’s
main focus was on the chase for a concept similar to the geometric representation of com-
plex numbers, that could be used to describe and work with geometry in three dimensions
(Crowe, 1967, pp. 8-9).

Hamilton and quaternions

Different mathematicians searched for the mathematical entities that could represent
“higher dimensional complex numbers”, but one of the most successful and earliest at-
tempts was provided by the Irish mathematician and physicist William Rowan Hamilton.
He was looking for numbers (in the beginning triplets, corresponding to the tuples that
described ordinary complex numbers) that he hoped had some specific properties. The
properties that he looked for are described in the following (Crowe, 1967, p. 28):

1. The associative property for addition and multiplication. Thus if N, N’
and N"' are three such numbers, then N + (N' + N'") = (N + N') + N"" and
N(N'N") = (NN")N"".

2. The commutative property for addition and multiplication. N + N’ =
N+ Nand NN' = N'N.

3. The distributive property. N(N' + N"") = NN' + NN".

4. The property that division is unambiguous. Thus if N and N’ are any
given complex numbers, it is always possible to find one and only one num-
ber X (in general, a number of the same form as N and N') such that NX =
N'.

5. The property that the new numbers obey the law of the moduli. Thus if
any three triplets combine so that

(a1 + bll + Clj)(az + bzl + Czj) = a3 + b3l + C3j
then
(a2 + b? + c?)(a3 + b3 + c2) = (a3 + b3 + c2)

6. The property that the new numbers would have a significant interpretation
in terms of three dimensional space.

These properties are all satisfied by “two-dimensional” complex numbers except from
the last one. Instead it satisfies the corresponding property, that is has significant inter-
pretation in terms of two dimensional space. The above can be read as a first sketch of the
axioms that Hamilton thought that a system of vector analysis should obey. Instead of a

24



system of triplets, Hamilton discovered the quaternions, that are elements of the form
w + ix + jy + kz. This is a system of quadruples that obeys all the above properties ex-
cept from the commutativity of the multiplication. Hamilton named the real part, w, the
scalar of the quaternion and the imaginary part, ix + jy + kz, the vector of the quater-
nion. He denoted a quaternion Q in the following way: Q = SQ + VQ, read as the qua-
ternion equals the sum of the scalar part of the quaternion (SQ) and the vector part of the
quaternion (VQ). Hamilton demonstrated the use of the symbols in an example: If two
quaternions are given, @ = xi + yj + zk and a’ = x'i + y'j + z'k (both scalar parts are
0), then S.aa’' = (xx'+yy' +zz') and V.aa' =i(yz' —zy') +j(zx' —xz") +
k(xy" — yx"). These two parts correspond to the negative of the modern scalar product
and the modern vector product respectively (Crowe, 1967, p. 32).

Compared to the scalar product and vector product in modern vector theory Hamilton’s
quaternions are simpler, because for the modern scalar product, the associative law for

multiplication is not relevant, since a - b - ¢ does not make any sense and neither the
fourth nor the fifth axiom are satisfied by the modern vectors. Regarding the modern
vector product, both the associative and the commutative properties, and again the fourth
and fifth axiom are not satisfied. Though the quaternions are simpler (in the sense that
they satisfy more of the “wanted” properties) than modern vectors, they are also less in-
novative. In Hamilton’s work, the axioms that the vector analysis was wanted to obey
were the most important guidelines. In this period vectors were mostly represented alge-
braically instead of geometrically, though they were used for geometric purposes.

Grassmann

Simultaneously with Hamilton the German mathematician and physicist Hermann Gun-
ther Grassmann (1809-1877) developed another system of vector analysis. Though the
Grassmannian vector analysis has major similarities with the modern vector analysis, and
he demonstrated its usefulness in physical applications, his work was not spread and ap-
preciated by his contemporaries. This is mostly due to the fact that he did not have a name
in the mathematical community back then, but also because his principal work on vector
analysis had a very complex, abstract, and philosophical structure, which made it difficult
to read, even for mathematicians.

Grassmann’s ideas of vector analysis was briefly introduced in the essay Theorie der
Ebbe und Flut that he wrote as a part of his application for a position as a teacher at the
University of Berlin in 1840. Four years later, in 1844, the ideas were elaborated and
published in Ausdehnungslehren.

From the preface of Ausdehnungslehren it is revealed how the inspiration to the theory
comes from geometric considerations (as cited in Crowe, 1967, p. 56):

The first impulse came from the consideration of negatives in geometry; |
was accustomed to viewing the distances AB and BA as opposite magni-
tudes.
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This shows that though Grassmann’s ideas initially showed up in a more physical work
on tides, his ideas were originally purely geometric in nature.

The most fundamental operation in Grassmann’s system of vector analysis is addition.
The sequence of thoughts that led to the definition of addition is described in the preface
of Ausdehnungslehren in the following way (as cited in Crowe, 1967, pp. 56):

Avrising from this idea was the conclusion that if A, B, C are points of a
straight line, then in all cases AB + BC = AC, this being true whether AB
and BC are directed in the same direction or in opposite directions (where C
lies between A and B). In the latter case AB and BC were not viewed as
merely lengths, but simultaneously their directions were considered since
they were oppositely directed. Thus dawned the distinction between the sum
of lengths and the sum of distances which were fixed in direction.

From this idea addition is defined similarly for distances that are not necessarily directed
in the same or opposite directions.

Also multiplication of vectors is dealt with by Grassmann. Like in the modern vector
analysis his system contains two different products. To Grassmann the geometric product
of two vectors (similar to the modern vector product) is the most important compared to
the linear product of two vectors (similar to the modern scalar product). The geometric
product is defined in the following way (as cited in Crowe, 1967, p. 61):

By the geometrical product of two vectors, we mean the surface content of
the parallelogram determined by these vectors; we however fix the position
of the plane in which the parallelogram lies. We refer to two surface areas as
geometrically equal only when they are equal in content and lie in parallel
planes.

This product is similar to the modern vector product in a couple of ways, but is does also
have one important difference. The numerical value of the two products are the same, and
they will also have the same sign in both Grassmann’s and the modern vector analysis.
Furthermore, they are both distributive and anti-commutative. The difference between the
two is the nature of the product. In the modern vector product, the result is again a vector,
but the result of Grassmann’s geometric product is a directed area (Crowe, 1967, p. 62).

The product that corresponds to the modern scalar product in the Grassmannian theory
is called the linear product. It is defined in the following way (as cited in Crowe, 1967,
p. 63):

By the linear product of two vectors we mean the algebraic product of one
vector multiplied by the perpendicular projection of the second onto it.
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These two products provide some techniques that are similar to modern ones. However,
the logos block of the praxeological organisation of the modern vector product is different
form the logos block of Grassmann’s geometric product. The praxeological organisations
of the modern scalar product and Grassmann’s linear product are very similar.

As mentioned Grassmann’s ideas were initially presented in a physical application in
connection with his study of tides. This might have affected the process of development
that the vector analysis went through, though Grassmann’s ideas were initially mathemat-
ically motivated (Crowe, 1967, p. 60). In the preface to Ausdehnungslehren Grassmann
described how he had managed to carry out the calculation in Lagrange’s publication
Méchanique analytique (a work that he had studied in connection with his own Theorie
der Ebbe und Flut) ten times shorter with his new analysis. He stated the following about
the usefulness of his theory (as cited in Crowe, 1967, p. 57):

[...]I feel entitled to hope that I have found in this new analysis the only
natural method according to which mathematics should be applied to nature,
and according to which geometry may also be treated, whenever it leads to
general and to fruitful results.

Grassmann provided new techniques to solve some of the tasks that had been solved by
other, and more extensive, methods before.

Though Grassmann was influenced by both physics and geometry, his ideas were fun-
damentally different from both the “parallelogram of forces”-tradition and the “geomet-
rical justification of complex numbers”-tradition, since he did work conceptually on ad-
dition of lines, and not just taking a geometrically determined line (the diagonal) as a
representative of the resultant of two forces or representing the sum of two complex num-
bers as a line respectively (Crowe, 1967, p. 58). In Grassmann’s theory the notion vector
described the distances with fixed lengths, and these were the objects of interest, contrary
to Hamilton’s theory, where the object of interest was the quaternions, that contained the
notion of vectors.

Through his work with physical issues Grassmann did in addition develop vector calcu-
lus, and later in his career his system of vector analysis contributed to his work on elec-
trodynamics (Crowe, 1967). These are examples of how Grassmann’s work on vectors
and physics respectively was highly interrelated.

The modern vector analysis

The work on vector theory in the subsequent period was mostly inspired by Hamilton,
though Grassmann’s theory was equally well-developed. This was most likely because
Hamilton was more established as a mathematician than Grassmann. In the period from
1865 to 1880 different mathematicians worked on Hamilton’s ideas, and one of the most
important contributions came from the Scottish mathematician Peter Guthrie Tait (1831-
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1901) who focused on a development of quaternions as a tool for research in physics
(Crowe, 1967, p. 117).

Inspired by Tait’s work the Scottish mathematician and physicist James Clerke Maxwell
(1831-1879) developed and presented the theory of electricity and magnetism in his pub-
lication Treatise on electricity and magnetism in 1873, which is one of the most important
in physics in the 19" century. Maxwell presented his famous equations that describes
electromagnetism, using quaternionic notation, but he claimed that the quaternionic
method did not provide a satisfactory system. This opinion was shared by other mathe-
maticians, and from this viewpoint the quaternionic system was improved and the modern
system of vector analysis was developed on its foundation (Crowe, 1967, pp. 137-139).

The modern system of vector analysis is ascribed to the American mathematician Josiah
Willard Gibbs (1839-1903) and the English mathematician Oliver Heaviside (1850-
1925). These two developed two almost identical systems independently which is why
they both need to be mentioned. Gibbs introduced his work on the new theory in Elements
of vector analysis, that was published in two parts in 1881 and 1884 respectively. Gibbs
was a professor in mathematical physics at the University of Yale, and prior to the publi-
cation of his work, Gibbs had given a course in vector analysis with applications to both
electricity and magnetism (Crowe, 1967, pp. 153-154). Gibbs developed his system by
extracting essentials from among other Maxwell’s theory on quaternions, and he was
moreover inspired by Tait. It has also been discussed whether Gibbs had read Grassmann,
because his system is very similar to the Grassmannian, but this cannot be known with
certainty (Crowe, 1967, pp. 153-154).

The path of Heaviside’s development is almost identical to Gibb’s, which can also ex-
plain why the systems that they presented in the 1880’s were so similar. Like Gibbs,
Heaviside engaged in the study of electrical theory, and he got acquainted with quaterni-
ons and vectors through Maxwell’s Treatise on electricity and magnetism (Crowe, 1967,
pp. 160-162). The two very similar versions of vector analysis make up the Gibbs/Heav-
iside system.

By the middle of the 1880’s “vector analysis” was divided into two different approaches.
The first one was the quaternionic system introduced by Hamilton, and the other was the
Gibbs/Heaviside vector system, that had emerged from a mix of Grassmannian and Ham-
iltonian ideas. Pioneers from each of the two systems, vectors and quaternion, fought for
the diffusion of the respective approaches.

In 1910 the Gibbs/Heaviside vector system was dominating, which is why that version
is used today. All the work presented above was mostly dealing with Euclidean vectors,
meaning vectors in R? or R3. The theory was generalised and by the end of the nineteenth
century the modern definition of an abstract vector space was given by the Italian math-
ematician Guiseppe Peano (1838-1932), but the full development of the concept from an
axiomatic approach was not made until the twentieth century (Katz, 2009, p. 865).
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The praxeological view on the development has shown how vectors have been included
in different organisations. Some of them have been more physical and some of them have
been more mathematical. However, the outcome is a system of vector analysis for two
and three dimensional spaces that is defined with mathematical precision, and is used to
model countless physical situations e.g. in mechanics and electrodynamics. Figure 12
shows how the early traditions in the development of vectors are reflected in the modern
system of vector analysis.

Algebraic representation of geometry

(coordinate-based geometry) Properties/axioms

Needs in physics

Modern vector analysis and vector algebra { B?/R? ) Vectors
are elemets in a vector space (defined axiomatically). Vector
analysis and vector algebra is used to model both physical
vector quantities and geometrical problems

Figure 12 — The relation between the early traditions in the development of vectors and their relation to the modern
vector analysis

The development of vectors is, as described in the introduction, only one of the numerous
examples of a very close and fruitful interrelation between mathematics and physics. A
study of the interrelation between mathematics and physics, and the implications on the
teaching and learning of them is given by Constantinos Tzanakis. His study provides three
scenarios in which a development of concepts in mathematics and physics can happen.
The first of these is defined in the following way (Tzanakis, 2016, p. 4):

Parallel development: The physical problems asking for solution and the
formulation of appropriate mathematics (concepts, methods, or theories)
evolve in parallel.

This is almost an exact description of what happened during the development of vector
analysis.

The didactical implications, that this interrelation should have, according to Tzanakis
are the following (Tzanakis, 2016, p. 3):

[...] learning mathematics or physics includes not only the “polished prod-
ucts” of the associated intellectual activity, but also the understanding of im-
plicit motivations, the sense-making actions and the reflective processes of
scientists, which aim to the construction of meaning.

This citing provides justification for this thorough review of the development of vectors
in relation to the purpose of this thesis.
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3.2.2 Definition and applications

The purpose of this section is to answer RQ] , about the mathematical organisation of the
scholarly knowledge on vectors (MOgcpoiqriy). The introductory move in the examination
of the organisation of the scholarly knowledge will be a description of the algebraisation
of mathematics, since this have affected the development of the theory of vectors heavily.

The development of mathematical vectors is only one example of the algebraisation of
mathematics. The general process has been studied by, among others, the American his-
torian Michael Sean Mahoney (1939-2008). He describes the algebraisation of mathe-
matics as the transition from “an old, traditional, geometric mode” to “a new, in many
ways revolutionary, algebraic mode.” (Mahoney, 1980, p. 1). The algebraic mode is de-
scribed by three characteristics: (1): “Characterised by the use of an operative symbolism,
that is, a symbolism that not only abbreviates the words but represents the workings of
the combinatory operations, or, in other words, a symbolism with which one operates”,
(2) “Deals with mathematical relations rather than objects. [...] The subject of modern
algebra is the structures defined by relations [...]”, and (3) “It is free of ontological com-
mitment. Existence depends on consistent definitions within a given axiom system, and
mutually compatible mathematical structures live in peaceful co-existence within mathe-
matics as a whole. In particular, this mode of thought is free of the intuitive ontology of
the physical world”. Furthermore, it is characterised as an “abstract mode of thought, in
contrast to an intuitive one” (Mahoney, 1980, p. 1).

The French mathematicians Francois Viéte (1540-1603) and René Descartes (1596-
1650) were two of the pioneers of the algebraisation. One of the findings, that can be
ascribed to the algebraisation, is complex numbers. In the beginning algebra was about
“relations among quantities” in a new symbolic form, but it changed into being about
“relations among other objects of knowledge” (Mahoney, 1980, p. 7).

The algebraisation is relevant to consider in many different mathematical fields, but one
of them is the development of vector algebra. Regarding vectors, the algebraisation has
two levels. The first level is constituted by the motivation for the development of a vector
analysis. Among others Leibniz, Gauss, Hamilton, and Grassmann were motivated by a
wish to develop a mathematical model of geometry, containing objects that could be op-
erated on directly. This level corresponds to the two characteristics (1) and (2) in Ma-
honey’s description and it was one of the focus points in the previous section. On the
second level the properties of the vector spaces R? and R3 are generalised, and the axio-
matic definition of an abstract vector space is given. This level corresponds to the char-
acteristic (3) in Mahoney’s description, and the process of generalising the theory and the
connection between the special cases R? /R3 and a general vector space will be the main
subject below.

When Peano gave the definition of an abstract vector space, the study of vectors and their
properties changed from concerning only two and three dimensional Euclidean vectors
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(those that can be represented as tuples or triplets of numbers, or geometrically as arrows)
to concerning elements in any space that satisfy the abstract definition. Taking the scalars
from a field F, the definition reads as follows (Halmos, 1958, pp. 3-4):

DEFINITION: A vector space is a set V of elements called vectors satisfy-
ing the following axioms.

(A) To every pair, x and y, of vectors in V there corresponds a vector x + y,
called the sum of x and y, in such a way that

(1) addition is commutative, x + y = y + x,
(2) addition is associative, x + (y + z) = (x + y) + z,

(3) there exists in V a unique vector 0 (called the origin) such that x + 0 =
x for every vector x, and

(4) to every vector x in V there corresponds a unique vector - x such that
x+(=x)=0

(B) To every pair, a and x, where « is a scalar and x is a vector in V, there
corresponds a vector ax in V, called the product of a and x, in such a way
that

(1) multiplication by scalars is associative, a(8x) = (af)x, and
(2) 1x = x for every vector x.

(C) (1) Multiplication by scalars is distributive with respect to vector addi-
tion, a(x + y) = ax + ay, and

(2) multiplication by vectors is distributive with respect to scalar addition,
(a + B)x = ax + Bx.

As described in the previous section, the whole axiomatisation was initially motivated by
the study of Euclidean vectors, which obviously satisfies the axioms. These are elements

a
in R% or R3 respectively, and can be represented algebraically by tuples, e.g. d = ( 1)

a,
by
ord=(a,a,)foraeR?orb = <b2> or b = (by, by, b3) for b € R3. Or they can be
bs

represented geometrically by arrows, either independent of a coordinate system (see Fig-
ure 13) or in a coordinate system (see Figure 14).
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Figure 13 — Geometrically represented vector independent of coordinate system

/I\
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>

Figure 14 — Geometrically represented vector in coordinate system

Other examples of mathematical vectors are functions in function spaces, that are added
pointwise and multiplied by scalars pointwise, or polynomial rings F[x], where the ele-
ments are polynomials:

f)=rg+rx+ -+ r_x™" 1 +rx"

with the ry,14, ..., 1, € F, where F is a field. The elements in these vector spaces are
hardly representable in any other way than the very abstract f € F[x] for example.

As it has been described in the previous section, the question of multiplication of vectors
was very important. Initially the motivation for the development of a vector analysis was
primarily a wish for a system to carry out spatial analysis. Therefore the vector space of
main interest was R3. On R3 two products can be defined, the scalar product and the
vector product. The scalar product of two vectors is, as the name reveals, not a vector but
a scalar. The scalar product is defined on every Euclidean space. The vector product of
two vectors is again a vector, but because of the geometric property of chirality it can
only be defined on the specific Euclidean vector space R3. In physics the important prop-
erty of the vector product ¥ x w is that it is perpendicular to both v and w. This property
is utilised in both rotational mechanics and electromagnetism.

In the theory of vector spaces the scalar product can be generalised, and the generalisa-
tion is called an inner product. The inner product is defined in the following way (Hal-
mos, 1958, p. 121):
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DEFINITION. An inner product in a (real or complex) vector space is a (re-
spectively, real or complex) numerically valued function of the ordered pair
of vectors x and y, such that

1) (x,y) = (%)
) (a1x1 + azxy,y) = ag(xg, y)taz(xz,y)
3) (x,x) 20; (x,x)=0ifandonlyifx =0

A vector spaces that has an inner product is called an inner product space. Since the scalar
product on R? and R3 satisfy the definition these are both inner product spaces. A well-
known feature of Euclidean vectors is that the angle between two of them can be meas-
ured, and that the scalar product can be used to calculate it. By Cauchy-Schwarz’ inequal-
ity the notion of “angle between two vectors” can be generalised to any of the Euclidean

spaces, R™ (Halmos, 1958, p. 126):
(2) In the Euclidean space IR™, the expression

(x,y)
x|l - Iyl

gives the cosine of the angle between x and y

In general, the inner product is used to define the length of a vector (Halmos, 1958, p.
121):
In an inner product space we shall use the notation
V& x) = lIxll;

the number ||x|| is called the norm or length of the vector x.

Likewise, for the distance between vectors (Halmos, 1958, p. 125):

(2) In any inner product space we define the distance §(x,y) = ||lx — y|| =
x—=y,x-y)

Since angles and orthogonality are closely related notions, the property that two vectors
can be orthogonal is also attached to inner product spaces only.
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The generalisation of Euclidean spaces to higher (possibly infinite) dimensions is uni-
fied in the theory of Hilbert spaces. The inner product-structure provides a sort of geo-
metric intuition to infinite dimensional vector spaces. Hilbert spaces have important ap-
plications in physics, e.g. in the mathematical description of quantum mechanics.

A description of the scholarly mathematical knowledge on vectors has been given. In the
view of this description RQ1 , about the organisation of the scholarly knowledge on vec-
tors in mathematics can now be answered.

Because of the algebraisation the scholarly knowledge on vectors in mathematics is or-
ganised around the algebraic properties addition of vectors and multiplication of a vector
by a scalar, which are the defining properties. In this organisation the vector spaces R?
and R3 are only a diminutive part of the whole theory (see Figure 15). However, the
structure of R?/R3, where a product of vectors (the scalar product) can be defined, has
been crucial in the generalised theory as well. The inner product structure generalises
some of the geometric properties that R? and R3 have. These geometric properties are
exactly the properties that make R? /R3 a suitable model for the plane/space. The gener-
alised inner product structure makes it reasonable to talk about geometric properties such
as length, angles, and distances in higher dimensions.

In R3 the vector product is an important property, but since it cannot be generalised it
does not have any pronounced position in the organisation of the scholarly mathematical
knowledge.

Vector space

Inner product space

Hilbert space

Rﬂ

- "

R | R

Figure 15 — Nested structure of vector space-properties

3.2.3 Vectors in physics
The purpose of this section is to answer RQ{ ; about the physical organisation of the
scholarly knowledge on vectors (POscpoiariy)-

Vectors are used to model physics in a lot of different fields. The initial application of
R3-vector analysis was in mechanics as a model for vector quantities such as velocity,
force, acceleration, etc. Later on, when the mathematical concept was further developed,
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vectors were applied in electromagnetism. In Table 2 some of the important algebraic
properties of R3-vector analysis are listed together with the physical applications of them.

Fes =F + F,

Algebraic prop- Physical appli- | List of symbols
erty cation
Mechanics
Scalar multiplica- F=m-d | F:theforce that implies the acceleration @ on
tion a particle/body with the mass m.
Vector addition UV =7y +7v, | V:the “resulting” velocity of a particle/body
d =a,+a, |havingvy asits horizontal velocity and vy as

its vertical velocity.

a: the “resulting” acceleration of a parti-
cle/body having a, as its horizontal accelera-
tion and a,, as its vertical acceleration.

Fo5: the resulting force on a particle/body
acted on by the two forces FT and E’

Scalar product W =F-AS | W:the work done by a force F on a parti-
cle/body over a displacement As.
Vector product L=#xp L: the angular momentum of a particle with
Z=7xXF linear momentum p rotating around an axis in
the distance 7 from it.
7: the moment of force on a particle caused
by a force F and the lever arm vector #
Electromagnetism
Vector product F=BxTI-1 |F:themagnetic force on a current-carrying
and scalar multi- wire of length [ carrying a current I in a mag-
plication in com- e =
bination netic field B
Vector product, | F F: the Lorentz force (combined electric and
vector addition = q(E + ¥ x B) | magnetic force) on a point charge g moving

and scalar multi-
plication in com-
bination

with velocity v in the presence of an electric
field E and a magnetic field B

Table 2 - Some applications of R3-vectors in physics

The table shows a selection of cases where vectors are used to model physical correla-
tions. It is the geometric properties of R3-vectors that are crucial in the modelling. For

example, the formula W = F-AS expresses the fact that it is only the component of the
force that is parallel to the displacement that contributes to the work. Another example

could be the formula F = B x I - I, where the geometric property of chirality of R?, ex-

pressed by vectors, is used to determine the direction of the force F.Asa consequence of
the general and abstract definition of a vector space, a mathematical R3-vector can be
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represented by infinitely many arrows all having a fixed length and direction. This prop-
erty is very crucial in mathematics. In physics, on the other hand, the geometric interpre-
tation of this property can be misleading, since the forces F; and F, on Figure 16 will
affect the block in two completely different ways, even though the arrows represent the
exact same mathematical vector.

Figure 16 — Two physical forces represented by the same mathematical vector

Another example of how the algebraic properties are less crucial than the geometric con-
sequences they imply in R3 is the property of commutativity of vector addition. Algebra-
ically this property is described by the following: v + W = w + v. However, the im-
portant implication of this property in physics is, that the red path (v followed by w,
written as v + w) and the blue path (w followed by ¥, written as w + ) on Figure 17 end
in the same place.

Wr

=l
oAl

W
Figure 17 - Physical interpretation of the commutative property of vector addition
As it has been mentioned, the more abstract Hilbert spaces are used in the modelling of
guantum mechanics. Since neither Hilbert spaces nor quantum mechanics are a part of

the high school physics curriculum nor in the scope of this thesis, the modelling of quan-
tum mechanics with the theory of Hilbert spaces will not be described further.

In physics vectors are found in the technique part of the praxis block in the praxeological
organisation. The technology part of the logos block will give a discourse on the model
that vector analysis provides. In physics the more theoretical parts of the theory of vector
analysis, such as the algebraic property of a vector space etc., are secondary. Instead it is
the geometric properties of R3 that makes it useful in the modelling of physical phenom-
ena such as force, velocity, acceleration, angular momentum, etc.
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3.3 The knowledge to be taught on vectors

This section will give answers to the research questions RQ3 1, RQ3 5, RQj 5, and RQ3 4,
which are all regarding the knowledge to be taught. Section 3.3.1 will deal with the his-
torical development of MOy, pe taugne Which includes both RQ;, and RQj,. From a
mathematical point of view, it will focus on how the theory of vectors is covered from
both a geometric and an algebraic point of view, and how this is reflected in textbooks
and written exam problems. From a more interdisciplinary view it will focus on the role
that physics has played in the mathematical organisation of vectors. Furthermore, some
sub-questions will be guiding the praxeological analysis:

RQZQ: How are vectors introduced and defined?

RQZ’Z: What types of tasks are found in the praxis block?
RQ2’3: What techniques are found in the praxis block?

Rszl: How is the theory part of the logos block organised?
RQ,¢: How do the MOty pe taugne differ from the MOscpoiariy?

Section 3.3.2 will deal with RQj ; where the crucial task is to answer the above sub-
questions in order to give a praxeological description.

Section 3.3.3 will deal with RQ%, focusing on how mathematics has generally been
heavily reduced in the organisation of the knowledge to be taught in physics the past
years.

About the structure of the analysis and the materials used

The analysis of the mathematical organisation of vectors will be divided into two periods;
the historical and the current. The historical period is taken to be the years from 1935 to
2005. The starting point is chosen to be 1935, because vectors did not appear in the math-
ematics curricula before this year. The year 2005 is taken as the end of the historical
period because the mathematical organisation of vectors in the 2005-curriculum is almost
identical to the mathematical organisation of vectors in the 2013-curriculum. These two
curricula are included in the current period, because the material that will give access to
the mathematical organisation of vectors in the 2017-curriculum is still very limited. Fur-
thermore, the 2005/2013-curricula are very similar to the 2017-curriculum, which is why
these are drawn into the analysis of the current mathematical organisation. The purpose
of the analysis of the historical period is to describe the development of the mathematical
organisation. Therefore, the analysis of the historical period is again divided into smaller
periods. The periods are bounded by the years that the Danish high school changed re-
form, i.e. the first period is 1935-1953, because the Danish Ministry of Education passed
a high school reform in 1935 and again in 1953.
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The material that will be used in the analyses are the official documents describing the
curricula, and the guidelines for interpretation of the curricula (these have only been ac-
cessible for the years 2013 and 2017). Additionally, the written exam problems that re-
lates to the theory of vectors will be used in the description of the mathematical organi-
sation of vectors, since these will enlighten (especially) the praxis blocks in the respective
praxeological organisations. For the questions about the more theoretical organisation
textbooks will be used. For each period, the textbooks that were predominant and/or char-
acteristic for the period are drawn in. Since the written exam problems are comparable
across reforms it has seemed reasonable to give a review of the findings in the written
exam problems that include vectors before the presentation of mathematical organisation
of vectors in the respective periods.

The historical development of the mathematical organisation of vectors will be treated
in section 3.2.1 and the current mathematical organisation will be treated in section 3.2.2.
Both sections will include the links to physics that might be mentioned in both curricula,
guidelines for interpretation of curricula, written exams, and textbooks.

The analysis of the organisation of vectors in physics is also divided into the same two
periods as the analysis of the organisation in mathematics. In physics the material is un-
fortunately highly restricted, mostly because the material has not been as easy accessible
as the corresponding material in mathematics. The official documents that have been
available are curricula from 2013 and 2017, together with the guidelines for interpretation
of the curricula, and the written exams from the period 2010-2017. A few textbooks from
the historical period will be drawn into the analysis of the organisation of vectors in phys-
ics. The analysis of the current organisation of vectors will only include one textbook.

The historical development of the organisation of vectors in physics will be treated to-
gether with the historical development of the organisation of vectors in mathematics in
section 3.3.1 and the current organisation in physics will be treated in section 3.3.3. Sec-
tion 3.3.3 will include the links to mathematics that will be mentioned in both curricula,
guidelines for interpretation of curricula, and textbooks.

3.3.1 Historical development

A French study conducted by B. A. Cissé and Jean-Luc Dorier in 2014 (Cisse & Dorier,
2014) that covers the period from 1852-2002 have showed how vectors have moved from
the border of mathematics and physics into a more algebraic context, focusing on the
axiomatic structure of R? /R3, with applications in geometric problems. A similar transfer
can be observed in a Danish context and it will be enlightened throughout the following.
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General structure of the written exam problems

Vectors have appeared in written exams since 1966. Across reforms the vector problems
that appear in the written exams can be divided into three categories that are listed and
described in Table 3.

Category Description
Analytical-geometrical vector-problems | Problems regarding geometric configura-
tions that are coordinate-based. Vectors
are used in the formulation of the prob-
lem and required in the solution. The
problems can be two or three dimen-
sional. The geometric properties of the
vector spaces R?/R3 are utilised.

Vector algebra-problems Problems regarding vectors without con-
nection to a geometric configuration.
These problems are solved by purely al-
gebraic manipulations with vectors. the
algebraic structure of R?/R3 are utilised.
These problems can include coordinates
or they can be coordinate-free.

Vector function-problems Problems involving vector functions.
Table 3 — The three categories of written exam problems including vectors

In this thesis the last category will not be paid any attention because it is out of scope.
Instead a thorough examination of the two other categories will be given.

The category analytical-geometrical vector-problems contains a huge number of differ-
ent types of tasks that are solved by a lot of different techniques. Instead of listing all the
different techniques (as it is possible for the vector algebra-problems) it is more illustra-
tive to divide the analytical-geometrical vector-problems in subcategories depending on
the technology. These are presented and described in Table 4.

@' | The technology of techniques to determine intersections between e.g. two lines,
line and plane, two planes, or circle and line

64 | The technology of techniques to determine angles between e.g. two lines or two
planes

@f | The technology of techniques to determine the projection of e.g. point on line
@R | The technology of techniques to determine representations (equations and par-
ametric representations) of planes and lines, and determination of direction/nor-
mal vectors from equations or parametric representations of lines and planes
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0P | The technology of techniques to determine distance between e.g. point and
plane or point and line

0T | The technology of techniques to determine tangents and tangent planes

62 | The technology of techniques to carry out calculations on triangles and quad-

rangles (area of them and angles in them)
Table 4 — Technologies of techniques to solve analytical-geometrical vector-problems

Each of the local MO’s that are organised around the technologies in Table 4 contain
punctual MO’s organised around different techniques. The techniques that include vec-
tors are identical to techniques from the algebraic MO, and the technology provides a
discourse on the vector spaces R?/R3 as a model for geometric objects in R? /R3.

A further discussion and some examples of problems will be given in the sections about
the respective periods.

The other important category is vector algebra-problems. As it has been described above
the vector algebra-problems are divided into two subcategories; those that are coordinate-
free and those where coordinates are included. Both categories utilise some techniques
that are not restricted to vector problems. These techniques will be categorised as “ordi-
nary algebra” techniques and are found in Table 5.

Ordinary algebra techniques (no vectors)

74 Solve equation
T2¢d Solve two equations with two unknowns
r3¢d Solve three equations with three unknowns
gquadratic eq Solve guadratic equation
grertex of parabola Determine the vertex of a parabola by x = — %, y=— %
greduction Reduce an equation
g3rd degpol. Solve a third degree polynomial

Table 5 — ”Ordinary algebra’ techniques that do not involve vectors

Problems in the subcategory without coordinates can be solved by combining the tech-
nigues from Table 5 above and Table 6 below:

Vector technigques (no coordinates)

Use the distributive law of vector sum and scalar product. (d + 5) .
¢=da-c+d-c

Tdistributive(+,-)

7l Use the identity |d|? = d®(= d - d)
T Usethatd Lb < d-b =0
4ol Use the relation between scalar product, lengths of vectors and angle

between vectors. d - b = |d| - |b| - cos(v)
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Projll;

Use the relation between length of projection vector, numerical value
of the scalar product and the length of the vector that is projected on.

al = 57

TH of Lvector

|a]
Use the identity |a| = |d]

par|lz

Use the relation between the lengths of and the angle between the
two vectors that span a parallelogram. A, qraneiogram = 14l - |b| -
|sin(v)|

Table 6 — Techniques to solve vector algebra-problems with no coordinates

The problems in the second subcategory can be solved by combining the techniques in

Table 7.
Vector techniques (coordinates)
Tsum . ... a; b1> _ (al + bl)
Use the coordinate formula for addition. (az) + (bz =\a, + b,
dif ference . . a b —-b
T Use the coordinate formula for subtraction. (al) - ( 1) = <a1 1)
2 bz az - b2
scalar mult . e a k
T Use the coordinate formula for scalar multiplication. k (a;) = <k§1)
2

Tscalar prod

by

bz) = a1b1 + a2b2

a
Use the formula for the scalar product. (a;) . (

LI

Use that |d| = /a2 + a,?
A a s —a
T > 1 3 2
Use that a = (az) = a= ( ay )
Tproj . L — ba
Use the coordinate formula for the projection vector. b, = b ) =
az
a1b1+a2b2 . a’l
a12+a22 (az)
L a Lo b
t Use that (a;) =alb= (bl) S ajb; +azb, =0
[ a R b
T USE that (a;) =a ” b = (b;) (—4 a1b2 - a2b1 = 0
T ,
USE that a1b1 + azbz = \/ a12 + a22 " b12 + b22 - COS(U)
TA,det ,7
USE that a1b2 - a2b1 = \/ a12 + a22 " b12 + b22 - Sil’l(v)
Tdet Use the coordinate formula for determinant. det(d, b) = a;b, — a,b;
gparallelogram| |Jse the relation of the area of the parallelogram spanned by two vec-
tors and their coordinates. A, qraiieiogram = |@1b2 — az by |
1AB Use the coordinate formula for the vector from point A(a4, a,) to

. - _ b1 - a1
point B(by, b;). AB = (bz _ a2>

Table 7 — Techniques to solve vector algebra-problems with coordinates

41



Examples of problems, applications of the techniques, and a further discussion will be
given in the sections about the respective periods.

In the 2017-reform a new type of problems appeared in the guiding exam problems, where
the approach is a little more geometric, though the problems are not categorised as ana-
Iytical-geometrical vector-problems. Therefore, they have been put in the category with
the vector algebra-problems. Some techniques that can possibly be used to solve them,
are shown in Table 8.

Geometric techniques
- = — -+
u+v
— -+
/ {\
u
ggeom scal mult — /
/ k u
"u
keR

Table 8 — Geometric techniques to solve the vector-algebra problems with a more geometric approach

1935-1953

During this period vectors were included in the curriculum, but they did not appear in the
written exams. The curriculum was divided into two, arithmetic and plane geometry (in
a broader meaning of the word arithmetic including also naive algebra, e.g. equations)
and stereometry (spatial geometry) (Petersen & Vagner, 2003, pp. 187-188). Each part
contained a list of the topics that should be covered, and under arithmetic and plane ge-
ometry the two topics “The composition and decomposition of vectors” and “Velocity in
linear and curvilinear movement (in the plane). Acceleration in linear and circular move-
ment” (as cited in Petersen & Vagner, 2003, p. 188) appear. The second of them is con-
tained in kinematics, and will also be found in the physics curriculum rather than in the
mathematics curriculum nowadays. A similar organisation was detected in France in the
beginning of twentieth century (Cissé & Dorier, 2014, p.3).

The introduction of, motivations for, and definition of vectors will be described in the
view of the textbook “Larebog i matematik”, that was prevalent in that time (Petersen &
Vagner, 2003, p. 193). Unfortunately, the first edition from 1937 have not been accessi-
ble. Instead the fourth edition, from 1949, is used.

The last chapter in the first book was dedicated to vectors. The opening example, that
introduces and motivates the notion of vectors, comes from physics (Juul & Rgnnau,
1949, p. 216):

,l.geom sum

rgeom diff
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Ex. 1. In the physics curriculum from the middle school we have dealt with
forces. To the determination of a force belongs three things: the size of the
force, the direction (the line of action) of the force, and the point of action of
the force. We depict a force as a line segment, which length denotes the size
of the force, and which direction (denoted by an arrow) denotes the direction
of the force, and which initial point is the point of action of the force. If two
forces have the same point of action, the can be composed according to the
rule of the parallelogram of forces (fig. 139) [see Figure 18]. The two forces
K, and K, (components) can be replaced by the force R (the resultant). The
correctness of this rule can be realised by experiments. Inversely, the resultant
R can be decomposed in the forces K; and K,. Directional quantities, e.g.
forces, are called vectors, while quantities, that are not directional, e.g. area,
volume, are called scalars. What we learn in the following about vector, ap-
plies to vectors in the same plane.

Fig. 139.
Figure 18 — Fig. 139 from Ex. 1 in (Juul & Rgnnau, 1949, p. 216)

From this example a couple of interesting points can be highlighted.

1. Physical applications were important in the teaching of vectors in this period.

2. No distinction is made between the mathematical objects that are characterised as
vectors and the quantities in physics that behave like vectors (vector quantities).
This book puts equality sign between vectors and vector quantities.

This geometric composition of forces is a technique. It has already been described in
section 3.2.1, but in the context of MOy, pe taugne it Will be denoted 79¢0™ sS4,

The definition of a vector is given right after the example shown above (Juul & Rgnnau,
1949, p. 216):

A and B are two given points on a straight line [. If a point is moving on [
from A against B, [ is said to be run through in the direction AB. The line
segment AB that goes from A to B is called a vector. [...] The vector AB is

denoted AB.
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The definition is supplemented by an illustration, that is shown in Figure 19. From the
definition and Figure 19 it is seen that no distinction between the concrete directed line

segment AB and the vector AB is made.

Figure 19 - Figure illustrating the definition of a vector (in Juul & Rgnnau, 1949, p. 216)

The notion of “point bounded vector” does not correspond to anything from the scholarly
mathematical organisation of vectors. However, the notion “point bounded vector” is
more useful than the correct mathematical definition to model the situation described in
section 3.2.3, where two forces are represented by the same mathematical vector, but the
effects of the forces are different because the points of application are different. In the
terminology of (Juul & Rgnnau, 1949) the two vectors with different “points of applica-
tion” are different point bounded vectors. The notion “free vector” in (Juul & Rennau,
1949) is what corresponds to the scholarly notion of vectors, though the definition is way
more geometric in (Juul & Rgnnau, 1949) than the scholarly one. When defining a vector
as a parallel displacement, the notion appears more dynamical, than the more static defi-
nition based on vector space properties, as in the scholarly definition. This reinforces the
connection between vectors and their application in physics.

Remarkable, especially compared to the present mathematical organisation of the
knowledge to be taught on vectors, is that vectors in (Juul & Rgnnau, 1949) are not rep-
resented by coordinates at all. When calculations involve coordinates it is always the co-
ordinates of points, e.g. the end points of vectors.

The very physical approach to vectors can explain some of the details in the mathematical
organisation of vectors in this period. First of all, it explains why it was only “The com-
pound and decomposition of vectors” that was represented in the curriculum, since these
are the only properties of vectors that are relevant in kinematics. Secondly, it will explain
why vectors were removed from the curriculum in the succeeding period from 1953 to
1961, where kinematics was no longer a part of the mathematics curriculum.

Exercises and problems are not a part of the content in (Juul & Rgnnau, 1949), which
means that it is difficult to make a detailed praxeological analysis, but a possible praxeo-
logical organisation of the knowledge to be taught on vectors is the following: The types
of tasks are different physical problems regarding vector quantities (mostly velocity), the
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techniques are centred around geometric composition and decomposition of vectors, the
technology is a justification of vectors as a model for physical vector quantities, and the
theory is the definition of vectors as mathematical objects (see Figure 20).

Praxis Logos
Calculations with physical vector quantities WVectors as a model for physical vector quantities
Composition and decomposition of vectors Mathematical theory of vectors

Figure 20 — Praxeological organisation of vectors during the period 1935-1953

1953-1961
As mentioned above vectors were absent from the curriculum, so the period will not be
paid further attention.

1961-1971
This period is interesting because vectors were added to the curriculum again, and be-

cause vectors appeared for the first time in a written exam in this period. In 1961 the
modern mathematics was implemented in the Danish mathematics curriculum through
“Den rede Betenkning”. The purpose was, like in France and the rest of Europe (Cissé
& Dorier, 2014 pp. 5-6), to narrow down the gap between the scholarly knowledge and
the knowledge to be taught. The gap had grown, since neither the topics in the curriculum
nor the organisation of the knowledge to be taught had changed much over the years,
while the mathematical community had made great progress in the scholarly knowledge
during the same period. Two important changes in the scholarly knowledge had made the
gap grow, because they had not affected the knowledge to be taught yet. The first one was
the importance of sets, the second was the heavily algebraisation of almost every mathe-
matical field, that was described in section 3.2.2. An attempt to implement the changes,
that were made in the scholarly knowledge, in the knowledge to be taught was made in
the 1961-reform.

“Den regde Betenkning” gave the following purpose of the mathematics teaching in high
school (as cited in Petersen & Vagner, 2003, pp. 236-237):

To let the students get acquainted with a number of fundamental mathematical
notions and ways of thinking, to evoke their sense of clarity and coherence in
mathematical argumentation and expression forms, to seek a development of
their fantasy and inventiveness, to train them in the treatment of concrete
problems, including the execution of numerical calculations, and to make
them familiar with applications of mathematics within other scientific fields.
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This purpose found its expression among other places in the mathematical topics that
were included in the curriculum. Up to the 1961-reform, high school students had mostly
been acquainted with different geometric topics, functions including calculus, equations,
and some arithmetic. From 1961 the most fundamental notion in Danish high school
mathematics became sets, which highly reflected the scholarly knowledge. Also equiva-
lence relations, logic, and algebra were new important notions in the curriculum. Vectors,
and especially the vector space structure of R? and R3, became the fundamental notion
in geometry in both two and three dimensions. The curriculum stated the following about
plane geometry for first year students (as cited in Petersen & Vagner, 2003, p. 237):

Plane geometry. The right angled coordinate system. Change of coordinates.
Vectors and their coordinates. Calculations with vectors, including the scalar
product of two vectors. The analytic representation of the straight line. Dis-
tances and angles. The analytic representation of the circle. The area of trian-
gles and parallelograms. Definition and the analytic representation of parab-
ola, ellipse, and hyperbola. Mappings of the plane on itself: Parallel displace-
ment, rotation, reflection, multiplication and composition of these mappings.
Affinity.

And the following about spatial geometry for first year students (as cited in Petersen &
Vagner, 2003, pp. 237-238):

Spatial geometry. The right angled coordinates system. Vectors and their co-
ordinates. Calculation with vectors including the scalar product of two vec-
tors. The analytic representation of the straight line. The analytic representa-
tion of the plane. Distances and angles. The equation of the sphere. Spherical
coordinates. The spherical distance between two points (the law of cosines).
Polyhedrons, Euler’s polyhedron formula, the regular polyhedrons. Volume
of prism, pyramid, cylinder of revolution, cone of revolution, and sphere; area
of spherical triangles. Congruence and symmetry.

Furthermore, vectors were mentioned in the paragraph in the curriculum about applica-
tions of infinitesimal calculus (as cited in Petersen & Vagner, 2003, p. 238):

Applications of infinitesimal calculus. Determination of the range of a func-
tion and the conditions of the functions monotony. Simple examples of deter-
mination of the asymptotic properties of a function. Drawing of plane curves
determined by explicitly given functions or by parametric representations.
The velocity vector, speed, acceleration vector [...]

In the light of the curriculum alone, the context that it put vectors in, and the list of notions
from vector theory that should be covered, it is obvious how vectors were mostly a tool
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for geometric purposes in the period 1961-1971, though it was also mentioned as an ap-
plication of infinitesimal calculus. This is distinct from the purpose in the period 1935-
1953, where vectors were used only as a tool for physical purposes (kinematics). Due to
the lack of the corresponding materials from physics, it is hard to know whether vectors
were included in the physics curriculum in this period.

Contrary to the period 1935-1953 this period provides a collection of written exam prob-
lems that contribute to giving an insight in the organisation of the praxis block. The writ-
ten exam problems can, as described above, be divided into three categories. Problems in
each category appeared in this period. The first vector problem ever was an analytical-
geometrical vector problem from the exam in 1966. The problem will be presented below
and referred to as Problem 1. It will be included in an analysis of the whole category of
analytical-geometrical vector-problems later. The first vector function-problem appeared
in 1967, but since vector functions are out of scope of this thesis, the analysis will not
include the category of vector function-problems.

The first vector algebra-problem appeared in 1970 (and it was actually the only vector
algebra-problem in this period). It will be presented below and referred to as Problem 3.
It will be included in an analysis of the whole category of vector algebra-problems later.
The division of the written exam problems and a review of different textbooks from this
and the following periods shows that the praxeological organisation of vectors in mathe-
matics can be divided into two regional MO’s. The first one is the one organised around
the geometric properties of R?/R3, [T, , 8, 0¢]. The other one is organised around the
algebraic properties of R?/R3, [T, 7, 8, ©4]. In this period the praxis block of [T, 1, 8, 0¢]
is predominant, while the textbooks reveals that the predominant logos block is taken
from [T, 1,0, 04].

Analytical-geometrical vector-problems
Problem 1 — the first analytical-geometrical vector-problem from 1967 (Petersen &
Vagner, 2003):

In a coordinate system in the plane a quadrangle ABCD is given. The side
AD is situated on the line given by the equation

x+3y+4=0
and the side AB is situated on the line given by the equation

11x -8y +44=0
The point B is situated on the second axis (y-axis), BC has the coordinates
(6, — %), and the point D is situated on the perpendicular bisector of the di-
agonal AC.

Determine the area of the quadrangle and the angles B and D.
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The problem is analytical-geometrical, since it is closely tied to a geometric configura-
tion. Referring to the general organisation of the analytical-geometrical vector-problems
(Table 4) this problem belongs under the technology 62 (the technology of techniques to
carry out calculations on triangles and quadrangles). Problem 1 contain three tasks:

t,: Determine the area of the quadrangle
t,: Determine the angle B
t;: Determine the angle D

t, and t; are contained in the same type of task. As it has been described the vector
techniques in [T, 7, 8, ©¢] are similar to some of the techniques in [T, , 8, ©4]. For exam-
ple t, is solved by combining some techniques from [T, t, 8%, ©¢] that are not directly
related to vectors and the technique tP#"alelogram from [T, 1,0, ©4]. The tasks t, and t;
are similarly solved by a combination of some techniques from [T, t, %, ©¢] that are not
directly related to vectors and the technique =4 from [T, 7, 8, ©4].

A closer look into the analytical-geometrical vector-problems from this period reveals
that the tasks are most often in either [T, t, 8%, ©¢] (like Problem 2) or in [T, 1, 0!, 0¢]
(tasks regarding intersections). An example could be the following problem from 1968,
that will be referred to as Problem 2 (Petersen & Vagner, 2003):

In the plane is given a coordinate system with the origin 0. The line given
by the equation y = ax + g intersects the parabola given by the equation
y = x? in the points P and Q.

Show that the scalar product 0P-00 depends on g but is independent
of a.

About two points A and B on the parabola is given that 0A-0B = 6.
Determine the coordinates to the intersection between the line AB and the
secondary axis (y-axis).

Determine the smallest value that 0S - OT can take when S and T are
arbitrary points on the parabola.

In addition to these two local MO’s, the regional MO [T, 7, 8, ©¢] contains other types of
tasks that are solved by different techniques and justified by different technologies, but
generally the problems are not as easy to categorise into a small bunch of types of tasks,
as exam problems are nowadays. This variety in types of tasks require a well-developed
logos block in order to be able to model many different mathematical configurations with
vectors.
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Vector algebra-problems
Problem 3 — the first vector algebra-problem from 1970 (Petersen & Vagner, 2003):

In an oriented plane two vectors a and b are given. The vectors satisfy
la| =1and b = 2a

In the following R is denoting the set of real numbers and N the set of posi-
tive whole numbers.

Determine the set M, of numbers t € R that satisfies
[ta+ b| =6
Determine the set M, of tuples (s,t) € R X R, (s,t) # (0,0), that satisfies
sa+th_La—b

Determine the set M5 of tuples (s,t) € R X R that satisfies

(s+1a+bla+(t+1)b
Determine the set M, that satisfies

M, =M, N M,

Determine the set M of tuples (s,t) € N X N that satisfies

(s,t) EM, A 0<|sa+th| <10

Problem 3 is clearly different from the two analytical-geometrical vector-problems, since
it does not require any geometric interpretation of the vectors or the set-up in general. The
problem can be solved by application of the algebraic properties alone. As it has been
mentioned it is the only problem in the MO [T, z, 8, ©4], but it is very interesting to ex-
amine for two reasons. First of all, the appearance of exam problems from this MO have
increased over the years, and the past years they have appeared almost equally frequent
as the geometric vector problems. Secondly, this specific problem, Problem 2, is almost
an embodiment of the modern mathematics where sets played an important role. Since
this was a general tendency across mathematical topics, and a style that was quickly aban-
doned in the vector problems, this detail will not be elaborated on. The tasks in Problem
3 are solved by different techniques that have one thing in common; they are all applica-
tions of the algebraic properties of R2.
As an example the first task

t,: Determine the set M, of numbers t € R that satisfies |ta + b| = 6
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is solved by a combination of the techniques 7!, 71", and r@istributive(+.) that are vector
techniques and 79%adratic ed hat js the “ordinary algebraic” technique of solving a quad-
ratic equation. The solution is sketched on Table 9.

|ta + b|* = (ta + b) - (ta + b) 7l
ta+b|*=ta-ta+ta-b+b-ta+b-b pdistributive(+,)
|ta + b|? = t?|a|? + t(a - b) + b? 7l
ta+bl?=t%>-1+t-0+ |2al? Tt
|
|ta + b|? =t?>+ 4 Use the given information
6:=t*+4 Use the given information
t = +1/32 Tquadratic eq

Table 9 — A sketch of how the techniques 7', 71, and rdistributive(+are ysed to solve the algebraic task t;

According to the written exams vectors were mostly a tool to be used in analytical-geo-
metrical problems, or a tool in the application of infinitesimal calculus in the vector func-
tion-problems. From 1970 the students were also tested in their knowledge of the alge-
braic structure of R? as a vector space. Vectors had obtained status in the written exams
as objects in their own right, and not just as tools for geometric purposes.

On the organisation of the exam problems

The geometric branch of the mathematical organisation of vectors is the most frequently
represented in the written exams. The types of tasks vary a lot, which requires a well-
developed logos block. On the other hand, it is difficult to conclude too much about the
algebraic tasks, since only one single problem in this category appeared in this period.
However, it is worth noticing that the vector algebra-problem is free from coordinates.

Textbook
A review of one of the textbooks of that time will reveal more about the logos blocks in
the praxeological organisation of the topic vectors. In this period the prevalent textbook
was “Matematik I” by Erik Kristensen and Ole Rindung (Petersen & Vagner, 2003, p.
240). It was written in 1962 and to this day it has iconic status among many mathematics
teachers as a treasure, because of its very concise and brief style. In addition to the prev-
alence of the book, the fact that both authors participated in the activities that led to the
reform in 1961 (Petersen & Vagner, 2003, p. 236) serves as a justification of the use of
exactly this book in the analysis of the mathematical organisation of vectors in this period.
The book covered all the topics for the first year at high school. The first chapters in the
book have the headings “I. Sets and statements” and “II. Sets of numbers” (Kristensen &
Rindung, p. V). On the foundation of these, the third chapter deals with vectors. It con-
tains the subsections shown in Table 10.
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Chapter Subsections

I11. Vectors - The notion of vector

- Parallel displacements

- Addition and subtraction of vectors

- Multiplication of vector by a number

- Decomposition of a vector in given directions
- The coordinates of vectors

- The length of a vectors, the equation of the circle
- The scalar product of two vectors

- Geometric interpretation of the scalar product
- Projection of vector on vector

- Orthogonal vector

- Rotation of the coordinate system

- Other applications of the orthogonal vector
Table 10 — Subsections in chapter III. Vectors in “Mathematics 1" (Kristensen & Rindung, 1962, pp. V-VII)

The significant status of set theory shows from the table of content, since the two intro-
ductory chapters are dedicated to this. It is also reflected in the organisation of the
knowledge to be taught about vectors.

When looking into the first paragraph of the vector chapter, the definition of a vector is
established. It is centred around the notions of direction of half-lines, oriented line seg-
ments, and equivalence relations. The definition of a vector in “Mathematics I” is stated
in the following way “Any set on the form (4.1) is called a vector; and any oriented line

segment that is contained in the set AB, is said to represent the vector AB.” (Kristensen
& Rindung, 1962, p. 54). Here (4.1) is the following statement:

AB = {PQ|PQ = 4B}

In this the notation AB means the directed line segment from A to B. The meaning of the
equivalence sign, =, and the definition of equivalence has been given formally on the
previous page (Kristensen & Rindung, p. 53):

We call two oriented line segments AB and CD equivalent and we write

AB =CD

when the two line segments are unidirectional and have the same length. It is
obvious that

(1) AB = AB

(2)AB=CD = CD = AB

(3) (AB = CD) A(CD = EF) = (AB = EF)
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The role of the directed line segment, AB, is also stated very explicitly as a “representative

of the vector AB” (Kristensen & Rindung, 1962, p. 54). Without further explanations of
the idea of vectors as an equivalence class that can be represented by directed line seg-
ments, or a clarification of the differences between the vector itself and its representative,
a new notation for these abstract vectors is introduced: “Often we will use a single letter
as the symbol for a vector, and we use small bold letters: a, b, x etc.” (Kristensen & Rin-
dung, 1962, p 54).

According to this book, a vector is “an equivalence class of directed line segments”. These
can be represented by something that in everyday language would be called arrows
(though this word is not used in the books).

In the next paragraph the interrelation between vectors and parallel displacements is
established and defined very formally (Kristensen & Rindung, 1962, p. 55): “Q =
p.(P) © PQisarepresentative of a”. The definition is supplemented with the illustration
shown in Figure 21.

Q= Pa(P)

&

Figure 21 — Illustration of the relation between vectors ano; parallel displacements (Kristensen & Rindung, 1962, p.
55
Here P is an arbitrary point, a is a given vector, and Q = p,(P) is the unique point that
makes PQ a representative for a. The relation is defined in the following way “p, is called
the by a determined parallel displacement” (Kristensen & Rindung, 1962, p. 55).

In this a vector is identified with a parallel displacement, and in order to prove that the
sum of two vectors is again a vector, the book shows that a composition of parallel dis-
placements (seen as functions) is again a parallel displacement.

In the beginning of the subsection “Addition and subtraction of vectors”, the sum of two
vectors is constructed geometrically in two ways, by the “polygon-method” to the left in
Figure 22, and by the “parallelogram-method” to the right in Figure 22.
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A p B C 2 4

Figure 22 — Constructions of the sum of two vectors in (Kristensen & Rindung, 1962, p. 61)

After the geometric construction, an example establishes (very briefly) an opportunity of
application of vectors in physics in the following way (Kristensen & Rindung, 1962, p.
61):

11.2 example. According to a theorem in the mechanical physics forces are
compounded following a rule that is called “the parallelogram of forces”. This
physical theorem shows that the geometric notion of vector combined with
the definition of vector addition given above is suitable as a description of the
physical notion of forces —Vectors can be applied as a mathematical model of
many other physical notions (velocity, acceleration, field strength, and oth-
ers). These are objects, that can be described by arrows and that can be com-
pounded in a way that corresponds to vector addition.

To a person engaging in teaching in the modern high school this example can seem su-
perficial and not easily accessible, mostly because the physical notions are not necessarily
covered yet, by the time vectors are taught in mathematics.

The application example appears in a section about addition and subtraction of vectors.
The following sections deals with multiplication of a vector with a scalar. As an example
both commutativity and associativity of vector addition is proven formally, but the geo-
metric/physical interpretations of these results are never mentioned.

By looking into the scholarly knowledge, it reveals that the properties that are treated in
these paragraphs are exactly the axioms that constitutes the definition of a vector space.
Furthermore, it is noteworthy that most of the examples and exercises prove algebraic
properties of vectors. For example, the following (Kristensen & Rindung, 1962, p. 64):

15.5 example. The following holds
—(a+b)=(—a)+ (—b)
because we have
(a+b)+((—a)+(-b))=a+(-a)+b+(-b) =0

Or the following exercise (Kristensen & Rindung, 1962, p. 64):
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15.6 exercise. Prove the formula
—(a+b) =(—a)+ (-b)

From this remark it is reinforced, that the approach to vectors in this period is more alge-
braic and focusing on the algebraic properties of the vector space R? instead of the geo-
metric properties that are the ones that makes R? a useful model in geometry and physics.
This can seem to be conflicting with the prevalence of geometric tasks in the written
exams. However, the algebraic approach shows how the modern mathematics has taken
the knowledge to be taught closer to the scholarly knowledge.

Almost 20 pages into the chapter, the coordinate system and coordinates are introduced.
So far the vectors have been “living freely” in an unspecified space, and everything has
been treated purely as algebraic objects obeying specific rules. The definition of the unit
vectors from points, E = (1,0) and F = (0,1), is given as the first thing in the paragraph
“The coordinates of vectors”. From a theorem proven in the previous paragraph about the
uniqueness of the decomposition of vectors in given directions, it is proven that the coor-
dinates of a vector are uniquely determined in a given coordinate system.

The very abstract nature of the book does again show in the notation used. It says (Kris-
tensen & Rindung, 1962, p. 71):

We could make some formulas clearer by denoting the coordinates (x, y) for
. . X . . .

a vector in the following way: (y) We will permit ourselves to use this no-

tation alternating with the usual notation (x, y).

It requires a high level of abstraction from first year students in order to separate the
vector (x, y) from the point (x, y), but again this is closely related to the scholarly version
of vectors (and mathematics in general) where the notation is more or less arbitrary com-
pared to the underlying concept. Therefore, an alternation between notations is easy for a
mature mathematician, that identifies mathematical objects by their properties and not
their notation, but for a student that is just learning a new concept, the notation plays an
important role.

Throughout the section about the coordinates of vectors some of the notions that have
been treated previously are related to the corresponding results in coordinate representa-
tion. Furthermore, it is interesting to take a look at the examples that appear in this section.
One example is (Kristensen & Rindung, 1962, p. 74):

25.4 example. A and B are two points given by coordinates (a4, a,) and
(by, by) respectively. We want to determine the coordinates of the midpoint

M of the line segment AB. Since AM = %ZL—?’ we have, when O is the origin
of the coordinate system

54



OM = OA + AM = 0A + 5 AB = 0A+§(0A+OB)
1 — —_—
=5 (0A + 0B)
Since OM, OA, and OF are position vectors they have the same coordinates

as the corresponding points M, A, and B. By using theorem (24.1) we get
that M has the coordinates

(a1+b1 a2+b2>
2 2

Theorem (24.1) has given the sum, the difference, and the product of a scalar and a con-
stant when the vectors are given by coordinates. In this example the algebraic properties
of R? are linked to the geometric interpretation. The example shows (again abstractly in
the sense that the coordinates do not have concrete values) how vectors can be used to
solve analytical-geometrical problems. In this particular example how the mid-point of
the line segment AB can be determined by the use of the coordinates of the point A and
B. The next paragraph continues with the geometric application by relating the length of
a vector, the distance formula, and the equation of the circle.

In the paragraph about the scalar product some properties of the scalar product are
proven. The subsequent paragraph deals with the geometric interpretation of the scalar
product, where the applications in physics are again mentioned in an example (Kristensen
& Rindung, 1962, p. 82):

32.9 example: The scalar product has many important applications in physics,
e.g.:

If a particle, that is acted on by a constant force given by the vector a, is
displaced that is given by the vector b, the scalar product a - b denotes the
work done by the force during the displacement.

In (Kristensen & Rindung, 1962) the primary logos block is coming from the MO
[T,,8,04]. A lot of the tasks are more abstract in character, compared to exercises in a
modern textbook, e.g. proving activities instead of concrete calculations. In (Kristensen
& Rindung, 1962) vectors are established as objects, that can be represented equivalently
in different ways.

As it has been shown, the main purpose of vectors in the written exams during this period
is in the analytical-geometrical problems, but in (Kristensen & Rindung, 1962) it is pri-
marily the algebraic properties of vectors that are of the main interest. A praxeological
description of the mathematical organisation of vectors has to be divided into a geometric
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approach and an algebraic approach. These two are shown in Figure 23 and Figure 24
respectively.

[T.7,8,0°]
Praxis Logos

Analvytical-geometrical problems Geometrical properties B? (and R?)

Modelling the problem with vectors and carrying

. Vector space theory
out calculations on vectors

Figure 23 - [T, 7,6, 6¢]

. T,7,68,84
Praxis 7.z ] Logos
Vector algebra-problems Algebraic structure of R?
Algebraic manipulations Vector space theory

Figure 24 — [T, 1,6, 04]

Vectors in physics

Since neither the physics curriculum nor the written exams have been available, the praxe-
ological organisation of vectors in physics will be described in the light of one of the
prevalent physics textbooks of this period. The textbook series that has been chosen is
“Leerebog i fysik” by Mogens Pihl and Henning Storm. The series consists of three books,
Textbook for physics I, Textbook for physics Il, and Textbook for physics Ill. The first
edition of the books was published in the years 1963-1965. The first edition has been
inaccessible, and therefore the second edition has been used. The second edition was pub-
lished in the years 1966-1970.

In the preface of “Lerebog i fysik” a comment on the use of vectors is made. It reads:
“In the last chapters of the book the use of the notion of vectors is heavy, since it is cov-
ered early in the mathematics teaching.” (Pihl & Storm, 1966, p. VIII). The notion of
vectors is used for the first time in chapter VII that is dedicated to Newton’s laws. It is
introduced through the parallelogram of forces, that is assumed to have been covered in
primary school. It reads: “For a body in rest forces can be regarded as vectors in the sense
that the equilibrium does not change it, the two arbitrary forces are substituted by their
vector sum.” (Pihl & Storm, 1966, p. 98). The rest of Newton’s laws are introduced using
the notion of vectors.

In the next chapter, “VIII. Work and mechanical energy in the field of gravity” (Pihl &
Storm, 1966, p. 101), the notion of work is defined as the scalar product of force and
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displacement. In a footnote the scalar product is described in the following way: “The
scalar product a - b can be defined as the product of the projection of a on b (calculated
with sign) and |b|. It holds that a-b=b-aanda-(b+c) =a b+ a-c.” (Pihl &
Storm, 1966, p. 101). This definition differs from the primary mathematical definition,
because it is more geometric, than the definition based on coordinates. Furthermore, a
physical/geometrical interpretation of the distributive law is given (Pihl & Storm, 1966,
p. 101):

Nothing prevents the body from being affected by other forces than F. Is it
for example affected by the two forces F4 and F, these will do the work
F, -rand F, - r respectively. The sum of these two works is called the
work done by the two forces. It equals

(8,2)F1'T+F2'r:(F1+F2)'r,

since the scalar product is distributive. The work done by two forces equals
the work done by their resultant.

After some chapters dealing with scalar quantities, comes “X. The magnetic induction
field” (Pihl & Storm, 1966, p. 133). In this chapter the following about magnetic induction
is stated: “We will assume that there in every point of a magnetic field exist a vector B
that is called the magnetic induction.” (Pihl & Storm, 1966, p. 134). It is further described
how magnetic inductions can be added as vectors, and that this can be illustrated by ex-
periments. Also the chapter about steady state-current utilises vectors.

The second volume of the textbook series, “Lerebog i fysik 117, uses vectors t00. In the
preface, the standpoint regarding the use of mathematics in the book is given. It reads
(Pihl & Storm, 1969, p. VII):

In the endeavour of giving the presentation a clear and accessible shaping we
have utilised the valuable support that mathematics affords. It is our experi-
ence that the use of the language of mathematics can have a deterrent effect,
if it appears sporadic, while a systematic application gives confidence in the
understanding, which is a definite pedagogical advantage. This presupposes
that mathematical notions and symbols are given clear physical content, in
which we have endeavoured.

This citing reveals the highly mathematised style that the authors have chosen. The first
chapter in the book deals with astronomy. In the first section the right angled coordinate
system is introduced. This is done by the use of the position vector oP corresponding to
a point P, and by the unit vectors i and j (and k in three dimensions). The position vector
is used in the chapters “I. Astronomy” and “II. The kinematic description of the propaga-
tion of waves” (Pihl & Storm, 1969). In the third chapter “IIl. The kinematic description
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of the motion of particles” (Pihl & Storm, 1969) the use of vectors is extended. In the
section about motion in two dimensions the velocity of a particle is defined as the deriv-
ative of the position vector with respect to time. The acceleration of the particle is defined
in a similar way.

This series of textbooks reveal a highly mathematised style where vectors plays a crucial
role in physics. A problem is, that the notion of vectors in mathematics is very algebraic
and mostly coordinate-free, when it is more geometric and coordinate-based in physics.
This issue can have caused students major problems with the transfer of the notion of
vectors from mathematics to physics and the other way around.

1971-1984

The modern mathematics caused both students and teacher, because of the abstract and
formal approach. Similar problems were detected in France (Cissé & Dorier, 2014, pp. 6-
8). The reform in 1971 changed the purpose of the mathematics teaching slightly and
removed some of the topics in order to make room for an optional topic, that the teacher
and/or students could choose. Except from these minor changes, the curriculum stayed
almost the same as in 1961. The new purpose was (as cited in Petersen & Vagner, 2003,
p. 265):

To let the students get acquainted with a number of fundamental mathematical
notions, ways of thinking, and methods, to train the students in applications
of mathematical notions, ways of thinking, and methods for formulation, anal-
ysis, and solution of problems within different fields, to practise clearness and
coherence in proofs and expression form, to develop fantasy and inventive-
ness, and to give an understanding of and the ability to analyse the ways that
mathematics is applied within other fields critically.

Though some topics were removed from the curriculum, the level of abstraction and for-
mality was not lowered, but as shown in the citing above, the focus on application was
strengthened. One of the major changes concerned vectors, since spatial geometry, and
thereby three dimensional vectors, was abandoned.

Analytical-geometrical vector-problems

The problems in this category are very similar to the ones in the previous reform, though
the written exams do of course not contain spatial geometry-problems. It is still primarily
tasks in the MO [T, 7, 8%, ©¢]. An interesting example of a problem from this category in
this period is the following, that will be referred to as Problem 5 (Petersen & Vagner,
2003):
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In an oriented plane a proper vector a is given. About a quadrangle ABCD it
is given that

AB=a,BC=a-+daandCD = —2a + 2a

Determine the degree measure of the angles between the diagonals in the
quadrangle.

In this example there are no coordinates that gives indication of where in the coordinate
system the quadrangle is situated.

Vector algebra-problems

The more interesting changes in exam problems occur in the vector algebra-problems.
First of all, they appeared more frequently than before 1971, and furthermore the modern
mathematics and its focus on sets and logic was heavily toned down in them, compared
to the vector algebra-problem (Problem 3) from 1970 that. Some examples of vector al-
gebra-problems will be given. The first one will be referred to as Problem 5 (Petersen &
Vagner, 2003):

A coordinate system is given. Determine the numbers t, such that
a(2t +5,—t) and b(t% + 2t + 1,4t + 4)

are proper vectors, that are parallel.

The second will be referred to as Problem 6 (Petersen & Vagner, 2003):
Two vectors a and b satisfy
(a+b)? =13,
(2a—-b)?> =7, and
(a + 2b)? = 28.
Determine the lengths of the vectors a and b and the degree measure of the
angle between a and b.
The third will be referred to as Problem 7 (Petersen & Vagner, 2003):
In an oriented plane, a proper vector v is given.

The vectors a and b are given by

a=2v-—-3vandb=v+ 2D
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Determine the number t such that the length of the vector a + tb is smallest.

All these problems are vector-algebra problems but the differ in the level of abstraction.
Though the vectors in Problem 5 are given abstractly in the sense that the coordinates
depends on t the two vectors are still somewhat closely related to the a concrete coordi-
nate system that is more geometric in appearance. This problem is furthermore interest-
ing, since this type of task has appeared frequently in the more recent written exams. It is
solved by the technique 7! (see Table 11) in combination with the “ordinary algebraic”
techniques Treduction and T3rd deg.pol..

2t +5)-(4t+4) —t-(t*+2t) =0 T
t3 +10t* + 29t +20 =0 reduction
t=-1,t=—-4t=-5 r3rd deg.pol.

Table 11 — The technique ' used on Problem 5

In Problem 6 the vectors are not directly tied to the coordinate system, since the coordi-
nates are not given, but the vectors are still given by the scalar product of different linear
combinations of them with themselves, which is closely tied to the geometric property
length. The problem is solved by a combination of the techniques tdistributive,(+) I
741 and 73¢9 (see Table 12). These are all very algebraic, which means that the geo-
metric properties are not necessarily concerned by the students when the problem is
solved.

(a + b)z =13 a? + b? + 2ab = 13 g distributive(+,)
(2a—b)? =7 <={4a2+b2—4ab=7
(a+2b)*> =28 \a®+4b* + 4ab =28

a’ + b? + 2ab = 13 73eq
402+ b2 —4ab=7 ©a’*=4b*=3,ab=3
a’ + 4b?* + 4ab = 28
a’ = |a|2 =4 |a| =2 TH'- and -L—L",H
b2 =|b|2=3=|b| =3
3
b=3>v= (—)
a v COoS 4_3

Table 12 — A sketch of how the techniques g @istributive (+) ¢l 7411 and 73 €9 are used to solve Problem 6

In Problem 7 the two vectors a and b are given without any connection or reference to

the geometric context. It is solved by a combination of the purely algebraic techniques
Tdistributive (+,-), T|-|,-’ TH ofJ_vector, and Tvertex of parabola (see Table 13)_
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la+th|” = a® + t?b? + 2tab el and paitribuiveC)

|a + t5|2 = 4|v|? + 9|D|? + t2(|v|? + 4|D|?) Use the given information and
reduction
+ 2t2|v|* — 6|9]%) ’
|a + tB|° = (562 — 8t + 13)|v|? preduction and gl ofvecter
Vertex in: t = — T
10

Table 13 — A sketch of how the techniques T@istributive (+:) Il pllof Lvector gnq pvertex of parabola gre ysed to
solve Problem 7

vertex of parabola

The types of tasks in Problem 6 and Problem 7 have not appeared in the written exams in
the recent period.

On the organisation of the exam problems

The geometric branch of the mathematical organisation of vectors is the most frequently
represented in the written exams. The types of tasks vary a lot, which requires a well-
developed logos block. On the other hand, it is difficult to conclude so much about the
algebraic tasks, since only one single problem in this category appeared in this period.
However, it is worth noticing that the vector algebra-problem is free from coordinates.

In this period the algebraic branch of the mathematical organisation of vectors is more
frequently represented than in the previous period. Furthermore, the number of vector
algebra-problems exceeded the number of analytical-geometrical vector-problems in this
period.

The number of different types of tasks in the analytical-geometrical vector-problems is
reduced compared to the previous period, but except from that, the nature of the problems
is similar to the analytical-geometrical vector-problems in the period 1961-1971.

The category of vector algebra-problem is also easy to divide into types of tasks, and the
number of different types of tasks is of course larger than in the previous period (where
only one problem in this category appeared).

Textbook
In this period the predominant textbook was still the series “Matematik” from Kristensen
and Rindung. As it has been mentioned it was republished several times over the years.
In the examination of the mathematical organisation of vectors in this period the seventh
edition of “Matematik I from 1976 will be used. The table of content is not exactly the
same as in the first edition. The first chapter is “Sets and statements”, the second chapter
is “Real numbers”, the third chapter is “Powers, slide ruler, and logarithms”, and the
fourth chapter is “Vectors” (Kristensen & Rindung, 1976, p. V).

There are some important changes from the first edition to the seventh edition. One of
the most interesting of these is, that the notion of arrow is defined strictly from the notion
of oriented line segments (Kristensen & Rindung, 1976, p. 76):
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A line segment that is equipped with an ordering after which the end points
are denoted initial point and terminal point respectively is called an oriented
line segment or an arrow. The arrow that is determined by the tuple (4, B) is
denoted AB.

Then the notion of arrow is related to the notion of parallel displacement and equivalence
of arrows is defined from the relation between parallel displacements and arrows (Kris-
tensen & Rindung, 1976, p. 77):

Two arrows AB and CD are equivalent when and only when the parallel dis-
placement A ~ B is the same as the parallel displacement C ~ D.
After this the notion of vector is defined (Kristensen & Rindung, 1976, 77):

To a given parallel displacement that takes an arbitrary point Q to Q,, corre-
sponds a class of equivalent arrows AA,, BBy, CC,.... (fig. 2.II). The set of

the arrows that in this way corresponds to a parallel displacement is called a
vector.

This definition comes with an illustration that is shown in Figure 25.

A p
/ 5
Figure 25 — A class of equivalent arrows representing the same parallel displacement P in (Kristensen & Rindung,
1976, p. 77)

Cp

Fig. 2.1

Vectors in physics

In this period the same textbooks written by Henning Pihl and Mogens Storm were still
used in the physics teaching. Since the written physics exams from this period has been
unavailable, the POy, pe taugn: 1 therefore assumed to be similar to the one in the previ-

ous period.



1984-2005

In this period some more radical changes were made. First of all, the calculator meant
that some particular skills became unnecessary to practise. However, this did not influ-
ence the topic vectors to the same extend as some of the other topics. Furthermore, the
nature of the problems posed in written exams changed. Contrary to what had been done
before, the problems were more often related to everyday problems. The purpose was to
show the students that mathematics was applicable. (Petersen & Vagner, 2003, pp. 272-
273).

During this period, the curriculum contained the following about vectors (Petersen &
Vagner, 2003, p. 271):

Plane and spatial geometry. The coordinate system. Vectors in the plane and
space, the coordinates of vectors. Calculations with vectors, including scalar
product of two vectors. Orthogonal vector, vector product. Projection of vec-
tor on vector. Analytic description of point sets in the plane including line,
circle, and half plane. Distance between points and between point and line.
Intersection between lines and between line and circle. Sine, cosine, and tan-
gent. Calculations on sides and angles in triangles. Area of triangle and par-
allelogram. Analytic description of point sets in space, including straight line,
plane, and sphere. Distance, angle and intersection between two point sets in
space.

Compared to the 1971-reform the 1984-reform did only change the vector part by adding
spatial geometry again and removing vector functions.

Analytical-geometrical vector-problems
During this period the organisation of the analytical-geometrical vector problems begin
to look very similar to the recent organisation. In the previous period most of the problems
were geometry problems contained in the MO determined by the technology 6. In this
period, the problems started spreading over the different local MOs determined by the
technologies in Table 4.

An example from the early years of this period is the following problem from 1988, that
will be referred to as Problem 8 (Petersen & Vagner, 2003):

In an oriented plane is given a vector a with the length 6.
The quadrangle ABCD is given by

AB =a,AD = —a+§aandﬁ = —§a+§a
Determine DC given by a and @.

Determine £A and 4D in the quadrangle ABCD.
Determine the area of the quadrangle ABCD.
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This problem is contained in the MO determined by the technology 82. Another problem
from later in the period is the following from 1999, that will be referred to as Problem 9
(Petersen & Vagner, 2003):

| a coordinate system in space is given a point P(5,—1,4) and a plane «
given by the equation
a2x—2y+z+2=0

Determine the distance from the point P to the plane a.

1
A line [ passes through P and has the direction vector 7 = <2>

3
Determine the coordinates of the intersection between [ and «.

Determine the acute angle between [ and «a.

A plane S passes through the points A(0,0,4), B(2,0,0), and C(1,1,4).
Determine the equation of the plane £.

The planes a and S are both tangent planes to a sphere K. The centre
of the sphere, its points of tangency with « and £, and the point P are
situated on a straight line.

Determine an equation of the sphere K.

This problem contains tasks from different local MOs. The first sub-question is contained
in the MO determined by 67, the second is in the MO determined by 8/, the third is in
the MO determined by 84, and the last two are contained in the MO determined by 8~.
In general, the analytical-geometrical problems started including a lot of different sub-
questions solved by techniques in a lot of different local MOs in this period. This idea of
combining a lot of different types of tasks in one extensive analytical-geometrical vector-
problem is still used in the current mathematical organisation.

Vector algebra-problems

In this period the most abstract vector algebra-problems (like Problem 8) start appearing
very rarely. Problems that are similar to Problem 7, where vectors are given by different
geometric properties such as length, appear frequently like in the previous period. The
vector algebra-problems where the vectors are given by coordinates starts appearing more
and more frequent. An interesting example of a coordinate-based vector algebra-problem
is shown below. The problem is from 1991 and will be referred to as Problem 10 (Petersen
& Vagner, 2003):

In a coordinate system in the plane two vectors are given

a= (i) and b = (_11)

Determine the angle between the vectors a and b.
Determine the value of the number ¢, such that @ + tb is perpendicular to a.

64



Determine the value of the number t, such that the length of the vector
d + tb is as small as possible.

This problem is interesting, since the vectors are given by coordinates, which is the most
concrete representation of a vector in a written exam. The first sub-question could easily
have appeared in the recent period, but the two last sub-questions would not.

Textbook
In the wake of a reform of the primary school, where mathematics became more experi-
ence-based than rigorous, the textbooks for high school mathematics changed into a more
application-oriented focus. One of the new textbooks containing the theory of vectors that
were used in this period was “Funktioner og vektorer: Teori og redskab” by Steffen Jen-
sen and Karin Sgrensen (Vagner & Petersen, 2003, pp. 266-267). The book was published
in 1981 and had a very special and new structure, where the first part of the book covered
the theory and the second part gave examples of applications.

The introduction to the notion of vectors is given in the following way (Jensen & Sgren-
sen, 1981, p. 31):

We will in this chapter introduce a mathematical quantity, that is character-
ised by having both a direction and a humerical value, a vector, and some
computation rules of vectors. From physics a number of quantities being
characterised by a direction and a numerical value is known.

After this introduction an example is given (Jensen & Sgrensen, 1981, p. 31):

1.1 Example The physical notion velocity is an example of a quantity that is
determined by a number (the speed) and a direction; that a particle has a par-
ticular velocity means that it is moving by a given speed in a given direction.
Forces are in the same manner determined by a numerical value and a direc-
tion.

This example shows how the physical applications plays a role in the introduction to vec-
tors in the mathematical organisation in this period. The definition of a vector shows signs
of being the successor of the Kristensen and Rindung books. First the notion of an arrow
is defined (Jensen & Sgrensen, 1981, p. 31):

1.2 Definition By an arrow is understood a line segment of a given length
equipped with a given direction. One says that the line segment is oriented.
If A and B are two points in the plane we will denote the arrow from A to B
by AB
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The next definition is of the notion vector. The definition says (Jensen & Sgrensen, 1981,
p. 32):

1.4 Definition By a vector is understood the set of unidirectional arrows hav-
ing the same length. Every arrow in the set is said to be a representative of
the vector.

As symbols for vectors lower-case letters with an arrow over them are usu-

ally used: a, b, ... (In some books lower-case letters set up in bold-face).

Before this definition both the notions of unidirectional and opposite arrows are defined.
Of course most of the notions that are defined are the same as in the books by Kristensen
and Rindung, but generally Jensen and Sgrensen are using more geometric illustrations
in definitions and proofs. An example could be the following theorem and the correspond-
ing proof (Jensen & Sgrensen, 1981, pp. 41-43):

2.2 Theorem For arbitrary vectors @, b, and ¢ the associative law holds
(@G+b)+é=d+(b+0)
Proof: The first figure [see Figure 26] shows that
(G+b)+¢é=4B
and the second figure [see Figure 27] shows that
a+(b+¢) =48
With that the desired is shown.

The first figure that is mentioned in the proof is shown on Figure 26.

b

o)

-
C

A - B
(+b)+ ¢
Figure 26 — The first figure mentioned in the proof of the associative law in (Jensen & Sgrensen, 1981, p. 41)

Figure 27 shows the second figure that is mentioned in the proof.
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b+c
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& a+ (B+¢)

Figure 27 — The second figure in the proof of the associative law in (Jensen & Sgrensen, 1981, p. 43)

Also in the discussion of the parallelogram spanned by two vectors the approach is more
geometric than in Kristensen and Rindung (Jensen & Sgrensen, 1981, p. 87):

9.9 Example We consider two proper non-parallel vectors a and b.

The two vectors span a parallelogram ABCD, which area we want to deter-
mine.

The base of the parallelogram is || and its height is the length of the projec-

tion of b, b_l) ona (see the figure [see Figure 28]).
The wanted area is then

|@||bs| = |&||bs| = |@ - by, since @ Il by
= |@-b| = |det(d,b)|

The figure mentioned in the example is shown in Figure 28.

4\

o>

4
y

Z N
A -
a D
Figure 28 — Figure that illustrates example 9.9 in (Jensen & Sgrensen, 1981, p. 87)

In the application part of the book physics is important. One of the examples is the defi-
nition of work, which was also mentioned in Kristensen and Rindung. However, in this
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book it is described similarly as in the physics book by Pihl and Storm. Another interest-
ing example is the following (Jensen & Sgrensen, 1981, p. 353):

A 54 A body is affected by a force that in a given coordinate system has the
coordinates

2 (4

F=()

The body is moving from the point having the coordinates (—5, —2) to the
point having the coordinates (7,3). F is measured in N and the distance in
m. Determine the work that the force makes.

Theoretically, the idea of this application is good, but as it has been discussed earlier,
physicist do not use the coordinate representation of vector quantities such as force, which
means that this is an example of how mathematics teaching and physics teaching is very
disconnected in praxis, even though the mathematics textbook tries to include physical
applications.

“Funktioner og vektorer: Teori og redskab” is still algebraic in its approach to vectors,
but contrary to Kristensen and Rindung, the authors give more illustrations linking the
algebraic properties to a geometric interpretation. Furthermore, the style of this textbook
puts more importance into examples of applications in for example physics. However,
some of the examples are a bit synthetic, and therefore not helpful in the purpose of in-
terrelate the notion of vectors in mathematics and physics.

Vectors in physics
During this period, some different approaches to the teaching of vector quantities appear
in different textbooks. The following will examine the two very different textbooks
“Fysikkens spor” and “Fysik for 3.G: Hverdag, videnskab og verdensbillede”. The first
one is written by Claus Christensen, Carsten Claussen, and Bjgrn Felsager and published
in the first edition in 1990. The second is written by Esper Fogh and Knud Erik Nielsen
and published in 1991. The two books take completely different positions regarding the
use of vectors.

“Fysik for 3.G” presents the theory of vector quantities without the use of vectors. In the
preface an explanation of this choice is given (Fogh & Nielsen, 1991, preface):

Physics at high level is to some extend chosen by students without a
knowledge of vectors. Therefore, we have chosen a presentation that does not
assume such knowledge. Out of consideration of those who prefer to use vec-
tors we have put “grey frames” containing a parallel presentation of the con-
tent in the language of vectors.
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One example of this “parallel presentation” is found under the heading “3. The energy of
mechanics” (Fogh & Nielsen, 1991, p. 56). Here the notion of work is defined in the
ordinary text in the following:

Work is force times displacement. A constant force F, that is affecting an

object, that is displaced by As in the direction of the force, does the work:
AA=F-As

The Sl unit of work is N - m, that is valled J (joule).

Right next to this definition, a “grey frame” gives an alternative vector definition (Fogh
& Nielsen, 1991, p. 56):

The vector formulation of the definition of work:
If the force F displaces a particle with As, it does the work:

- —

As

AA :
|F| - |As| - cos(v)

where v is the angle between As and F.

In this particular example, the two definition do actually differ, by the fact that the one
without vectors is only working, when force and displacement have the same direction.
The definition that utilises vectors can also be used in situations where force and displace-
ment have an angle between them.

Aside from the two-sided definition of work, there are only two other “grey frames” in
the book, both in kinematics. The first one describes how movement in two dimensions
can be represented by the use of vectors and the other one describes how the notion of
position vectors can be used to represent circular motion.

Contrary to “Fysik for 3.G” the authors of the book “Fysikkens spor” have chosen to use
vectors to describe directional quantities (Christensen, Claussen, & Felsager, 1990, p. 7):

We have chosen to describe directional physical quantities by vectors. The
few necessary prerequisites are presented in appendix A.

This citing is interesting, because it shows how the use of vectors is something that text-
book authors needed to take a stand on during this period, contrary to the previous peri-
ods, where the use of vectors was the automatic choice.

The appendix, that is used to present the necessary prerequisites, spends two pages de-
fining vector addition, multiplication of a vector by a scalar, the scalar product, and the
vector product. Vector addition is introduced by geometric addition by the parallelogram-
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rule, but also the polygon-rule. Both descriptions are equipped with illustrations, linking
the algebraic properties to the geometric properties. The description of multiplication by
a scalar is also illustrated by its geometric interpretation, and additionally a physical ex-
ample, where the momentum of a particle is given as the product of its mass (that is a
scalar quantity) with its velocity (that is a vector quantity).

The definition of the scalar product is also linked to a physical example, namely the
definition of work. And the definition of the vector product is linked to the physical notion
of spin, that is the vector product of the direction vector and the momentum vector.

In this period the teaching of vectors in physics depends on the teacher’s standpoint and
the choice of textbook, because some prefer more mathematised presentation of vector
quantities, while some prefer a presentation where words instead of mathematical nota-
tion describes the difference between vector quantities and scalar quantities.

3.3.2 Current mathematical organisation
This period covers the three reforms from 2005, 2013, and 2017. In 2005 the curriculum
contained the following about vectors (Danish Ministry of Education, 2005):

Proportion calculations in similar triangles and trigonometric calculations in
arbitrary triangles, vectors in two and three dimensions given by coordinates,
applications of vector based coordinate geometry for plane and spatial geo-
metric problems.

In 2013 the curriculum contained the exact same about vectors. In addition to the curric-
ulum, the guidelines for interpretation of the curriculum will be used in the analysis of
the mathematical organisation. It reads the following about vectors (Danish Ministry of
Education, 2013a):

The students are required to master the computation rules for vectors and the
operations such as

- to find the orthogonal vectors to a given vector in the plane

- to determine the scalar product

- to determine the determinant between two vectors and to be able to inter-
pret this number

- to determine the cross product between two spatial vectors and to be able
to interpret this vector

- to find the projection of a vector on a vector

The analytical geometry is covered in both two and three dimensions as a
vector based coordinate geometry, where the students at a written exam are
required to be able to

- set up and rearrange equations for circles and spheres and to be able to de-
termine tangents and tangent planes
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- translate back and forth between equation and parametric representation of
lines in the plane

- determine the equation of planes and parametric equations of lines in space
- determine potential intersections between lines, between lines and planes,
and between lines and circles, lines and sphere respectively

- detemine angles between lines, between lines and planes, and between two
planes

- determine distances between points and in the plane: the distance from
point to line and in space from point to plane.

The first requirements reveal some of the organisation of the algebraic branch while the
last requirements reveal some of the organisation of the geometric branch. They are also
reflected in the written exam problems.

The 2017-curriculum describes the organisation of the theory of vectors in the following
way (Danish Ministry of Education, 2017a):

Vectors in two dimensions given by coordinates, including scalar product,
determinant, projection, angles, area, line, circle, intersections, and distance
calculations, and application of vector based coordinate geometry for plane
geometric problems, including trigonometric problems

Vector functions, graphical paths of trajectories, including determination of
tangents, and applications of vector functions.

It is noteworthy that vector functions are added to the curriculum again after around 30
years of absence. However, it will not be paid more attention, since it is out of scope of
this thesis.

In the guideline for interpretation of the curriculum the properties and applications of
vectors mentioned in the curriculum are elaborated on under the heading “geometry and
vectors” (Danish Ministry of Education, 2018a):

Vectors in the curriculum are serving different purposes. Through their work
with vectors the students are developing their numeracy, conceptual
knowledge, and algebra, when they set up and solve geometric problems in
and outside the coordinate system. Vector algebra will contribute to the
students’ maintenance and development of the algebraic and calculation
skills, that they have from primary school, while they learn something
quite new and study the geometric notions in depth. The introduction to
the notion of vectors should be given by an alternation between construc-
tion and calculation, and an alternation between paper/pencil-activities
and computer assisted activities
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Furthermore, the guidelines for interpretation of the curriculum describes what is re-
quired from first year students (Danish Ministry of Education, 2018a):

The students are expected to be able to operate with the notions zero vector,
unit vector, position vector, connection vector, orthogonal vector, and they
are required to be able to determine the angle between vectors, including the
handling of orthogonal and parallel vectors. Furthermore, they are expected
to be able to apply the simple transition formulas, that are necessary to handle
obtuse angles between vectors. Furthermore, the students are expected to be
able to carry out calculations in right-angled triangles from the trigonometric
formulas, that can be deduced from the unit circle. In calculation and in geo-
metric interpretation by construction the students are required to be able to
use the elementary operations of vectors (addition, subtraction, and ‘multipli-
cation by a constant’) and the other operations: to determine the length of a
vector, the orthogonal vector to a given vector, the scalar product of two vec-
tors, and the determinant between two vectors, the angle between two vectors,
and the projection of a vector on a vector. Similarly, the students are required
to be able to handle calculations involving the laws of cosine and sine, that
can be deduced from the scalar product and determinant respectively, and that
can simplify the calculation in some trigonometric problems. Furthermore,
the height, the median, and the bisector in triangles are assumed well-known.

For the students on second year there are the following additional requirements (Danish
Ministry of Education, 2018a):

On B-level the calculations with vectors are extended to containing the part
of the analytical geometry, that deals with th