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Abstract 

This thesis focus on teacher knowledge related to the theme of derivative functions in Danish 

high schools. First, it is clarified what the notion of teacher knowledge entail, within the 

Anthropological Theory of Didactics (ATD) and what principles of research this programme 

advocates. Secondly, a method involving the use of hypothetical teacher tasks (HTTs) for 

accessing and assessing teacher knowledge, which builds on the principles of ATD, is 

investigated. For this purpose, a subject matter didactical analysis of the theme of functions 

derivatives is performed and the mathematical theme, as it exists in Danish High schools, is 

investigated. Together, these analyses constitute the reference model of the study, upon 

which, five HTTs are designed and presented, along with an a priori analysis of each task. 

These HTTs are employed in an empirical study, where the teacher knowledge of five teacher 

students and four high school teachers, related to the theme of derivative functions, is 

investigated. The data from the empirical study showed that the participants’ different 

teaching experience was not generally reflected in their performances. The capacity of the 

study does not allow for any conclusions as to why the participants’ various teaching 

experience is not reflected in their answers to the HTTs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IND’s studenterserie består af kandidatspecialer og bachelorprojekter skrevet ved eller i tilknytning til Institut for 
Naturfagenes Didaktik. Disse drejer sig ofte om uddannelsesfaglige problemstillinger, der har interesse også uden for 
universitetets mure. De publiceres derfor i elektronisk form, naturligvis under forudsætning af samtykke fra 
forfatterne. Det er tale om studenterarbejder, og ikke endelige forskningspublikationer.  
Se hele serien på: www.ind.ku.dk/publikationer/studenterserien/ 
 

http://www.ind.ku.dk/publikationer/studenterserien/


 
U N I V E R S I T Y  O F  C O P E N H A G E N  

F A C U L T Y  O F  S C I E N C E  

 

 

 

Master’s Thesis  

Camilla Margrethe Mattsson 

 

A Study on Teacher Knowledge Employing 

Hypothetical Teacher Tasks 

Based on the Principles of the Anthropological Theory of Didactics  

Supervisor: Carl Winsløw  

Submitted: August 8, 2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name: Camilla Margrethe Mattsson 

Title: A Study on Teacher Knowledge Employing Hypothetical Teacher Tasks – Based on the 

Principles of the Anthropological Theory of Didactics 

Department: Department of Science Education, University of Copenhagen  

Supervisor: Carl Winsløw 

Time Frame: February – August 2016 



   

   i 
  

Abstract 
 

This thesis focus on teacher knowledge related to the theme of derivative functions in Danish 

high schools. First, it is clarified what the notion of teacher knowledge entail, within the 

Anthropological Theory of Didactics (ATD) and what principles of research this programme 

advocates. Secondly, a method involving the use of hypothetical teacher tasks (HTTs) for 

accessing and assessing teacher knowledge, which builds on the principles of ATD, is 

investigated. For this purpose, a subject matter didactical analysis of the theme of functions 

derivatives is performed and the mathematical theme, as it exists in Danish High schools, is 

investigated. Together, these analyses constitute the reference model of the study, upon 

which, five HTTs are designed and presented, along with an a priori analysis of each task. 

These HTTs are employed in an empirical study, where the teacher knowledge of five teacher 

students and four high school teachers, related to the theme of derivative functions, is 

investigated. The data from the empirical study showed that the participants’ different 

teaching experience was not generally reflected in their performances. The capacity of the 

study does not allow for any conclusions as to why the participants’ various teaching 

experience is not reflected in their answers to the HTTs.  
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1 Introduction 

The thesis was initially inspired by a large problematic not within the scope of a thesis as 

such. The official requirements in Denmark and many other countries, to teach, or more 

precise, to become tenured in upper secondary school1 is to have completed a Master’s 

degree with two disciplines, a major and a minor (in disciplines taught in upper secondary 

school) which furthermore fulfils certain requirements settled by the Ministry of education. 

In addition to this, upper secondary schools have to administer the teachers with courses on 

pedagogy within the first year of hiring (Pædagogikum, n.d.).  

My initial question was: 

  Do these requirements produce teachers? 

The official statement is that the education we receive at the universities provide the 

professional competence, while the pedagogy courses provide teaching competencies (Sådan 

bliver du gymnasielærer, n.d.). The pedagogy courses have received much criticism over the 

years and latest in a report by Jessen, Holm & Winsløw (2015) on the role of secondary 

mathematics and its needs for development. Jessen et al. report how teachers experience 

discontinuity between their university education and the pedagogy courses. In addition, 

teachers are expressing a need for tools to translate their subject matter knowledge into 

inspiring and motivating teaching on a suitable level. In all, 40-50 % of the teachers2 

expressed that they did not feel properly prepared for teaching in regards to their 

pedagogical and didactical skills. In their survey, a group of mathematic teachers directly 

pointed to a need for a separate teacher education at the universities (Jessen et al., 2015).   

 To improve the education of teachers is not a simple matter though. The initial 

question regarding whether or not the requirements to become a teacher produce teachers, 

is in reality many-fold and involve questions such as ‘what do a teachers need to know in 

order to perform successfully?’, ‘how can such knowledge be developed?’ and ‘is this in line 

with the way teachers are being educated?’. Whereas the answer to the latter appears to be 

‘no’ it is also clear that an improvement of mathematics teacher education depends on the 

answers to the first two questions. While these questions are not new, they have not been 

answered in full either. 

                                                      
1 The terms upper secondary school and high school will be used interchangeably throughout the thesis. They are both 
referring to the part of the school system, which in Danish is called gymnasium and encompass the 10th, 11th and 12th 
grade. 
2 Only 37 % of the teachers in the survey answered the questionnaire in full (Jessen et al. 2015).   
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1.1 Knowledge for Teaching 

The present section will outline various studies and researches for the purpose, of presenting 

the basis literature from which the thesis takes its departure. The presentation will 

incorporate the earlier work of Felix Klein, tracing up to the research of Hill, Ball and Schilling, 

and finally presenting a contribution by Durand-Guerrier, Winsløw and Yoshida.   

 Felix Klein, a German mathematician and didactician, raised questions of the kind 

presented above already in 1932. In his book Elementary Mathematics – from an advanced 

standpoint (1932) Klein describes the consequences of the ‘state of affairs’, namely that no 

alliance existed between school and university: 

 When, after finishing his course of study [at university], he became a teacher, he 

 suddenly found himself expected to teach the traditional elementary mathematics in 

 the old pedantic way; and, since he was scarcely able, unaided, to discern any 

 connection between this task and his university mathematics, he soon fell in with the 

 time honored way of teaching, and his university studies remained only a more or less 

 pleasant memory which had no influence upon his teaching. (p. 1) 

Klein also describes how he noticed the attention towards appropriate training of teachers 

began to rise and described this as a ‘new phenomenon’. Klein sought to help abolish the 

discontinuity in transitioning from being a student at university to becoming a teacher in high 

school through lectures tending to the needs of the prospective teachers (Klein, 1932). In his 

opinion, the teacher should know his field to the extent of being able to follow its 

development and he should ‘stand above’ his subject. The latter referring to the ability of 

seeing the connection between the ‘versions of mathematics’3 taught in high school and the 

mathematics taught at university (Winsløw, 2013).  

 Klein thus, directly and through his lectures, addressed the questions and 

problematics that constituted the initial motivation for this thesis. Despite of this, today, 

more than sixty years after Klein wrote Elementary Mathematics, researchers have yet to 

establish a theoretical consensus regarding what teachers need to know and how they learn 

it. This is not to say that teacher knowledge and all it entails has not been investigated. Since 

Klein’s days, a lot of effort has been placed in trying to answer the questions surrounding this 

widely recognized discontinuity. For a long time, the optimizing of teacher education centred 

on an expansion of the mathematics presented to prospective teachers during their studies. 

In 1999, Cooney wrote, “Formerly our conception of teacher knowledge consisted primarily 

of understanding what teachers knew about mathematics” (Cooney, 1999, p. 163). He also 

                                                      
3 Winsløw speaks of this in terms of the connection between praxeological organisations taught in school and 
praxeological organisations taught at university. These are concepts to be presented later.  
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stated that the complexity of the issue regarding teacher knowledge was becoming more 

recognized along with the fact that “mathematical knowledge does not alone translate into 

better teaching” (Cooney, 1999, p. 163). A surprising finding of Eisenberg in 1977 was an 

initial contributor to this development (Cooney, 1999). In the study performed by Eisenberg, 

no correlation was found between teachers’ mathematical subject-matter knowledge and 

students’ achievements (Bromme, 1994). As a reaction to these studies, researchers started 

to investigate and model other areas of knowledge possibly crucial in the teacher’s practice. 

The teachers’ mathematical knowledge would although not be undermined completely as it 

has been determined that the mathematical knowledge in fact plays a key role in teaching, 

which is also acknowledged by Bromme (1994). Studies like the Eisenberg study simply 

suggest a deep complexity of the teacher’s practice and moreover, that many other factors 

bear key roles in correlation between teachers’ mathematical knowledge and students’ 

learning outcome.  

 Over the years, studies in the field of mathematical educational research have divided 

into several branches, constituting different programmes of research. Among these is the 

classroom-level educational research, searching to uncover the influence of teachers’ 

classroom teaching-behaviour, especially including pedagogical methods, on students’ 

learning, while the educational production function studies comprise another research 

programme, focused on the influence of resources held by schools, students and teachers, i.e. 

teachers’ salaries, student families’ socioeconomic status and schools’ material resources. 

Within this programme, a particular focus on teachers’ characteristics also developed; some 

studies mapped teacher characteristics based on educational training, courses taken and 

teaching experience, while other studies examined teachers’ results in various mathematical 

competence tests (Hill, Rowan & Ball, 2005). According to Hill and colleagues (2005) the 

problem in this research programme “remains [the] imprecise definition and indirect 

measurement of teachers’ intellectual resources and, by extension, the misspecification of the 

causal processes linking teacher knowledge to student learning” (Hill et al., 2005, p. 375). 

Adding that, “Effectiveness in teaching resides not simply in the knowledge a teacher has 

accrued but how this knowledge is used in classrooms” (Hill et al., 2005, p. 376).  

 A third research programme takes a different approach, investigating the 

mathematical knowledge for teaching held by the teachers. This programme initiated by 

Shulman and colleagues, differentiates between mathematical knowledge that any educated 

person can hold and the mathematical knowledge that teachers should hold; it reframed the 

study of teacher knowledge and it was largely embraced by the research community (Ball, 

Thames & Phelps, 2008). In a 1986 article, Shulman points to the fact that the cognitive 

psychology concerned with learning, had focused its research primarily on the student’s 

point of view and Shulman expressed a need to be asking questions about how teachers learn. 

He centralized questions such as “How does the successful college student transform his or 
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her expertise in the subject matter into a form that high school students can comprehend?” 

(Shulman, 1986, p. 8). Shulman proposed three areas of content knowledge for teaching: 1) 

subject matter content knowledge, 2) pedagogical content knowledge and 3) curricular 

knowledge; among which pedagogical content knowledge (PCK) has received the most 

attention. This type of content knowledge is defined as a knowledge that succeed subject 

matter knowledge, namely knowledge on subject matter for teaching which includes “in a 

word, the ways of representing and formulating the subject that makes it comprehensible to 

others” (Shulman, 1986, p. 9). Shulman further points to the results of the aforementioned 

emphasis on student learning within the research community, as key components of PCK, as 

knowledge regarding what makes some tasks difficult while others easy is an essential part 

of PCK (Shulman, 1986). The concept of PCK has subsequently been taken up and developed 

by many researchers, along with strategies in regards to measuring and comparing teachers’ 

knowledge in this area.  

 Among these were Bromme, whom in a 1994 article presented a topology of areas of 

knowledge necessary in the teacher’s practice (Bromme, 1994). This topology is an extension 

of Shulman’s areas of knowledge for teaching and proposes different but interconnected 

fields of knowledge, constituting in all, the teacher’s professional knowledge. In particular, 

Bromme distinguishes between content knowledge about mathematics as a discipline and 

school mathematics knowledge while also adding philosophy of school mathematics, which 

refers to the teacher’s view on the epistemological foundation of mathematics (Bromme, 

1994).  

 In a 2008 paper, however, Hill, Ball and Schilling asserts that the existence of the area 

of knowledge we call pedagogical content knowledge, have been assumed in the field of 

research and they report that the scholarly evidence concerning what this knowledge really 

is and how it affects students’ outcome is still lacking. They also stress that methods of 

measuring pedagogical content knowledge has yet to be developed. In the 2008 article, Hill 

et al. presents an area of teacher knowledge called knowledge of content and student, and its 

relation to Shulmans pedagogical content knowledge is defined and delimited, with the aim 

of developing a large-scale method of measurement (Hill et al., 2008). Figure 1 below, shows 

the map of mathematical knowledge for teaching constructed by Hill and colleagues. Upon 

this, the researchers constructed multiple task items, presenting various teaching situations 

to a group of respondents consisting of a large-scale sample of teachers. A central question 

in this study was whether knowledge of content and student could be identified through the 

items and thus, said to exist. The study concluded that teachers “do seem to hold knowledge 

of content and students” (Hill et al., 2008, p. 395), but that, despite a thorough 

conceptualization and distinction from other areas of knowledge, it was found difficult to 

measure (Hill et al., 2008).  
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Figure 1: Ball and colleagues map of mathematical knowledge for teaching (Hill et al., 2008, p. 377) 

 Durand-Guerrier, Winsløw and Yoshida (2010) also brings up the questions “what 

does a mathematics teacher need to know, and how should preservice education prepare 

future teachers?” (Durand-Guerrier et al., 2010, p. 1) pointing to the fact that these questions 

remain unanswered. With quite a different approach to the solution than Hill and colleagues, 

they however also point to the root of the problem being a lack of methods for modelling and 

thus for describing and assessing teacher knowledge (Durand-Guerrier et al., 2010). Durand-

Guerrier and colleagues propose a method for assessing mathematics teacher knowledge 

based on the concept of modelling mathematical activity within the Anthropological Theory 

of didactics.  

 It appears that no agreement or consensus presents itself in the literature on the 

subject regarding theoretical models or methods related to the previous stated questions and 

that this has created what Durand-Guerrier and colleagues calls a “black hole” (Durand-

Guerrier et al., 2010, p. 2).  

1.2 Aim and Structure of the Thesis 

Based on the initial question and the above outline of the status quo within the research field, 

this thesis will explore the method to access and asses teacher knowledge, proposed by 

Durand-Guerrier, Winsløw and Yoshida (2010), namely that of hypothetical teacher tasks. 

Specifically, the method will be explored related to the theme of derivative functions in 

Danish high schools. The first part of thesis is guided by the following questions:  
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 How is mathematical knowledge for teaching, perceived within the framework of the 

 Anthropological Theory of Didactics?  

 How can one measure teacher knowledge, based on the principles of the Anthropological 

 Theory of Didactics? Specifically what method are Durand-Guerrier and colleagues 

 suggesting? 

These questions are answered in chapter 2, which constitute the thesis’ theoretical basis. 

Upon this, the thesis’ research questions are presented in chapter 3, followed by an outline 

of the study’s methodology in chapter 4.   

 The second part of the thesis aims to serve as a basis for answering the thesis’ 

Research Question 1. This includes a subject matter didactical analysis of the chosen theme 

of differential calculus, which in particular entails, exploring how this theme can be perceived 

within the framework of the Anthropological Theory of Didactics (chapter 5) and upon this 

an analysis of five hypothetical teacher tasks, designed by the author (chapter 6).   

 In the third part of the thesis the results from an empirical study is analysed, which 

aims to serve as a basis to answer Research Question 2. The purpose of the empirical study 

is two-fold: the hypothetical teacher tasks was answered by 9 participants, four high school 

teachers and five university students, to investigate firstly, the participants’ teacher 

knowledge related to the theme and secondly, the potential of the designed hypothetical 

teacher tasks, in particular; if the tasks conveyed the participants varying teaching 

experience (chapter 7).   

 The results of the empirical study is discussed in chapter 8, particularly including 

considerations concerning the data collecting methods and the characteristics of the 

designed hypothetical teacher tasks. The thesis’ conclusion is presented in chapter 9.  
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2 Theory  
In this chapter, the theoretical basis of the thesis is presented. The theoretical basis is 

comprised of the Anthropological Theory of Didactics and includes the key concepts of 

mathematical and didactical organisations, which are to be presented, in detail, in section 2.2 

and 2.3 respectively, with the aim of determining how mathematical knowledge for teaching, 

is perceived within the Anthropological Theory of didactics. Upon this, the method for 

accessing and assessing teacher knowledge, employed in this thesis, is elaborated in the final 

section of the chapter (2.4).   

2.1 The Anthropological Theory of Didactics 

The Anthropological Theory of Didactics (henceforth abbreviated: ATD) is a research 

programme, initiated by the French didactician Yves Chevallard, for analysing and evolving 

mathematics education (Holm & Pelger, 2015). ATD constitutes a branch in the 

epistemological programme (Barbé, Bosch, Espinoza & Gascón, 2005), which originates from 

the work of Guy Brousseau and the research paradigm developed in the 1970s based on the 

Theory of Didactic Situations (Bosch & Gascón, 2006).  

The central object of ATD is the learning and teaching of mathematics relative to the 

institutions in which, these processes take place (Bosch, Chevallard & Gascón, 2005). A 

fundamental part of the epistemological programme is the conviction that didactics research 

must incorporate epistemological reference models to be used as a mean to avoid 

“Spontaneous conceptions of mathematical knowledge that researchers could assume” and 

thus being subject to the institution of interest (Bosch & Gascón, 2006, p. 61). The notion of 

reference models highly relates to the concept of “didactic transposition”, which will be 

explained thoroughly in the next subsection (2.1.1).  

ATD proposes a use of epistemological models as tools to describe mathematical 

knowledge (Bosch, Chevallard & Gascón, 2005). This is based on the central idea of ATD for 

studying the phenomena of teaching and learning, namely the idea that one can model all 

human activity related to different types of tasks i.e. mow the lawn, set the alarm and 

measure your heartrate. Accordingly, it is possible to model mathematical knowledge by 

perceiving mathematical activity as a human activity, in which certain types of tasks or 

problems are being studied (Bosch & Gascón, 2006). Still, these tasks are to be construed as 

embedded in a context, an institution, which the researcher must incorporate in his analysis. 

This is what the concept of reference models entails, and as mentioned, these are related to 

the process of didactic transposition; indeed, reference models are actually justified by this 

phenomenon (Bosch & Gascón, 2006).      
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2.1.1 Didactic transposition  

The theory of didactic transposition concerns the ‘moving’ of knowledge between institutions 

and between the actors in the didactic process (Bosch & Gascón, 2006). A key aspect related 

to the didactic transposition is the recognition that the knowledge to be taught in schools is a 

product of a process, taking place outside school, originating from the institutions in which 

the mathematical knowledge is produced. The didactic transposition entails an adaption of 

the so-called scholarly knowledge i.e. the knowledge as it is produced by mathematicians to 

the relevant teaching institution. This is a process of selection, delimiting, reorganising and a 

redefining of knowledge and thus enable the teaching of this, but simultaneously creating 

various limitations. For example, the phenomenon of monumentalistic education, where the 

adapting of knowledge has resulted in a removal of the motivation and justification of the 

knowledge (Bosch & Gascón, 2006).  

The actors in the part of the transposition, taking place outside school, are collectively 

called the noosphere and includes politicians, teachers and professionals within the 

discipline. The result is the knowledge to be taught (Bosch & Gascón, 2006). The didactic 

transposition furthermore include the knowledge actually taught and the knowledge learned 

as figure 2 illustrates. The last two ‘steps’ in the figure reflects the role of the teacher and the 

student, respectively (Bosch & Gascón, 2006). 

 

Figure 2: The didactic transposition process (Bosch et al., 2005, p. 1257, edited). 

The selected knowledge to be taught, communicated to the teachers through curricula, 

available textbooks and official exams, creates conditions and constrains in the teacher’s 

praxis as well as a portion of freedom and there will naturally be a difference between the 

knowledge to be taught and the knowledge actually taught (Barbé et al., 2005). The last step 

of the transposition concerns the actual teaching situation taking place in the classroom 

(Bosch & Gascón, 2006).   

 For the didactician, acknowledging the didactic transposition and the need to study it 

in order to understand what is going on in concrete teaching situations, means to incorporate 

it when studying mathematics education and mathematical activity and thus the field of 

research widens extensively (Bosch & Gascón, 2006). To meet this objective, the reference 

model is an important tool – as Bosch and Gascón writes (2006): 
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 When looking at this new empirical object that includes all steps from scholarly 

 mathematics to taught and learnt mathematics, we need to elaborate our own 

 ‘reference’ model of the corresponding body of mathematical knowledge (p. 57).  

This elaboration enables the researcher to capture in full the limits and restrictions within a 

teaching institution and to capture why something is done in a certain way and not another 

and thus “contributes to explain, in a more comprehensive way, what teachers and students 

do when they teach, study and learn mathematics” (Bosch & Gascón, 2006, p. 53).  

 

Figure 3: The reference praxeological model incorporates every level of the didactic transposition (Bosch et al., 2005, p. 1257). 

There exists no general or widespread standard reference model for the bodies of 

mathematical knowledge that are taught in secondary school and thus it is the researcher’s 

job to develop and validate these. The tool of praxeological reference models proposed by 

ATD was in fact, introduced in order to manage this new empirical object (Bosch & Gascón, 

2006).  

2.2 Mathematical Organisation 

 Mathematics teaching and learning situations are characterized by the   

 construction and sharing of practice and knowledge of a mathematical kind.   

 (Miyakawa & Winsløw, 2013, p. 4) 

Within ATD such practice and knowledge are – in the most elementary version and in one 

word - called a praxeology, which is described by Chevallard (2006) as “The basic unit into 

which one can analyze human action at large” (From Bosch & Gascón, 2006, p. 59). In the 

following, the focus will be to describe what a mathematical praxeology entails, but as stated 

in the section 2.1, the notion of a praxeology can be applicated to all human activity. 

  A mathematical praxeology takes as its base a type of task (denoted 𝑇) (Barbé et al., 

2005). For example, consider the mathematical task: 
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 𝑡:   Let 𝑓(𝑥) = 𝑥2 + 7𝑥 + 18 and determine 𝑓′(𝑥) 

Such a task belongs to a more general class of types of tasks on the form:   

 𝑡 ∈ T:   Determine 𝑓′(𝑥) when given the algebraic expression for 𝑓(𝑥) 

For every type of task, there belongs a technique (denoted 𝜏) or possibly multiple techniques, 

which is used in order to solve the task (Durand-Guerrier et al., 2010). For example, the 

mathematical technique associated with the type of task 𝑇 comprises of algebraic 

manipulations combined with a certain algorithmic procedures.  

Types of tasks and corresponding techniques constitutes the praxis or practice block 

of a praxeology. However, as expressed by Chevallard (2006) “No human action can exist 

without being, at least partially, ‘explained’, made ‘intelligible’, ‘justified’, ‘accounted for’, in 

whatever style of ‘reasoning’” (Bosch & Gascón, 2006, p. 59). Hence, there will always exist 

some sort of justification related to the methods used and thus a practice block always relates 

to some logos or knowledge block. According to ATD, such a knowledge block is likewise 

comprised of two parts, called technology (denoted 𝜃) and theory (denoted 𝛩), both 

integrating the purpose, explanation and justification of the practical block (Bosch & Gascón, 

2006).  

The technology part encompass “The important characteristic of human activity to 

allow for coherent discourse about tasks and techniques” (Durand-Guerrier et al., 2010, p. 4). 

Thus, the technology embodies our description of the tasks and techniques. This imply, that 

once you set out to describe in full length a technique employed, you are necessarily 

operating on a technological level since it will necessarily be done so through a certain 

discourse surrounding the particular task and the tools to solve it. The theory is the 

incorporation and organisation of the discourses surrounding the techniques we use during 

the study and solving of mathematical problems, such that it forms a coherent net of 

explanations and justifications for our actions (Durand-Guerrier et al., 2010). In short: 

“Praxis […] entails logos which in turn backs up praxis” as stated by Chevallard (Bosch & 

Gascón, 2006, 59). However, in their 2010 article Durand-Guerrier and colleagues adds that 

a praxis in some cases “may exist independently of the techno-theoretical block” (Durand-

Guerrier et al., 2010, p. 5). This relates to the assertion that human activity can be performed 

without any accompanying description or justification (technology) and further, some tasks 

and related techniques are associated with technological elements but is not justified further 

on a theoretical level (Durand-Guerrier et al., 2010). A praxeology is thus comprised of four 

elements: a type of task, a technique, technology and theory forming the family (𝑇, 𝜏, 𝜃, 𝛩).  
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Praxeologies often appear in coherent families. Such collections of praxeologies 

combines to form mathematical organisations (henceforth abbreviated: MO) (Miyakawa & 

Winsløw, 2013). A MO can assemble in different manners. In order to provide a strong and 

precise tool in varying situations, ATD differentiates between punctual (a praxeology), local, 

regional and global MOs to describe increasingly complicated situations (Bosch & Gascón, 

2006). Figure 4 illustrates the four types of organisations. The punctual organisation builds 

upon a single type of task with an associated technique. Increasing the collection of tasks 

solvable, with various techniques that can be explained and justified with reference to the 

same technology and theory, creates a local organisation (𝑇𝑖, 𝜏𝑖, 𝜃, 𝛩). A collection of multiple 

punctual praxeologies all sharing the same theory, forms a regional organisation (𝑇𝑖, 𝜏𝑖, 𝜃𝑖 , 𝛩) 

and lastly, a collection of local and regional organisations all sharing the same theory, create 

a global MO (Durand-Guerrier et al., 2010). The local, regional and global organisations 

corresponds to mathematical themes, sectors and domains, respectively (Bosch & Gascón, 

2006).   

 
Figure 4: Illustrating punctual, local, regional and global organisations. 

 

For example, task 𝑇 given above, creates a punctual praxeology belonging to the theme 

differentiation, which belongs to the sector differential calculus, which in turn is a part of the 

domain mathematical analysis. A description of a regional mathematical organisation can 

constitute a reference model for the researcher (Durand-Guerrier et al., 2010).  
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2.3 Didactical Organisation 

As it is the case with knowledge in a general sense, mathematical praxis and knowledge in 

the form of MOs are not absolute and rigid entities. Knowledge will always be a product of 

certain processes to which, it is related (Bosch & Gascón, 2006). So what creates and shapes 

the mathematical organisations created in the classroom?  

 The answer is the process of study, which in turn is to be modelled and understood as 

didactical praxeologies, which combines to forms didactical organisations (henceforth 

abbreviated: DO)(Bosch & Gascón, 2006). A DO models the teacher’s activity based on the 

teacher’s tasks (didactical types of tasks are denoted 𝑇*) and is often directly linked to MOs; 

indeed, a DO can be regarded as the ‘answer’ to the question “How does one establish a MO 

[for students]” (Durand-Guerrier et al., 2010, p. 5). Such a relation between DOs and MOs is 

illustrated with the following example. Consider the task:  

 𝑇*:   Plan a teaching session on the determination of functions monotonicity

   properties, using its derivative function.  

This didactical task serves as a base for a local DO. However, this DO explicitly relates to a 

local MO build upon types of tasks such as: 

 𝑇:  Determine the monotonicity of 𝑓 given the algebraic expression of 𝑓′. 

The DO will in fact depend on such a corresponding MO. Furthermore, in a concrete teaching 

situation, for example the practical execution of an answer to 𝑇*, the MO created will 

naturally depend on the DO, as the taught knowledge transpose to the learned knowledge. 

This will possibly affect the teacher to modify the DO, for example if the DO has created 

‘misconceptions’ and hence, the MO created affects the DO.    

 Though didactical praxeologies are of growing interest alongside the interest in 

teacher’s role in the didactic process (Barbé et al., 2005), the experience with DOs and 

modelling of teaching activity according to the principles of ATD is not extensive in the 

literature (Durand-Guerrier et al., 2010). Therefore, an exact conceptualization of DOs 

related to MOs is not widespread. Durand-Guerrier and colleagues (2010) propose the 

following model:  

 A local DO consists of a family of punctual DOs, which in a teaching activity will be 

 enacted consecutively in time […] Some of the task types (defining the punctual DOs) 

 relate directly to a MO, for instance a DO task type may be to construct a question for 

 students that will enable them to work on the MO. The teacher employs, to solve the 
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 task of a given punctual DO, a technique which is at least potentially explained by the 

 overarching technology; the latter will then also refer to the MO in case the task type 

 is related to it. (p. 6) 

A teacher’s activity during a teaching session should thus, be considered as creating a local 

DO. This will consist of many individual tasks with corresponding techniques but will be 

united in a local DO through the overall goal of the session which, combined with the 

technology of a possible related MO, constitutes the technology.   

∗∗∗ 

Based on the concepts of MOs (section 2.2) and DOs (section 2.3), mathematical teacher 

knowledge is thus perceived as technology and theory belonging to MOs and DOs within the 

framework of ATD (Miyakawa & Winsløw, 2013).  

2.4 Hypothetical Teacher Tasks 

To access and assess teacher knowledge and to do this precisely, Durand-Guerrier and 

colleagues (2010) suggest using an operational epistemological model, a model based on the 

principles of ATD, intended to model DOs related to specific MOs (Durand-Guerrier et al., 

2010).  

 The model proposed is an activity-oriented model based on hypothetical teacher tasks 

(henceforth abbreviated: HTTs). The idea is to formulate tasks that are meaningful for the 

teacher, but simplistic, as the tasks are ‘removed’ from the conditions or constrains 

associated with the actual teaching practice. Furthermore, many of the teachers’ DOs are not 

related to or dependent on mathematical didactical knowledge, but simply based on tasks 

regarding pedagogy and organisation e.g. management of time during a lesson. Therefore, 

since it is the goal to access and assess in particular the teachers’ DOs related to specific MOs, 

it is necessary to create a situation by means of the task that minimizes the involvement of 

DOs related to pedagogical or organisational tasks. In an ordinary teaching situation, a 

teacher’s answer to a student’s question will, for example depend on time, the immediate 

goal of the session etc. The name hypothetical stems from this removal of the task from a ‘real 

life’ setting and into a frame with less and optimally, no factors in play concerning pedagogy 

and organisation However, the tasks should maintain a certain characteristic of relevance for 

the teachers (Durand-Guerrier et al., 2010). Furthermore, the assessment of the answers to 

the HTTs, entail a construction and employment of reference praxeologies of the DOs as well 

as MOs related to the HTTs in accordance with the principles of ATD.  
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3 Research Questions 

Upon the theory presented in chapter 2, the thesis’ research questions will be presented. The 

method proposed by Durand-Guerrier and colleagues, presented in section 2.4, to access and 

assess mathematics teachers’ knowledge, namely that of HTTs, will be explored in this thesis 

with the main aim of answering the following two questions.  

Research question 1:  

Based on a subject matter analysis of the theme of differential calculus in Danish high 

school, how can one model non-trivial teacher knowledge related to this theme in 

terms of HTT’s? 

This method employed for this research question is elaborated in the next section; however 

answering this question ultimately produces actual HTTs. These HTTs will be utilized in an 

empirical study seeking to answer the following research question.  

Research question 2:  

Do the participants’ answers to the HTT reflect their different amounts of teaching 

experience? In what way? 

The formulation ‘non-trivial teacher knowledge’ in research question one, needs some 

elaboration. In this context, the meaning of this formulation is considered as two-fold. On the 

one hand, it refers to mathematical knowledge (i.e. techno-theoretical components of MOs) 

associated with tasks which are non-typical in the transposition of the theme of differential 

calculus to Danish high schools and thus, it refers to knowledge related to mathematical tasks 

which are not commonly taught or widespread in Danish high schools. Simultaneously it 

refers to didactical knowledge (i.e. techno-theoretical components of DOs) associated with 

didactical tasks which relates to some MO. Meaning that the term non-trivial teacher 

knowledge excludes knowledge related to didactical tasks which could be relevant to pose to 

any teacher.  
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4 Methodology 

In this chapter, I will outline the methodology employed to answer the thesis’ research 

questions.  

4.1 Research Question 1 

As is explicit in Research Question 1, a subject matter didactical analysis of the theme of 

differential calculus is the first step. This will be presented in chapter 5. It aims firstly, at 

providing an insight into the possible structure of a mathematical organisation constituted 

by this theme. Secondly, it aims at analysing the knowledge block associated with such an 

organisation. This analysis builds largely on the presentation of the theme given in an 

introductory analysis book by Lindstrøm (2006) and seeks to uncover the more implicit 

aspects of the theory’s inherent mathematical objects as well as the interconnections 

between the theory’s various definitions and theorems. Lastly, the subject matter analysis 

seeks to explore the transposition of the subject matter to Danish high schools. In this respect, 

it is of particular importance to identify the elements that are not transposed to high school 

but ‘left at university’, the possible consequences related to the rationale of the subject matter 

and the justification of the techniques associated with ‘typical tasks’ of high school 

curriculum.  

 Based on the above analysis, five HTTs was designed. These are presented in chapter 

6 along with an a priori analysis of each subtask. The design process necessarily included a 

selection of some tasks, while others were abandoned; a rather brief literature study, 

outlined in the introduction of chapter 6, compelled to select task that were placed in a 

graphical setting. Furthermore, as explained in section 2.4, the goal when using HTTs is to 

access and assess the teachers’ DOs related to specific MOs. Hence, the designed tasks all 

relates to specific punctual MOs and the a priori analysis shall make this relation explicit. 

Regarding the inherent mathematical tasks, the analysis will uncover, which mathematical 

techniques are necessitated by the tasks, and identify the technology (𝜃) and theory (𝛩) 

associated with these techniques.  

 The techno-theoretical components related to the mathematical techniques are thus 

identified, while those related to the didactical tasks and techniques are not. This difference 

in treatment originates from the current absence of established and widely acknowledged 

theoretical ground within which the activities finds its explanations and justifications. The 

impossibility of creating complete reference models related to didactical tasks is thus an 

expression of the scarcity of theoretical models within the teaching profession (Durand-

Guerrier et al. 2010). The choice of one technique over another does not necessarily reflect 
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some entrenched theoretical knowlegde, but could just as well reflect the respondent own 

personal beliefs about teaching (Miyakawa & Winsløw, 2013).   

 ‘Standard answers’ to the HTTs was developed upon the a priori analysis, comprised 

mainly of the key didactical and mathematical techniques identified. The tasks together with 

the established model of associated technique, technology and theory constitutes the thesis’ 

answer to Research Question 1.    

4.2 Research Question 2 

To answer research question 2 the HTTs was answered by, nine participants, which naturally 

divided into two groups of respondents. Below is a description of the groups, followed by an 

outline of the method for collecting data.  

4.2.1 The Respondents   

The study involved nine divided into two groups. The first group consisted of five university 

students (identified as S5-S9) for which, mathematics was their minor subject and they were 

all at the stage in their education of finishing their mathematical studies and thus, they have 

accumulated the mathematics knowledge that is required to teach in secondary school. The 

students were enrolled in a course called “Mathematics in a Teaching Context” offered at the 

University of Copenhagen, and therefore it is asserted that these participants have an interest 

in the teaching of mathematics. However, none of the participant in this group have any 

teaching experience in secondary school. The second group consisted of four in-service high 

school teachers (identified as T1-T4). This group is more diverse internally. One of the 

teachers was still a university student, though with six full years of teaching experience in 

secondary school (T2). One of the teachers had studied mathematics as minor subject (T4), 

while the remaining three teachers had studied mathematics as a major subject. Lastly, their 

specific teaching experiences varied in terms of which levels, i.e. some had much experience 

with teaching A-level mathematics while one had never taught A-level mathematics and 

furthermore, their teaching experience varied related to the specific theme of differential 

calculus.  

 All the participants had, for this purpose, one important thing in common: they had 

all followed courses at university covering the theme in focus. At the University of 

Copenhagen, the theme of differential calculus is treated in the first semester, primarily in 

the course “Introduction to the Mathematical Sciences” (treating differentiability of functions 

of one variable) (Introduktion til de matematiske fag, 2016). This particular course is also 

included in the university’s course description for students taking mathematics as a minor 
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(Sidefag i matematik, n.d.). In a more general context, in the guidelines settled by the Ministry 

of Education and Research for the universities providing teacher educations, the theme of 

Calculus is included and related to which, it is stated: “The candidate must have solid 

knowledge of the following mathematical themes” (Retningslinjer for universitets 

uddannelser, 2006). Thus, the participants’ mathematical education may vary, but they have 

all attended courses at university covering the theme on which the HTTs centre.  

4.2.2 Collecting data 

Circumstances regarding accessibility of the participants meant that the method for 

collecting data varied between the two groups.  

 The teachers worked with the HTTs individually and answered the tasks in writing 

within a timeframe of fifty minutes while the researcher (author) was present, sitting across 

from the participant. These meetings was also audio recorded. The purpose of the researcher 

being present was to encourage and provide a more natural scene for the teachers to “think 

out loud” when working with the tasks and thus, to ensure (in a higher degree) access to the 

teachers’ technology and theory.  

 The university students on the other hand, was accessible collectively, in an 

extraordinary teaching session in the course “Mathematics in a teaching context”. Under 

these circumstances, it was chosen to place the participants in pairs, to create an 

environment, which encouraged “thinking out loud”, more exactly, to encourage the student 

participants to share their thoughts, regarding the tasks and their solutions, with each other. 

Time showed that the number of university students participating, was limited to five and 

thus, they were placed in groups of two and three. The students were asked to consider each 

task individually and give a preliminary answer and first then, discuss the task with the co-

student(s), to ensure an insight into each participant’s ability to mobilize appropriate 

techniques. The students’ conversations was audio recorded and they were also given 50 

minutes (exceeding the official timeframe of the session by 5 minutes and two of the 

participants did not have the opportunity to stay longer, which meant that their timeframe 

was limited to 45 minutes).  

4.2.3 The A Posteriori Analysis 

To answer Research Question 2, the participants’ responses to the HTTs was analysed a 

posteriori (chapter 9). This entailed specifically, an identification of the specific mathematical 

and didactical techniques activated by the participants and, based on the former; identifying 

the participants’ technology and theory. The a priori analysis of the HTTs served as a 

reference model in the identification process. For the purpose of creating an initial overview 
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of the results, the analysis of the participants’ answers was compared to the ‘standard 

answers’ developed in the a priori analysis of the HTTs and based on this comparison, each 

answer was given points varying between 0-3 in the following way: 

 0 points: The participant did not answer or provided a wrong answer. 

 1 point: The participant’s answer included one or few correct elements. 

 2 points: The participant’s answer included multiple correct elements. 

 3 points: The participant’s answer covered all a priori identified aspects and  

   possibly additional relevant elements. 

It is stressed, that the purpose of the points was to provide an overview of the participants’ 

performances on the HTTs and is quite superficial. Furthermore, since the standard answers 

are constructed through an analysis of the tasks performed by the author and in cooperation 

with the thesis supervisor, some subjectivity is consequently related to the distribution of 

points; indeed, the coding of the participants’ answers bear the same subjectivity.  

 Lastly, in order to provide a full answer to Research Question 2, considerations 

regarding the character of the HTTs, the data collecting methods and various limitations of 

the study, is discussed. 
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5 Subject Matter – Didactical Analysis 

In the presentation in section 2.2, it was emphasized how all human activity can be described 

as organisations consisting of a coherent family of praxeologies and that this holds for 

mathematical activity as well. Such organisations can vary in size and complexity. The aim of 

this chapter is to explore the mathematical organisation, which encapsulate the theme of 

differential calculus and in particular, to explore the theory that unifies such an organisation 

and justifies the techniques associated with the generating tasks. Furthermore, the goal of 

the chapter is to clarify how such an organisation is transposed to high school, i.e. what is the 

knowledge to be taught.  

5.1 Algebraic and Topological Organisations in Analysis 

The aim of this section is to clarify how an epistemological reference model of differential 

calculus, would present itself and to some extent, its relation to other sections of analysis 

taught in secondary school. A 2015 article by Winsløw will constitute the starting point. 

  Inspired by the work of Barbé et al. (2005) regarding the restrictions of the teacher 

when teaching limits in Spanish high schools, Winsløw proposed in a 2015 article, six local 

organisations, encompassing the themes of limits, derived functions and integrals. In their 

article, Barbé and colleagues propose a reference model on the subject of limits consisting of 

two separate but connected local MOs; an algebraic MO called the “Algebra of Limits” and a 

topological MO called the “Topology of Limits” (Barbé et al., 2005). Based on these results, 

Winsløw suggests that the same structure is detectible when considering other elements of 

calculus, pointing to the integral and the derivative function. Furthermore, Winsløw stresses 

how a connection exists between these three pairs of local MOs – each pair constituting a 

reginal MO.  

 Figure 5 illustrates the simplified reference model proposed by Winsløw consisting of 

six local MOs. For an elaborate discussion of MO1 and MO2, regarding limits of functions see 

Barbé et al. (2005) and for a more in depth discussion of MO5 and MO6 see Winsløw (2015). 

In this context, mainly MO3 an MO4 will be of interest. However, the names of the six 

organisation given in this scheme will be preserved throughout, in order to make referencing 

clear. The main structure, as it also appears in the figure below, is made up of a division, but 

as the arrows in the middle column suggests, the MOs are connected.  
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Figure 5: Six local MOs constituting a simplified reference praxeological model (Winsløw, 2015, p. 203). 

 MO4 concerns the topology of the derivative of a function 𝑓. Its base is comprised of 

types of tasks considering the existence of the derivative as well as tasks seeking to justify 

the differentiation rules and properties of the derivative function (Winsløw, 2015). In this 

thesis, MO4 is considered as based on five major types of tasks:   

 𝒯4.1:   What is the derivative of 𝑓 in a point 𝑎 ∈ 𝐷𝑓?   

 𝒯4.2:   What is the derivative function 𝑓′? 

 𝒯4.3:   For a given 𝑓 does 𝑓′ exists? Where? 

 𝒯4.4:   Justify the properties of the derivative function.  

 𝒯4.5:   Justify the differentiation rules (e.g. 𝑓(𝑔(𝑥))
′

= 𝑓′(𝑔(𝑥)) ∗ 𝑔′(𝑥)). 

An example of a type of task regarding the general properties of the derivative is 𝑇 ∈ 𝒯4.4: 

 𝑇:   Show that if 𝑓′(𝑥) = 0 for all 𝑥 ∈ 𝐷𝑓 then 𝑓 is constant on 𝐷𝑓 .  

These types of tasks together with techniques for solving them constitutes the practice block 

of MO4 and are unified by a knowledge block with its primary element being the definition of 

the derivative. However, some of the properties and results associated with differential 
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calculus is in addition to the definition of the derivative also dependent on elements from 

other local organisations (Winsløw, 2015). First of all the definition of the derivative itself is 

strongly and explicitly related to the notion of a limit. MO4, as figure 5 illustrates, is ‘built’ on 

MO2, “The Topology of Limits” – in fact, a central type of task in MO2 concerns the existence 

of limits and hence a type of task in this organisation is to determine whether the derivative 

exists in a given point for a given function. The corresponding algebraic organisation MO3, 

“The Algebra of the Derivative Function”, bases on major types of task regarding the 

determination of 𝑓′ when existence is given (Winsløw, 2015): 

 𝒯3.1:   Given the algebraic expression of 𝑓, determine 𝑓′(𝑥). 

Which often appear in the extended version of: 

 𝒯3.2:   Given the algebraic expression of 𝑓 and a point 𝑎 ∈ 𝐷𝑓 , determine 𝑓′(𝑎). 

For which the basic technique is comprised of algebraic manipulations. The technology 

entails a discourse about the correct way of computing derivatives, largely through suitable 

use of the differentiation rules. Within MO3, these rules also constitute the theory i.e., the 

differentiation rules justifies the praxis of MO3. Additionally, 𝒯3.1 also exist in the following 

extended version: 

 𝒯3.3:  Given the algebraic expression of 𝑓, determine the monotonicity of 𝑓. 

For which, the technique is justified by the differentiation rules as well as the ‘rules’ 

concerning the properties of the derivative. The differentiation rules and the properties of 

the derivative are in turn, justified in the practice block of MO4 and hence, the practice block 

of MO4 provides the justification of the knowledge block of MO3. The following type of task 

also belongs to MO3: 

 𝒯3.4:  Given the graphical representation of 𝑓 and a point 𝑎 ∈ 𝐷𝑓 , determine  

   𝑓′(𝑎).  

This closely relates to 𝒯3.2, but is associated with techniques that are not algebraic in nature, 

but comprises of reading and interpreting graphs.  

It should be stressed that that the reference model in figure 5 above, proposed by 

Winsløw (2015), is not asserted to be comprehensive or to be considered as constituting a 

reference model of all the subjects of analysis, taught in high school. The model is simplistic, 

however for the purpose of identifying primary challenges in the transposition of elements 

in the domain; the model is also sufficient. What the model does not encompass is, for 
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example the local organisation generated by tasks concerning optimization (Winsløw, 2015). 

In section 5.3, we will return to the primary challenges identified by Winsløw regarding this 

transposition.   

5.2 The ‘Scholarly’ Knowledge  

In this section, the local organisations, MO3 and MO4, as they were defined in the former 

section, is explored further; in particular the knowledge blocks of the two MOs. However, 

since the knowledge block of MO3 is justified in the practice block of MO4, it could also be said, 

that the focus of this section is the entirety of MO4. This section thus explores the main 

elements of the knowledge block of MO4, as well as the results justified in the practice block. 

The analysis of the theory presented in the following, aims in particular at making explicit 

some of the hidden assumptions and consequences, and at providing an overall picture of the 

theoretical landscape surrounding the derivative and thereby contribute to the reference 

model of the subject.    

 Large parts of the presentation in this chapter bases on an introductory analysis 

book by Lindstrøm (2006), which is widely used at the University of Copenhagen. The book 

is written for teaching purposes, and therefore the content has been subjected to a didactic 

transposition process and hence, it is not ‘scholarly knowledge’ in a pure form. However, 

since it is a book addressed to university students, it is asserted that nothing is ‘left out’. When 

investigating the book, only one exception to this assertion was found, which could be 

interpreted as stemming from an expectation from the author of the book, namely that the 

university students prior to attending university have been taught differential calculus (some 

version of it) in high school.  

5.2.1 The Definition of the Derivative 

The central element in the theoretical level of MO4 is the rigorous definition of the derivative 

of a function. Preceding this, however, is a theory, which generates a whole other MO, namely 

MO2 – the topology of limits. We shall see in detail, what is meant by MO4 being “directly 

derived” from MO2 (Winsløw, 2015, p. 200). Furthermore, the derivative function bears with 

it many additional underlying concepts such as the concept of a function, continuity and the 

concept of the real numbers, which are crucial for the rigorous definition, which in turn is 

central for the acknowledgement of any theory in today’s mathematical realm. Through an 

examination of Lindstrøm (2006), a landscape of results and definitions appeared 

surrounding the definition of the derivative of a function 𝑓 at a point 𝑎 ∈ 𝐷𝑓 . Figure 6 

illustrates this landscape and shows how the various mathematical definitions and theorems 

appears interconnected. Not all the definitions and results in the figure are a part of the local  
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Figure 6: A landscape of definitions and theorems related to the derivative function.  
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organisation MO4; some of the definitions generates other MOs. The elements, which belongs 

to the MOs presented in section 5.1, are labelled accordingly; the rules for differentiation is 

not included in figure 6, these are the subject of subsection 5.2.5. In the following, the concept 

of the derivative function as well as its rigorous definition, as it is stated in Lindstrøm (2006) 

(my own translation from Norwegian4) will constitute the starting point of the didactical 

analysis. From the definition of the derivative, we will move forward as well as back and zoom 

in to uncover results and concepts both preceding, and derived from, the definition of the 

derivative. The proofs for the results are included in the analysis as these convey the exact 

way in which the results are dependent upon each other. On a general note, let us first 

establish four ways in which the concept of the derivative can be approached. According to 

Zandieh (1997):  

 The concept of derivative can be seen (a) graphically as the slope of the tangent 

 line to a curve at a point or as the slope of the line a curve seems to approach under 

 magnification, (b) verbally as the instantaneous rate of change, (c) physically as speed 

 or velocity, and (d) symbolically as the limit of the difference quotient. (p. 65)  

An addition, or a variation of (a) could be the interpretation of the derivative at a point 𝑎 ∈

𝐷𝑓 as the “limit” of the slope of the secant lines through (𝑎, 𝑓(𝑎)) and (𝑥, 𝑓(𝑥)) as 𝑥 → 𝑎 (see 

figure 7). 

 

Figure 7: The derivative at 𝒂 is the “limit” of the slope of the secants. 

                                                      
4 All citations from Lindstrøm (2006) are translated from Norwegian by the author.   
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Leaving (b) and (c) for now, let us consider (d): The derivative considered symbolically as 

the limit of the difference quotient. In this description, two aspects of the derivative appear 

explicitly; limit and difference quotient. The difference quotient is the average rate of change 

of the dependent variable in respect to the independent variable over a given interval [𝑎, 𝑥]. 

In symbols, we write:  

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
          or          

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
. 

Where 𝑥, 𝑎 ∈ 𝐷𝑓 and |ℎ| is the distance between 𝑥 and 𝑎. (Zandieh, 1997). Furthermore, the 

concept of a limit is obviously inherent and, in fact central, in the definition of the derivative 

of f at a point 𝑎 ∈ 𝐷𝑓 . To make sense of the definition of the derivative, thus means, making 

sense of the concept of limits. The definition states (Lindstrøm, 2006, p. 231, own 

translation):  

Definition 1 Assume that 𝑓 is defined in a neighborhood around a point 𝑎. We say that 𝑓(𝑥) 

has limit 𝑏 when 𝑥 approaches 𝑎 if the following holds. For any number 𝜀 > 0 

(regardless of how small) there exists a number 𝛿 > 0 such that 

|𝑓(𝑥) − 𝑏| < 𝜀 for all 𝑥 if 0 < |𝑥 − 𝑎| <  𝛿. In symbols, we write: 

 lim
𝑥→𝑎

𝑓(𝑥) = 𝑏 

Note that the definition does not state whether x approaches 𝑎 from above or below. In fact 

the definition involves both 𝑎 < 𝑥 < 𝑎 + 𝛿 and 𝑎 − 𝛿 < 𝑥 < 𝑎 and only when the limit from 

above and below are the same, do we say that the limit exists:  

lim
𝑥→𝑎+

𝑓(𝑥) = lim
𝑥→𝑎−

𝑓(𝑥) = 𝑏 

Furthermore, the definition does not require 𝑓 to be defined in 𝑎. From the requirement,     

0 < |𝑥 − 𝑎| it is evident that only 𝑥 near 𝑎 is of importance, and that 𝑥 = 𝑎 is not considered. 

Thus, a function does not need to be defined in 𝑎 to have a limit for 𝑥 approaching 𝑎. If 𝑓 

however, is defined in 𝑎 and if 𝑓 is continuous, the limit for 𝑥 approaching 𝑎 will always be 

𝑓(𝑎) as we shall see in subsection 5.2.2. We can now state the definition of the derivative in 

a point 𝑎 ∈ 𝐷𝑓 (Lindstrøm, 2006, p. 254, my own translation). 

Definition 2 Assume that 𝑓 is defined in a neighborhood around a point 𝑎 (hence there 

exists an interval (𝑎 − 𝑐, 𝑎 + 𝑐) s.t. 𝑓(𝑥) is defined for all 𝑥 in this interval).  

If the limit 
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𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

 exists, we call 𝑓 differentiable in 𝑎. We write  

 𝑓′(𝑎) = 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
 

  and call this the derivative of 𝑓 at the point 𝑎.  

Notice how two thing are going on. Firstly, definition 2 presents a (potential) property 

belonging to a function 𝑓 and a point 𝑎 ∈ 𝐷𝑓 , namely the existence of the limit:  

lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
. 

Secondly, if 𝑓 holds this property, the definition ties an object to f and the point 𝑎, namely the 

number 𝑓′(𝑎). Due to the basic ontological difference, it is important to acknowledge the first 

part of the definition and not simply state that  

𝑓′(𝑎) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
. 

Since the latter assumes existence of the limit, which consequently entails the false 

statement, that all functions defined in on interval around 𝑎 are differentiable in 𝑎. It should 

thus be recognized how the definition of the derivative of 𝑓 in a point 𝑎 ∈ 𝐷𝑓 is far from trivial 

or self-evident as we are in reality dealing with the (potential) limit of a new function 𝑔, which 

is undefined at 𝑎, namely the difference quotient: 

lim
𝑥→𝑎

𝑔(𝑥), when 𝑔(𝑥) =
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
.    

For 𝑥 = 𝑎, this quotient function g will have denominator equal to zero and hence be 

undefined at 𝑎 and the limit will never simply be 𝑔(𝑎). Notice however, that the existence of 

the limit is not dependent on whether 𝑔 is defined in 𝑎 cf. Def. 1. On the contrary, though; the 

existence of the derivative of 𝑓 in a point 𝑎, is clearly dependent on 𝑓 being defined in 𝑎. 

Considering, the concept of the derivative at a point as suggested by Zandieh (1997), namely 

as the slope of the tangent line to a curve at a point, it is clear why 𝑓 need to be defined in 𝑎, 

as 𝑓 only has a tangent in 𝑎 if it is defined in 𝑎. Let us briefly consider 𝑓(𝑥) = 𝑒𝑥 . For 𝑎 = 0 

the relevant difference quotient is:  



   

   27 
  

𝑔(𝑥) =  
𝑒𝑥 − 1

𝑥
 

That the limit exists for 𝑥 approaching zero is not trivial at all, as the expression appears to 

approach ‘0/0’ for 𝑥 → 0. A way to prove that the limit exists for 𝑥 approaching 0 is by 

employing the squeeze theorem (which will not be proved here, see (Proof of the Squeeze 

Theorem, n.d.). It states:  

 

 

 

 

If 𝑔(𝑥) =
𝑒𝑥−1

𝑥
 and choosing 𝑓(𝑥) = −|𝑥| + 1, ℎ(𝑥) = |𝑥| + 1 and (𝑎, 𝑏) = (−1,1), we have, as 

figure 8 illustrates: 

−|𝑥| + 1 ≤
𝑒𝑥 − 1

𝑥
≤ |𝑥| + 1, for 𝑥 ∈ (−1,1)\{0} 

 

 

Figure 8: 𝑔(𝑥) ‘squeezed’ between 𝑓(𝑥) = −|𝑥| + 1 and ℎ(𝑥) = |𝑥| + 1 . 

 And the requirements of the theorem is satisfied, yielding:  

lim
𝑥→0

−|𝑥| + 1 = lim
𝑥→0

|𝑥| + 1 = 1, and thus lim
𝑥→0

𝑒𝑥−1

𝑥
= 1 

The Squeeze Theorem 

If 𝑓(𝑥) ≤ 𝑔(𝑥) ≤ ℎ(𝑥) for all 𝑥 ∈ (𝑎, 𝑏) 

containing 𝑐, except possibly for 𝑥 = 𝑐 and  

lim
𝑥→𝑐

𝑓(𝑥) = lim
𝑥→𝑐

ℎ(𝑥) = 𝐿 then lim
𝑥→𝑐

𝑔(𝑥) = 𝐿 
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Notice how 𝑔 appears to actually attain the value 1 for 𝑥 = 0, which is known to be false.  

Thus, the graphical setting is not a reliable tool in this respect, as it might lead to the false 

argument: lim
𝑥→0

𝑔(𝑥) = 𝑔(0) = 1. 

 Another way to write the derivative of 𝑓 in a point; let us now call this point 𝑥0, is 

(assuming that 𝑓 is differentiable in 𝑥0):   

𝑓′(𝑥0) = lim
ℎ→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

If 𝑓 is defined on an interval 𝐼 = [𝑎, 𝑏] and the above limit exists for all 𝑥0 ∈ (𝑎, 𝑏) then we 

call f a differentiable function on (𝑎, 𝑏) and write (Zandieh, 1997, p. 65): 

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
,    𝑥 ∈ (𝑎, 𝑏) 

Notice how 𝑓 is said to be differentiable on (𝑎, 𝑏) and not on the entire domain [𝑎, 𝑏]. This is 

a consequence of the definition of limits – 𝑓 is not defined in a neighborhood around 𝑎 or 𝑏 

and thus the limit for 𝑥 approaching 𝑎 ‘from below’ and the limit for 𝑥 approaching 𝑏 ‘from 

above’ is meaningless.  

 Furthermore, the objects, 𝑓′(𝑥0) and 𝑓′(𝑥), that the above formulas define, is of very 

different nature. The first defines a number and the second defines a function. In Lindstrøm 

(2006), this ‘aspect’ of the theory is not presented in detail and the second formula, the 

derivative function, is not defined, or distinguished from the derivative of a function in a 

point, explicitly. However, it is stated, shortly after a definition corresponding to the present 

subsections’ Definition 2, that “… for the derivative itself, there exists multiple notations” 

(Lindstrøm, 2006, p. 254, my own translation, italics added), pointing to the notations: 

𝑓′(𝑥),          
𝑑𝑓

𝑑𝑥
(𝑥),          𝐷[𝑓(𝑥)]  

It is possible that this is ‘left out’ due to the natural extension from the derivative in a point; 

in Definition 2, we assign to each 𝑥0 in the interior of 𝐷𝑓 (if the limit exists) a number 𝑓′(𝑥0) 

which is exactly the mechanism associated with functions. Hence, the definition of the 

derivative function 𝑓′(𝑥), is a natural consequence of Definition 2.   

 A relevant aspect of the concept of the derivative should be included in this context. 

As mentioned above the derivative at a point and the derivative function are two – though 

inevitably related – very different objects. In fact, while the derivative at a point define an 
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object, the derivative function immediately seems to define a process. In a general sense, 

however the concept of a function possess a duality; it can be viewed as a process, taking as 

input one value and returning another and it can be viewed as a static object – the result of a 

process (such as derivation). The derivative concept contains multiple such two-sided 

elements. Firstly, the difference quotient may be thought of as a process of dividing two 

objects, the result being a ratio and thus an object. Secondly, taking the limit of the ratio (the 

difference quotient) can be thought of as a dynamic process were 𝑥 approaches some fixed 

number (or ± ∞) but simultaneously, it can be thought of as an object, namely the limit itself 

(Zandieh, 1997). The process/object duality is by Sfard (1991) referred to as an 

operational/structural conception. According to Sfard, the operational understanding 

precedes the structural understanding, however processes are considered as actions 

performed on established objects (Sfard, 1991). Hence, when learning the concept of the 

derivative one needs to transition from an operational understanding to a structural 

understanding of the difference quotient, of limits and of functions and thus be able to 

consider these as processes as well as objects (Zandieh, 1997).   

5.2.2 Continuity 

Another central concept, tightly related to the differentiability of a function is continuity of a 

function, stated differently: an important property of a differentiable function is continuity.  

Let us consider the definition of continuity (Lindstrøm, 2006, p. 212, own translation). 

Definition 3  A function 𝑓 is contionous in a point 𝑎 ∈ 𝐷𝑓 if the following holds: for any  

𝜀 > 0 (regardless of how small) there exists a 𝛿 > 0 such that when 𝑥 ∈ 𝐷𝑓 and 

|𝑥 − 𝑎| < 𝛿 then |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀.  

As opposed to the definition of limits, the definition of continuity in a point 𝑎 requires that f 

is defined in 𝑎. Aside from this, the two definitions look very similar. They are connected in 

the following way. Consider 𝑓: [𝑎, 𝑏] → ℝ and 𝑥0 ∈ [𝑎, 𝑏]. Then the following holds 

(Lindstrøm, 2006, p. 236):  

  𝑓 is continuous on [𝑎, 𝑏] ⟺  lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) for all 𝑐 ∈ (𝑎, 𝑏), 

   lim
𝑥→𝑎+

𝑓(𝑥) = 𝑓(𝑎)  and lim
𝑥→𝑏−

𝑓(𝑥) = 𝑓(𝑏) 

The concept of continuity and the concept of limits is thus closely related. This is also 

reflected by the presence of the concept of continuity within MO1 and MO2 (Barbé et al., 2005 

and Winsløw, 2015). The following theorem demonstrates how the concept of continuity and 

differentiability are interrelated (Lindstrøm, 2006, p. 259, own translation). 
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Theorem 1  If 𝑓 is differentiable in a point 𝑎 then 𝑓 is continuous in 𝑎. 

Proof Assume 𝑓 is differentiable in 𝑎 ∈ 𝐷𝑓 . By the definition of continuity in a point, 

we want to show that lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎). First, we rearrange the expression:  

lim
𝑥→𝑎

𝑓(𝑥) = 𝑓(𝑎)  ⟺ lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎) = 0 ⟺ lim
𝑥→𝑎

(𝑓(𝑥) − 𝑓(𝑎)) = 0. 

Using that lim
𝑥→𝑎

𝑓(𝑎) = 𝑓(𝑎) and the rules for calculating with limits for the 

second biimplication (Lindstrøm, 2006, p. 233). From the last equality, we get: 

lim
𝑥→𝑎

(𝑓(𝑥) − 𝑓(𝑎)) = lim
𝑥→𝑎

(
𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
∙ (𝑥 − 𝑎)) = 

lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
∙ lim

𝑥→𝑎
(𝑥 − 𝑎) = 𝑓′(𝑎) ∙ 0 = 0 

Using, for the second equality, that the limit of 𝑥 − 𝑎 exists for 𝑥 → 𝑎 and upon 

this, the rules for calculating with limits as well as the assumption on 𝑓 for the 

third equality. ∎  

It is worth noticing that if 𝑓 is not differentiable in 𝑎, the limit of the difference quotient would 

not exist. Consequently, a differentiable function will be continuous and Theorem 1 thus 

constitutes one of the key properties of differentiable functions, which are to be justified in 

the practice block of MO4. The result is however, not a part of the knowledge block of MO3, as 

it does not serve as justification for any of the techniques for the tasks belonging to this MO.  

 In a more general note, continuity is a necessary condition but not a sufficient condition 

as there exists functions, which are not differentiable, but are continuous. This means that 

the reverse does not hold: continuity does not imply differentiability (Lindstrøm, 2006). In 

fact, there exists functions that are everywhere continuous but nowhere differentiable. 

Though this might seem counter intuitive, this means that there exists functions with the 

property that in any interval of the domain (no matter how small) the function will have an 

‘edge’. Using Zandieh’s characterisation (a) given in the introductory of subsection 5.2.1: no 

matter how much the graph of the function is magnified, no ‘line’ will appear, and stated 

formally: the limit of the difference quotient will not exists for any points in the functions 

domain (i.e. the limit from above and below will be different from each other). The first 

published example5 (with proof) of such a function in the history of mathematics was Carl  

                                                      
5 Other mathematicians before Weierstrass discovered examples of everywhere continuous nowhere 
differentiable functions but did not publish (Thim, 2003). 
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Weierstrass’ monster function illustrated graphically in figure 9, given by the expression 

(Thim, 2003): 

𝑓(𝑥) = ∑ 𝑎𝑛 cos(𝑏𝑛𝜋𝑥)∞
𝑛=0 , where 0 < 𝑎 < 1, 𝑏 is an odd integer and 𝑎𝑏 > 1 +

3𝜋

2
. 

 

Figure 9: Weierstrass’ everywhere continuous nowhere differentiable function (Weierstrass function, n.d.). 

Up until this development, it was widely believed that all continuous functions were 

differentiable, except possibly in a certain limited amount of points (Thim, 2003). An example 

of the latter type of function is 𝑓(𝑥) = |𝑥|, which is everywhere continuous but only 

differentiable for 𝑥 ∈ ℝ\{0}, since taking the limit of the differential quotient for 𝑥 → 0 gives:  

lim
𝑥+→0

𝑔(𝑥) − 𝑔(0)

𝑥 − 0
= lim

𝑥+→0

|𝑥|

𝑥
= 1 ≠ −1 = lim

𝑥−→0

|𝑥|

𝑥
= lim

𝑥−→0

𝑔(𝑥) − 𝑔(0)

𝑥 − 0
 

This result appears in the graph of |𝑥| as an ‘edge’ at 𝑥 = 0 (figure 10). 

   

 
Figure 10: The graph of |𝑥| 
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The property of continuity does not extend to the derivative function, i.e. the derivative 

function 𝑓′ need not be continuous. Consider the function 𝑓: ℝ → ℝ+ given by (The 

Derivative, n.d.):  

𝑓(𝑥) = {𝑥2 sin (
1

𝑥
) , 𝑥 ≠ 0

0, 𝑥 = 0
 

This function is continuous since 𝑥2 sin (
1

𝑥
)  is continuous for all 𝑥 ≠ 0 and lim

𝑥→0
𝑓(𝑥) = 𝑓(0):  

|sin (
1

𝑥
)| ≤ 1 and thus |𝑥2 ∙ sin (

1

𝑥
)| ≤ 𝑥2, which implies: 

−(𝑥2) ≤ 𝑥2 sin (
1

𝑥
) ≤ 𝑥2 for all 𝑥 ∈ ℝ\{0}.  

Moreover, lim
𝑥→0

−𝑥2 = lim
𝑥→0

𝑥2 = 0 and hence, lim
𝑥→0

𝑓(𝑥) = lim
𝑥→0

𝑥2 sin(
1

𝑥
) = 0 = 𝑓(0) by the 

squeeze theorem (see p. 27) and thus 𝑓 is continuous for all 𝑥 ∈ ℝ. By the same argument, it 

holds: 

lim
𝑥→0

𝑓(𝑥) − 𝑓(0)

𝑥 − 0
lim
𝑥→0

𝑥2 sin (
1
𝑥) − 0 

𝑥
= lim

𝑥→0
𝑥 ∙ sin(

1

𝑥
) = 0. 

So 𝑓′(0) = 0 and𝑓 has derivative function:  

     𝑓′(𝑥) = {
2𝑥 ∙ sin (

1

𝑥
) − cos (

1

𝑥
) , 𝑥 ≠ 0

                                      0 , 𝑥 = 0
.  

Using rules for differentiation for 𝑓 defined on 𝑥 ∈ ℝ\{0} (in particular (𝑖𝑖), (𝑣), (𝐼𝐼), (𝑉) see 

subsection 5.2.5). However, the argument below shows that the limit of 𝑓′(𝑥) for 𝑥 → 0 does 

not exist, and thus 𝑓′ is not continuous at 𝑥 = 0:  

lim
𝑥→0

𝑓′(𝑥) = lim
𝑥→0

(2𝑥 ∙ sin (
1

𝑥
) − cos (

1

𝑥
)) = lim

𝑥→0
2𝑥 ∙ sin (

1

𝑥
) −  lim

𝑥→0
cos (

1

𝑥
) = 

0 − lim
𝑥→0

cos (
1

𝑥
)  Does not exist 

Since lim
𝑥→0

cos (
1

𝑥
) oscillates between [-1,1].   

 By the above counterexample, it is clear that a derivative function does not need to be 

continuous. However, we know that, additionally, a limit is said not to exist if lim
𝑥→𝑎+

𝑓(𝑥) and 
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lim
𝑥→𝑎−

𝑓(𝑥) both exists but are not equal. This ‘type’ of discontinuity is not possible for a 

derivative function (Derivatives cannot have jump discontinuity, n.d.):   

Theorem 2  If a function 𝑓 is differentiable on (𝑎, 𝑏) then 𝑓′ cannot has a jump discontinuity 

  in (𝑎, 𝑏).  

Proof  Assume 𝑓 is differentiable on (𝑎, 𝑏) and let 𝑐 ∈ (𝑎, 𝑏). Then 

𝑓′(𝑐) = lim
𝑥→𝑐

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
 

  exists. Assume now that the following limits exists:  

lim
𝑥→𝑐+

𝑓′(𝑥) = 𝐴 and lim
𝑥→𝑐−

𝑓′(𝑥) = 𝐵 

  When 𝑥 → 𝑐+ then 𝑥 > 𝑐 and for some 𝑑1 ∈ (𝑐, 𝑥) we have cf. Theorem 8 (to  

  be presented): 

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
= 𝑓′(𝑑1) 

  As 𝑥 → 𝑐+ ⇒ 𝑑1 → 𝑐+which gives: 

𝑓′(𝑐) = lim
𝑥→𝑐+

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
= lim

𝑑1→𝑐+
𝑓′(𝑑1) = 𝐴 

  When 𝑥 → 𝑐− then 𝑥 < 𝑐 and for some 𝑑2 ∈ (𝑥, 𝑐) we have cf. Theorem 8: 

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
= 𝑓′(𝑑2) 

  As 𝑥 → 𝑐− ⇒ 𝑑2 → 𝑐−which gives: 

𝑓′(𝑐) = lim
𝑥→𝑐−

𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
= lim

𝑑2→𝑐−
𝑓′(𝑑2) = 𝐵 

  It follows that 𝐴 = 𝐵 and 𝑓′ does not have a jump discontinuity at 𝑐. ∎ 

The proof demonstrates the dependence of this result on the Theorem 8: the mean value 

theorem (to be presented), and thus, as we shall see, a dependence on the properties of the 

real numbers. Before proceeding to treat other results directly related to the derivative 

function, we move back, to consider the completeness of the real numbers as this property 

plays an important role in the theory.  
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5.2.3 The Property of the Real Numbers  

As illustrated in figure 6 (p. 23), the completeness of the real numbers represents a basis for 

various results regarding the properties of the derivative. This is no surprise since the 

properties of the real numbers serve as an essential part of the rigorous foundation on which 

all of analysis rests (Hunter, 2014). 

 In mathematics, eleven axioms exists describing the properties of the real numbers ℝ. 

Out of these eleven axioms, only one is specific to the real numbers – the first ten describes 

the rational numbers ℚ completely, while the eleventh axiom describes a property only held 

by the real numbers (Lindstrøm, 2006). For completeness, the notion of a least upper bound 

is defined prior to stating the completeness axiom (Lindstrøm, 2006, p. 93, own translation).  

Definition 4 A nonempty set 𝐴 has an upper bound if there exists an element 𝑏 s.t. 𝑎 ≤ 𝑏 for 

all elements 𝑎 ∈ 𝐴. 

Definition 5 A nonempty set 𝐴 has a least upper bound if there exists an element 𝑏0 s.t.        

𝑎 ≤ 𝑏0 < 𝑏 for all elements 𝑎 ∈ 𝐴 and all other upper bounds 𝑏.   

The completeness axiom states (Lindstrøm, 2006, p. 94, own translation): 

The Completeness Axiom  Every nonempty set of real numbers having an upper bound has 

  a least upper bound in ℝ.  

The theory on the real numbers unifies multiple local organisations within the domain 

of analysis upon which some of the key results in differential calculus depend (Winsløw, 

2015). Such an organisation generated by the theory of the real numbers could rightfully be 

named MO0 to acknowledge the primary and preceding role of this MO. The completeness 

axiom is essential in the net of results, which leads to one of the most important results in 

analysis, namely the mean value theorem (Theorem 8). Not all of the definitions and 

theorems, along with their proofs, preceding the mean value theorem will be given here, but 

is included in figure 6 (p. 23) to illustrate the dependence of MO4 as well as MO3 on other 

local MO’s derived from MO0 within the global organisation of mathematical analysis. Only 

two result preceding the mean value theorem will be presented here, as these state 

properties of the derivative function and are to be justified in the practice block of MO4.  

5.2.4 Key Properties of the Derivative Function  

In the following, a theorem is presented (Theorem 6) which describes the relationship 

between 𝑓′ and the points of extrema of 𝑓. It is a result included in the theoretical level of 
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MO3, as it in particular justifies the techniques for tasks of type  𝒯3.3: given the algebraic 

expression of 𝑓 determine the monotonicity of 𝑓, and the result itself is to be justified within 

the practical block of MO4. However, the result derives from the definition of the derivative 

together with the definition of extrema. The definition states (Lindstrøm, 2006, p. 227, own 

translation):   

Definition 7 A point 𝑎 ∈ 𝐷𝑓 is called a maximum point for the function 𝑓: 𝐷𝑓 →  ℝ if        

𝑓(𝑎) ≥ 𝑓(𝑥) for all 𝑥 ∈ 𝐷𝑓 . We call 𝑎 a minimum point if 𝑓(𝑎) ≤ 𝑓(𝑥) for all     

𝑥 ∈ 𝐷𝑓 . Together we call these points extrema.   

Theorem 6 states (Lindstrøm, 2006, p. 263, own translation): 

Theorem 6 Assume 𝑓: [𝑎, 𝑏] → ℝ attains a maximum or a minimum in an internal point     

𝑐 ∈ (𝑎, 𝑏). If 𝑓 is differentiable in 𝑐 then 𝑓′(𝑐) = 0.  

Proof  By negating the statement, we are proving that if 𝑓′(𝑐) ≠ 0 then 𝑓 does not 

attain a maximum or a minimum in 𝑐.  

 If 𝑓′(𝑐) ≠ 0 then either 𝑓′(𝑐) < 0 or 𝑓′(𝑐) > 0. Assume the latter. Since 𝑓 is 

differentiable, we thus know that:  

     lim
𝑥→𝑐

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
= 𝑓′(𝑐) > 0 

Hence, for all 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿) according to the definition of limits, it holds: 

     0 <
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
     (∗)   

I.e. we know that there exists a 𝛿 > 0 s.t. |
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
− 𝑓′(𝑐)| < 𝜀, for any given 

𝜀 > 0 if |𝑥 − 𝑐| < 𝛿; and thus, such a 𝛿 also exists for 𝜀 = 𝑓′(𝑐). Hence, there 

exists a 𝛿 > 0 s.t.: 

|
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
− 𝑓′(𝑐)| < 𝑓′(𝑐) ⇒ −𝑓′(𝑐) <

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
− 𝑓′(𝑐) ⇒ 0 <

𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
 

For 𝑥 > 𝑐 the denominator of (∗) will be positive and therefor it must hold that 

𝑓(𝑥) > 𝑓(𝑐) for the whole fraction to be positive. So by definition (cf. def. 7), 𝑐 

is not a maximum. For 𝑥 < 𝑐 the denominator will be negative and therefor it 

must hold that 𝑓(𝑥) < 𝑓(𝑐) for the fraction to be positive. So by definition 𝑐 is 

not a minimum. 
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Assuming 𝑓′(𝑐) < 0, the proof is analog. ∎  

Pausing for a moment – it has been shown that if 𝑓′(𝑐) ≠ 0 then f attains neither a maximum 

nor a minimum in 𝑐 and hence if f attain an extreme value in 𝑐 then 𝑓′(𝑐) must be equal to 

zero. It should be noted that Theorem 6 does not tell us anything about the converse situation 

i.e. whether 𝑓 always attains a maximum or a minimum in 𝑐 if 𝑓′(𝑐) = 0. The short answer is 

‘no’. Having 𝑓′(𝑐) = 0 does not necessarily imply that 𝑐 is an extrema. The function 𝑓(𝑥) =

𝑥3 illustrates this perfectly, since 𝑓′(0) = 0 while 𝑓(𝑥) < 𝑓(0) for 𝑥 < 0 and       𝑓(𝑥) > 𝑓(0) 

for 𝑥 < 0 (figure 11). We say that the function has a point of inflection in 𝑥 = 0.  

 

Figure 11: The graph of 𝑓(𝑥) = 𝑥3 

 So 𝑓′(𝑐) = 0 is a necessary but not sufficient condition for 𝑐 to be an extrema, however 

𝑓′(𝑐) = 0 is a sufficient condition for 𝑐 to be an extrema or an inflection point. This result, in 

addition to being one of the results included in the theoretical level of MO3; again justifying 

techniques related to tasks concerning monotonicity, is essential in the net of results 

illustrated in figure 6 (p. 23) due to its role in proving Theorem 7, Rolle’s Theorem. This 

theorem states (Lindstrøm, 2006, p. 263, own translation):  

Theorem 7 Assume 𝑓: [𝑎, 𝑏] → ℝ is continuous, and differentiable in all internal points   

𝑥 ∈ (𝑎, 𝑏). Furthermore, assume 𝑓(𝑎) = 𝑓(𝑏). Then there exists a point             

𝑐 ∈ (𝑎, 𝑏) s.t. 𝑓′(𝑐) = 0.  

Proof Since 𝑓 is continuous it will attain both a maximum and a minimum in the 

closed interval [𝑎, 𝑏] according to Theorem 5 (see figure). Since 𝑓(𝑎) = 𝑓(𝑏) 

there must exists at least one point 𝑐 ∈ (𝑎, 𝑏) which is a maximum or a 

minimum. According to Theorem 6 𝑓′(𝑐) = 0. ∎  
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The proof is included to make clear the theorem’s dependence on Theorem 6, a result derived 

from the completeness property of the real numbers, and thereby the dependence of the 

results derived from Rolle’s Theorem on the properties of the real numbers. Despite the 

dependence on MO0 and thus the profound nature of the result, the statement of the theorem 

appears rather intuitive, especially considering the graphical interpretation of the theorem 

(figure 12): 

 

  Figure 12: The graphical interpretation of Rolle’s Theorem (Miller, n.d.). 

 Rolle’s Theorem is a special case of the following mean value theorem, which is stated 

here without proof (Lindstrøm, 2006, p. 263, own translation).  

Theorem 8 Assume that 𝑓: [𝑎, 𝑏] → ℝ is continuous and differentiable in all internal 

points 𝑥 ∈ (𝑎, 𝑏). Then there exist a point 𝑐 ∈ (𝑎, 𝑏) s.t.  

     𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

The mean value theorem states that for a given function defined on the interval [𝑎, 𝑏] there 

will always exist at least one point 𝑐 ∈ (𝑎, 𝑏) for which the slope of the associated tangent 

will be the same as the slope of the straight line connecting the end-points of the curve 

(𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)). Figure 13 below, presents this graphical interpretation. Notice that if 

𝑓 is defined on [𝑎, 𝑏] then it is also defined on [𝑎1, 𝑏1] for all 𝑎1, 𝑏1 satisfying [𝑎1, 𝑏1] ⊆ [𝑎, 𝑏]. 

Hence, between any two points in the domain (𝐴 and 𝐵 in the figure), there exists a point for 

which the associated tangent has the same slope as the line between the between the two 

points.   
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Figure 13: The graphical interpretation of the mean value theorem (Mean Value Theorem Explanation, n.d.) 

From Theorem 8 two corollaries are derived, which both belong to the theory of MO3 and are 

to be justified within the practice block of MO4. These corollaries are stated in the following 

along with their proofs. The latter, to make explicit the reliance on Theorem 8. Corollary 1 

states (Lindstrøm, 2006, p. 265, own translation):  

Corollary 1 If 𝑓′(𝑥) = 0 for all 𝑥 in some interval 𝐼 then 𝑓 is constant on 𝐼. 

Proof  Choose a point 𝑎 ∈ 𝐼. For any 𝑥 ∈ 𝐼 different from 𝑎 we have by Theorem 8  

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= 𝑓′(𝑐) = 0 

for a point 𝑐 between 𝑥 and 𝑎. Hence 𝑓(𝑥) = 𝑓(𝑎). Since 𝑥 was arbitrary, we 

have shown that 𝑓(𝑥) = 𝑓(𝑎) for all 𝑥 ∈ 𝐼 and 𝑓 must be constant. ∎ 

Notice that the corollary states that only a constant function has derivative equal to 0 for all 

𝑥 in the domain – not that a constant function has derivative equal to zero. The latter follows 

immediately from definition 2, since 𝑓(𝑥) = 𝑓(𝑎) for all points 𝑥 ≠ 𝑎 in the domain:  

𝑓′(𝑥) = lim
𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= lim

𝑥→𝑎

0

𝑥 − 𝑎
= lim

𝑥→𝑎
0 = 0 

Corollary 2 states (Lindstrøm, 2006, p. 266, own translation): 

Corollary 2 Assume 𝑓 is continuous [and differentiable] on [𝑎, 𝑏]. If 𝑓′(𝑥) ≥ 0 for all 

internal points 𝑥 ∈ (𝑎, 𝑏) then 𝑓 is increasing on [𝑎, 𝑏]. If 𝑓′(𝑥) ≤ 0 for all      

𝑥 ∈ (𝑎, 𝑏) then 𝑓 is decreasing on [𝑎, 𝑏]. If we instead have strict inequalities 
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(respectively, 𝑓′(𝑥) > 0 or 𝑓′(𝑥) < 0 for all internal points 𝑥) then the function 

is strictly increasing or strictly decreasing. 

Proof Assume 𝑓 is continuous [and differentiable] on [𝑎, 𝑏] and that 𝑓′(𝑥) ≥ 0 for all 

internal points 𝑥 ∈ (𝑎, 𝑏). Choose 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] s.t. 𝑥1 < 𝑥2. According to 

Theorem 8 there exists a 𝑐 ∈ (𝑥1, 𝑥2) s.t. 

𝑓(𝑥2) − 𝑓(𝑥1)

𝑥2 − 𝑥1
= 𝑓′(𝑐) ≥ 0 

 Since 𝑥2 − 𝑥1 > 0 then 𝑓(𝑥1) ≤ 𝑓(𝑥2) and 𝑓 is increasing.   

 The three other parts of the corollary are proved completely analogue. ∎ 

The examination if the main properties of the derivative function shows, in particular, that 

these do not rely on MO4 alone, but on MO1 and MO2 (as the rules for calculating limits, 

belonging to MO1 and justified in MO2 are employed on occasion) and very much so, on 

various organisations derived from MO0 as well. These ‘various’ organisations will not be 

identified in any detail, in this context, apart from their already established common reliance 

on the MO0.  

5.2.5 The Differentiation Rules 

The rules for differentiation, belonging to the theory of MO3 are listed in this subsection, 

though the proofs will not be given here. The rules divide into two groups: (1) the special 

rules for differentiating specific functions and (2) the general rules for differentiating. 

Let 𝑐, 𝑎 ∈ ℝ, then group (1) comprises of the following rules (Lindstrøm, 2006):  

(𝑖)   Differentiating a constant function: (𝑐)′ = 0 

(𝑖𝑖) Differentiating a power function: (𝑥𝑎)′ = 𝑎𝑥𝑎−1 

(𝑖𝑖𝑖) Differentiating an exponential function: (𝑎𝑥)′ = 𝑎𝑥 ln(𝑎) for 𝑎 > 0. 

 In particular: (𝑒𝑥)′ = 𝑒𝑥 and (𝑒𝑐∙𝑥)′ = 𝑐 ∙ 𝑒𝑘𝑥 

(𝑖𝑣) Differentiating the natural logarithm: (ln(𝑥))′ =
1

𝑥
 

(𝑣) Differentiating sin, cos and tan: (sin 𝑥)′ = cos 𝑥, (cos 𝑥)′ = − sin 𝑥, (tan 𝑥)′ =
1

cos2 𝑥
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Assuming that both 𝑓 and 𝑔 are defined and differentiable in 𝑎, the general rules comprise of 

the following (Lindstrøm, 2006):  

(𝐼) Differentiating a constant times a function: (𝑐 ∙ 𝑓(𝑎))
′

= 𝑐 ∙ 𝑓′(𝑎). 

(𝐼𝐼) Differentiating a sum/difference of functions: (𝑓(𝑎) ± 𝑔(𝑎))
′

= 𝑓′(𝑎) ± 𝑔′(𝑎).  

(𝐼𝐼𝐼) Differentiating a product of functions: (𝑓(𝑎) ∙ 𝑔(𝑎))
′

= 𝑓′(𝑎) ∙ 𝑔(𝑎) + 𝑓(𝑎) ∙ 𝑔′(𝑎). 

(𝐼𝑉) Differentiating a quotient of functions: (
𝑓(𝑎)

𝑔(𝑎)
)

′

=
𝑓′(𝑎)∙𝑔(𝑎)−𝑓(𝑎)∙𝑔′(𝑎)

𝑔(𝑎)2
, for 𝑔(𝑎) ≠ 0. 

Assuming 𝑔 is defined and differentiable in 𝑎 and 𝑓 is defined and differentiable in 𝑔(𝑎), then: 

(𝑉) Differentiating a composite function: (𝑓(𝑔(𝑎)))
′

= 𝑓′(𝑔(𝑎)) ∙ 𝑔′(𝑎).   

These rules are to be justified in the practice block of MO4; however, the justification of the 

majority of the rules depend on theory not included in MO4. One example of a rule derived 

directly from the definition of the derivative is (𝑖) as we saw on p. 39. An example of a rule, 

which relies on more than MO4, namely MO2 is (𝐼): Let 𝑔(𝑥) = 𝑐 ∙ 𝑓(𝑥) 

lim
𝑥→𝑎

𝑐 ∙ 𝑓(𝑥) − 𝑐 ∙ 𝑓(𝑎)

𝑥 − 𝑎
= lim

𝑥→𝑎
𝑐 ∙

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= 𝑐 lim

𝑥→𝑎

𝑓(𝑥) − 𝑓(𝑎)

𝑥 − 𝑎
= 𝑐 ∙ 𝑓′(𝑎) = 𝑔′(𝑥) 

Since 𝑓 is assumed differentiable in 𝑎 and by the property of limits. Additionally, the proofs of 

(𝐼𝐼)–(𝐼𝑉) and (𝑖𝑣) requires the use of limit properties why these are also derived (and 

dependent on) MO2, since the properties of limits are justified within the practice block of 

this MO (The Derivative, n.d.). Besides the reliance on MO2 multiple of the differentiation 

rules rely on other mathematical results and techniques not included in MO2 or any other 

organisation considered previously in this context. For example, one way of justifying the 

derivative of (cos 𝑥)′ = − sin 𝑥 is by using the real analytic definitions of these functions, 

while other ways uses properties of the cosine and sine functions (e.g. the cosine of sum) 

(Derivative of Cosine Function, n.d.). A way of proving (𝑖𝑣) requires the use of logarithm 

properties (such as 
log 𝑎

log 𝑏
= log 𝑎 − log 𝑏) and furthermore depends on the definition of 𝑒 

given in terms of the limit (Proofs of derivatives of ln(x) and e^x, n.d.). 

𝑒 ≔ lim
𝑛→∞

(1 +
1

𝑛
)

𝑛
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Which again, depends on MO2 to bear any meaning. Furthermore, one way, of proving the 

special case of (𝑖𝑖𝑖), namely (𝑒𝑥)′ = 𝑒𝑥 can be proven from (𝑖𝑣) and the use of the (𝑉) (Proofs 

of derivatives of ln(x) and e^x, n.d.). The proof of (𝑖𝑖) also relies on the natural logarithm 

together with (𝑉), while the proof of the chain rule, (𝑉), does not rely on the other 

differentiation rules, but is derived from the definition using an auxiliary function 

(Lindstrøm, 2006).  

 Based on this limited outline, it is asserted that the rules in group (1) and (2), creates 

a somewhat interconnected map like the properties of the derivative do in figure. The rules 

in group (2) rely mainly on MO2 and MO4, while the rules in group (1) rely on a variety of 

properties and definitions of, and related to, the specific functions.   

5.3 The knowledge to be taught  

In this section, we will elaborate our epistemological reference model further. As we saw in 

subsection 2.1.1, such a model must incorporate the knowledge to be taught. For this purpose, 

it will investigate how MO3 and MO4 appear on the institutional level of secondary school. 

(Bosch et al., 2005).  

 The knowledge to be taught is manifested in the official curriculum (Bosch & Gascón, 

2006); therefore, this section will first present the part of the official curriculum, settled by 

the Danish Ministry of Education, which relates to derivative functions (Stx-bekendtgørelsen, 

2013). It states:  

1. Definition and interpretation of the derivative including growth rate and marginal 

observations, the derivative function for the elementary functions as well as the 

calculation rules for differentiating 𝑓 + 𝑔, 𝑓 − 𝑔, 𝑘 ∗ 𝑓, 𝑓 ∗ 𝑔, 𝑓 ○ 𝑔 and deduction 

of selected derivatives. 

2. Monotonicity properties, extrema and optimizing as well as the relation between 

these concepts and the derivative. 

(Matematik A – stx, 2013, translated from Danish by the author) 

The above is common for level A and level B high school mathematics, except the rule for 

differentiation of composite functions (the chain rule), which is not included in the B level 

mathematics curricula (Matematik A – stx, 2013 & Matematik B – stx, 2013). Content related 

to the derivative is entirely excluded from C level high school mathematics (Matematik C – 

stx, 2013). Further, in the guidelines provided for the teachers by the ministry, it is stated:  

 Work on the concept of derivative imply that the concept of limit is included but it is 

 not intended that this be given a separate treatment. Similarly, the study of the 
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 relationship between monotonicity and local extrema includes involvement of the 

 concept of continuity but it is not intended that this be given a separate treatment.  

 (Matematik – stx, 2013, translated from Danish by the author).  

From point 1 and 2 above, as well as the guidance note, it appears that elements from both 

MO3 and MO4 are to be taught in secondary school. In the following, it is explored how 1 and 

2 manifest itself in the national written-exam tests based on four tests: two tests for B-level 

students (28th of May 2015 and 22nd of May 2015) and two tests for A-level students (22nd of 

May 2015 and 28th of May 2015), see Appendix A. Furthermore, a high school B-level 

mathematics textbook, by Clausen, Schomacker and Tolnø (2011a) as well as the 

corresponding exercise book (2011b) by the same authors, are examined, to give just one 

example of the knowledge to be taught as manifested in a Danish high school textbook.  

 The tasks given at the written-exam tests, which relates to the relevant subject matter, 

reduces to the following types of tasks:   

 T1:   Given the algebraic expression of 𝑓 determine 𝑓′  

 T1.1:  Given the algebraic expression of 𝑓 and a point 𝑎 ∈ 𝐷𝑓 , determine 𝑓′(𝑎). 

 T1.2:  Given the algebraic expression of 𝑓 determine the monotonicity of 𝑓.  

 T2:  Explain 𝑓′(𝑎).   

T1 and T1.1 belongs to MO3 corresponding to 𝒯3.1 and 𝒯3.2, respectively as well as T1.2, which 

ultimately relies on the determination of 𝑓′ and corresponds to 𝒯3.3 while T2 belongs to MO4 

corresponding to 𝒯4.1 (see section 5.1). Thus, the exam question incorporate only a single 

type of task related to MO4. Related to this task however, it is relevant to explore what 

explanations that a high school textbook provide regarding 𝑓′(𝑎) and thus what explanations 

the students are expected to provide.  

 The high school mathematics textbook by Clausen et al. (2011a) presents the subject 

in two parts: First, a chapter called Differential calculus and later a section of the book is 

devoted to the Definition of the derivative. Part one and two corresponds mainly to the 

transposition of MO3 and MO4, respectively. In the first part, however, the concept of the 

derivative is introduced and it is initially presented by means of speed at a particular point in 

time. Following, it is identified as the slope of a curve (or the slope of a tangent to the curve) 

at a given point and ‘recipes’ are provided to find the derivative in a point (one of the recipes 

is illustrated figure 14 below), based on a rough definition of the derivative (leaving out 

considerations on existence).  
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By far, the most frequent tasks assigned to the students in Clausen et al. (2011b) are of type 

𝒯3.1, 𝒯3.2 and 𝒯3.3, all belonging to MO3. To solve these tasks, the textbook provides the ‘recipe’ 

illustrated above and the rules (𝑖) – (𝑖𝑣) including the following special cases of rule (𝑖𝑖) 

(Clausen, 2011a): 

 ∗           (𝑥)′ = 1    (𝑥2)′ = 2𝑥,    (𝑥3)′ = 3𝑥2 ,    (
1

𝑥
)

′

=
1

𝑥2    and    √𝑥 =
1

2√𝑥
  

Rule (𝑣) is not included, as trigonometric functions are not studied on B-level (Matematik B 

– stx, 2013). The textbook also provides the rule (𝑎𝑥 + 𝑏)′ = 𝑎, which is a combination of (𝑖), 

(𝐼) and (𝐼𝐼). The rules (𝐼) – (𝐼𝑉) are presented either in the textbook or in the exercise book, 

while (𝑉) is not included, as this is not included on B-level (Matematik B – stx, 2013). 

Furthermore, the textbook presents the properties of the derivative function in 

corresponding to Theorem 6, Corollary 1 and Corollary 2, the latter stated as: “If 𝑓′(𝑥) is 

positive for all 𝑥 in an interval, then 𝑓(𝑥) is increasing in the interval” and vice versa (Clausen, 

2011a, p. 32, translated from Danish by the author). These rules and properties constitute 

the transposition of the theoretical level of MO3 (denoted MO3’).  

  Some rules, here among, the rules cited above (∗), derives from the definition of the 

derivative and rules for calculating limits (e.g. lim
𝑥→𝑎

(𝑓(𝑥) + 𝑔(𝑥)) = lim
𝑥→𝑎

𝑓(𝑥) + lim
𝑥→𝑎

𝑔(𝑥)). 

Some of the ‘proofs’ are provided in the book, however without any explicit reference to 

 

 
 

Figure 14: “Recipe 1” for finding the derivative (Clausen et al., 2011a, p. 13, translated from Danish by the 
author) 

When a curve is given by 𝑦 = 𝑓(𝑥) the slope 𝑎 in a point 𝑃(𝑥0, 𝑓(𝑥0)) 

on the curve is determined in the following way: we choose an arbitrary 

second point 𝑄(𝑥, 𝑓(𝑥)) on the curve and determine the slope of the 

secant 

𝑎𝑃𝑄 =
𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
. 

 

This fraction is rewritten (if possible) such that it is possible to insert 

𝑥0 instead of 𝑥 in the expression for 𝑎𝑃𝑄 and thus calculate the value 𝑎 

that 𝑎𝑃𝑄 approaches when 𝑥 approaches 𝑥0. That 𝑥 approaches 𝑥0, is 

equivalent to the point 𝑄 approaches the point 𝑃. The result 𝑎 is the 

slope of the curve in the point 𝑃. The result 𝑎 is called the differential 

quotient of  𝑓(𝑥) in 𝑥0 and we write 𝑎 = 𝑓′(𝑥). 
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properties of limits and thus no explanation or justifications of the inherent algebraic 

manipulations appear, not even in terms of MO1 as the use of the rules is not explicit. Other 

rules, such as (𝑖𝑣), are not proved in the book and likewise concerning the properties of the 

derivative function. The justification of rules such as (𝑎𝑥 + 𝑏)′ = 𝑎 and (𝑓(𝑥) − 𝑔(𝑥))
′

=

𝑓′(𝑥) − 𝑔′(𝑥), are left to the students; the former, upon numerous examples of the use of the 

recipes (Clausen et al., 2011a, p. 17) and the latter, with the instruction to proceed as in the 

proof of (𝑓(𝑥) + 𝑔(𝑥))
′

= 𝑓′(𝑥) + 𝑔′(𝑥) (Clausen et al., 2011b, p. 43). The justification of 

these rules are part of the practical block of MO4 but appears in the transposed organisation 

(MO4’) as almost absent; only to be used by student in few cases and by copying given 

examples. The types of tasks belonging to MO4 which are present in MO4’ are 𝒯1 and 𝒯2 (What 

is 𝑓′(𝑥) and 𝑓′(𝑎), 𝑎 ∈ 𝐷𝑓), which brings us to the theoretical level of MO4. 

 As we saw in the last section, the definition of the derivative is central in the theory of 

MO4 and furthermore, the concept of limit is fundamental to the definition of the derivative. 

However, the latter concept is given little attention if any; only included in the form of 

formulations such as “approaching” and “goes toward” and when determining limits, it is 

done so in a manner, such as "𝑓′(𝑥0) = 𝑥0 + 𝑥0 = 2𝑥0", given that the slope of the secant was 

determined as 𝑥 + 𝑥0 (Clausen et al., 2011a, p. 15). In all, MO1 is completely absent, as the 

students are not asked to determine limits, except in few cases (determining derivatives) 

following demonstrated recipes and the theoretical level is not explicit in any way, as pointed 

out above. In the absence of MO2, Clausen et al. (2011a) presents the following definition 

(figure 15): 

 

 

  

 

 

  

 

 

The definition incorporates the notion of a limit by the formulation “tends toward” (“går 

mod”). The avoidance of limits consequently means an exclusion of the notion of two-sided 

Figure 15: Definition of 𝑓′(𝑥0) in a high school textbook (Clausen et al., 2011a, p. 181; translated from Danish by the author). 

That a function 𝑓(𝑥) is differentiable in 𝑥0 means that the 

slope of the secant 

𝑓(𝑥) − 𝑓(𝑥0)

𝑥 − 𝑥0
 

Tends toward a specific number 𝑎 when 𝑥 tends 

toward 𝑥0. In that case, this number 𝑎 is called the 

derivative of 𝑓(𝑥) in 𝑥0 and it is denoted 𝑓′(𝑥0). 
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limits, which exclude a formal justification of the domain of the derivative on (𝑎, 𝑏) for a given 

differentiable function defined on [𝑎, 𝑏]. However, an example of this characteristic appear 

when proving the rule for differentiating the function 𝑓(𝑥) = √𝑥, 𝑥 ≥ 0 (namely, 
1

2√𝑥
, 𝑥 > 0) 

and this, with no accompanying explanation (Clausen et al., 2011a, p. 18). Relating to the 

given definition and the ‘recipe’ provided for determining derivatives (figure 14 and 15 

above), it is stated that “The difference is, that the recipes focus on the determination of the 

derivative while the definitions also focus on the existence of the derivative” (Clausen et al., 

2011a, p. 183, translated from Danish by the author). However, exploring the tasks assigned, 

relating to this section, these are found to be solely comprised of tasks of type 𝒯3.1 ∈ MO3 

(Clausen et al., 2011b, pp. 82-83). The transposition of the theoretical level of MO4 is highly 

related to the transposition of MO2 and thus the transposition of the definition of the 

derivative suffers from the minimal transposition of MO2.  

 A following section in the book elaborates the relation between differentiability and 

continuity. Continuity is defined as a connectedness-property achieved if “The graph can be 

drawn without lifting the pencil from the paper” (Clausen et al., 2011a, p. 188, translated 

from Danish by the author). The meaning of the word continuity is said to be the same as 

“connected, without jumps” (Clausen et al. 2011a, p. 189, translated from Danish by the 

author). There are four tasks related to this section, all of the type: 

 𝑇: Draw the graph of a function with given properties (differentiable in all but one 

  point, continuous in all but one point, continuous but not differentiable in all  

  points).  

With corresponding theory (Clausen et al. 2011a): 

 𝛩: A function 𝑓 is differentiable if its graph is ‘smooth’, a function is continuous if 

  the graph has no ‘jumps’ and a function, which is not continuous, is not  

  differentiable.  

Where ‘smooth’ is understood as equivalent to ‘no edges’. We saw, however, in the last 

section that the statement ‘a function is continuous if the graph has no jumps’, is not 

exhaustive, as to describe the properties of a continuous functions. In this context, it is also 

noted that Theorem 2 is not included in any ‘version’ in the transposed MOs. However, in the 

absence of the concept of limits, it seems that the concept of continuity is transposed to the 

extent it is possible.  

The primary challenges identified by Winsløw (2015) regarding the transposition of 

elements of analysis to high school, is that the topological organisations (i.e. MO2 and MO4) 
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are difficult to transpose because of its close relation to the properties of the real numbers, 

which is not taught in high school. However, the meaning and justification of the algebraic 

organisations lie within the topological organisations (Winsløw, 2015). This is also pointed 

out by Barbé et al. whom finds that MO2 is not taught in any significant manner in Spanish 

high schools and points to a disappearance of the ‘reasons of being’ when the topological 

organisation is not present to justify any of the techniques.    

 The trace left by MO3 and MO4 in the investigated textbook is of the same character 

proposed by Barbé et al. (2005) regarding limits in Spanish high schools, as also suggested 

by Winsløw (2015). The uncomplete transposition of the theoretical level of MO4 in the book 

can in fact be considered as a consequence of the minimal trace of MO2. While the trace of the 

practice block of MO4 only consists of task types 𝒯1 and 𝒯2; which are to be answered without 

the rigorous definition of limits and much so by formulations such 𝑓′(𝑎) is “The curve’s 

steepness in 𝑃 [(𝑎, 𝑓(𝑎))]” (Clausen et al. 2011a, p. 13, translated from Danish by the author). 

MO3 appears rather complete in the investigated textbook. It follows immediately, that MO3 

dominates the transposition of the regional MO concerning function’s derivatives. The 

majority of the tasks related to relevant sector are of algebraic nature for which the students 

are provided with algorithms, established through an abundant amount of examples.   
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6 The Designed Hypothetical Teacher Tasks  

This chapter aims to answer Research Question 1, namely the question: 

 Based on a subject matter analysis of the theme of derivative functions in Danish high 

 school, how can one model non-trivial teacher knowledge related to this theme in terms 

 of HTT’s? 

The chapter proposes five of such HTTs along with an a priori analysis of each subtask. This 

particularly entails a determination of the various techniques (𝜏), which are to be mobilized 

in order to solve the tasks. Preceding this however, a section is devoted to present some 

considerations concerning the choice of tasks (section 6.1).   

 All the tasks included in the HTTs either belong to or relate to MO3 or MO4 (in one case 

techniques related to MO5 are considered relevant). Therefore, it is asserted, that the 

mathematical content in the tasks is appropriate for the intended participants. ‘Appropriate’ 

meaning that it is expected that the participants master the mathematical content, possibly 

not with a routine approach, but it is expected, based on their mathematical background (see 

section 4.2.1) that they possess the knowledge associated with the theoretical levels of MO3 

and MO4 (and MO5) and are capable of activating techniques related to these organisations. 

However, after designing the tasks, these were presented to the subject matter adviser of 

Mathematics in Danish high schools, whom offered an external opinion on the difficulty of 

the task, specifically, to answer the question: to which extend can one expect teachers to 

master the mathematics which is included in the tasks? The conclusion was two sided: firstly, 

it was established that not many teachers (possibly only A-level teachers) would pose 

mathematical tasks of the type included in the HTTs and therefore, it could not be expected 

that the participants have experience with providing feedback to such tasks. Secondly, and 

more important in this context, the teachers can (or possibly: should be able to) handle 

[håndtere] the mathematical problems included in the HTTs, without necessarily having 

experience in teaching such problems (B. Bruun, personal communication, June 23, 2016). 

6.1  The Focus on Graphical Representations 

The five HTTs contains didactical task all relating to either MO3 or MO4 and mathematical 

tasks belonging to, or special cases of, the types of task which constitute the basis of these 

MOs. Only HTT 1 focus on a typical task belonging to MO3 alone, while the remaining, in 

varying degrees, focus on non-typical tasks related to MO3 and MO4. 
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 In section 5.3, we learned that the algebraic organisation, MO3, constitutes a large part 

of the knowledge to be taught in upper secondary school. The type of task most common is 

𝒯3.1 and central in the teachers’ practice is thus the teaching of the differentiation rules as 

well as the correct application of these. Therefore, HTT 1 was designed to assess the 

participants’ didactical knowledge related to MO3, in particular, the task seeks to uncover the 

participants’ didactical techniques when confronted with student difficulties in the 

application of differentiation rules, which is asserted to be an essential task in the teachers’ 

praxis.  

 In section 5.3 we also learned that tasks belonging to MO4 was atypical in upper 

secondary school as the types of tasks in the transposed MO4’ comprised only of 𝒯4.1: what is 

the derivative of 𝑓 in a point 𝑎 ∈ 𝐷𝑓? and 𝒯4.2: what is the derivative function 𝑓′? and that the 

transposed theory of MO4’ was comprised of the answers to these tasks, however informally; 

leaving out the definition of limits. As will become clear, many of the mathematical task 

included in the HTTs relates to MO4. This choice stems from an interest in the teachers’ 

mathematical and didactical techniques related to this organisation, which justifies the whole 

praxis.  

 The majority of the HTTs are given in a graphical setting or requires translating 

between the algebraic and graphical setting, for example between function expressions and 

graphs. Based on a literature study performed prior to the design, this setting for many of the 

HTTs was chosen. The literature study (though quite modest) revealed an interest, within the 

field of didactic research, in the significance of the graphical representation when working 

with and learning about the concept of a function and its derivative (Nemirovsky and Rubin 

(1992); Thompson (1994); Asiala, Cottrill and Dubinsky (1997); Santos and Thomas (2003); 

Berry and Nyman (2003); Hähkiöniemi (2006); Abbey (2008); Haciomeroglu, Aspinwall and 

Presmeg (2010)). Aspinwall, Shaw and Presmeg (1997) reported about the notion of 

uncontrollable mental images and the possible negative effects related to students’ vivid 

imagery. On the other hand, much research points to visualization as a tool to enhance 

learning. Berry and Nyman (2003) concluded that ”If students can develop the skill of 

drawing a function graph from its slope graph then their level of conceptual understanding 

of the derivative and its connections to the concept of the integral will be greatly improved” 

(Berry & Nyman, 2003, p. 496). While Santos and Thomas (2003) found that fluency between 

representations have positive effects on students’ understanding. Hähkiöniemi (2006) found 

that the embodied world (which includes graphical representation) provided strong tools in 

the students’ learning process. Aspinwall and colleagues (2010) found that synthesizing 

analytic and visual thinking had positive effect in students understanding of the derivative. 

However, Abbey (2008) found, that students’ graphical knowledge was weak due to students’ 
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preference of the algebraic representation and their weakness in graphing functions without 

an algebraic expression (among other factors).  

 Based on the literature study it is asserted that working with graphical 

representations is an important tool and therefore, it is essential that teachers master the 

derivative function in this setting. Moreover, the graphical setting offers a way to construct 

tasks, which do not require long calculations nor is associated with specific algorithms for 

their solutions; they do not require procedural knowledge (Rittle-Johnson, Siegler & Alibali, 

2001), but on the contrary, requires a conceptual understanding. The latter refereeing to 

“knowledge of concept and an understanding of the principles that govern a domain and the 

interrelations between units of knowledge in a domain” (Rittle-Johnson et al., 2001, pp. 346-

347) and thus, in this context, conceptual understanding is especially understood as 

knowledge belonging to MO4. However, it is not to say that no task belonging to MO4 can be 

solves through procedural knowledge.   

6.2 A Priori Analysis of the Hypothetical Teacher Tasks 

This section presents the five HTTs along with an a priori analysis of each task. The HTTs are 

originally formulated in Danish, see Appendix B. In the following analysis, the exercises 

appear in an English translation. The tasks included in the HTTs are sometimes denoted with 

a small letter 𝑡 and other times, with a capital letter 𝑇. The capital letter signify a type of tasks 

while the small letter signify a concrete task (for example a task in which a specific function 

is given). Also, reference to the types of tasks generating MO3 and MO4 occurs; these are 

denoted 𝒯 as in section 5.1.  

6.2.1 HTT 1  

HTT 1 focuses on the use of rules for differentiation related to the specific elementary 

functions: the natural exponential function 𝑒𝑥 and the linear function 𝑎𝑥 + 𝑏 as well as the 

general rule for differentiating composite functions. Task 1a of HTT 1 generates a punctual 

DO related to the mathematical task 𝑡1.1 ∈  𝒯3.1 ⊂  MO3’:  

 𝑡1.1:  Given 𝑓(𝑥) = 𝑒𝑥+1 determine the derivative function 𝑓′(𝑥).  

Since 𝑡1.1 is of type 𝒯3.1, the techniques for 𝑡1.1 are justified by the technology and theory of 

MO3, described in section 5.1. The DO generated in 1a bases on the explicitly given didactical 

task 𝑡1.1* ~ MO3’: 

𝑡1.1*:  Analyse and assess the student’s written answer to task 𝑡1.1.  
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Which is a didactical task of the type:  

𝑇1.1*:  Analyse and assess the student’s written answer to a task of type 𝒯3.1.  

Figure 16: HTT 1 

In order to respond to 𝑡1.1* ∈ 𝑇1.1* a combination of the following techniques can serve as 

relevant (and possibly in the given order): 

 𝜏1.1−1*: Identify that the answer is wrong.   

 𝜏1.1−2*: Identify the explicit algebraic manipulations of ‘moving’ the exponent  

   down in front and subtracting 1 from the original exponent.  

 𝜏1.1−3*: Identify the explicit algebraic manipulations as those associated  

   with the rule for differentiating power functions: (𝑥𝑎)′ = 𝑎𝑥𝑎−1 (𝑖𝑖). 
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 𝜏1.1−4*: Identify the students’ technology: 𝑒𝑥+1 is a power function.  

The latter technique presupposes 𝜏1.1−1* - 𝜏1.1−3*, while exclusively using the first technique 

𝜏1.1−1* limits the possibility of identifying the possible misunderstanding or challenges that 

the student may have. The techniques activated to solve the specific task 𝑡1.1*, in particular 

the activation of 𝜏1.1−1* depends on the respondents’ ability to mobilize correct mathematical 

techniques for task 𝑡1.1. A mobilization of relevant techniques for this task requires a correct 

answer to the inherent subtask: 

 𝑡1.1.1:  Determine what type of function 𝑓(𝑥) = 𝑒𝑥+1 is.  

The type of task to which 𝑡1.1.1 belongs generates a local MO concerning basic function theory, 

which must precede the teaching and learning of MO3’ (in general preceding all other MOs 

within the domain of mathematical analysis, assuming 𝑓 is an elementary function). The 

technology and theory explaining and justifying the classification of 𝑓 encompass the 

difference in notation of variables and constants as well as the knowledge of the 

characteristic of elementary functions. The technique for solving 𝑡1.1 is completely dependent 

upon the answer to 𝑡1.1.1. The specific technique for task 𝑡1.1 is: 

 𝜏1.1:  (𝑒𝑥+1)′ = 𝑒𝑥+1 ∙ (𝑥 + 1)′ = 𝑒𝑥+1 ∙ 1 = 𝑒𝑥+1. 

The didactical techniques 𝜏1.1−1* – 𝜏1.1−4* for solving 𝑡1.1* can lead to an identification of the 

student’s faulty technology, which is considered as the primary problem:   

 𝜃1.1
–:   𝑓 as a power function or specifically 𝑒 is a variable.   

Task 1b generates a punctual DO based on the following type of task: 

 𝑇1.2*:   Correct in writing your student’s work. 

The specific didactical task posed in 1b is 𝑡1.2* ~ MO3’: 

 𝑡1.2*:   Correct in writing your student’s answer to task 𝑡1.1. 

The techniques are dependent on the respondent’s answer to task 𝑡1.1*, i.e. to which level the 

respondent recognizes the use of rule (𝑖𝑖) and identifies the student’s incorrect technology, 

𝜃1.1
–. A didactical technique for solving 𝑡1.2* could be one or a combination of the following 

techniques: 

 𝜏1.2−1*: State that the answer is wrong (in symbols ÷). 
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 𝜏1.2−2*: Write the correct answer. 

 𝜏1.2−3*: Write the correct calculations.  

 𝜏1.2−4*  State that 𝑓 is not a power function. 

 𝜏1.2−5*: State why 𝑓 is not a power function (i.e. the difference between a power 

   function and an exponential function). 

 𝜏1.2−6*: State that 𝑓 is a composite function. 

 𝜏1.2−7*: State that 𝑓 is composed of (the exponential) function 𝑒𝑥 and (the  

   linear) function 𝑥 + 1.  

 𝜏1.2−8*: State that an irrelevant differentiation rule is used.  

 𝜏1.2−9*: State the correct differentiation rules associated with 𝑡1.1. 

In this context, no theory on how to provide ‘the correct’ written feedback is included. Thus, 

to create some system and transparency, the assessment of the participants’ techniques 

bases on the following two principles (wherein it is assumed that the participants activated 

correct techniques for 𝑡1.1*, in particular, that they identified the student’s incorrect 

technology): 

1)  The correction shall relate to the analysis and address the primary problem.   

2)  The correction shall be transferable to other situations where the student might face 

  the same type of challenges.  

A combination of the presented techniques, which meets these demand could be {𝜏1.2−4 ∗,

𝜏1.2−5 ∗, 𝜏1.2−7 ∗}. Naturally, the following technique is assessed as incorrect: 

 𝜏1.2−10 ∗−: State that the answer is correct.  

Task 1c also creates a punctual DO based on the didactical task 𝑡1.3* ~ MO3’: 

 𝑡1.3*:  Propose a new task to uncover whether your student understood your 

   correction.     

The technique will depend on the respondent’s answer to exercise 1b due to the explicit 

reference to the given correction. For example, if the teacher uses the techniques 

{𝜏1.2−4 ∗, 𝜏1.2−5 ∗} then a technique in 1c could be:  
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 𝜏1.3.1*:   Ask the student to differentiate a sum function made up of an   

   exponential function and a power function (for example 𝑒𝑥 + 𝑥4).  

The use of, for example, technique 𝜏1.2−3 will consequently leave the student with a recipe for 

differentiating that particular function which means that a technique for 1c could be:  

 𝜏1.3.2*:   Ask the student to differentiate a composite function similar to 𝑓 given 

   in 𝑡1.1 (for example 𝑒𝑥+6) 

However, this will not necessarily test more than the student’s ability to follow a recipe. Have 

the respondent used {𝜏1.2−4 ∗, 𝜏1.2−5 ∗, 𝜏1.2−7 ∗} a technique for 1c could be: 

 𝜏1.3.3*:   Ask the student to differentiate 𝑒𝑥2
.  

This task will uncover if the student can distinguish an exponential function and a power 

function; indeed this will challenge the student because 𝑒𝑥 is raised to a constant. 

Simultaneously, the task will test the student’s ability to use the chain rule correctly. The 

responses to 1c will be assessed upon its correspondence to both 1a and 1b: does the task 

address the primary problem identified in 1a and does the task relate to the correction in 1b 

and hence, can the task be solved with the tools provided in the correction?  

 HTT 1 is highly related to MO3’. To solve 𝑡1.1* ∈ 𝑇1.1* ~ MO3’ the respondents must be 

very familiar with the various rules for differentiating specific functions, not just to know 

which rules are relevant, but also to recognize the presence of a specific irrelevant rule for 

differentiation and determine what incorrect technology underlies the technique. 1b and 1c 

necessitate didactical considerations regarding how one converts an analysis to a written 

correction, in an effective and meaningful way, and which types of task are appropriate to 

test a student in this context; meaning for example, which task is in fact testing the intended. 

The analysis served as a basis for creating the following ‘standard answer’:  

1a. Except a missing parenthesis, Peter’s work corresponds with a use of the rule for 

 differentiating power functions: (𝑥𝑎)′ = 𝑎𝑥𝑎−1. Thus, Peter has treated 𝑓 as a power 

 function.  

1b. Tell the student that an irrelevant rule has been used: 𝑓 is not a power function (not  

 of the type 𝑥𝑎  where the base 𝑥 is a variable). 𝑓 is a composite function with inner 

 function 𝑥 + 1 and outer function 𝑒𝑥 (the latter is an exponential function: the 

 base 𝑒 is a constant). I.e. {𝜏1.2−4 ∗, 𝜏1.2−5 ∗, 𝜏1.2−7 ∗}.  

1c. Differentiate the 𝑓(𝑥) = 𝑒𝑥2
. This task provides the student with an opportunity to 

 show that he can differentiate a composite function and distinguish between a power 

 function and an exponential functions; this is tested further due to a ‘constant on top’. 
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6.2.2 HTT 2 

HTT 2 concerns the algebraic and graphical representation of the derivative of the 

function √𝑥2. This task was inspired by a study performed by Pino-Fan, Godino, Font and 

Castro (2012). The specific function was chosen because it offers multiple paths to solution. 

The expressions √𝑥2 is equivalent to the simpler expression |𝑥| and consequently the task 

can be solved in two ways: one using techniques justified mainly by the theory of MO3 and 

another, using techniques justified by of MO4. However, activating one technique does not 

necessarily mean that one is unable to activate another; for the solution of the second task in 

HTT 2, one must be able to activate both, for a full solution.  

 Figure 17: HTT 2 

Task 2a presents three mathematical tasks. The first task is: 

 𝑡2.1:  Given 𝑓(𝑥) = √𝑥2  for 𝑥 ∈ ℝ, determine 𝑓′(𝑥). 

The first specific technique to solve 𝑡2.1 is: 

 𝜏2.1−1:   (√𝑥2)
′

=
1

2√𝑥2
∙ (𝑥2)′ =

𝑥

√𝑥2
, 𝑥 ≠ 0.   

This technique shares technology and theory with 𝑡1.1 above, specifically applying the 

elements of the knowledge block of MO3: (𝑖𝑖) and (𝑉), except the restriction on the domain. 

The latter signifies that 𝑓 is not a differentiable function (as it is not differentiable for all 𝑥 in 

the domain), why 𝑡2.1 does not belong to 𝒯3.1 and is not a typical task in MO3’. However, the 

technique 𝜏2.1−1, can be performed in a rather routine way, as the restriction on the domain 

can be explained by one of the following technological components, of which the second is 

part of an algebraic organisation undoubtedly preceding the teaching and learning of MO3:  

 𝜃2.1−1.1: The prerequisites of the chain rule (𝑉).  
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 𝜃2.1−1.2: A fraction cannot take 0 in its denominator.   

The second specific technique to solve 𝑡2.1 is: 

  𝜏2.1−2:  (√𝑥2)
′

= (|𝑥|)′ = {
(−𝑥)′, 𝑥 < 0

(𝑥)′, 𝑥 ≥ 0
= {

−1, 𝑥 < 0
1, 𝑥 > 0

.   

Specifically justified by the theoretical elements of MO3: (𝑖𝑖) and (𝐼), and the specific 

technological component: 

 𝜃2.1−2:  √𝑥2 = |𝑥| = {
−𝑥, 𝑥 < 0

𝑥, 𝑥 ≥ 0
.    

 Technique 𝜏2.1−2 naturally result in the same domain for 𝑓′ as technique 𝜏2.1−1, since  

    lim
𝑥→0−

|𝑥|−|0|

𝑥−0
= −1 ≠ 1 = lim

𝑥→0+

|𝑥|−|0|

𝑥−0
. 

This explanation signify that the technology explaining 𝜏2.1−2 , in particular the restriction of 

the domain, belongs to MO4 and the theory justifying the determination of the domain of 𝑓′ is 

thus the definition of the derivative. Such explanation and justification are however not 

present in the transposed MO4’, but another technological component belonging to MO4’ also 

explains the determined domain of 𝑓′, namely:   

 𝜃2.1:  A function is not differentiable in a point if the graph has an ‘edge’ in  

   that point.  

This technology is however, also justified by definition of the derivative. The next 

mathematical tasks, 𝑡2.2, asking the respondent to draw the graph of 𝑓(𝑥) and task 𝑡2.3; the 

graph of 𝑓′(𝑥), can be seen as belonging to the same type of task:  

 𝑇2.2/2.3:  Draw the graph of a function given its algebraic expression. 

Using a technique explained by the following technology, they can in fact, be considered as 

such: 

 𝜃2.2/2.3−1:  Graphs are constructed by plotting various coordinates (𝑥𝑖, 𝑦𝑖) and  

   drawing a curve going through these coordinates.  

The above technique is not considered primary in neither MO3 nor MO4; however, this 

technique is considered as belonging primarily to organisations preceding the teaching and 

learning of MO4 and MO3, organisation of general function theory, where the theory justifying 
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the above technology concerns theory of functions representations (in particular: algebraic 

and graphical); and the translation between these.  

 Upon the construction of the graph of 𝑓 using a technique explained by 𝜃2.2/2.3−1 an 

alternative technology to explain the construction 𝑓′ (𝑡2.3) is the following: 

 𝜃2.3−1:  The graph of 𝑓′ shows 𝑓’s progress in slope.   

This technological component, though graphical in its nature, is justified by the ‘meaning’ of 

the derivative, i.e. the answer to the task 𝒯2: what is the derivative function 𝑓′? Belonging to 

MO4 and present in MO4’. Furthermore, if one did not hold 𝜃2.1−2, the work with 𝑡2.2 is likely 

to probe the inherent identification: √𝑥2 = |𝑥|.  

 The theory justifying the specific techniques can thus vary: if one draws 𝑓′ based on 

the graph of 𝑓 the theory justifying this will encompass the theory regarding the relationship 

between a function and its derivative and therefore belong to MO4, while the techniques can 

also find its justification in the theory on functions and their representations. Task 2b poses 

a didactical task, 𝑡2.1* ~ MO3, MO4, generating a punctual DO: 

𝑡2.1*:   How do you, as a teacher, respond to the result (√𝑥2)
′

=
𝑥

√𝑥2
 attained  

   by a student using a CAS-tool?  

In a general sense, this task belongs to the didactical type of task: 

 𝑇2.1*:  Respond to a student’s mathematical claim. 

Didactical techniques for such a task will often focus on getting the student to realize why or 

why not the mathematical claim holds. Didactical techniques to solve the concrete task 𝑡2.1* 

could be a combination of the following, which are aiming at a disclosure of the non-

differentiability of 𝑓 in 𝑥 = 0.:  

 𝜏2.1−1*: Ask the student whether 𝑓′(𝑥) =
𝑥

√𝑥2
 is defined for all 𝑥.  

 𝜏2.1−1.1*: Ask the student what it means that 𝑓′ is not defined in 𝑥 = 0.  

 𝜏2.1−1.1.1*: Ask the student to draw 𝑓 and determine if it is differentiable in 𝑥 = 0. 

Additionally, to address the equality: 
𝑥

√𝑥2
= {

1, 𝑥 > 0
−1, 𝑥 < 0

, and thus in particular √𝑥2 = |𝑥|, the 

following techniques could serve as relevant:  
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 𝜏2.1−2*: Ask the student to draw 𝑓 and 𝑓′. 

 𝜏2.1−2.1*: Ask the student whether √𝑥2 can be expressed any different.  

 𝜏2.1−2.1.1*: Ask the student whether 
𝑥

√𝑥2
 can be expressed any different. 

However, in order to be able to mobilize these particular techniques, one needs to know first 

of all, that the student’s answer is correct, secondly that the expression is not defined for     

𝑥 = 0; what this means and lastly, that the expression is equivalent to a much simpler 

expression. Thus, to use the didactical techniques 𝜏2.1−1* – 𝜏2.1−2.1.1*, a respondent must be 

able to mobilize both techniques associated with 𝑡2.1 posed in 2a and thus techniques 

belonging to both MO3 and MO4. The analysis served as a basis for creating the following 

‘standard answer’:  

2a.  See 𝜏2.1−1 and 𝜏2.1−2; of which the latter is considered the better solution.   

 

Figure 18: To the left the graph of 𝑓(𝑥) = √𝑥2 = |𝑥| and to the right, the graph of its derivative 

2b. Firstly, it is clarified whether the student is aware that 𝑓 is not a differentiable  

 function on all of the interior of 𝐷𝑓 , since it not differentiable in 𝑥 = 0. For example  

 via questions such as:  

- Is 
𝑥

√𝑥2
 defined for all 𝑥 ∈ 𝐷𝑓?  

- What does it mean that it is not defined in 𝑥 = 0?  

- How does the graphical representation of √𝑥2 look like? Is it differentiable 

in 𝑥 = 0? 

 It will also be essential that the student consider the meaning of the function   

 expressions, in particular, to realize that √𝑥2 = |𝑥|. For example via the questions   

- Try to plot 𝑓 and 𝑓′ using a CAS-tool. 

- Can √𝑥2 and 
𝑥

√𝑥2
 be expressed differently? Why? 
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6.2.3 HTT 3 

HTT 3 concerns the challenges students’ face related to the determination of a functions 

monotonicity given the graphical representation of its derivative. The task is inspired by an 

exam for A-level students (22nd of May 2015, see Appendix A, p. iii), in which more than 50 

percent of the students achieved 0-3 points out of 10 possible points and out of those, more 

than half achieved 0 points (Ministeriet for børn, undervisning og ligestilling, 2016).The task 

is thus, considered highly relevant for upper secondary school teachers, as well as pre-service 

teachers. The didactical task posed in task 3a relates directly to the following type of 

mathematical task is 𝑇3.1 ⊂ MO3’: 

 𝑇3.1:   Given the graph of 𝑓′ determine the monotonicity of 𝑓. 

Figure 19: HTT 3 

The technological and theoretical components being:  

 𝜃3.1:  𝑓′(𝑥) = 0 when 𝑓′ intersects the 𝑥-axis, 𝑓′ is positive when 𝑓′is above  

   the 𝑥-axis and 𝑓′ is negative when 𝑓′ is below the 𝑥-axis.   
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 𝛩3.1:  Corollary 1, Corollary 2 (section 5.2.4).   

We saw in section 5.3 that the latter theoretical component is transposed to MO3’. The 

mathematical task 𝑇3.1 can be seen as belonging to MO3’ as the task is a special case of the 

task 𝒯3.3: given the algebraic expression of 𝑓, determine the monotonicity of 𝑓. In fact, it is an 

‘easier’ case as 𝑓′ is given graphically and thus the monotonicity properties of 𝑓 is derivable 

directly from the graph. Though this task is asserted to be easier than the typical task 𝒯3.3, the 

technological element, needed to explain the technique comprises of a translation of the 

prerequisites in Corollary 1 and Corollary 2 from an algebraic setting to a graphical setting. 

This entails in particular, distinguishing between the notions of increasing and positive as 

well as between decreasing and negative. Furthermore, a confusion between these notions is 

possibly enforced by students’ tendency to assume resemblance between the graphs of a 

function and its derivative (Nemirovsky and Rubin, 1992). Additionally, this task can 

challenge students simply because it is not a typical task in MO3’. As we saw in section 5.3, 

the tasks posed to students are often algebraic in their nature and are associated with specific 

algorithms; why the students’ might have difficulties activating relevant techniques for 𝑇3.1. 

Task 3a generates a punctual DO based on the specific didactical task 𝑇3.1* ~ MO3’:  

 𝑡3.1*:  Explain what is difficult for student in solving 𝑡3.1. 

In responding to such a task, teachers must know the correct techniques for solving the 

mathematical task, and the techno-theoretical discourse explaining it and therefore, this DO 

relates to punctual organisation generated by 𝑇3.1. Some relevant techniques for 𝑡3.1* are:  

 𝜏3.1−1*: Identify the techniques associated with 𝑇3.1. 

 𝜏3.1−2*: Identify the related technology and theory. 

 𝜏3.1−3*: Identify challenges related to the above identifications.  

 𝜏3.1−4*: Identify the difference between 𝑇3.1and other tasks relating   

   monotonicity that students typically find easy/easier.  

The two latter techniques, will be based on the participants’ own experience with teaching 

or learning the subject. The task posed in 3a thus sets the stage for own personal conviction 

and experience with tasks concerning monotonicity as well as the teaching of these. However, 

it is reasonable to expect that 𝜏3.1−4* specifically will entail a comparison between 𝑇3.1 

and 𝒯3.3 and thereby involve identifying the absence of an algebraic expression and the fact 

that 𝑓′ is provided instead of 𝑓. Task 3b poses the didactical task generating a punctual DO:  
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  𝑡3.2*:  How can one continue to work with the challenges identified in 3a? 

The participant’s techniques to answer 𝑡3.2* will naturally depend on the participant’s 

respond to 𝑡3.1*. Relevant possibilities are: 

 𝜏3.2−1*: Pose tasks of the same type as 𝑇3.1.  

 𝜏3.2−2*: Ask the students to explain the meaning of 𝑓′ and its graph.  

 𝜏3.2−3*: Pose tasks that involve distinguishing between the notion of an  

   increasing, positive, decreasing and negative 𝑓′.   

 𝜏3.2−4*: Ask the students to draw the graph of 𝑓 given the graph of 𝑓′. 

 𝜏3.2−5*: Ask student to draw 𝑓 and 𝑓′ when working with the functions algebraic 

   expressions.  

 𝜏3.2−6*: Ask the students to explain the theory of MO3’ corresponding to  

   Corollary 1 and Corollary 2 graphically.  

A techniques such as 𝜏3.2−1* aims at developing an algorithm for tasks of type 𝑇3.1, while 

techniques such as 𝜏3.2−2* and 𝜏3.2−6* aims at developing the students’ conceptual knowledge 

and 𝜏3.2−5* aims at enhancing the inclusion of the graphical setting in teaching, but is not 

specifically targeted to develop the technology associated with 𝑇3.1. The choice of technique 

thus express to some extent the participants’ beliefs regarding what the students should 

learn. 

 In all, HTT 3 requires knowledge related to MO3’; however, in a graphical setting. In 

solving HTT 3, it is paramount that the participants can identify, in particular, the 

technological component associated with the technique, as this is the key to solving the task 

and further, one needs to be able to identify the cognitive challenges associated with this 

component. Solving the didactical task 𝑡3.2* requires the ability to select tasks in which the 

specific and necessary knowledge is developed. Based on the analysis of HTT 3, following 

standard answer was developed:  

3a. 𝑇3.1 is not a typical task since no algebraic expressions are provided and because

 𝑓′ is given instead of 𝑓. Students are used to being given an algebraic expression for 𝑓 

 when asked to determine monotonicity properties of 𝑓. They will in the typical case 

 use the function expression to determine 𝑓′, determine the solutions to 𝑓′(𝑥) = 0 and 

 upon this; the signs of 𝑓 between the zeros. The  students might find it difficult to 
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 translate this method to a graphical setting and  distinguish between the meaning of 

 𝑓′ being increasing and 𝑓′ being positive.  

3b. See 𝜏3.2−1* – 𝜏3.2−6*. 

6.2.4 HTT 4 

HTT 4 presented below, focuses on the relationship between a function and its derivative in 

a graphical context. HTT 4 was inspired by the work of Haciomeroglu, Aspinwall and Presmeg 

(2010). The 3 figures in HTT 4 (figure 20) are taken directly from their study (Haciomeroglu 

et al., 2010, pp. 164-165). In the following the functions presented graphically in figure 1, 2 

and 3 will be referred to as 𝑓′ (though recognizing that this function is not a derivative 

function), 𝑔 and ℎ, respectively. Task 4a poses the concrete didactical task t4.1* ~ MO4, MO5: 

 𝑡4.1*:   Your student presents the graph of a function (figure 1 in HTT 4), which 

   she claims to be a derivative function. What do you say to your student? 

Which is of the same type as 𝑇2.1* in 2b. As the practice of the teacher aims at making the 

students learn, it is considered implicit that the responds should aim at this in particular 

(however, it is recognized that this interpretation is not guaranteed). A teacher can take 

various approaches in responding to the student, one of which could be the following:  

 𝜏4.1−1*: Ask your student to explain what it means when 𝑓′ jumps. 

 𝜏4.1−2*: Ask your student to draw the original function 𝑓 and (based on this) to 

   consider 𝑓′(1).  

Aiming to uncover the student’s argument, the related misconceptions and possibly facilitate 

a way for the student to realize these misconceptions. However, for such didactical 

techniques to be meaningful it is asserted that the teacher must be able to assess the student’s 

answers. Task 𝑡4.1* thus relates to the mathematical tasks: 

 𝑡4.1:  Given the graph of a function, in particular 𝑓′, determine if it is a  

   derivative function.  

 𝑇4.1.1:  Can a derivative function have a jump discontinuity?  

The latter mathematical task requires a direct activation of a theoretical component 

belonging to MO4, since the answer to 𝑇4.1.1 is simply no; an answer justified by: 

 𝛩4.1.1:    Theorem 2  
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Figure 20: HTT 4 

This theorem was not present in the transposed MO4’, however if one does not hold this 

knowledge, activating the following mathematical technique might serve as a way to realize 

that the graph presented by the student is not a derivative: 

 𝜏4.1:  Reading the graph of 𝑓′ to identify that the original function cannot be  

   differentiable in 𝑥 = 1. 
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The technological and theoretical components explaining and justifying 𝜏4.1 belongs to the 

knowledge block of MO4’: 

 𝜃4.1:  The graph of 𝑓′ shows 𝑓’s progress in slope. A function is not   

   differentiable in a point if the graph has an ‘edge’ in that point. 

 𝛩4.1:  Definition 2.  

Also, if one is able to activate 𝜏4.1, a possible didactical technique for 𝑡4.1* is: 

 𝜏4.1−3*: Tell your student that the graph does not represent a derivative  

   function because derivative functions cannot have jump discontinuities.  

 𝜏4.1−4*: Tell your student that the presented graph does not represent a  

   derivative function, because the original graph has an ‘edge’ (and is thus 

   not differentiable) in 𝑥 = 1. 

Related to task 𝑇4.1.1 it is noted, that the correct answer to 𝑇4.1.1 is considered faulty, if justified 

by the technological component: 

 𝜃4.1.1 – :  A derivative function cannot be discontinuous. 

We saw a counterexample for this statement in section 5.2.2. Task 4b poses a question 

encompassing the concrete didactical task:  

 𝑡4.2*:  Your student shows you the graphs of 𝑔 and ℎ and claims that these are 

   antiderivative functions for  𝑓′. Provide exhaustive feedback to your  

   student.   

This task is also a special version of 𝑇2.1*. An answer to this task depends on how the 

respondent have answered in 4a, however, in this context; the task is treated separately from 

possible answers, given in 4a. To answer this task, respondents must activate techniques for 

the following mathematical task: 

 𝑡4.2:  Given the graph of 𝑔 and ℎ (figure 2 and 3 in HTT 4), determine if they 

   are differentiable.  

 𝑡4.3:  Are 𝑔 and ℎ, presented graphically in figure 2 and 3, antiderivatives  

   functions of 𝑓′? 

With corresponding technique:  
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 𝜏4.2:  Reading the graphs of to identify that they are not differentiable  

   functions.  

Explained and justified by knowledge components belonging to MO4’: 

 𝜃4.2:  A function is not differentiable in a point if the graph has an ‘edge’ or is 

   discontinuous, in that point.  

 𝛩4.2:  Definition 2 

Furthermore, the following technique related to MO6 is relevant: 

 𝜏4.3−2:  Reading the graphs to identify that ℎ is not an antiderivative of 𝑓′.   

Explained and justified by:  

 𝜃4.3:   If 𝑓 > 0 on its entire domain then its antiderivative function is strictly 

   increasing on the entire domain.  

 𝛩4.3:   ∫ 𝑓(𝑥) 𝑑𝑥 
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎) for all [𝑎, 𝑏] ∈ 𝐷𝑓 and for an antiderivative 𝐹.   

Upon these techniques, an answer to 𝑡4.2* possibly entails showing the student the above 

mathematical arguments (call these 𝜏4.2−1* and 𝜏4.2−2* corresponding to 𝜃4.1−1 and 

𝜃4.3−2, respectively) and by using the following didactical technique, elaborating 𝜏4.2−1*: 

 𝜏4.2−3*: Illustrating that none of the function are differentiable in 𝑥 = 1 by using 

   secant  lines on the right and left side of 𝑥 = 1; showing that the  

   functions does not have a unique tangent in 𝑥 = 1.  

The presented HTT is highly associated with techniques belonging to and MO4’; justified by 

the definition of the derivative as well Theorem 2. HTT 4 will uncover whether the 

participants holds the knowledge that is Theorem 2 and if not; whether they are able to 

activate mathematical techniques associated with MO4’ as well as MO6 in order to deal with 

the student’s claim. Notice how it is possible that the relevant techniques are present in the 

transposed MO6’; however, this has not been investigated, why the techniques are only said 

to belong to MO6). As a minimum, the task requires activation of mathematical techniques 

justified by the definition of the derivative. Based on the a priori analysis, the following 

standard answer was developed:  

4a. Ask Marie to explain what it means when 𝑓′ ‘jumps’ and ask Marie to draw 𝑓 as well 

 as to consider what 𝑓′(1) is. 
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4b. Note that Marie has drawn a function with an ‘edge’ and a discontinuous function. 

 None of these are differentiable in 𝑥 = 1 and therefore figure 1 is not the graph of 

 their derivative. Additionally, figure 3 does not show an   antiderivative for the  

 function in figure 1, since the antiderivative of a positive function is increasing. Use 

 the definition of differentiability in a point to explain why a function is not 

 differentiable at an ‘edge’ and in a point of discontinuity. Illustrate the first with 

 secants to the right and the left of 𝑥 = 1.  

6.2.5 HTT 5 

HTT 5 continues to focus on MO4 in the same manner as HTT 4. It is also inspired by the work 

of Haciomeroglu and colleagues and the figures in HTT 5 (figure 21)are taken directly from 

their research (Haciomeroglu et al., 2010, pp. 162-163). The first task in HTT 5 centres on the 

following mathematical type of task: 

 𝑇5.1:   Given the graphical representation of 𝑓′ draw the graph of 𝑓 with  

   certain properties.  

Specifically, the 5a centres on: 

  𝑡5.1:   Given the graphical representation of 𝑓′ (HTT 5a) draw the graph of 𝑓  

   with the additional assumption 𝑓(0) = 0.  

The first technique for this task is:  

 𝜏5.1−1:  Sketching a graph of a function going through (0,0) with decreasingly  

   negative slope on [0,1) (convex); an inflection point in 𝑥 = 1; and with 

   increasingly negative slope on (1,2] (concave).  

The explanation and justification of this technique is the same as for 𝜏3.1: 

 𝜃5.1−1:  𝑓′(𝑥) = 0 when 𝑓′ intersects the 𝑥-axis, 𝑓′ is positive when 𝑓′is above  

   the 𝑥-axis and 𝑓′ is negative when 𝑓′ is below the 𝑥-axis.   

 𝛩5.1−1:  Corollary 1 and Corollary 2 (section 5.2.4) 

The convexity and concavity of 𝑓 on [0,1) and (1,2], respectively, follows immediately, since 

𝑓′(𝑥) = 0 in 𝑥 = 1. The technique is thus explained and justified by MO3’. Using 𝜏5.1−1, one 

cannot however, determine the value of the function in the inflection point. The following 

additional technique for achieves this: 
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Figure 21: HTT 5 

 𝜏5.1−2:  Reading the graph to construct the algebraic expression for 𝑓′,   

   integrating this and using the condition 𝑓(0) = 0 to determine the  

   integration constant and determining (1, 𝑓(1)). Using 𝜏5.1−1, indicating 

   the inflection point.   
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The additional techno-theoretical discourse justifying this technique concerns the extraction 

of algebraic expression from graphical representations: 

 𝜃5.1−2:   The graph shows straight lines on (0,1] and (1,2): they can be   

   considered on their natural domain ℝ.  

 𝛩5.1−2:  Function theory: The straight line: 𝑦 = 𝑎𝑥 + 𝑏, 𝑎 =
𝑦2−𝑦1

𝑥2−𝑥2
 and 𝑏 is  

   intersection with the 𝑦-axis, and a function can only attain one function 

   value for each point in the domain.   

Furthermore, the integration technique included 𝜏5.1−2 is explained and justified by the 

knowledge block of MO5, while the explanation regarding why it is relevant to integrate in 

this context belongs to MO6 (also MO5’ and MO6’, respectively, see Clausen et al., 2011a, pp. 

54-63; as noted earlier, this has not been substantiated, why they are referred to as MO5 and 

MO6). Task 5b poses a didactical task of type 𝑇2.1* directly related to 𝑡5.1 in 5b and thus relates 

directly to MO3’, MO5 and MO6.  

 𝑡5.1*:  A student presents an answer to 𝑡5.1 (the graph presented in 5b). What 

   do you say to your student?  

The relevant didactical techniques associated with this task requires the ability to activate 

relevant mathematical techniques for 𝑡5.1, since it cannot be expected of anyone to provide 

feedback to a student regarding a task that the person cannot solve. Of course, techniques 

such as asking the student to explain the result or present arguments as to why the function 

is in fact the antiderivative of 𝑓 can be mobilized and through such dialogue, a teacher might 

be able to realize how the task is solved correctly. In the following however, it is assumed 

that the participant have answered 𝑡5.1 correctly. A relevant subtask to 𝑡5.1* is: 

 𝑡5.1.1*:   Analyse and assess the student’s answer to 𝑡5.1. 

With corresponding technique: 

 𝜏5.1.1−1*: Reading the graph to identify that the function is discontinuous. 

 𝜏5.1.1−2*:  Reading the graph to identify that the function is not differentiable in  

   𝑥 = 1.  

 𝜏5.1.1−3*:   Comparing the student’s graph with the correct graph or the graph of  

   𝑓′ to see that the student has drawn 𝑓 on a domain too large. 
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 𝜏5.1.1−4*:  Comparing the student’s graph and the correct graph to see that the two 

   graphs have the same progress in slope (apart from in 𝑥 = 1).  

 𝜏5.1.1−5*: Identify the intersection on the 𝑦-axis of both ‘branches’ in 𝑦 = 0  

   (considering the natural extension of the second ‘branch’).  

 𝜏5.1.1−6*: Identifying the arrows as meaningless.  

 𝜏5.1.1−7*: Reading the graph to conclude that the student’s graph incorrectly  

   attains two values for 𝑥 = 1. 

Knowledge belonging to MO4 is necessary for activating techniques 𝜏5.1.1−1* – 𝜏5.1.1−3*, while 

𝜏5.1.1−5* requires knowledge related to an organisation of basis function theory. An additional 

subtask might be:   

  𝑡5.1.2*:  Which technique has the student used to get this answer?  

Which undeniably relates to the subtask:  

 𝑡5.1.2.1*: How did the student produce the coordinates (1, −
1

2
) and (1,

1

2
)? 

Solving the latter requires activating the following techniques:   

 𝜏5.1.2.1−1*: Identify the use of technique 𝜏5.1−2 to produce the point (1, −
1

2
).  

Activating this techniques require that one is able to activate the actual mathematical 

technique, 𝜏5.1−2. Related to the second coordinate indicated on the students drawing, is the 

technique: 

 𝜏5.1.2.1−2*: Identify the use of the condition 𝑓(0) = 0 in the determination of the  

   integration constant in the algebraic expression of 𝑓 defined on (1,2]. 

This technique however, requires that one holds knowledge regarding the integration 

constant, which determines the vertical placement of the second ‘branch’. It is recognized 

that this interpretation is only one out of multiple possible interpretations; for example, since 

the graph drawn by the student is consistent with 𝑘1 = 𝑘2 = 0 (𝑘1 and 𝑘2 being the 

integration constants in the expression for 𝑓 on [0,1] and (1,2], respectively), another 

obvious interpretation could be to say that the student had neglected to include the constants 

when performing the integration of 𝑓′. Upon their analysis of the student’s answer, the 
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participants must determine what to say to the student i.e. answer task 𝑡5.1*. Relevant 

techniques in this regard could be: 

 𝜏5.1−1*: Tell your student that the graph represents a function, which is not  

   differentiable in 𝑥 = 1. 

 𝜏5.1−2*: Explain to your student why the function is not differentiable in 𝑥 = 1  

   (for example by using secant on the left side and right side of 𝑥 = 1). 

 𝜏5.1−3*: Tell your student that 𝑓′ is defined in 𝑥 = 1. 

 𝜏5.1−4*: Tell your student what it means for 𝑓 that 𝑓′ is defined in 𝑥 = 1. 

 𝜏5.1−5*: Tell your student that 𝑓 is only defined on [0,2]. 

 𝜏5.1−6*: Tell your student why 𝑓 is defined on [0,2].  

 𝜏5.1−7*: Tell your student that the arrows in the ends of the curve do not have  

   any mathematical meaning. 

 𝜏5.1−8*: Tell your student that for each point in the domain of a function there  

   can only be one corresponding function value. 

 𝜏5.1−9*: Tell your student that the condition 𝑓(0) = 0 only applies for the part  

   of 𝑓 defined for 𝑥 = 0.  

All of the above techniques has a counterpart in an approach focusing on dialogue, for 

example:  

 𝜏5.1−1.1*: Ask your student if 𝑓 is differentiable in 𝑥 = 1.  

 𝜏5.1−4.1*: Ask your student to consider how 𝑓′(1) = 0 while 𝑓 is not differentiable 

   in 𝑥 = 1. 

 𝜏5.1−9.1*: Ask your student if the prerequisite can help determine 𝑘2.  

Techno-theoretical components belonging to MO3’, MO4’, MO5 and MO6 as well as 

organisation of basic function theory, are relevant in solving HTT 5. As a minimum, 5a can be 

solved using techniques justified by MO3’, while 5b requires knowledge related to MO4’ and 

for a full analysis of the student’s answer, techniques of integration is also required. However, 

HTT 5, as HTT 1, does not only require the participants to use these techniques, but also that 

they are able to recognize them in a situation where they have been used incorrect.     
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Based on the a priori analysis the following ‘standard answers’ was developed: 

5a. Method 1: The graph is sketched based on a +/- sign chart constructed by using  

 the graph of 𝑓′ (which shows that the function is decreasing with inflection   

 point in 𝑥 = 1); Moreover, the derivative is increasing on [0,1] and decreasing  

 on [1,2] which means that the graph of 𝑓 is convex and concave on these   

 intervals, respectively. 

 Method 2: Using the provided graph, the algebraic expression of 𝑓′ is    

 determined: 

𝑓′(𝑥) = {
𝑥 − 1, 0 < 𝑥 ≤ 1    ∶= 𝑓1′

−𝑥 + 1, 1 < 𝑥 < 2    ∶= 𝑓2′
 

 

By integration one gets: 

𝑓(𝑥) = {

1

2
𝑥2 − 𝑥 + 𝑘1, 0 ≤ 𝑥 ≤ 1    ∶= 𝑓1

−
1

2
𝑥2 + 𝑥 + 𝑘2, 1 < 𝑥 ≤ 2    ∶= 𝑓2

 

 

Using the assumption 𝑓(0) = 0 one gets: 

0 = 𝑓1(0) =
1

2
02 − 0 + 𝑘1 = 𝑘1, hence 𝑘1 = 0 

The function value for 𝑥 = 1 (the inflection point) can thus be calculated: 

𝑓1(1) =
1

2
12 − 1 = −

1

2
. 

Since the function must be continuous, it holds that 𝑓2(1) = 𝑓1(1), we have (this can 

be left out): 

𝑓2(1) = −
1

2
12 + 1 + 𝑘2 = −

1

2
= 𝑓1(1), hence 𝑘2 = −1 . 
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Thus, the graph of 𝑓 must look like the following: 

 

 

 

  

 

  
Figure 22: The graph of 𝑓 as constructed by method 2.  

 

5b. The student likely constructed the algebraic expressions of 𝑓′ and 𝑓 since the 

 points (1, −1/2) and (1,1/2) are indicated on the graph. The error occurs when the 

 constants in the two algebraic expressions of 𝑓 is determined: If one uses 𝑓(0) = 0 on 

 both expressions and thus overlook that the second expression is defined only for    

 𝑥 ∈ (1,2] then one also attains 𝑘2 = 0. The determined expression gives the incorrect 

 ‘right  branch’ of the graph. Moreover, the result is a discontinuous and thus non-

 differentiable function. The student has furthermore, wrongly drawn a ‘function’ with 

 two function values in 𝑥 = 1, drawn 𝑓 on a larger domain than 𝑓′, and has drawn 

 arrows in the ends of the curve, which has no mathematical meaning .Start by asking 

 if a differentiable function can look like the one drawn – if the student  says yes; you 

 point to the discontinuity problem. Following, ask your student to explain the method 

 used and ask if the prerequisite 𝑓(0) = 0 can help determine 𝑘2 (or less formal: the 

 position of the right branch). 
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7 The Participants’ Performances  

In this chapter, the collected empirical data (see App C1 – C5)6 will be analysed, with the main 

purpose of creating a basis for answering Research Question 2, namely the question: 

Do the participants’ answers to the HTT reflect their different amounts of teaching 

experience? In what way? 

Prior to the collection of the empirical data, some of the most central hypotheses, regarding 

the difference in performances of the two groups, was: 

(1) The teachers will activate didactical techniques, which are more appropriate  than 

 will the university students.  

(2) The university students will, to a greater extent, activate appropriate mathematical 

 techniques related to MO4 and provide more relevant answers to tasks that belongs 

 to this MO, than will the teachers.  

These hypotheses will be addressed throughout the a posteriori analysis. 

7.1 An overview of the Results 

In order to create an overview of the data, the participants’ responses are given points, which 

are collected and presented in a table below (table 1). These points do not directly refer to 

their techniques in solving the tasks, however they refer implicitly to these, since they are 

given according to performance, which highly depends on the respondents’ activated 

techniques. The method used to distribute the points was presented in section 4.2.3 and will 

be discussed further in Chapter 9.  

 In the table of points, each participant’s collected points out of the possible 33 points 

are presented in percentage (TTL (%) participant). The average collected points among 

teachers, students and all participants out the possible points are shown in percentage. I.e. 

all the teachers’ collected points out 132 possible points, all the students’ collected points out 

of 165 possible points and all the participants’ collected points out of 297 possible points are 

shown in percentage (in bold). All the teachers’ collected points on each task out of 12 

possible points (TTL T (%) task) and all the students’ collected points on each task out of the 

15 possible points (TTL S (%) task) are shown in percentage. Furthermore, all the 

                                                      
6 All the participants’ answers to HTT 1 are presented in C1 in the order T1, T2, …, S8, S9. All the participants’ 
answers to HTT 2 are presented in C2 in the order T1, T2, …, S8, S9. And so forth.        
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participants collected points on each task out of the 27 possible points (TTL (%) task) is 

shown in percentage. 

POINTS (0-3) 

Participant/Task 

1a 1b 1c 2a 2b 3a 3b 4a 4b 5a 5b TTL (%) 

participant 

T1 3 0 1 1 0 3 3 0 0 1 1 39.4 

T2 3 2 3 0 0 1 1 0 0 0 0 30.3 

T3 1 1 1 3 2 2 2 3 2 0 2 57.6 

T4 0 1 1 0 0 2 2 0 0 2 0 24.2 

TTL T (%) task 58.3 33.3 50 33.3 16.7 75 66.7 25 16.7 25 25 37.9 

S5 3 1 1 3 1 1 2 0 1 3 1 51.5 

S6 0 1 1 1 1 1 0 0 0 3 1 27.3 

S7 3 3 2 3 2 2 1 0 0 3 2 63.6 

S8 0 1 1 2 2 2 1 0 1 3 1 42.4 

S9 0 0 0 0 0 1 2 0 0 2 1 18.2 

TTL S (%) task 40 40 33.3 60 40 46.7 40 0 13.3 93.3 40 40.6 

TTL (%) task  48.1 37 40.7 48.1 29.6 55.6 51.9 11.1 14.8 63 33.3 39.4 

Table 1: Scheme of the achieved points for each participant for each task. 

 The most striking characteristic of the point table is the overall low percentages. In 

all, the participants only collected 39.4 %, and thus less than half, of the possible points. The 

teachers collected on average 37.9 % of the possible points while the students on average 

collected 40.6 % of the possible points and therefore, as groups, the students performed 

slightly better; however, with the number of participants this difference is vanishing. None 

of the tasks was answered completely comprehensively by all of the participants. 

Furthermore, no clear pattern emerges from this table, between the two groups. However, in 

regards to the two hypotheses of the introduction, the table will not provide this information 

because the characteristics of the tasks (e.g. which tasks relates/belongs to MO3 and which 

relates/belongs to MO4) do not appear. Furthermore, as we saw in the a priori analysis, some 

tasks could be solved using techniques from either MO3 or MO4 or they necessitated to some 

extent, techniques belonging to both organisations (as well as other organisations). It 

therefore seems necessary to consider the concrete responses to clarify whether, for 

example, S7 was given 2 points in task 2b because S7 did not activate the necessary 

techniques related to MO4 or because S7 did not include considerations regarding the 

simplification of the expression 
𝑥

√𝑥2
. In the following section, the participants’ responses will 

be considered in depth, engaging mostly in those, which contain irrelevant techniques or is 

characterised by a general absence of techniques.  

 The results presented in the table, will be treated in more detail in the discussion; 

especially considerations regarding how the two data collecting methods could have had a 

negative impact on the students’ as well as the teachers’ performances. In the present 
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context, it should however still be noted that the overall performance of the participants’ 

shows that they were more challenged by the tasks than what was expected (see p. 47).  

7.2 Performances on HTT 1 

In chapter 6, it became clear that the three didactical tasks included in HTT 1 relates to MO3’. 

We shall see in the a posteriori analysis below how the hypothesis (1) is not supported by the 

participants’ performances in HTT 1, and we shall see that this HTT proved a challenge for 

the majority of the participants; in particular to maintain a correspondence between the 

answers to the three tasks. 

 About half of the respondents, two teachers and three students (T3, T4, S6, S8 and S9) 

was not able to mobilize all necessary techniques for solving 1a. T3 and S6 was not able to 

mobilize the mathematical technique for solving the inherent mathematical task 𝑡1.1 

(differentiate 𝑒𝑥+1) (both of these participants received help from an outside source to 

determine that the student’s answer was wrong, and upon this, they carried out their 

analysis); further T3 and T4 excluded particular aspect of their analysis in 1a and thus came 

to inexpedient conclusions. S8 and S9 did not mobilize appropriate techniques related to the 

analysis, to help them identify the student’s mathematical technique: S8 reached a correct 

conclusion with the help of S7, while S9 stated, “The student has not differentiated correctly”. 

Among those who solved the task correctly, a version of techniques 𝜏1.1−1* – 𝜏1.1−4* 

(identified in section 6.2.1) was used. For T3 this was also the case, however, out of the two 

apparent algebraic manipulations in the student’s work, only one was considered; namely 

that of ‘moving’ the exponent down in front of the expression. T3 thereby used an insufficient 

version of technique 𝜏1.1−2*: 

 𝜏1.1−2.1* –: Identify the explicit algebraic manipulations of ‘moving’ the exponent  

   down in front. 

And upon this, T3 activated:  

 𝜏1.1−3.1* –: Identify the explicit algebraic manipulations as those associated  

   with the rule for differentiating exponential functions: (𝑒𝑘𝑥)′ = 𝑘𝑒𝑘𝑥.  

 The most interesting performance in 1a was that of T4. In analysing the student’s 

answer to task 𝑡1.1, T4 makes an assumption, which leads to a wrong analysis. The first 

observation, which T4 expressed explicitly, was, “He puts the inner function down in front”. 

Combined with the other activated techniques, it seems as if T4 considered 𝑓 as identified by 

the student as a composite function:    
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  𝜏1.1−1* Identify that the answer is wrong.   

 𝜏1.1−2.2* –: Identify the explicit algebraic manipulations of ‘moving’ the inner  

   function down in front.  

 𝜏1.1−3.1*–: Identify the explicit algebraic manipulations as those associated  

   with the chain rule (𝑉).  

 𝜏1.1−4.1* –: Identify the student’s technology: 𝑒𝑥+1 is a composite function. 

 𝜏1.1−5* –: Conclude that the student has forgotten the rule for    

   differentiating composite functions. 

Illustrated in the picture below is T4’s answer to 1a. It states, “He knows that he has to 

differentiate. And he knows he has to consider the inner and the outer function. He also 

knows that he has to put the inner function ‘down in front’. He forgets the rule for 

differentiating composite functions”. 

Figure 23: T4’s answer to exercise 1a. 

Thus, T4 did not explicitly consider the possibility that the student have identified 𝑓 

incorrectly i.e. T4 did not acknowledge the inherent task 𝑡1.1.1: determine what type of 

function 𝑓 is, and T4 did not consider the use of any other differentiation rule.   

 Among those participants who identified the student’s use of the rule for 

differentiating power functions (T1, T2, S5, S7 as well as S6 and S8; though with help), not all 

pointed to the student’s primary problem of identifying 𝑓, only T1 and S7 stated this 

explicitly, though this might be implicit for some of the participants. For example, T2, who in 

1a stated, “He has used the calculation rule for how you differentiate a power [function]” and 

thus, did not explicitly states why. However, when solving 1b, T2 stated, “Remember that 𝑒 to 

the power of anything gives 𝑒 to the power of anything and if ‘anything’ is a function, you 

have to use the chain-rule”. In this correction, it is apparent that T2 tried to address the 

student’s identification problem. However, T2 avoided confronting why the student had 

interpreted 𝑓 as a power function. In fact, considering all the participants’ corrections given 
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in task 1b it appears that all of the techniques, which were identified a priori, were present, 

except one, namely:  

 𝜏1.2−5*: State why 𝑓 is not a power function (i.e. the difference between a power 

   function and an exponential function).  

Meaning, that also T1 and S7 who explicitly identified the student’s problem in identifying 𝑓 

correctly in 1a, did not try to remedy the student’s wrongful identification through the 

correction in 1b. S7 identified explicitly the student’s misunderstanding related to the 

different notation of constants and variables in 1a. However, S7 did not address this in the 

correction in task 1b. S7 chose instead, to focus the correction on which type of function 𝑓 is 

not and which rules cannot be used and thus, neglected to state what type of function 𝑓 is, 

why it is so and upon this, which rules are relevant. Illustrated below is the answer of S7.  

 

Figure 24: S7’s answer to task 1a and 1b. 

 S5 solved 1a correctly, saying (accessible via audio recordings) “[the function] is 

differentiated using rule for power [functions]”. However, in answering 1b, S5 wrote (see 

figure 25) “The rule (𝑥𝑎)′ = 𝑎𝑥𝑎−1 does not work, since the expression is of the type 𝑎𝑥. 

Differentiate through use of the rule for composite function”. S5 did not confront the possible 

reason for the failed distinguishment between exponential and power functions. 

Furthermore, S5 first identified 𝑓 as an exponential function and then stated that it should be 

differentiated as a composite function, which must be considered as a confusing statement. 
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T1 also answered correctly in 1a and answered 1b using technique 𝜏1.2−1*: state that the 

answer is wrong (in symbols: ÷) identified in the a priori analysis, with the addition of a 

technique (not a priori identified): 

 𝜏1.2−10*: Ask the student to contact you.  

 

Figure 26: T1’s answer to task 1b. 

T1 explains (on audio recordings) how the choice base on the conviction that “It is very 

difficult to explain in writing what the problem is here because he mixes functions together”. 

Which shows that T1 want to address the student’s identification problem. However, this 

answer is given 0 points based on the two criteria of assessment, given in the a priori analysis 

(section 6.2.1). It is however, not denied that in some cases students’ challenges are better 

addressed in dialogue and that this might be one of those cases.  

Figure 25: S5’s correction in task 1b. 
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 Below is a table, showing the participants’ answers to 1c and it shows how a variety 

of functions was suggested. An in depth analysis of the suggestions will not be presented here, 

as each of them should be considered in light of the related analysis and correction. However, 

it is noted, that although the majority of the suggestion seems meaningful, the points were 

generally low, due to lack of correspondence to the corrections in 1b and the analysis in 1a. 

Participant Tasks (All of the type: Differentiate the function …) 

T1 𝑥3 + 2𝑥2 + 𝑥 − 7,  𝑒𝑥,  𝑒𝑥 + 𝑥2,  ln (2𝑥 + 1),  √𝑥3 − 7,  𝑒𝑥+1 

T2 √2𝑥 + 1,  𝑒𝑥2
 

T3 𝑒𝑥,  𝑥 + 1,  𝑒2𝑥, (𝑥 + 3)2 

T4 √𝑥 + 2  

S5  𝑥𝑎+1,  𝑎3𝑥 

S7 10𝑥 ,  sin(𝑥2),  𝑥5 

S8 sin 𝑥2  

 

Table 2: The participants’ answers to exercise 1c (participant S6 and S9 did not respond). 

For example, T3 provided a correction (figure) using technique 𝜏1.2−3*: write the correct 

calculations and a version of 𝜏1.2−9*: state the correct differentiation rules associated with 𝑡1.1 

(figure 27). To uncover whether the student understood the correction, T3 posed the task: 

“Differentiate the following functions: 𝑒𝑥, 𝑥 + 1, 𝑒2𝑥, (𝑥 + 3)2“ among which, one can be 

solved by a direct copy of the correction (𝑥 + 1) and only one requires the rule illustrated in 

the correction. Moreover, it was asserted by T3 in 1a that the primary problem was the 

distinguishment between functions of the type 𝑒𝑘𝑥 and 𝑒𝑥+𝑘, why 𝑒𝑥, 𝑥 + 1 and (𝑥 + 3)2 

appears unable to uncover whether the correction remedied this particular challenge.  

 

Figure 27: T3’s answer to exercise 1b. 
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 Another example is T4 who, upon the analysis (amounting to an assertion that the 

student had forgotten the chain rule) corrected the work by providing the chain rule. As it 

appears in figure, this in fact reproduced, wrongly (see p. 40): 

 

Figure 28: T4’s answer to task 1b 

The function provided in 1c, to be differentiated, was √𝑥 + 2. T4 was given 1 point for this 

answer because it provides an opportunity for the student to work with the chain rule. 

However, since the correction does not provide any tool for the student to transfer the rule 

to another scenario (i.e. from an composite function with outer function 𝑒𝑥 to a composite 

function with outer function √𝑥) it makes little sense to assert that √𝑥 + 2 should uncover 

anything but the fact that the student has ‘remembered’ the rule.  

 The participants’ answers to 1c illustrates furthermore, that none of the participants 

were able to determine and pose just a single task to ‘test’ the student’s primary problem. 

Those who did pose one problem (T4, S8: S8 suggested the function sin 𝑥2) are not testing 

whether the student can distinguish between an exponential and a power function. 

Furthermore, the generating of multiple task (for example T1, who constructed six functions 

to be differentiated) also suggests some difficulty for the participants in determining a single 

task, which encompass precisely the challenges they have identified. In all, the answers to 

HTT 1 does not necessarily signify that the participants do not hold knowledge of MO3’, but 

they signify that appropriate didactical techniques related to the specific student answer are 

not easily mobilized.  

7.3 Performances on HTT 2 

We saw in chapter 6 how HTT 2 can be solved in a variety of ways, however the most simple 

being based on the recognition of the equality √𝑥2 = |𝑥|. Overall, HTT 2, challenged the 

participants more than expected. Task 2a posed the participants three mathematical tasks. 

In the first task (𝑡2.1), the participants were to determine the derivative of 𝑓(𝑥) = √𝑥2; in the 
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a priori analysis two main techniques to perform this task was identified: 𝜏2.1−1 and 𝜏2.1−2, 

the latter depending on technological component 𝜃2.1−2 (√𝑥2 = |𝑥|).  

 Only four participants (and thus, less than half: T3, S5, S7 and S8) used one of these 

correctly. Among the three students, S5 and S7, used a version of technique 𝜏2.1−1, 

determining 𝑓′ through a use of the chain rule. Both of these participants also explicitly stated 

𝜃2.1−2, however without using it to determine 𝑓′. Below is the work of S5 and S7.  

 

Figure 29: S5 determines 𝑓′by using 𝜏2.1−1  

 

Figure 30: S7 determines 𝑓′ by using 𝜏2.1−1. 

It is not explicit which techno-theoretical components S5 and S7 used for determining the 

domain of 𝑓′, however the presence of 𝜃2.1−1.2: a fraction cannot take 0 in its denominator, 

appear plausible. The other two participants, T3 and S8, used 𝜏2.1−2; first they identified the 

equality 𝑓(𝑥) = 𝑥 for 𝑥 ≥ 0 and 𝑓(𝑥) = −𝑥 for 𝑥 < 0 (𝜃2.1−2) and following, attaining 𝑓′(𝑥) =

1 for 𝑥 > 0 and 𝑓′(𝑥) = −1 for 𝑥 < 0. It does not appear on recordings or in writing, which 

technique S8 used to determine 𝑓′ (contrary to instructions, S7 kept a personal paper for 

notes and calculations). T3 initially wrote: “𝑓(𝑥) = −1 when 𝑥 < 0 and 𝑓(𝑥) = 1 when 𝑥 ≥

0” (it is however clear that T3 means 𝑓′ and not 𝑓) and thus a version, not completely correct, 

of the technological component 𝜃2.1−2 is present, as 𝑓′ is defined for all real numbers. Upon 

this, T3 drew the correct graphs using a version of 𝜏2.2/2.3−1: graphs are constructed by 

plotting various coordinates (𝑥𝑖, 𝑦𝑖) and drawing a curve going through these coordinates; 

though no coordinates was actually plotted, possibly due to the simple nature of the function 

expression. First then, did T3 write: “𝑓′(𝑥) is not defined when 𝑥 = 0”, which is explained by 

the technological component 𝜃2.1: a function is not differentiable in a point if the graph has 

an ‘edge’ in that point.  

 The remaining five participants did not solve 𝑡2.1 correctly. T1 defines 𝑓′ for 𝑥 > 0 and 

following concludes that 𝑓′(𝑥) = 1. T1’s technique is illustrated below (figure 31). It appears 
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from audio recordings related to the exercise 2b, how T1 explained this technique, in 

particular the condition 𝑥 > 0. T1 said:  

 When I differentiate I initially get the same [the same as the student in 2b; referring 

 to 
x

√x2
] It might be, that you are thinking, that I, as a teacher, will let the square 

 root and the exponent take each other right away and then differentiate. I do not 

 [do that] because it says that 𝑥 belongs to the real numbers. So this inside [𝑥2] 

 will always be larger or equal to zero and when I use that [referring to the 

 quotient 
x

√x2
] I must not divide by zero, so this have to be included [referring to 

 the condition x > 0].   

 

Figure 31: T1’s answer to the first mathematical task in exercise 2a. 

T1 thus justified the used technique by:  

 𝜃2.1−1.3
–:  The domain of a composite function is given by the intersection of the  

   range of the inner function and the domain of the outer function.  

T1 proceeded to draw the graph of 𝑓 (𝑡2.2) and 𝑓′ (𝑡2.3), which is performed correctly with 

the exception of the domain of 𝑓′:  

 

Figure 32: T1’s graph of 𝑓 and 𝑓′ related to exercise 2a. 

T1 did not explicitly recognize the relation √𝑥2 = |𝑥| and thus, did not explicitly show to hold 

𝜃2.1−2. However, the graph of 𝑓 is drawn without use of plotted points, corresponding to a 
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version of technique 𝜏2.2/2.3−1, similar to the one used by T3, but in the absence of the simpler 

function expression. It is therefore possible that T1 did hold 𝜃2.1−2. However, this appears 

contradictory with the technique used for 𝑡2.1; as well as the technique used for task 𝑡2.3: 

draw the graph of 𝑓′. The graph of the derivative function corresponds to a direct translation 

of 𝑓′(𝑥) = 1, 𝑥 > 0 from an algebraic to a graphical setting. At no point, did T1 consider the 

different domains of 𝑓 and 𝑓′, in particular T1 did not explicitly consider the alike 

(symmetrical) nature of 𝑓 for 𝑥 > 0 and 𝑥 < 0 and the contradiction in asserting that the 

derivative exists for the one side of 𝑓 but not the other.  

 T2, T4 and S9 interpreted 𝑓 to be equal to 𝑥, meaning they hold the technological 

component: 

 𝜃2.1−2.1
– :  √𝑥2 = 𝑥 for all 𝑥 ∈ ℝ.  

Consequently, the derivative was determined as 𝑓′(𝑥) = 1. The graphs are in accordance to 

this result. The technique applied for 𝑡2.1 is thus: 

 𝜏2.1−3
–:  𝑓′(𝑥) = (𝑥)′ = 1 for all 𝑥 ∈ ℝ. 

An example of the corresponding graphs, is given below (figure 33).  

 

Figure 33: T2’s graph of 𝑓(𝑥) = 𝑥 and 𝑓′(𝑥) = 1 in the same coordinate system. 

The work of S9 however, contains additional incorrect elements. Firstly 𝑓(𝑥) = √𝑥2 was 

defined for 𝑥 ≠ 0. This contradicts both the information given in task 2a, but moreover it 

contradicts S9’s following work. S9 establishes 𝜃2.1−2.1
–: √𝑥2 = 𝑥 from the technique: 

  𝜏2.1−4
–:  𝑓(𝑥) = √𝑥2 = 𝑥

2

2 = 𝑥1 = 𝑥    
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This calculations only holds for 𝑥 ≥ 0 (and thus contradicts the restriction 𝑥 ≠ 0) and 

furthermore, attaining 𝑓(𝑥) = 𝑥, also contradicts the restriction on the domain as 𝑥 is defined 

on all of ℝ. The work of S9 is illustrated in figure 34 and as it appears, the derivative graph 

does not correspond to the achieved derivative function. No technology is detectible in the 

written work or on audio recordings, which could explain this.   

 

Figure 34: S9’s answer to exercise 2a. 

The performance of S6 in exercise 2a should also be mentioned, as this performance was 

given 1 point. The written work of S6 is illustrated in figure 35 below. 

 

Figure 35: S6’s answer to exercise 2a. 
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From the picture, it appears that S6 answered correctly on the task. However, as it partly 

appears by the work in the picture (and supported by audio recording), S6 did not initially 

mobilize appropriate mathematical techniques for solving 𝑡2.1 (differentiate √𝑥2). Following 

is an extract from the audio recordings, where S6 is in dialogue with S5.  

S6:  “What was it you said? Differentiate the inner [function] and multiply with the outer 

 [function]?” 

S5: “Yes … oh no that was not what I said. You differentiate the outer [function] and let 

 the inner [function] be, you differentiate the inner [function] and multiply it on.”  

S6:  “Okay, one more time …”       

S5: [repeats]. 

S6:  “Oh yeah … All right … it just sounds like a lot of steps.” 

In the next, approximately 9.5 minutes, S6 determined 𝑓′(𝑥) = 2𝑥2 (this is scratched out, but 

is still visible in the picture, just above the graph of 𝑓′). This result correspond to the initial 

(scratched out) graph of 𝑓′. The plotted points on this, as well as for the graph of 𝑓, shows 

that S6 used technique 𝜏2.2/2.3−1: graphs are constructed by plotting various coordinates 

(𝑥𝑖, 𝑦𝑖) and drawing a curve going through these coordinates.  Then S6 asked: 

S6: “Is this all wrong?”    

S5: “Hmm, yes, you sort of have something more than you should … no wait … I can not 

 quite recognize … You differentiate the outer [function] and let the inner [function] be 

 … Hmm”    

S6: “Oh … this gives a half, so this becomes 𝑥2 of course, in minus a half … I forgot that.”                                                                                                                                                                     

S5: “And then the inner multiplied on …”   

S6: “Yes like this …. I forgot what we talked about earlier … This is then the same as one 

 over … Is this 
1

√𝑥2
?”           

S5:  “Hmm … Yes” 

The conversation continued a short while. S6 obtained the result 𝑓′(𝑥) =
𝑥

|𝑥|
 and drew the 

correct graph. S6’s result is explained by 𝜃2.1−2 (√𝑥2 = |𝑥|), however it does not appear as if 

the meaning of |𝑥| is recognized since S6 insisted on using the chain rule in spite of the fact 

that S6 did not remember this rule. Also through audio recordings, it is evident that S5 was 

the one, who mentioned explicitly 𝜃2.1−2 and it is thus possible that S6 did not know why this 

equality holds, but included it because S5 did. These are however, speculations. Finally, S6 

did not specify for which 𝑥 ∈ ℝ 𝑓′ is defined; neither related to the algebraic expression nor 

related to the graph of 𝑓′.  
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 Five of the participants (3 teachers and 2 students) was thus unable to mobilize the 

relevant mathematical techniques to solve an exercise 2a. For these participants, the problem 

arise already in task 𝑡2,1, a task belonging mainly to MO3’, deviating only from a typical task 

in the transposed MO, because the function is not differentiable for all 𝑥 ∈ 𝐷𝑓 . However, the 

problem does not necessarily lie in the algebraic manipulations associated with the chain 

rule but more so in the interpretation of the function expression; in particular regarding 

considerations of the domain and range of the function and in this respect also considerations 

regarding the prerequisites necessary when using the chain rule. Concerning the latter, none 

of the participants who used the chain rule, explained the domain by 𝜃2.1−1.1: the 

prerequisites of the chain rule (𝑉).  

 Task 2b in HTT 2 especially proved as a challenge for those who did not answer 

exercise 2a correctly. T1 did not answer 2a, saying, “I simply don’t know what to say ... It is 

very hypothetical”. T2 wrote, as a response to the student “Overkill. If it is possible to reduce 

then do it, also before you get to your result and seriously did CAS give you that?” The 

reduction that T2 mentions refers to 𝜃2.1−2.1
– : √𝑥2 = 𝑥 for all 𝑥 ∈ ℝ. As is apparent from this 

respond, T2 did not mobilize any mathematical techniques for solving 2b and T2’s answer to 

2a completely hindered any analysis of the student’s result. The answer of T4 also bases on 

the technological component 𝜃2.1−2.1
–, while S9 wrote, “The student must have written 𝑓 

wrongly” (when plugging it into the CAS-tool).   

 Among the participants who mobilized (independently) appropriate techniques and 

solved all three tasks in 2a completely correct (T3, S5 and S7), none where given three points 

in 2b, because not all the techniques 𝜏2.1−1* – 𝜏2.1−1.1.1* and 𝜏2.1−2* – 𝜏2.1−2.1.1* (or some 

version of them) were activated. T3 left out the technique:  

 𝜏2.1−1.1*: Ask/tell the student what it means that 𝑓′ is not defined in 𝑥 = 0.  

While S7 wrote: “What about 𝑥 = 0?” which is interpreted as referring to the domain of the 

function presented by the student, and with the additional comment: “can it be written any 

smarter? What does √𝑥2 give? (= |𝑥|)”, it is asserted that also S7 neglected using technique 

𝜏2.1−1.1*. Meanwhile, S5 left out the techniques: 

 𝜏2.1−2.1/2.11*: Ask the student whether √𝑥2/
𝑥

√𝑥2
 can be expressed any different.  

 The hypotheses stated in the introduction of this chapter, in particular (1), is not 

supported by the participants’ responses to HTT 2. It appeared that three teacher did not the 

mathematical knowledge related to the mathematical task in 2a and thus, they were unable 

to activate appropriate techniques for the didactical task in 2b. Among the students who held 
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the necessary mathematical knowledge to solve 2a correctly, all used a version of 𝜏2.1−1*: ask 

the student whether 𝑓′(𝑥) =
𝑥

√𝑥2
 is defined for all 𝑥, but no one used 𝜏2.1−1* – 𝜏2.1−1.1.1* 

addressing why 𝑓′ is not defined for all 𝑥, techniques related to MO4. It can however, not be 

concluded that these students do not hold the mathematical knowledge necessary; only that 

they did not activate didactical techniques related to this knowledge.   

7.4 Performances on HTT 3 

The majority of the techniques identified in the a priori analysis are present in the 

participants’ collected answers. However, only one participants (T1) was given 3 points in 

both 3a and 3b. Firstly, T1’s performance in HTT 3 will be presented. Upon this some 

examples of answers will be given, which neglected key techniques identified in the a priori 

analysis. 

 The written answer of T1 provides little information about what techniques were 

used and the answer is quite sparse itself (figure36).  

 

Figure 36: T1’s answer to 3a – “For some students: positive = increasing”. 

However, from audio recordings it is clear that T1 used all of the techniques identified in 

section 6.2.3 or some version of them: 

 𝜏3.1−1*: Identify the relevant techniques associated with 𝑇3.1. 
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 𝜏3.1−2*: Identify the theoretical components related to the relevant techniques. 

 𝜏3.1−3*: Identify challenges related to the above identifications.  

 𝜏3.1−4*: Identify the difference between 𝑇3.1 and other tasks relating   

   monotonicity that students typically find easy/easier.  

T1 said upon reading task 3a: 

 What is difficult for the students here is that they don’t have a very good 

 understanding of what it means that a graph is ... or a function is positive and what it 

 means that a function is increasing. They mix those terms together… [τ3.1−3*] So here 

 we can see [drawing on the picture in HTT 3, see figure] that 𝑓′(𝑥) is positive here, 

 negative here and zero here [τ3.1−1*] but for them 𝑓′(𝑥) is increasing, so some of them 

 will think that 𝑓′(𝑥) is positive everywhere. Some of them understand well, that 

 if 𝑓′(𝑥) is positive then it is the slope of the tangent and then the original function is 

 increasing but that is not the same as to say that they necessarily can translate this 

 graphical expression to what they know [τ3.1−3*]. So, it is the translation which is 

 difficult. It is the translation of this [the graph] to how they can use the 

 monotonicity theorem [τ3.1−2*/τ3.1−3*]. Maybe it is also difficult because, well at 

 least I don’t, i don’t practice the visual impression, it is more the other way, they 

 have a function, they differentiate and so on and then they get this [referring to the 

 drawn monotonicity  scheme in figure] and then they make a conclusion [τ3.1−4*]. 

Notice that the monotonicity theorem, which T1 mentions is the transposition of Corollary 1 

and Corollary 2. T1’s answer to 3b corresponds directly to the above analysis, as T1 suggested 

working with the graphical (visual) interpretation of the term positive function and negative 

function; specifically to assign to each term a graphical interpretation:  

 

 

 

 

T1 moreover suggested posing tasks wherein students should use this graphical 

interpretation to determine where a function is positive and where it is negative. Thus, T1 

used the following technique, not included in the a priori analysis:  

Figure 37: The first part of T1’s answer to 3b – “positive: Graph above the x-axis / negative: Graph under the x-axis”. 
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 τ3.2−7*:  Provide a visual image for the terms negative and positive.  

Aiming to avoid the confusion regarding the actual words, as T1 explained: “It is the word 

‘positive’ that is difficult, it sounds too much like ‘increasing’. It is common that students use 

the word positive to describe an increasing function”. 

 The rest of the performances of the participants in HTT 3 suggests (quite like HTT 2) 

that the identification of a primary problem and the selection of a specific technique to work 

with this problem is a challenge. Many participants were quite vague in 3a. For example T2 

wrote: “Typically, the students see graphs of functions 𝑓(𝑥), not so often for functions 

derivatives 𝑓′(𝑥)“, while S5 wrote that it is difficult “to translate info about 𝑓′ to info about 𝑓” 

and S9 wrote: “The student have to remember that the graph shows the derivative of 𝑓 and 

not 𝑓 itself”. While, in 3b the participants suggested a variety of tasks aiming at incorporating 

in general the graphical representations more in teaching, using techniques such as 𝜏3.2−5*: 

ask the students to draw 𝑓 and 𝑓′ when working with the functions algebraic expressions, a 

technique not targeted any specific challenge, but aims to include graphical representations 

in general. While, the technique 𝜏3.2−4*: ask the students to draw the graph of 𝑓 given the 

graph of 𝑓′, which requires the same interpretation of the graph of 𝑓′ as task 𝑇3.1, is in not 

employed by any of the participants. Contrary to this technique, T3 used the following: 

 𝜏3.2−7*:  Ask the students to draw 𝑓′, given the graph of 𝑓.  

Which also appears as unrelated to the specific challenges associated with 𝑇3.1, but possibly 

accomplishes in a more general sense, familiarity with the relation between the graph of 𝑓 

and the graph of 𝑓′.   

 S6 proposed the following student challenge as the only participant: “[I] would believe 

that there can be confusion between 𝑓′(𝑥) intersection with the 𝑥-axis and possibly the 𝑦-

axis and 𝑓(𝑥)’s”. Such confusion can naturally be considered as included in the assertion that 

students assume resemblance between the graph of a function and its derivative. However, 

the analysis of S6 is incomplete as the confusion between the other characteristics of 𝑓 and 

𝑓′ is not considered. Furthermore, the difficulties identified by S6 are asserted not to be 

primary since the students need to identify where 𝑓′ = 0, 𝑓′ < 0 and 𝑓′ > 0; and while the 

meaning of the terms positive and negative has counterparts in the terms increasing and 

decreasing, respectively, the meaning of 𝑓′ = 0 does not have the same alike counterpart.  

 Some participants concluded that it is difficult for students to ‘go the other way’. For 

example, S6 wrote that one “has to go the ‘opposite’ way than usual, to say something 

about 𝑓” while T4 wrote “The difficulty is, that one has to go ‘reverse’ [omvendt] compared 

to usual”. These statements reveal that T4 and S6 did not activate (properly) the technique 
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𝜏3.1−1*: identify the relevant techniques associated with 𝑇3.1, since these do not involve going 

‘reverse’ or ‘opposite’ (see section 6.2.3).   

 As a group, the teachers performed slightly better than the students did. In all, the 

students’ answer to HTT 3 were short and poorly elaborated (except possibly S5’s answer), 

while the teachers’ answers were more comprehensive (excluding T2’s answer to 3a). 

Hypotheses (1) is considered as weakly supported by the respondents’ answer to HTT 3.  

7.5 Performances on HTT 4 

HTT 4 is the task with the lowest average percentage of collected points among all the 

participants (11.1 % and 14.8 % for task 4a and 4b, respectively); among the students the 

average was 0 % and 13,3 %, respectively, while the average among the teachers was 25 % 

and 16.7 %, respectively. Task 4a posed a didactical task, namely 𝑡4.1
∗ ~ MO4’, MO4: 

 𝑡4.1
∗:  Your student presents the graph of a function, which she claims  

   to be a derivative function. What do you say to your student?  

T1 did not answer HTT 4 at all. Half of the remaining participants answered task 4a by posing 

a question to the student. T2, T4, S5 and S6 used the following technique: 

 𝜏4.1−3*: Ask the student what the original function is.  

While T2 additionally used the following technique: 

  𝜏4.1−4*: Ask the student whether she thinks it makes sense that        

   𝑓′(1) = 0 and just after it is 1 and increasing.    

Although posing such questions can qualify as an appropriate didactical technique, it is 

essential that the participants are capable in assessing whatever answer the student may 

provide; which appears (also by audio) not to be the case. That means in particular, that none 

of the mentioned participants explicitly activated techniques for the mathematical task: 

 𝑡4.1:  Given the graph of a function, in particular 𝑓′, determine if it is a  

   derivative function.  

Nor the task 𝑇4.1.1: can a derivative function have a jump discontinuity? which is considered 

especially relevant for T2, when using 𝜏4.1−4* stated above.  

 While T1, T2, T4, S5 and S6 did not activate any appropriate techniques for these 

tasks, S7 and S8 answered task 𝑇4.1.1, however justified by a faulty technological component, 
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namely 𝜃4.1.1 – : a derivative function cannot be discontinuous. Based to this, they mobilized 

the faulty didactical technique: 

 𝜏4.1−5* –:  Tell the student that all derivative functions are continuous.  

This is incorrect and it seemingly shows that S7 and S8 do not hold the unit of knowledge 

belonging to MO4: 

 𝛩4.1.1:    Theorem 2.   

However, since the derivative in HTT 4 has a jump discontinuity, it is possible, that it is this 

particular type of discontinuity, to which they are referring. Alternatively, as we saw in 

sections 5.3, discontinuous functions are presented in upper secondary school, only as 

functions with jumps, and it is thus possible that S7 and S8 used the term continuous as it is 

understood in MO4’ existing in upper secondary school. These are however, speculations. 

 T3 was the only participant given 3 points in 4a; indeed T3 was the only participant 

whom explicitly activated mathematical techniques, in order to determine how to respond to 

the student. T3 first said: “It cannot be defined here [referring to 𝑥 = 1, see figure below] 

because in order for a function to be differentiated in a point it has to be differentiable in that 

point, and it is clearly not differentiable in this point”. It is not explicit how T3 explains this 

conclusion. Upon this, T3 mobilized a mathematical technique for task 𝑡4.1: given the graph 

of a function, in particular 𝑓′, determine if it is a derivative function. This technique appears 

in figure 38. The determination of the domains of 𝑦 = −𝑥 + 1 and 𝑦 = 𝑥, might convey that 

T3 interpreted the function as continuing ‘outside the picture’ or that T3 simply defined the 

functions on domains to large; no conclusion can be made, in this regard. The technique 

activated by T3, though not completely correct, as the integration constants are absent, 

belongs to MO5. Following the above calculations T3 said, “We have to determine whether 

this function is continuous by inserting 1” and verified the equation: −
1

2
12 + 1 =

1

2
12, 

concluding that the antiderivative was continuous. Then T3 said, “But it is not differentiable 

in that point [𝑥 = 1] and that is because it has an edge in that point, so she has differentiated 

a function which is not differentiable and by principle she cannot”. The techno-theoretical 

components explaining and justifying T3’s techniques are very similar to those associated 

with 𝑡5.1 identified in the a priori analysis of HTT 5: 

 𝜃5.1−2:  The graph shows straight lines on (0,1] and (1,2): they can be   

   considered on their natural domain ℝ.  

 𝛩5.1−2:  Function theory: The straight line: 𝑦 = 𝑎𝑥 + 𝑏, 𝑎 =
𝑦2−𝑦1

𝑥2−𝑥2
 and 𝑏.  
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As well as techno-theoretical discourses belonging to MO5 and MO6.  

 

Figure 38: T3’s answer to task 4a 

 The work of T3, though not completely correct, shows that this participant is capable 

of mobilizing mathematical techniques to gain insight into a students work and thereby place 

T3 in a better position to respond to the student’s claim.   

Exercise 4b posed a didactical task, namely 𝑡4.2* ~ MO4’, MO5:  

 𝑡4.2
∗:   Your student shows you two functions presented graphically (figure 2 

   and 3 in HTT 4) and claims that these are antiderivative functions for  

   the function presented in figure 1 (in HTT 4). Provide exhaustive  

   feedback to your student. 

The majority of the participants was given 0 points for their performance in task 4b. T1,T4, 

S7, S9 did not answer the task. T2 did not activate appropriate mathematical techniques for 

the tasks:  

 𝑡4.2:  Given the graph of 𝑓, determine if 𝑓 is differentiable.  

 𝑡4.3:  Are 𝑔 and ℎ, presented graphically in figure 2 and 3, antiderivatives  

   functions of 𝑓′? 

This is evident in the feedback provided by T2 in 4a. T2 wrote, related to figure 2 in HTT 4: 

“A continuous, differentiable function does not have [har vist ikke] a discontinuous function 

as derivative”. Related to figure 3 in HTT 4, T2 wrote: “Be careful when calling that [the 

function in figure 3] an antiderivative, because there are certain rules for discontinuous 
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functions’ derivatives”. Thus, T2 did not activate any of the necessary techniques related to 

MO4 and furthermore, T2 conveyed not to hold the relevant techno-theoretical components 

belonging to MO4’  

 The written work performed by S5 is quite sparse and inconclusive. It is explicit 

however; on audio recordings, that S5 activated relevant techniques for task 𝑡4.2 (restated 

above) and subsequently for 𝒯1: what is the derivative of 𝑓 in a point 𝑎 ∈ 𝐷𝑓? S5 used the 

following technique to solve task 𝑡4.2: 

 𝜏4.2:  Reading the graph to determine that the limit of the difference quotient 

   in 𝑥 = 1 is different approaching from the left and approaching from the 

   right.   

Justified by the definition of the derivative; this appears from the following transcription 

where S5 asked S6: “If there is to be a derivative in one [𝑥 = 1] shouldn’t the limit of the 

differential quotient be the same, if you take it from the right and from the left (…) if you let 

ℎ approach from the right and from the left? So the two functions in the fork [the piecewise 

function] agree upon the slope in that point (…) it looks like the first parabola have slope 

equal to zero [in 𝑥 = 1]”. At this point in the conversation, S5 was interrupted by S6, who did 

not appear to accept the argument, due to the length between the two indicated points on the 

𝑦-axis. The objection of S6 is not valid since a correct proportional distance between the 

indicated points on the 𝑦-axis, simply would vertically ‘stretch’ the ‘second branch’ and thus 

produce a slope even steeper. The graph in question is reprinted below (figure). 

 

Figure 39: One of the graphs presented by a student in HTT 4 (reprinted here for completeness). 

S5 continued later: “This one to the right [the second branch] has slope one in that point there 

[𝑥 = 1] if we should give it a slope and the other one [first branch] has slope zero [in 𝑥 = 1] 
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(…) but is it differentiable then?” Trying to confirm this with S6, however without luck. 

Perhaps this ‘disagreement’ with S6 is the reason why these considerations of S5 did not 

appear in the written answer.  

 T3 included all elements identified in the a priori analysis of exercise 4b, except one 

aspect, which concerns the impossibility of a positive function to have a decreasing 

antiderivative. This point was not included in any of the respondent verbal considerations or 

written answers. A possible explanation for this could be the focus on the concept of the 

derivative. The participants might have fixated on the given functions, as related by the slope 

of the original functions and thus, neglected to think of the functions in figure 2 and 3 as 

related to the function in figure 1, by the area under its curve.  

 The most striking aspect of the participants’ responses is the general lack of activated 

relevant mathematical techniques; only one participant activated techniques to determine 

the original function in 1a and thereby making it possible to determine what to say to the 

student. In all, only three participants, one teacher (out of four) and two students (out of five) 

activated techniques explained and justified within MO4’ and he hypothesis (2) is thus not 

supported the participants’ answers to HTT 4.  

7.6 Performances on HTT 5  

As a group, the teachers were given few points in their performance on the mathematical task 

posed in 5a, namely 𝑡5.1: given the graphical representation of 𝑓′ draw the graph of 𝑓 with the 

additional assumption that 𝑓(0) = 0. A task, which can be solved using techniques belonging 

to MO3’ or techniques belonging mainly to MO5. Among the teachers, T2, T3 were given zero 

points, while T1 and T4 were given 1 point and 2 points, respectively. Among the students, 

S5, S6, S7 and S8 were given 3 points, while S9 was given 2 points. The participants’ answers 

to 5b do not support hypothesis (2) of the introduction, as only 2 of the students pointed to 

the non-differentiability of 𝑓 while this was only the case for one of the teachers. Meanwhile, 

the most comprehensive performance in the didactical task 5b was that of participant T3. 

The answers for 5a and 5b are highly connected, so the analysis will encompass the answers 

to both tasks for each relevant participant.   

 T2’s answer in 5b focused almost completely on the arrows in the ends of the curve: 

“Without the arrows I would believe that the student thinks that the function is decreasing 

all the time [on the entire domain] but with the arrows it is tough [to figure out]”. This 

statement imply that T2 wrongfully considered the graph presented by the student in 5b as 

decreasing. Moreover, T2 wrote, “The student has tried to show that something mysterious 

is going on in 𝑥 = 1”. This analysis highly relates to T2’s answer in exercise 5a, illustrated 
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below (figure 40). It is apparent that T2 did not mobilize any of the appropriate mathematical 

techniques identified in the a priori analysis for this task. The performance in 5b signifies that 

T2, besides not being able to activate the appropriate techniques associated with 𝑡5.1, did not 

recognize when these techniques are used. This is supported by the following questions 

posed to the student by T2: “What do the arrows mean? Where did you get the points from? 

What does the ‘edge’ [hakket] in the graph of 𝑓′ mean to 𝑓?” 

 

Figure 40: T2’ answer to exercise 5a. 

As in HHT 4, T2 did not reveal any activation of mathematical techniques for these tasks, 

except the latter question, to which the answer (based on the above graph) is believed by T2 

to be, that the original function 𝑓 is not differentiable and the technology explaining T2’s 

answer to 𝑡5.1 is thus: 

 𝜃5.1−3
–:  If 𝑓′(𝑥0) = 0 the original function is not defined in 𝑥0.  

 T4, similarly, did not activate any techniques that could provide insight into the 

student’s answer in exercise 5b. T4 wrote, “The student think that when there is an ‘edge’ on 

the graph of the derivative it means that the graph of the function is not continuous”, but did 

not elaborate, to establish whether this was correct or not, and did not consider the 

coordinates on the graph. Related to exercise 5a, T4, activated technique 𝜏5.1−1, concerning 

the determination of the graph of 𝑓 based on its monotonicity characteristics displayed by 

the graph of 𝑓′. The result is illustrated below (figure 41). 
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Figure 41: T4’s answer to exercise 5a. 

As it appears, T4 correctly drew a function which is decreasing and convex in [0,1), has an 

inflection point in 𝑥 = 1 and is decreasing and concave on (1,2], however with the mistake of 

drawing 𝑓 on a larger domain than [0,2] (why T4 was given only 2 points). A choice of this 

technique over technique 𝜏5.1−2 (extracting the algebraic expression of 𝑓′, integrating this 

and determining the function value in the inflection point), does not necessarily mean that 

T4 is not capable of activating the latter technique, however, due to the incorrect analysis of 

the student’s graph in 5b it is asserted that this is actually the case.   

 T1 initially solved task 5a correctly. First, constructing the algebraic expression of 𝑓′, 

integrating this and proceeding to draw the graph of 𝑓 leaving 𝑘1 and 𝑘2 undetermined (both 

denoted 𝑘 by T1) and thereby also 𝑓(1). T1 said “It has to be decreasing on the whole interval 

and it has to have 𝑓′(𝑥) = 0 here [𝑥 = 1] and it is two 2nd degree polynomial combined (…) 

this one has a positive a value [referring to the algebraic expression of the first ‘branch’] and 

this one has a negative a value [referring to the algebraic expression of the second ‘branch]”.  

       

      Figure 42: T1’s initial answer to exercise 5a.    
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The technique activated by T1 is thus a combination of 𝜏5.1−1 and 𝜏5.1−2 (section 6.2.5). The 

result is illustrated above (figure 42). T1 did not explicitly activate the part of technique 𝜏5.1−1 

concerning the reading of 𝑓′ to establish that 𝑓′ is decreasingly negative on (0,1) and 

increasingly negative on (1,2) and thereby that the first and second ‘branch’ are convex and 

concave, respectively, but determined this based on the ‘𝑎 values’ in the two function 

expressions for 𝑓. However, the considerations that T1 make regarding exercise 5b leads to 

a change of heart and T1 drew the graph in figure 43 as representing 𝑓. 

 

Figure 43: T1’s second (and final) answer to exercise 5a. 

T1’s considerations related to 5b shows that T1 used the following didactical techniques: 

 𝜏5.1.1−4*:  Read the student’s graph and the graph constructed in 5a to see that the 

   two graphs have the same progress in slope. 

 𝜏5.1.1−3*:   Comparing the student’s graph with the correct graph or the graph of  

   𝑓′ to see that the student has drawn 𝑓 on a domain too large. 

 𝜏5.1.1−1*: Reading the graph to establish that the student has drawn the graph of 

   a discontinuous function and conclude that it is correct.  

T1 said: “The student … pretty much have the same answer as I have, if you remove some of 

this … [scratching out the part of the graph which is outside the interval [0,2]] and then, the 

function is not connected but it does not necessarily needs to be connected. We cannot know 

if it is”. T1 thus shows not to hold the knowledge of MO4’ necessary in this context. T1 

concluded that “This is a very creative answer in which it is understood that k [𝑘2] is arbitrary 

and (…) this [the second branch: the graph 𝑓2] can slide op and down however you want it 

to”. In answering 5b, T1 moreover activated techniques for the following task:   

 𝑡5.1.2.1*: How did the student produce the coordinates (1, −
1

2
) and (1,

1

2
)?  
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T1 mobilized the following mathematical technique:  

  𝜏5.1.2.1−3
–: 𝑓1(1) =

1

2
12 − 1 +  𝑘1  = −

1

2
 ⇒ 𝑘1 = 0  

   𝑓2(1) = −
1

2
12 + 1 + 𝑘2 =

1

2
 ⇒ 𝑘2 = 0  

And upon this, the didactical technique:  

 𝜏5.1.2.1−*–:  Identify that the student have fixed these. 

However technique 𝜏5.1.2.1−2*: identify the use of the condition 𝑓(0) = 0 in the determination 

of the integration constant in the algebraic expression of 𝑓 defined on (1,2], is absent. T1 

proceeded by correcting T1’s own answer to exercise 5a. First by setting 𝑘1 = 0 (using the 

assumption) and confirming that 𝑓1(1) = −
1

2
 and secondly by drawing a graph with even 

greater distance between the graphs in the point of discontinuity in order to demonstrate 

(the wrong conclusion) that 𝑘2 can vary (figure 43). T1 did not activate any techniques 

belonging to or justified by MO4’ when solving task 5b and did not address the two function 

values in 𝑥 = 1. The faulty technology explaining the technique is: 

 𝜃5.1
–:  A differentiable function does not need to be continuous. 

 T3’s answer to 5a was given 0 points because T3 did not actually draw the graph of 𝑓′. 

However, T3 did mobilize a version of technique 𝜏5.1−2. As it appears in figure below, the 

techno-theoretical discourse explaining the technique is correct, however not the technique 

itself.  

  

  

 

Figure 44: T3’s answer to task 5b 
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The activated technique (or rather the present technology) in T3’s work in 5a is highly 

related to T3’s analysis in 5b. T3 activated all the relevant techniques identified in the a priori 

analysis, associated with task 𝑡5.1.1*: analyse and assess the student’s answer to 𝑡5.1, and in 

particular 𝑡5.1.2.1*: how did the student produce the coordinates (1, −
1

2
) and (1,

1

2
)? T3 did not 

activate techniques addressing the domain of 𝑓, the arrows or the two function values in 𝑥 =

1 and therefore T3 was given 2 points. 

 S5, S6, S7, S8 and S9 all constructed similar graphs in exercise 5a (the graphs of S6 and 

S7 are shown in figure). The majority of these participants used a version of 𝜏5.1−1 (reading 

the graph of 𝑓′). S7 additionally used 𝜏5.1−2, determining the exact algebraic expressions of 𝑓1 

and 𝑓2, using the assumption, while S8 used a versions of 𝜏5.1−2 and drew 𝑓 based on plotted 

points determined by using the algebraic expressions. This appears from the points marked 

on the graph (graph to the right in figure), however again S8 used a personal paper for notes, 

so the exact techniques of S8 can not be determined.  

 

Figure 45: S6 (left) and S8’s (right) answers to exercise 5a (similar to the answers of S5, S8 and S9) 

Regarding exercise 5b, none of the student participants identified the student’s technique 

including the use of the condition 𝑓(0) = 0 on both ‘branches’. S7, S8 and S9 wrote that 𝑓 has 

to be continuous. However, from audio recordings it appears that S9 did not activate 

techniques related to MO4. Upon working with HTT 5 individually, S7 and S9 engaged in 

dialogue and S7 said, “The interesting thing is, why they have to be connected [referring to 

the graph in 5b] and that is probably because one cannot differentiate something that is not 

connected”, upon which S9 said, “I have not considered at all, that it could be a problem”. S7 

wrote, “Forgets that 𝑓 has to be continuous (forgets the integration constant)”, which is 

recognised as a possible interpretation, why S7 was given 2 points contrary to S8 who only 
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pointed to the problem of discontinuity. Contrary to this, S6 wrote: “Since it [𝑓] (most likely) 

is a continuous function the pencil has to stay on the table [holde blyanten i bordet]”, wherein 

the main thing to notice is the parenthesis, which reveals that S6 holds the same technology 

as T1, namely 𝜃5.1
–: a differentiable function does not need to be continuous. The same 

appears in the answer provided by S5: “Don’t know why the graph jumps, but except the fact 

that there are two function values in the same point, there is nothing wrong with that”, and 

thus implicitly stating that a function with a point of discontinuity is differentiable. Compared 

to S5’s consideration on the audio recordings related to task 4b, where S5 stated (roughly) 

the definition of differentiability and asserted that the two functions expressions in the 

piecewise function should agree upon the slope’ in 𝑥 = 1; it is possible that S5 did not have 

any objections in this case because S5 believed that the graphs did ‘agree upon the slope’ in 

𝑥 = 1. This is incorrect, since none of the ‘branches’ have a slope in that point and thus, in the 

context of HTT 5, S5 was not able to activate the necessary techniques related to MO4’. A 

correct element in the answer of S5 is the point regarding the two functions values of one 

point. S5 is the only participant who activated this technique (𝜏5.1−8*).  
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8 Discussion  

The subject matter analysis of chapter 5 and the a priori analysis of the HTTs, presented in 

chapter 6, showed that the tasks included in the five HTTs could be solved by activating 

techniques belonging to MO3, MO4 and MO5 and techniques belonging to organisations of 

functions theory. The latter are however, considered inherent in MO3, MO4 and MO5, as they 

comprise of interpreting function expressions and translating between functions’ algebraic 

and graphical representation. Furthermore, the specific knowledge components which 

justifies the necessary techniques are present (in varying degrees) in the transposed 

organisations MO3’, MO4’ and MO5’. The latter was not included in the analysis of chapter 6; 

however, the specific knowledge required merely encompassed how to integrate elementary 

functions and the significance of the integration constant, which undoubtedly is a part of high 

school curricula (see Clausen et al., 2011a, pp. 54-73). The only knowledge component, 

relevant in working with the HTTS, which was not present in MO4’, was that of Theorem 2. 

However, as we saw, this knowledge component was not necessary, as activating techniques 

related to MO3’ could lead to the same conclusion. Furthermore, it was established that the 

majority of the tasks included in the HTTs did not relate to, or belong to the ‘typical’ types of 

task in the transposed MO3’ and MO4’. However, based on the educational background of the 

participants, presented in subsection 4.2.1, the a priori analysis of chapter 6 and the 

assessment performed by a subject matter adviser of Mathematics in Danish high schools, it 

was expected that the participants, students as well as teachers, would be able to activate 

relevant techniques for the mathematical tasks, which were explicitly or implicitly, included 

in the HTTs.  

 The a posteriori analysis presented in chapter 7, revealed that the participants in 

general were challenged by the tasks; indeed, to such a degree that one has to question 

whether other factors, aside from the participants’ mathematical and didactical knowledge, 

contributed negatively to their performances. It is possible that such ‘other factors’ 

originated from the data collecting methods, i.e. that the methods had negative impact on the 

participants’ performances. However, two data collecting methods were employed; why it is 

necessary to consider the possible shortcomings of each method. The teacher participants 

answered the HTTs individually, while the author was sitting across from them (the 

arguments as to why the researcher was present, was given in subsection 4.2.2). This 

consequently meant that the teacher participants did not have anyone to discuss the tasks 

with, which according to Durand et al. is an “important real-life channel for the development 

and exchange of didactical technology (and to some extent, theory)” (Durand-Guerrier et al., 

2010, p. 7). Furthermore, the presence of the researcher (author) possibly created some 

‘pressure’ to perform. Three of the teacher participants expressed the latter, during the test 
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as well as afterwards, in particular, one teacher claimed that professional pride was the main 

source of this feeling of pressure, resulting in a performance not reflecting properly the 

capability and knowledge held by the participant (teacher participant, personal 

communications, June 6, 2016). On the other hand, the student participants answered the 

HTTs in groups of two and three. The same amount of time was offered to the students as 

there were to the teachers, however, it became clear that the student participants spent much 

time on discussing the task with each other and although this was the intended; for some of 

the participants much time was spent, in particular, on presenting arguments to (and 

convincing) their fellow group member(s). This left less time to consider all the tasks 

thoroughly and to formulate precise and comprehensive answers, which could explain the 

many rather short written answers provided by the students. Moreover, though the group 

constellation has its advantages, some disadvantages also appeared. For example, S6 

generally let S5 speak first and in some cases, it was not entirely clear, if S6 held the 

knowledge which explained and justified the activated techniques or if S6 activated these 

only because S5 did. If the researcher had been present during their work with the HTTs, this 

could possibly have been decided. Furthermore, it is asserted, that to surely gain something 

from the group constellation, the members must be comfortable, i.e. feel free to speak their 

mind. For example, related to the majority of the tasks, S9 did not engage in dialogue with S7 

and S8, contrary to instructions. Therefore, nothing on the audio recordings could help assess 

S9’s rather uncomprehensive answers, while audio recordings were used extensively in 

assessing other participants’ answers. This also resulted in an uneven data material available 

when analysing the respondents’ performances as well as S7’s personal note sheet did.      

 Concerning the hypothesis (1): the teachers will activate didactical techniques, which 

are more appropriate than will the university students, it appeared that the mathematical 

content of the tasks challenged the participants such that, the HTTs inhibited the participants 

in showing their capability in activating techniques of a more didactical character. It was 

established in chapter 2 that teacher knowledge is more than mathematical subject matter 

knowledge alone, however since many of the participants stumbled in the mathematical 

tasks, the HTTs did not provide an opportunity for those participants to activate techniques 

related to didactical knowledge exterior to pure mathematical knowledge. The hypothesis 

(1) was supported slightly by the empirical data, in particular by the participants’ responses 

to HTT 3.   

 The hypothesis (2): the university students will to a greater extent activate 

appropriate mathematical techniques related to MO4 and provide more relevant answers to 

tasks that belongs to this MO, than will the teachers, was not supported by the collected 

empirical data. Though T3 was the only teacher who activated correct techniques justified by 

MO4, only two participants among the students showed to hold knowledge of MO4 in task 5b, 
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namely S7, S8. In addition, S5 showed to hold knowledge of MO4; however only on audio 

recording and only related to task 4b. In task 5b, S5 did not activate techniques justified by 

MO4, in spite of being able in doing so related to 4b.   

 The empirical data does not support the hypotheses (1) and (2). Moreover, no other 

patterns appeared in the data. This consequently means that the participants’ various 

teaching experience did not appear. Among the teachers, the participant with the best 

performance was T3, followed by T1, T2 and T4 (in that order), while the students, with no 

teaching experience, in average performed better than the teachers. That the participants’ 

various teaching experience is not reflected in the data can immediately signify one of three 

things. The first possibility is, that no general difference exists between the teacher 

knowledge held by students, who have finished their minor in mathematics, and by teachers 

or between two teachers with different amounts of teaching experience. Such an assertion is 

however, to far reaching in this context and additionally, it is not supported by research. For 

example, knowledge of content and student (KCS), proposed by Ball et al. as constituting an 

area of mathematical knowledge for teaching, is said to be derived “ … from experience with 

students and knowledge of their thinking” (Ball et al., 2008, p. 9). While Bromme writes, “The 

integration of knowledge originating from various fields of knowledge, discussions with 

colleagues, and experience is an important feature of the professional knowledge of teachers 

…” (Bromme, 1994, p. 86, italics added). The first possibility can however also be considered 

in a limited version, more relevant to the current context, namely that no general difference 

exists between the teacher knowledge associated with the specific HTTs, held by students, 

who have finished their minor in mathematics, and by teachers or between two teachers with 

different amounts of teaching experience. Some further comments to this interpretation is 

presented in the next section. The second possibility is that the designed HTTs was not fit to 

capture the difference in teacher knowledge held by the participants. Considering the 

hypotheses (1) and (2), which were not supported by the empirical data, this possibility is 

conceivable; again possibly due to the general struggle with the mathematical tasks inherent 

in the HTTs. Lastly, it is possible that the participants’ various teaching experiences are not 

reflected in the data, in particular the student’ non-existing teaching experience and the 

teachers’ numerous years of experience, because the different collecting methods have 

provided the participants with conditions so distinct, that the empirical data from the two 

groups are not comparable. For example, acknowledging the ‘pressure’ upon the teachers, 

created by the presence of the researcher, the data collected from the teachers might convey 

an inaccurate and poorer picture of their technology and theory related to the relevant 

organisations. However, the teacher participant who collected the most points, namely T3, 

did not explicitly articulate any feeling of pressure, why it is possible that the causality is 

opposite. Specifically, that the ‘pressure’ did not cause the participants’ to activate fewer or 
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irrelevant techniques but that the incapability of mobilizing appropriate techniques caused 

the ‘pressure’.  

 Another factor contributing negatively to the overall performance of the participants, 

besides ‘pressure’ and time constraints for the teachers and the students, respectively, could 

possibly be the untypical character of the tasks. Meaning, the deviance of the HTTs from the 

tasks typically presented in high school within the theme. Related to the a priori analysis of 

the mathematical task on which HTT 3 centred, it was argued that students might find the 

mathematical task difficult simply because it is a non-typical task and therefor unrelated to a 

specific and practised algorithm. The same phenomena might apply in this respect. However, 

in light of the participants’ educational background, it is quite surprising that a deviation 

from the typical tasks, to the extent contained in the HTTs, created such uncertainty in the 

respondents. Moreover, if this is a general phenomenon, the dominance of the typical 

algebraic tasks in high school is unlikely to be challenged; based on the assertion, that 

teachers are unlikely to include tasks in their teaching praxis, which they are not confident 

in solving themselves.  

8.1 Limitations of the study  

For the purpose of answering Research Question 2, it is clear that the empirical study 

presented in this thesis, was not aiming at producing generalizable results. For the purpose 

of answering this research question, the performed study was sufficient, i.e. from the 

collected data it was possible to determine that the participants’ teaching experience was not 

reflected in their answers to the HTTs. However, an immediate question upon this result, 

must be why? Some possible answers for this question was considered in the last section, but 

to determine which of these possibilities constitutes the correct answer, requires more 

generalizability than the study offers. For example, to conclude that there appeared no 

general difference in the data between the two groups because no general difference exists 

between the teacher knowledge associated with the specific HTTs, held by students, who 

have finished their minor in mathematics and by teachers, the study is overwhelmingly 

limited. In particularly, in terms of the number of participants, but also in terms of the 

different collecting methods.  

 Regarding the number of participants, it might also be relevant to consider, whether 

a larger number of participants, would have made the pattern and differences between the 

two groups more visible. This is likely to be the case, why stating, “This study was sufficient” 

to answer Research Question 2 should be reconsidered. Since this research question requires 

comparison between the two groups, the result would have been more substantiated if the 

study had included not only a larger number of participants, but also a group of teachers, 
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which were more homogenous in terms of teaching experience. Furthermore, such a 

comparison suffers greatly from the difference in data collecting methods.    

8.1.1 A redesign 

A redesign would not necessarily include an increase in the number of participants; not if the 

study should fit the size of a thesis. It would entail however, if possible, a more careful 

selection of participants, such that they formed two groups, more homogenous than was the 

case in the present study. Furthermore, it would entail using one data collecting method. 

Using the method employed in collecting data from the students, with all participants, would 

require some care in establishing groups, as pairing teachers, who do not know each other 

would possibly magnify the disadvantages seen with in students’ groups, i.e. the limited 

engaging in dialogue. A redesign of the study would also entail a verification of the given 

points by an outside source, to avoid the current study’s subjectivity related to the 

distribution of points.  
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9 Conclusion 

The aim of this thesis was to investigate the concept of HTTs building on the principles of 

ATD, and the use of such tasks to access and assess teacher knowledge within the theme of 

differential calculus. In particular, the aim of the thesis was to design such HTTs in order to 

explore how teachers’ and teacher students’ responses to these, reflect their different amount 

of teaching experience and thereby explore the potential of the designed HTTs, as well. 

 Constituting the thesis’ answer to Research Question 1, five HTTs along with an a 

priori analysis of each task was presented. The analysis of the HTTs employed a reference 

model constructed through a subject matter analysis of the relevant theme and an 

investigation of the knowledge to be taught in Danish high schools. The analysis of the 

designed HTTs showed how these required techniques primarily relating to MO3’ and MO4’, 

while techniques belonging to MO6’ was necessary for a full response in one task.  

 For the purpose of answering the thesis Research Question 2, the designed HTTs was 

presented to five teacher students at the University of Copenhagen and four upper secondary 

school teachers. It was found that the participants’ different amount of teaching experience 

was not reflected in their answers to the HTTs. Each performance was given points and based 

on this distribution, no substantial difference between the performances of the two groups 

appeared. Furthermore, based on an in depth analysis of the participants’ answers, it 

appeared that neither of the hypotheses concerning the characteristics of the groups’ 

performances was supported. Thus, the teachers’ did not, ‘on average’, activate didactical 

techniques more appropriate than did the teacher students and the teacher students did not 

activate more appropriate techniques related to MO4 than did the teachers. Furthermore, no 

other general characteristic of the two groups appeared in the data. 

 The empirical study is however, limited in regards to concluding why the participants’ 

teaching experience did not appear in their responses to the HTTs, as the study contain many  

variables which could have influenced this result; it can certainly not be concluded that there 

is no difference. It is asserted, that the main source of the study’s result is the occurring 

absence of appropriate techniques for the mathematical tasks inherent in the HTTs, which 

then leaves the participants unable in activating appropriate didactical techniques. However, 

since it was highly expected that the participants could ‘handle’ the mathematical content, it 

is also probable that the absence of appropriate mathematical techniques is a consequence 

of the data collecting methods: not providing enough time for the teacher students and not 

creating optimal working conditions for the teachers.  
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Appendix A 

The content of this appendix was originally four national written-exam tests: two tests for B-level 

students (28th of May 2015 and 22nd of May 2015) and two tests for A-level students (22nd of May 

2015 and 28th of May 2015); these are left out in this version, because they are not published yet.  
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Appendix B 

 

 Opgave 1  

 Peter er i sin skriftlige aflevering blevet bedt om at differentiere funktionen 𝑓(𝑥) = 𝑒𝑥+1. Hans 

 arbejde fremgår af nedenstående billede. 

  

a) Analysér og vurdér svaret. 

 

 

 

b) Hvordan vil du rette besvarelsen? (Skriv gerne på billedet, som du ville have skrevet i en elevs 

aflevering) Evt. kommentar:  

 

 

 

 

 

c) Stil en ny opgave til eleven, som kan afdække, om din elev har forstået din rettelse: 
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 Opgave 2 

 Givet 𝑓(𝑥) = √𝑥2,   𝑥 𝜖 ℝ    

a) Bestem 𝑓′ (uden brug af CAS) og tegn graferne for 𝑓 samt 𝑓′.  

 

 

 

 

 

 

 

 

 

b) En af dine elever har udregnet 𝑓′ vha. CAS og har fået 𝑓′(𝑥) =  
𝑥

√𝑥2
 . Hvad siger du til eleven?  
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 Opgave 3 

 Til den skriftlige eksamen i Mat A 2015 (delprøven uden hjælpemidler) svarede mere end 25% 

 af eleverne forkert på en opgave, som ligner den følgende.  

 

a) Forklar hvad der er svært ved opgaven. 

 

 

 

 

 

 

b) Hvordan kan man arbejde videre med de udfordringer som er identificeret i a)? Skriv evt. i 

punktform.  
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 Opgave 4 

a) Marie har tegnet følgende graf (figur 1), som hun påstår er grafen for en afledt funktion. 

Hvad siger du til Marie? 

 

   

 

 

 

 

 

 

  Figur 1 

b) Marie kan også tegne grafen for flere stamfunktioner til den funktion, som hun tegnede på 

Figur 1. På billederne (Figur 2 og Figur 3) ses nogle af disse stamfunktioner. Giv 

udtømmende feedback til Marie.  

       

    Figur 2     Figur 3 
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 Opgave 5 

a) På billedet vises grafen for 𝑓′(𝑥). Antag at 𝑓(0) = 0 og tegn grafen for 𝑓(𝑥). 

 

  

 

b) På billedet vises en af dine elevers svar på ovenstående opgave. Analysér svaret.  

 

         
 

 

 

 

c) Hvad siger du til din elev?  
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