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Abstract 

In the third year of high school Danish students are introduced to the trigonometric functions. Before, they have been 

working with sine and cosine as tools to investigate angles and other dimensions in (essentially) triangles, and this 

transition from geometric tool to function is often challenging. The aim of this thesis is to elucidate why the students 

have problems with the above transition. This is first done through a subject-matter didactic analysis where the 

complexity and diversity of the trigonometric functions are elaborated. Here it is suggested that, to hinder the problems 

concerning the transition, the teaching of trigonometric function could involve a simplified introduction to the natural 

parametrization of the unit circle. Thus the students would realize the ono-to-one correspondence between the arc 

length on the unit circle and the 𝑥𝑥-axis. 
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ABSTRACT 

In the third year of high school Danish students are introduced to the trigonometric 

functions. Before, they have been working with sine and cosine as tools to investigate 

angles and other dimensions in (essentially) triangles, and this transition from 

geometric tool to function is often challenging. The aim of this thesis is to elucidate why 

the students have problems with the above transition. This is first done through a 

subject-matter didactic analysis where the complexity and diversity of the trigonometric 

functions are elaborated. Here it is suggested that, to hinder the problems concerning 

the transition, the teaching of trigonometric function could involve a simplified 

introduction to the natural parametrization of the unit circle. Thus the students would 

realize the ono-to-one correspondence between the arc length on the unit circle and the 

𝑥-axis.  

The subject-matter didactic analysis works, together with the theory of didactical 

situations, as a tool for analyzing concrete teaching episodes, observed at a Danish high 

school. Since the simplest and most common way to introduce sine and cosine as 

functions is as graphs, the analysis is focused on the students’ interactions with the 

graphic milieu.  

Both the subject-matter didactic analysis and the observations showed that primarily 

two elements inhibit the students’ acknowledgement of sine and cosine as functions. 

Firstly a lack in the perception of functions, secondly that focus is not on the actual 

transition, neither in the official material, nor in the concrete teaching. Instead focus is 

on the possibilities the trigonometric functions gives us, illustrated though the sine 

curves.  
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1. INTRODUCTION 

If we try to go back to the years of high school, and remember what we learned about 

sine and cosine we will remember that they were used to find sides and angles in 

triangles. We remember sine and cosine as functions taking an angle as input. But did we 

not learn that sine and cosine also works as functions in the domain of real numbers? 

Yes we did, but most of us have probably forgotten, either because we did not 

understand the notion back then, or because we could not see the link between the 

useful geometric tool and the more abstract function. In high schools trigonometric 

functions are introduced through three different contexts: 

- Triangle trigonometry, where sine and cosine are defined as ratios between sides 

in a right triangle. 

- Unit circle trigonometry, where sine and cosine are defined as coordinates to a 

point on the unit circle. 

- Trigonometric functions, where sine and cosine are defined as functions in the 

domain of the real numbers.  

The focus in high school is mainly on the first two contexts, but in the third year the 

students are introduced to sine and cosine as functions in the domain of real numbers. 

Teachers present the three contexts separately and this often results in students getting 

a fragmented perception of the trigonometric functions (Weber, 2005; Demir, 2012; 

Orhun, n.d.). The students get an angle-measure-dominant conception of the functions, 

they cannot really understand the trigonometric graphs, nor do they build important 

connections between the unit circle and the graphs, such as the transition from angle to 

real numbers through the radian concept (Demir, 2012, p. 1).  

In this thesis we will try to examine why high school students have problems with the 

transition from working with sine and cosine as geometric tool, in (essentially) triangles, 

to working with them as functions. Is it because they do not understand the notion of 

function? Is it because they do not understand why they need sine and cosine as 

functions? Is it due to the way trigonometric functions are taught, or could there be 

another reason? If we find the answer, the teaching of trigonometric functions may be 

adjusted such that the transition becomes more manageable and the fragmented 

perception diminishes. 
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1.1 The structure of the thesis 

The thesis consists of 11 chapters. After this introduction chapter, the second one 

contains a subject-matter didactic analysis of the trigonometric functions in order to 

realize how they can be introduced in a Danish high school.  The chapter includes an 

analysis of the external didactic transposition of trigonometric functions together with 

an analysis of the transition from geometric tool to function, built on the presentation of 

the trigonometric functions. Thus the subject-matter didactic analysis works both as an 

independent presentation of how diverse and complex trigonometric functions are, but 

also as a tool for a later analysis of concrete teaching episodes.  

Chapter three presents the theory of didactical situations, which foundation is that 

learning is a social activity; hence it is a perfect tool for analyzing teaching, especially 

validation situations, because they are built on interactions, either between students or 

between students and teacher.  

Chapter four is a presentation of the research questions, built on the theory of didactic 

situations and the subject-matter didactic analysis, which specify what we will analyze 

in the concrete course in trigonometric functions. In chapter five the methodology is 

described.  

Chapter 6-9 is a presentation of the course of study, followed by the analyzes of three 

distinct situations. Chapter 10 is a discussion of these situations and chapter 11 is a 

conclusion collecting all of the above.   
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2. ANALYSIS OF THE TRIGONOMETRIC FUNCTIONS 

In this chapter we will analyze how one can introduce trigonometric functions in Danish 

high schools. This requires an insight in what these functions contains. As we will see 

the trigonometric functions can be defined in several ways. We will present some of 

these definitions, as a way of showing the diversity and importance of the trigonometric 

functions.  We will see that not all definitions are suitable for high school; therefore the 

analysis will also include considerations concerning which definitions are needed for the 

high school students to acknowledge the trigonometric functions as functions, and 

which will be too difficult or mess with their ideas of functions. This requires that we 

know how other functions are introduced to the students and not at least an elaboration 

of what the notion of function is.  

2.1 The notion of function 

In this paragraph we will present what is needed for us to define a function. We will 

start with a brief historic overview leading to the modern definition of functions. At the 

end we will suggest what is needed to introduce a new function in high schools. 

The first time the word “function” was used was in 1748 by Euler. He defined a function 

of a variable quantity as an analytic expression composed in any way whatsoever of the 

variable quantity and numbers or constant quantities (Katz, 2009, p. 618). So according 

to Euler the word “function” means an “analytic expression”. Euler distinguishes 

between curves and function in the way that any function can be translated into 

geometry to determine a curve in the plane, but a curve cannot always be determined by 

a single function. This distinction is also used today; just recall the curve representing 

the circle, which is a curve but cannot be determined by a single function. Euler 

categorizes curves in to classes; continuous curves, which can be expressed in terms of a 

single function, and discontinuous functions, which require different functions of 𝑥 for 

its expression. According to Euler discontinuous curves cannot be expressed by a 

constant law, but are formed from several continuous parts (Ibid., p. 618). Here Euler 

implicitly associates a function with a law. What he means by this we do not know, but 

the connection between law and function will occur again later. Euler also divides the set 

of functions into two classes, namely algebraic and transcendental. The former are 

formed by using the usually algebraic operations on the variables and constants. The 
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latter covers the cases of trigonometric, exponential and logarithmic functions. An 

important tool in Euler’s discussion of functions is that of the power series. So when he 

says, “composed in any way whatsoever” he includes the notion of infinite series, infinite 

products and infinite continued fractions. He was convinced that any function could be 

expressed by a power series, but gave no proof. Instead he showed how to expand any 

algebraic function as well as various transcendental functions into such a series (Ibid., 

p.618-620). Later we will see how the trigonometric functions are expressed by power 

series, but now let us focus on the notion of function. Throughout the 18th century Euler 

and some of his colleagues, including Jean d’Alembert and Daniel Bernoulli, had a debate 

concerning the solution to the partial differential equation called “the wave equation”. 

They could all agree that the solution must be a function, and they also agreed that a 

function was an analytic expression. But the problem concerned what kinds of initial 

functions there could be permitted. Bernoulli suggested that the solution could be 

expressed as an infinite sum of trigonometric functions. The initial position function is 

then represented by the infinite sum (Ibid., p. 610): 

𝑦(0, 𝑥) = 𝛼 sin (
𝜋𝑥

𝑙
) + 𝛽 sin (

2𝜋𝑥

𝑙
) + 𝛾 sin (

3𝜋𝑥

𝑙
) + ⋯ 

Which Bernoulli believed represented an arbitrary initial position function with 

appropriate choices of 𝛼, 𝛽, 𝛾, …, even though he was not able to deduce the coefficients 

for this trigonometric series. In 1807 Joseph Fourier proved Bernoulli right and 

moreover he found an expression for the coefficients. Fourier proved that an arbitrary 

function can be expressed as a sum of an odd and an even function. He also proved that a 

sine series can describe an arbitrary odd function on the interval [−𝜋, 𝜋] and a cosine 

series can describe an even function on the same interval. The result is that an (to 

Fourier) arbitrary function can be expressed in the interval [−𝜋, 𝜋] by (Godiksen, 

Jørgensen, Toldbod, & Hanberg, 2014, p. 44): 

𝑓(𝑥) =
1

2
𝑏𝑜 + ∑(𝑎𝑛𝑐𝑜𝑠(𝑛𝑥) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝑥))

∞

𝑛=1

 

Where 𝑛 ∈ ℕ  and the coefficients 𝑎𝑛 and 𝑏𝑛 are  

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥)cos (𝑛𝑥)𝑑𝑥

𝜋

−𝜋
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𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥)sin (𝑛𝑥)𝑑𝑥

𝜋

−𝜋

 

This is clearly not a simple analytic expression and Fourier also defined the notion of a 

function in a different way than his predecessors: “In general the function 

𝑓(𝑥) represents a succession of values or ordinates each of which is arbitrary. An infinity 

of values being given to the abscissa x, there is an equal number of ordinates 𝑓(𝑥). All 

have actual numerical values, either positive or negative or null… (Katz, 2009, p. 782). 

So there is no equality between the function and its analytic expression. Notice here that 

Fourier, in contrast to Euler, requires that the amount of function values 𝑓(𝑥) is equal to 

the number of values of 𝑥. This could be seen as an expression for the requirement of 

uniqueness when we think of functions. Gustav Dirichlet defines in 1829 a function in 

almost the same way as Fourier, but is a bit more concrete:  

“One thinks of 𝑎 and 𝑏 as two fixed quantities and 𝑥 as a variable quantity, 

which gradually will take all values between 𝑎 and 𝑏. If now a unique 

finite 𝑦 corresponding to each 𝑥, and moreover in such a way that 

when 𝑥 ranges continuously over the interval from 𝑎 to 𝑏, 𝑦 = 𝑓(𝑥) also varies 

continuously, then 𝑦 is called a continuous function of 𝑥 for this interval. It is 

not at all necessary here that 𝑦 be given in terms of 𝑥 by one and the same law 

throughout the entire interval, and it is not necessary that it be regarded as a 

dependence expressed using mathematical operations “(Godiksen et.al., 2003, p. 

61, own translation). 

Here the requirement for uniqueness is made clear, and in contrast to both Euler and 

Fourier the function is defined on a certain interval. What happens outside this interval 

is to Dirichlet irrelevant, whereas Euler believed that the law in a given interval would 

continue outside the interval. Dirichlet also defines a continuous function in a different 

way than Euler. Recall that for Euler a continuous function was a function determined by 

one single analytic expression, so one law. For Dirichlet a continuous function is 

dependent on the continuous relationship between 𝑥 and 𝑦, and the continuous function 

could easily be determined by more than one law.   
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The concept of continuity is still a bit vague, but has later been defined more formally. 

For example in terms of limits where the function 𝑓(𝑥) is continuous if  lim𝑥→𝑐 𝑓(𝑥) =

𝑓(𝑐) or by Weierstrass’ “epsilon-delta” definition from 1872 saying that: A function 𝑓 is 

continuous in a point 𝑎, belonging to the domain, if the following holds: For any  number 

𝜀 > 0, however small, there exists some number 𝛿 > 0, such that when x is in the 

domain and |𝑥 − 𝑎| < 𝛿, then |𝑓(𝑥) − 𝑓(𝑎)| < 𝜀 (Lindstrøm, 2006, p. 212).  

To sum up, we now have that a function on a given interval is a relationship between all 

the 𝑥 values and the uniquely corresponding 𝑦 values. But still the interpretation of the 

term function varies. To Euler a function is represented as an analytic expression. It 

means that the function changes the variable quantity depending on how the analytic 

expression is composed. A function is to Euler a dynamic process where the input is 

changed by the function to get the output. Also Dirichlet has a dynamic interpretation of 

functions, when he says that if 𝑥 varies continuously also 𝑦 will varies continuously. In 

contrast, Fourier interprets the notion of function as static: the function is a succession 

of ordinates, and the amount of ordinates depends on the amount of abscissa. Here the 

function is a complete object and not changing at all. This interpretation can be 

associated with the function as a table with abscissa in one column and ordinates in 

another or with the function as a graph. This static conception of function is also seen in 

the set theoretic approach to the notion of function. 

In 1888 Dedekind defines a set 𝑆 as a collection of different things which can be 

considered from a common point of view (Katz, 2009, p. 794). And a function 𝜙 on a set 

𝑆  he defines as a law according to which to every determinate element 𝑠 of 𝑆 there 

belongs a determinate thing called the transform of 𝑠 and denoted by 𝜙(𝑠) (Ibid., p. 

783). Again a function is associated with a law. The Dedekind definition of a function is 

very similar to the one presented in modern books about set theory, just with the term 

law expressed more formal. Kiming (2001) describes the law as a relation. If 𝐴 and 𝐵 are 

sets, then any subset of 𝐴 × 𝐵 is called a relation between 𝐴 and 𝐵 (Kiming, 2001, p. 66). 

This means that a relation is simply a set of ordered pairs (𝑎, 𝑏) ∈ 𝐴 × 𝐵, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. 

This leads to the definition of a function (Ibid., p.104): 

Let A and B be non-empty sets. A function f from set A to set B is a relation between A and B 

satisfying the following conditions: 



10 
 

1. For each 𝑎 ∈ 𝐴 there exists 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝑓  

2. If (𝑎, 𝑏) and (𝑎, 𝑐) are in f, then 𝑏 = 𝑐 

If 𝑎 ∈ 𝐴, then the unique element 𝑏 ∈ 𝐵 for which (𝑎, 𝑏) ∈ 𝑓 is denoted by 𝑓(𝑎). 

If f is a function, then an element in 𝐴 corresponds to exactly one element in 𝐵. In other 

words, a function is a relation between two sets, with the rule that each element in the 

former set corresponds uniquely to an element in the latter set. The former set is called 

the domain of the function 𝑓 and the latter the codomain. The set containing the 

elements of 𝐵 satisfying 𝑏 = 𝑓(𝑎) is called the range of 𝑓 (Ibid., p. 105).  

Let us consider two relations, first the relation between a side in a square and the area of 

the square. The side could be all positive real numbers, and the same could the area, so 

we have a relation from ℝ+ to ℝ+. Since the area of a square is the side squared, we can 

express the relation as 𝑦 = 𝑥2, where 𝑥 is the side and 𝑦 the area.  For each 𝑥 we get 

exactly one 𝑦, so this relation is a function. If we consider the relation between height 

and weight in a high school class, then we again have a relation from ℝ+ to ℝ+, but one 

height does not have to relate to only one weight. You could have two students who are 

170 cm high, but one weights 65 kg and the other 75 kg. So this relation is not a function, 

one input cannot give you a specific output. 

This set theoretic definition of a function interprets the function as a static object. The 

function does not transform 𝑎 to 𝑏, but relate them. When we, in the example above, 

express the relation as 𝑦 = 𝑥2, we present the function as an analytic expression and 

hence a dynamic process. The same function can be presented in different ways, and 

behind each representation is either a static or a dynamic approach to the notion of 

function. Sierpinska (1992) distinguish the two conceptions by saying that the former is 

when you think of the relationship between variables and the latter is when you think of 

mappings between variables. The first one occurs when we, as Euler and Dedekind did it, 

think of the function as a law describing for example a scientific phenomenon.  

Sierpinska (1992) describes it as: 

“When, in mathematics, we think of curves represented in systems of coordinates 

we also think of relationships between the coordinates of points that belong to the 

curve. […] Sometimes the relationship is given by an equation which describes the 

conditions under which a point belongs to the curve. If the curve is already there, 
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the equation “unveils” the pre-existing relationship between the coordinates. Here, 

the image we have of functions is “static” in the sense that these “laws” are not 

defined by us, we do not make them; rather they are discovered by us.” 

(Sierpinska, 1992, p. 29) 

With a static approach to the notion of function we conceive the function as an object on 

its own. We can discover it and describe it, but we do not have any influence on it. In 

contrast the dynamic approach creates a picture of the function as a process on given 

objects: 

“One thing is mapped into or onto another thing, it is transformed into a 

representation that, at the time, serves best our purposes. For example, we project 

three dimensional objects onto two dimensional objects to obtain representations 

on sheets of paper. […] We do it: We process the objects or sets of objects to obtain 

other objects. This gives a more dynamic image of a function. This dynamic image 

is also present when we plot the graph of a function: we process the independent 

variables to obtain the related variables. “ (Sierpinska, 1992, pp. 29-30) 

When introducing the notion of function to high school students an idea could be to do 

as we did above, give them an example and a counterexample.  This would give the 

student an idea of the specific term “function”, and hereafter different examples of 

functions can be introduced.  This could be done by an analytic expression and a graph; 

hereby giving the students both a dynamic and a static approach to the function. In 

order to convince the students that this analytic expression is in fact a function the 

graph and the so called vertical line test can be used. No matter where you insert the 

vertical line in the coordinate system it must only hit the graph once. The vertical line is 

represented by an 𝑥-value, and if the line hits the graph more than once, we have two 𝑦-

values for one 𝑥-value, and thus not a function. This vertical line test ensures that the 

students keep thinking of a function as a relation between some 𝑥-values and some 𝑦-

values, with the requirement that each 𝑥 is only related to one 𝑦.  

As a part of the notion of function, the students will also be introduced to the family of 

functions. A family of functions is a set of functions defined by the same formula. As an 
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example we have the parabola, which in general is represented by the formula 𝑓(𝑥) =

𝑎𝑥2 + 𝑏𝑥 + 𝑐, where 𝑎, 𝑏, 𝑐 ∈ ℝ are arbitrary constants. This formula represents a 

family of functions. For each specific value of the constants we have one function. As 

another example we have the class of trigonometric functions. Later on we will see that 

in Danish high schools the students are introduced to trigonometric functions as the 

functions: sin(𝑥) , cos(𝑥) and tan(𝑥) and then to a general sine curve represented by the 

formula 𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑. This general sine curve is in fact a family of functions, 

which we will call the class of trigonometric functions: 

ℱ𝑡𝑟𝑖𝑔 = {𝑓𝑎,𝑏,𝑐,𝑑|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ} where 𝑓𝑎,𝑏,𝑐,𝑑(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑 

It contains all the sinusoidal functions, which are functions that can be contained from 

the parent function 𝑓(𝑥) = sin(𝑥). If we look at it graphically the function 𝑓(𝑥) =

𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑 is obtained by changing the amplitude of 𝑓(𝑥) = sin(𝑥) to 𝑎, move the 

graph by the size of 𝑑 in the positive direction of the y-axis, by the size of c in the 

negative direction of the 𝑥-axis and finally change the period to 
2𝜋

𝑏
. Also the 

function 𝑓(𝑥) = cos(𝑥) is a part of this family, because cos(𝑥) = sin (
𝜋

2
− 𝑥), so here the 

amplitude is 1, the period is 2𝜋 and the curve is displaced by 
𝜋

2
 in the negative direction 

of the 𝑥-axis.  

If the notion of function is difficult for the students, so will the notion of a family of 

functions be. Not only do the students have to identify a given object as a function, they 

also have to argue whether the object has the characteristics required for being in the 

given family. It can also be a challenge to realize that different functions belong to the 

same family, just consider sin (𝑥) and cos (𝑥), which both are sine curves. 

The class of trigonometric functions is special, because the parent function 𝑓(𝑥) =

sin(𝑥) does not have an analytic expression, so in order to verify trigonometric functions 

as functions the students must at first rely on the graphic milieu and the vertical line 

test. In the following we will examine different definitions of the trigonometric functions 

in order to find a suitable way to present these functions to high school students in 

order for the students to acknowledge them as functions.  
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2.2 The trigonometric functions 

There are six basic trigonometric functions, sine, cosine, tangent, cotangent, secant and 

cosecant. The last four can be expressed in terms of sine and cosine and, as we will see 

later on, every point on the unit circle can be expressed in terms of sine and cosine. 

Therefore this thesis will only concern these two functions, so from now on, whenever 

we speak of the trigonometric functions, we only refer to the functions sine and cosine 

(Unless we talk about the class of trigonometric functions, which involves all the 

sinusoidal functions). The problem is that trigonometric functions cannot be expressed 

analytically, so the link between the expression 𝑓(𝑥) = sin(𝑥) and the graph can be 

difficult to see. If one understands this link, it is easy to see that sine is a function, just by 

using the vertical line test. But without the graph, how do we convince ourselves that the 

expressions sin(𝑥) and cos(𝑥) are in fact functions?  In this paragraph we will try to 

answer that question by reviewing different definitions of the trigonometric functions. 

For each definition we will point out why it represents a function, together with their 

advantages and disadvantages. Since sine and cosine often are defined in the same way 

we will mainly look at sine and then mention cosine whenever it seems necessary.  

Before consulting the different approaches to sine and cosine as functions we will 

consider how they are defined in geometry and in analytic geometry. In geometry sine 

and cosine take an angle as input and in analysis they take a real number. To realize that 

this transition is legal we need a specification of the word “angle”. 

2.2.1 The notion of angle 

The general conception of an angle is; as the space between two lines. But how is this 

space defined, how does it look and how can we measure it? How does an angle which 

measurement is 10 look like? These questions will be examined here.  

The word angle comes from the Latin word “angulus” meaning “corner”, and in plane 

geometry an angle is a figure formed by two rays, called the sides of the angle, sharing a 

common endpoint, called the vertex of the angle, hereby forming a corner 

(Wikipeida_angle, 2015). But if we should be able to use the angle as an input in our sine 

function, the angle must be some kind of quantity. We need to be able to measure our 

angle. Some would say that angle measurement is the amount of rotation you need to 

move one side around the vertex to get to the other side. Hence the size of an angle 
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would be measured in degrees, since a degree is 
1

360
 of a full rotation (Wikipedia_degree, 

2015). Others would say that the size of an angle is the space between the sides, but then 

the question arise whether the two angles below is the same or not.  

 

Figure 2.1 

The answer is that they are the same, but we need a more formal definition of angle 

measurement to see this. To measure the size of an angle the vertex of the angle is 

placed at the center of a circle. The size of the angle is then the ratio between the arc 

intercepting the two sides and the radius of the circle, independent of the size of the 

circle. This relationship between the arc length subtending the angle and the radius is 

called the angle’s radian number; hence an angle can be measured either in degrees or in 

radians. 

Already now we see the complexity of the notion of angle. We have an angle as a 

geometric figure, but we can also think of it as a rotation around the vertex. So being an 

angle is a quality and this quality can be viewed as either static or dynamic. Moreover 

the angle can be measured, giving it a measure and thinking of it as a quantity. And 

finally this angle measurement can be determined as a relation between the arc length 

subtending the angle and one of the angle’s sides.  The transition from the unformal 

notion of angle as a geometric figure, to the more formal in terms of an angle 

measurement requires absorption of the angle as both a quality, quantity and a relation 

and this could lead to confusions for many students. 

When attending high school the students would probably associate an angle with a 

space between two sides (often in a triangle) which is measured in degrees by a 

protractor. Here the angle is a static quality and the angle measurement is just a quantity 

they can read off. During the first year the students learn that they can calculate the 

angles in a right triangle by using the ratio of the sides. In the third year of high school 

the unit radians is introduced. An obstacle for the students here is both the transition 

from degrees to radians, but also this new notion of arc length. To complete the 
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confusion the notion of angle is extended to also include negative angles and angles 

beyond 360 degrees. This is done in order to be able to consider angles of arbitrary size. 

If we consider an angle in a coordinate system, with the vertex in (0,0), one side lies at 

the x-axis and the other has an arbitrary position, together with a unit circle, centered 

at (0,0), we see that the radian number of an angle is equal to the arc length subtending 

the angle on the unit circle.   

 

Figure 2.2: The arc length subtending the angle on the unit circle  

This gives us the opportunity to talk about an angle as a real number without some 

mystic unit as degree or radians. Hence we can translate between angles and other 

measurements such as high, temperature, volume and so on. We are able to answer the 

question of how the angle with measurement 10 looks like. It is one full rotation plus 

approximately 0,6 rotation.  

However the question is still whether this arc length always exists, and how we measure 

it. When describing an angle in terms of its radian number, you actually just move the 

problem of angle measurement to a problem of arc length measurement. A formal 

notation of an angle could be:  

An angle is measurable if the arc length on the unit circle subtended by the angle exists, 

and if so the arc length is the angle’s measurement. 

The existence of this arc length is examined in section 2.2.4. But first let us consider the 

introduction to sine and cosine in the geometric sector. 

y 

x 
1 -1 

1 

-1 

𝜃 

O=(0,0) 
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2.2.2 Sine and cosine in the triangle 

In the geometry sector sine and cosine are defined as ratios between sides in a right 

triangle. The right triangle consists of one right and two acute angles. The side opposite 

the right angle is called the hypotenuse and the other two are called cathethi. If 𝑣 is one 

of the acute angles sine and cosine of this angle are defined as: 

sin(𝑣) =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑐𝑎𝑡ℎ𝑒𝑡𝑢𝑠

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
, cos(𝑣) =

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑐𝑎𝑡ℎ𝑒𝑡𝑢𝑠

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
  

From this definition it is possible to find unknown sides and angles in any arbitrary 

triangle, because drawing the height in an arbitrary triangle divides the triangle into two 

right triangles: 

 

Figure 2.3 

Figure 2.3 shows us that: 

sin(𝐵) =  
ℎ

𝑐
⟺ ℎ = sin(𝐵) ∗ 𝑐 

Likewise the height can be expressed in terms of sin (𝐴) or sin (𝐶). The area of triangle 

𝐴𝐵𝐶 is then: 

1

2
𝑎(𝑐 sin(𝐵)) =

1

2
𝑏(𝑐 sin(𝐴)) =

1

2
𝑎(𝑏 sin(𝐶)) 

Multiplying by 2 and dividing by 𝑎𝑏𝑐 gives us: 

sin(𝐵)

𝑏
=

sin(𝐴)

𝑎
=

sin(𝐶)

𝑐
 

This is called the sine relations. By these relations we can find all sides and angles in a 

triangle given that we know three elements already, not all sides or angles. If we know 

three sides we can use the so called cosine relations explained here: 
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Considering triangle 𝐴𝐵𝐶 in Figure 2.3 we see that the height creates two right triangles 

which by Pythagoras theorem give us two equations: 

∆𝐴𝐵𝐶: ℎ2 + (𝑥 − 𝑎)2 = 𝑏2 

∆𝐴𝐵𝐷: ℎ2 + 𝑥2 = 𝑐2 

Subtracting these two equations from each other gives us: 

ℎ2 + (𝑥 − 𝑎)2 − (ℎ2 + 𝑥2) = 𝑏2 − 𝑐2 ⇒ 

ℎ2 + 𝑥2 + 𝑎2 − 2𝑥𝑎 − ℎ2 − 𝑥2 = 𝑏2 − 𝑐2 ⇒ 

2𝑥𝑎 = 𝑎2 + 𝑐2 − 𝑏2 

 Recall that: 

cos(𝐵) =
𝑥

𝑐
⟺ 𝑥 = 𝑐 cos(𝐵) 

Inserting this in the above equation gives us:¨ 

2𝑎𝑐 cos(𝐵) = 𝑎2 + 𝑐2 − 𝑏2 ⇒ 

cos(𝐵) =
𝑎2 + 𝑐2 − 𝑏2

2𝑎𝑐
 

This is one of the cosine relations. The other two can be found in the same manner and 

are: 

cos(𝐴) =
𝑏2 + 𝑐2 − 𝑎2

2𝑏𝑐
 

cos(𝐶) =
𝑎2 + 𝑏2 − 𝑐2

2𝑎𝑏
 

Hence in the geometry sector sine and cosine works as tools to find the unknown sides 

and angles in triangles. Since all figures with straight edges can be divided into triangles, 

sine and cosine play an important role in the geometry sector.  

2.2.3 The unit circle 

In analytic geometry the trigonometric functions are defined as the coordinates to a 

given point on the unit circle. Considering a point 𝑃 on the unit circle, it can be described 
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as 𝑃 = (𝑥, 𝑦), but it can also be described by a vector 𝑂𝑃⃗⃗ ⃗⃗  ⃗, which has length  |𝑂𝑃⃗⃗⃗⃗⃗⃗  ⃗| and 

direction angle 𝜃.  

 

Figure 2.4 

This angle can be measured in either degrees or radians. Recall that the angle 

measurement in radians is equal to the length of the arc it covers on the unit circle. Since 

the circumference of the unit circle is 2π, the entire circle equals an angle of 2π radians 

or 360 degrees. So in order to calculate between radians and degrees we have the ratio: 

𝑑

360°
=

𝑟

2π
 

The point P is arbitrary chosen, so we can choose other points on the circle, either by 

moving clockwise or counterclockwise. If we move counterclockwise we call it the 

positive direction and the clockwise the negative direction. In this way we can have 

negative angles, namely if our point P lies in the third or fourth quadrant. The angle 

concept is not only extended to including both positive and negative measurement, but 

also angles bigger than 360 degrees. If we move 1½ times around in the unit circle we 

get and angle of 540°or 3𝜋. In this way any real number can be considered as an angle. 

Notice that the point 𝑃 where the direction angle is 3𝜋 is (−1,0). This point could also be 

described by the direction angle 𝜋 or –  𝜋, but this relation we will come back to later.  

As mentioned sine and cosine can be defined as coordinates to the point P on the unit 

circle. To see this recall that in a right triangle sine and cosine is defined as: 

sin (𝑣) =
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 ,          cos (𝑣) =  

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒

ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒
 

y 

x 
1 -1 

1 

-1 

𝜃 

O = (0,0) 

P = (x,y) 
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Figure 2.5 

If we consider the right triangle, in Figure 2.5, formed by the vector 𝑂𝑃⃗⃗ ⃗⃗  ⃗, the 𝑥-axis and 

the vertical line from 𝑃 to the 𝑥-axis, then we see that the hypotenuse 𝑂𝑃⃗⃗⃗⃗  ⃗ equals 1, and 

hereby we get that cosine represents the adjacent side, which is the length of the 𝑥-axis 

from 𝑂 to the point where the line from 𝑃 cuts the 𝑥-axis, i.e. the first coordinate to 𝑃. In 

the same way sine represents the opposite side, which is equal to the length from 𝑂 to 

the point where the horizontal line from 𝑃 cuts the 𝑦-axis, i.e. the second coordinate 

to 𝑃. In other words, cosine and sine is defined as the first and second coordinates to a 

point on the unit circle, given the direction angle of this point: 

𝑃 = (cos(𝑣) , sin(𝑣)) 

This definition gives us some properties of trigonometric functions we could not see 

only be using a triangle. First we have that: 

cos2(𝑣) + sin2(𝑣) = 1 

This follows from Pythagoras theorem. Next we can prove that: 

sin(−𝑣) = −sin(𝑣) 

 cos(−𝑣) = cos(𝑣) 

Consider the angle 𝑣 in Figure 2.5. The negative angle −𝑣 is the angle reflected in the 𝑥-

axis. Let the direction point to 𝑣  be (cos(𝑣) , sin (𝑣)), then the direction point to −𝑣 is: 

(cos(−𝑣) , sin−(𝑣)) =  (cos(𝑣) , −sin (𝑣)) and the above properties are proved. These 

properties tell us that sine is an odd function and cosine is even.  

y 

x 
1 -1 

1 

-1 

𝑣 

O 

P(cos(𝑣) , sin(𝑣)) 

cos(𝑣) 

sin(𝑣) 
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Lastly we can prove the addition formulas just by considering the triangle in Figure 2.5 

and using the trigonometric properties from section 2.2.2. Here we will just present the 

addition formula for some angles 𝑣,𝑤 without proof: 

sin(𝑤 − 𝑣) = cos(𝑣) sin(𝑤) − sin(𝑣) cos(𝑤) 

sin(𝑤 + 𝑣) = cos(𝑣) sin(𝑤) + sin(𝑣) cos(𝑤) 

cos(𝑤 − 𝑣) = cos(𝑣) cos(𝑤) + sin(𝑣) sin(𝑤) 

cos(𝑤 + 𝑣) = cos(𝑣) cos(𝑤) − sin(𝑣) sin(𝑤) 

2.2.4 The natural parametrization of the unit circle 

To define sine and cosine as functions from ℝ to ℝ we must in some way move from an 

angle measurement as input to a real number. With sine and cosine as the coordinates to 

the points on the unit circle, it is possible to find a finite number of points on the unit 

circle, using the trigonometric laws and identities. But not all directions angles can easily 

be deduced to a point in the unit circle. So how do we ensure that no matter what real 

number we use, as input, we get a point on the unit circle as output? And how do we 

even know that all real numbers can represent an angle? To ensure this we must 

consider the notion of angle. In section 2.2.1 we saw that an angle can be expressed as 

the arc length on the unit circle subtending the central angle. To ensure that every real 

number can represent an angle, we must ensure that a curve that traces the entire unit 

circle exists. Let the set 𝑆1 ⊂ ℝ2 be the unit circle: 

𝑆1 = {(𝑥, 𝑦)|𝑥2 + 𝑦2 = 1} 

We want to construct a map 𝛾: ℝ → S1, which traces the entire unit circle. That is, when 

𝑡 ∈ ℝ traverses an interval 𝐼 ⊆ ℝ, will the corresponding point 𝛾(𝑡) traverses an arc 

length on the unit circle. 

 
Figure 2.6: The map 𝜸 

𝑠1 
ℝ 

𝛾 
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Eilers et al. (2014) calls this map an “angle mapping”. This refers to the fact that the 

traveled arc length equals the central angle it subtends. By definition this angle has the 

size of 𝐼, so the map 𝛾 has the characteristic that a line segment in ℝ is mapped into a 

same sized arc length in 𝑆1. This characteristic makes 𝛾 a natural parametrization, 

because a parametrization 𝛾: 𝐼 → ℝ2 is called natural if for all 𝑡1, 𝑡2 ∈ 𝐼 where 𝑡1 < 𝑡2 the 

arc length from 𝑟(𝑡1) to 𝑟(𝑡2) equals |𝑡1, 𝑡2| = 𝑡2 − 𝑡1 (Eilers et al., 2014, p. 219). As we 

will see this natural parametrization has the arc length as the parameter, so we need to 

make sure that this arc length exists.   

Considering an arbitrary continuous curve given by the parametrization 𝑟: [𝑎, 𝑏] → ℝ2, 

we want to define the curve length. By subdividing the interval [𝑎, 𝑏] with the use of the 

points 𝑎 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘−1 < 𝑡𝑘 = 𝑏 , and connecting the points 𝑟(𝑡𝑜), 𝑟(𝑡1), 𝑟(𝑡2) 

and so on by straight lines we get the length: 

𝑙(𝐷) = ∑|𝑟(𝑡𝑗) − 𝑟(𝑡𝑗−1)|

𝑘

𝑗=1

 

where D is the subdivision of [𝑎, 𝑏]. It is well known that the shortest way between two 

points is the straight line, so 𝑙(𝐷) will always be a lower bound for the length of the 

curve 𝑟, but if D is very fine we have a good approximation to the curve length. 

Therefore we define the arc length as (Ibid., p. 2015): 

𝑙 = sup {𝑙(𝐷)|𝐷 𝑖𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑢𝑏𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 [𝑎, 𝑏]} 

This supremum only exists if 𝑙(𝐷) has an upper bound, and luckily 𝑙(𝐷) has, because the 

length of the curve 𝑟 will always be greater than 𝑙(𝐷). Thus for a continuous curve 

𝑟: [𝑎, 𝑏] → ℝ2 the curve length does exist. If the curve is 𝐶1, i.e. one time continuous 

differentiable, as the unit circle is, the curve length is exactly given as: 

𝑙 = ∫ |𝑟′(𝑡)|𝑑𝑡
𝑏

𝑎

 

To verify this let us make a simplified proof. The formal proof is very similar, but 

requires that you go deeper in to the mathematical analysis. This will not be done here, 

because the simplified proof gives us the idea we want, and may also be suitable for a 
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clever high school class. Let us look at the proof. Since 𝑟 is a map from ℝ to ℝ2, it is on 

the form 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡)), hence:  

𝑙 = ∫ |𝑟′(𝑡)|𝑑𝑡 = ∫ √(𝑥′(𝑡))2 + (𝑦′(𝑡))2
𝑏

𝑎

𝑑𝑡
𝑏

𝑎

 

Considering the Figure 2.7 we want an approximated expression for the curve length ∆𝑙 

between  𝑎 = 𝑟(𝑡) and 𝑏 = 𝑟(𝑡 + ∆𝑡).  

 

Figure 2.7: Sketch of the proof (reproduced from Vestergaard, 2007, p. 8) 

If ∆𝑡 is small the straight line from 𝑎 to 𝑏 is a good approximation of ∆𝑙. The length from 

𝑎 to 𝑏 equals |𝑟(𝑡 + ∆𝑡) − 𝑟(𝑡)| = |∆𝑟|, therefore:  

∆𝑙 ≈ |∆𝑟| = √(∆𝑥)2 + (∆𝑦)2 

Since the derivative 𝑥′(𝑡) is the limit of the difference quotient 
∆𝑥

∆𝑡
 when ∆𝑡 approaches 

zero, we say that 𝑥′(𝑡) ≈
∆𝑥

∆𝑡
 , hence ∆𝑥 ≈ 𝑥′(𝑡)∆𝑡, which gives us:  

∆𝑙 ≈ |∆𝑟| = √(∆𝑥)2 + (∆𝑦)2 = √(𝑥′(𝑡)∆𝑡)2 + (𝑦′(𝑡)∆𝑡)2 = √(𝑥′(𝑡))2 + (𝑦′(𝑡))2 ∗ ∆𝑡 

⇓ 

∆𝑙

∆𝑡
≈ 𝑙′(𝑡) ≈ √(𝑥′(𝑡))2 + (𝑦′(𝑡))2 

By integration we get: 

𝑙(𝐷) = ∫ √(𝑥′(𝑡))2 + (𝑦′(𝑡))2
𝑏

𝑎

𝑑𝑡 =  ∫ |𝑟′(𝑡)|𝑑𝑡
𝑏

𝑎

= 𝑙 

Thus by making some approximations we accept the statement. The curve length is then 

just a quantity describing the length between two fixed points on the curve. What if one 

of the points is not fixed? What if we want to follow the trace of the curve as we traverse 
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the interval [𝑎, 𝑏]? This is here we want the arc length. Consider the 𝐶1- curve 𝑟: 𝐼 → ℝ2. 

For every bounded, closed subinterval [𝑡1, 𝑡2] ⊂ 𝐼 we denote the corresponding curve 

length as 𝑙(𝑡1, 𝑡2). The arc length 𝑠 = 𝑠(𝑡) calculated with direction from a fixed curve 

point 𝑟(𝑡0) to an arbitrary curve point 𝑟(𝑡) is then (Eilers et al., 2014, p. 219):  

𝑠 = {

𝑙(𝑡0, 𝑡)           𝑓𝑜𝑟 𝑡 > 𝑡0, 𝑡 ∈ 𝐼
0           𝑓𝑜𝑟 𝑡 = 𝑡0

−𝑙(𝑡, 𝑡0)       𝑓𝑜𝑟 𝑡 < 𝑡0, 𝑡 ∈ 𝐼
 

And by the above: 

𝑠(𝑡) = ∫ |𝑟′(𝜏)|𝑑𝜏
𝑡

𝑡0

 

The fundamental theorem of calculus says that the integral is an antiderivative to the 

integrand: 

𝑠′(𝑡) = |𝑟′(𝑡)| 

As mentioned before the parametrization 𝑟: 𝐼 → ℝ2 is called natural if for all 𝑡1, 𝑡2 ∈ 𝐼 

where 𝑡1 < 𝑡2 the arc length 𝑙(𝑡1, 𝑡2) from 𝑟(𝑡1) to 𝑟(𝑡2) equals |𝑡1, 𝑡2| = 𝑡2 − 𝑡1 (Ibid., p. 

219). Using that 𝑠 = 𝑠(𝑡) is the arc length from a fixed curve point 𝑟(𝑡0) to an arbitrary 

curve point 𝑟(𝑡) we get: 

𝑙(𝑡1, 𝑡2) = ∫ |𝑟′(𝑡)|𝑑𝑡
𝑡2

𝑡1

= ∫ 𝑠′(𝑡)𝑑𝑡
𝑡2

𝑡1

= 𝑠(𝑡2) − 𝑠(𝑡1) 

So for a parametrization to be natural we have the following conditions, where each is 

sufficient and all equivalent:  

1. 𝑙(𝑡1, 𝑡2) =  𝑡2 − 𝑡1  for 𝑡1 < 𝑡2, 𝑡1, 𝑡2 ∈ 𝐼 

2. 𝑠(𝑡2) − 𝑠(𝑡1) = 𝑡2 − 𝑡1 for 𝑡1, 𝑡2 ∈ 𝐼  

3. 𝑠′(𝑡) = 1  for 𝑡 ∈ 𝐼 

4. |𝑟′(𝑡)| = 1  for 𝑡 ∈ 𝐼 

The equivalence of the first and third condition is seen by proving: 

∀𝑡1, 𝑡2, ∫ 𝑠′(𝑡)𝑑𝑡
𝑡2

𝑡1

= 𝑡2 − 𝑡1   ⟺ 𝑠′(𝑡) = 1 

Let 𝑠(𝑡) be the antiderivative to 𝑠′(𝑡). Then: 

𝑠(𝑡2) − 𝑠(𝑡1) =  𝑡2 − 𝑡1 ∀𝑡1, 𝑡2  ⇒ 𝑠(𝑡) = 𝑡 ⇒ 𝑠′(𝑡) = 1 
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The other way around is clear.     □  

We want to construct a natural parametrization of the unit circle, but the question is 

whether this parametrization exists.  According to Eilers et al. (2014) it does if the unit 

circle is a smooth 𝐶1-curve, because “Any smooth 𝐶1- curve has a natural 

parametrization” (Ibid., p. 221). Let us prove this statement and afterwards examine 

whether the unit circle is smooth. 

Assume that the curve with the parametrization  𝑟: 𝐼 → ℝ2 is a smooth 𝐶𝑛- curve, 

where 𝑛 ≥ 1. Then 𝑟′(𝑡) is a 𝐶𝑛−1- curve and the same is |𝑟′(𝑡)|, because if  𝑟 is smooth 

𝑟′(𝑡) ≠ 0 for all 𝑡 ∈ 𝐼. Since the arc length 𝑠(𝑡) is the antiderivative to |𝑟′(𝑡)|, 𝑠(𝑡) must 

be a 𝐶𝑛- function. Furthermore 𝑠′(𝑡) > 0 as we have 𝑟′(𝑡) ≠ 0. The function 𝑡 → 𝑠(𝑡) is 

then strictly increasing and since it is continuous it maps the interval 𝐼 into an 

interval 𝐽 ⊂ ℝ. The inverse function 𝑠−1: 𝐽 → 𝐼 is also a 𝐶𝑛- function with the derivative: 

(𝑠−1)′(𝑢) =
1

𝑠′(𝑠−1(𝑢))
> 0 

Using the inverse function as a reparametrization we define �̃�(𝑢) = 𝑟(𝑠−1(𝑢)). What we 

have made here is a reparametrization 𝑠−1: 𝐽 → 𝐼, such that the arc length becomes the 

parameter. Both 𝑟 and �̃� trace the same curve and since the reparametrization is 

increasing they both have the same direction. By the chain rule we get: 

�̃�′(𝑢) = 𝑟′(𝑠−1(𝑢)) ∗ (𝑠−1)′(𝑢) =  
𝑟′(𝑠−1(𝑢))

𝑠′(𝑠−1(𝑢))
=

𝑟′(𝑠−1(𝑢))

|𝑟′(𝑠−1(𝑢))|
         𝑓𝑜𝑟 𝑢 ∈ 𝐽   

It follows from here that |�̃�′(𝑢)| = 1, which was one of the conditions for being a natural 

parametrization. Hence any smooth 𝐶𝑛- curve has a natural parametrization. □ 

We now return to the unit circle. The parametrization 𝑟1(𝑥) = (𝑥, √1 − 𝑥2), 𝑥 ∈ [0,1]  

represents the curve of the upper half of the unit circle. It is a function, because each 

input gives one and only one output, it is continuous and since 𝑟1′(𝑥) ≠ 0 for all 𝑥 ∈ [0,1] 

it is smooth. In the same way we can parametrize other pieces of the unit circle, and 

since they are all smooth the unit circle itself is smooth. So the unit circle has a natural 

parametrization, we can parametrize it with the arc length as the parameter. The 

question is then how this natural parametrization looks like.  It would be difficult to 

construct it analytically since this would involve finding an expression for the inverse of 
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the arc length function. Let us instead construct it in the Cartesian coordinate system. 

But before constructing it let us define the number 𝜋.  

Normally we think of 𝜋 as the ratio between the diameter and circumference of a circle, 

but this definition is not rigorous, because it would demand that we prove that this ratio 

is the same in all circles. Let us instead define 𝜋 as the arc length of the upper unit circle. 

That is the arc length from −1 to +1 of the curve parametrized by 

(𝑥) = (𝑥, √1 − 𝑥2), 𝑥 ∈ [0,1] : 

𝜋 = ∫ |𝑟′(𝑥)|𝑑𝑥
1

−1

= ∫ √1 +
𝑥2

1 − 𝑥2
𝑑𝑥 =

1

−1

∫ √
1

1 − 𝑥2
𝑑𝑥

1

−1

= ∫
1

√1 − 𝑥2
𝑑𝑥

1

−1

 

This integral is improper since we do not know whether it exists or not at ±1. In order 

to prove this let us consider the integral ∫ √1 − 𝑥2 𝑑𝑥. By partial integration we get: 

∫√1 − 𝑥2 𝑑𝑥 = 𝑥√1 − 𝑥2 + ∫
𝑥2

√1 − 𝑥2
𝑑𝑥 = 𝑥√1 − 𝑥2 + ∫

1

√1 − 𝑥2
𝑑𝑥 − ∫√1 − 𝑥2 𝑑𝑥 

⇓ 

2∫√1 − 𝑥2 𝑑𝑥 = 𝑥√1 − 𝑥2 + ∫
1

√1 − 𝑥2
𝑑𝑥 

⇓ 

∫
1

√1 − 𝑥2
𝑑𝑥 = 2∫√1 − 𝑥2 𝑑𝑥 − 𝑥√1 − 𝑥2 

Since the integral ∫ √1 − 𝑥21

−1
𝑑𝑥 clearly exists, the right hand side is meaningful. Setting 

the limits to −1 + 𝜀 and 1 − 𝜀 and next let 𝜀 approach 0 we get an integral: 

lim
𝜀→0

∫
1

√1 − 𝑥2
𝑑𝑥

1−𝜀

−1+𝜀

= 2∫ √1 − 𝑥2
1

−1

𝑑𝑥  

Which clearly converge and the result is what we will call 𝜋. 

Let us now begin the construction of the natural parametrization of the unit circle. 

Consider ℝ2 , i.e. the Cartesian coordinate system. For 𝑥 > 0 let us start in the point (0,1) 

and move in the positive direction on S1 until we have traveled the distance 𝑥. This point 

we call 𝛾(𝑥). Since the circumference of the unit circle is 2𝜋, by the definition of 𝜋, we 

xhq273
Text Box
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will pass the starting point if 𝑥 > 2𝜋, but that does not matter. Notice that 𝛾(𝑥 + 2𝜋) =

𝛾(𝑥), because constructing 𝛾(𝑥 + 2𝜋) when 𝑥 ≥ 0 we just travel an extra full turn 

around the unit circle and ends in the point 𝛾(𝑥).  

For 𝑥 < 0 we again start in the point (0,1) but now we move in the negative direction 

until we have traveled the distance |𝑥|. This point we call 𝛾(𝑥). Also here 𝛾(𝑥 + 2𝜋) =

𝛾(𝑥), which is easily seen if 𝑥 ≤ −2𝜋, because it is the same construction as before, just 

in negative direction. If 𝑥 ∈ (−2𝜋, 0) the problem is that 𝛾(𝑥) is constructed by moving 

in the negative direction, and 𝛾(𝑥 + 2𝜋) by moving in the positive direction. But the sum 

of the distance traveled in negative direction and in positive direction equals 2𝜋, so we 

end up in the same point.  

Finally for 𝑥 = 0 we consider the point 𝛾(0) = (1,0), where we does not move at all. 

Recall that each point on the unit circle is determined by cosine and sine to the direction 

angle, and that the arc length traveled equals the direction angle measured in radians. 

Hence cosine and sine can be defined as the first and second coordinate function to the 

map 𝛾: ℝ → S1, which is the natural parametrization of the unit circle: 

𝛾(𝑥) = (cos(𝑥) , sin (𝑥)), 𝑥 ∈ ℝ 

Hence sine and cosine are functions from ℝ to ℝ. Since 𝛾(𝑥) ∈ 𝑆1 for all 𝑥 ∈ ℝ we have 

that: 

cos2(𝑥) + sin2(𝑥) = 1, 𝑥 ∈ ℝ 

As well as both cos (𝑥) and sin(𝑥) lies in the in the interval ⌊−1,1⌋. Since 𝛾(𝑥 + 2𝜋) =

𝛾(𝑥) for all 𝑥 ∈ ℝ we also get the relations: 

cos(𝑥 + 2𝜋) = cos(𝑥),            sin(𝑥 + 2𝜋) = sin(𝑥) , 𝑥 ∈ ℝ 

This tells us that the trigonometric functions are periodic.  

The parametrization also tells us, that our definition of direction is correct. Considering 

the arc lengths 
𝜋

4
,
𝜋

3
 and 

𝜋

2
, each one longer than the previous. The three arc lengths

represent the points: 

𝛾 (
𝜋

4
) = (cos (

𝜋

4
) , sin (

𝜋

4
)) = (

√2

2
,
√2

2
) 
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𝛾 (
𝜋

3
) = (cos (

𝜋

3
) , sin (

𝜋

3
)) = (

1

2
,
√3

2
) 

𝛾 (
𝜋

2
) = (cos (

𝜋

2
) , sin (

𝜋

2
)) = (0,1) 

Plotting these points in ℝ2 shows us that the positive direction on the unit circle is 

counterclockwise. 

Finally the existence of the natural parametrization of the unit circle gives us a formal 

way to define the notion of angle. We saw in section 2.2.1 that an angle is measurable if 

the arc length on the unit circle subtended by the angle exists, and if so the arc length is 

the angles measurement. By the natural parametrization we have shown that the arc 

length does exist, and in fact we can define the notion of angle as the inverse of the 

natural parametrization, that is the function 𝛾−1: 𝑆1 → ℝ taking a point 𝑃 on the unit 

circle and mapping it to the arc length from (0,1) to 𝑃.  

This paragraph has shown us that the definition of sine and cosine as trigonometric 

functions from ℝ to ℝ is based on the natural parametrization of the unit circle, with the 

arc length as the parameter. This is clearly a dynamic approach to the notion of function. 

We map the real line to the arc of the unit circle. It also clarifies why sine and cosine can 

be accepted as functions from the domain of real numbers, but the theory underlying 

this natural parametrization is far above the mathematical level expected in high school. 

A possibility could be to simplify the theory in order for the students to realize the 

connection between the unit circle and the graphs of the trigonometric functions.  We 

will return to this discussion, but let us first introduce other definitions of the 

trigonometric functions.    

2.2.5 Differentiation of the sine function 

Now we have the trigonometric functions and since the functions clearly are continuous, 

they are also differentiable. To find the derivative of sine we must first find the limit to 

the difference quotient. The difference quotient is: 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
=

sin(𝑥 + ℎ) − sin (𝑥)

ℎ

The following identity: 
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sin(𝑥) − sin(𝑦) = 2 ∗ cos (
𝑥 + 𝑦

2
) ∗ sin (

𝑥 − 𝑦

2
) 

Gives us that: 

sin(𝑥 + ℎ) − sin (𝑥)

ℎ
=

2 ∗ cos (
2𝑥 + ℎ

2 ) ∗ sin (
ℎ
2)

ℎ
=

2 ∗ cos (𝑥 +
ℎ
2) ∗ sin (

ℎ
2)

ℎ

=
cos (𝑥 +

ℎ
2) ∗ sin (

ℎ
2)

ℎ
2

= cos (𝑥 +
ℎ

2
) ∗

sin (
ℎ
2)

ℎ
2

Now let us consider the limit. The limit of a product is equal to the product of the limits, 

so let us look at the two limits. Since cosine is continues cos (𝑥 +
ℎ

2
) → cos (𝑥) when ℎ →

0, and since 
ℎ

2
 is just a constant we just need to consider the limit: 

lim
𝜃→0

sin (𝜃)

𝜃

Since the limit of the denominator is zero, we cannot find the limit by using the normal 

theorems for limits. Instead we need to consider the unit circle: 

Figure 2.8: Sketch of the proof (Reproduced from Spector, 2015)

Let 𝑂 be the center of the unit circle and let 𝜃 be the central angle 𝐵𝑂𝐴 measured in 

radians. Then the arc length 𝐴𝐵 is equal to 𝜃. Draw angle 𝐴𝑂𝐵’ equal to angle 𝐵𝑂𝐴, 

making arc length 𝐴𝐵’ equal to arc length 𝐴𝐵 and draw the straight line from 𝐵 to 𝐵’ 

cutting 𝑂𝐴 in the point 𝑃. Finally draw the straight lines 𝐵𝐶 and 𝐵’𝐶 as tangent to the 

circle. Then: 

𝐵𝐵′ < 𝑎𝑟𝑐 𝑙𝑒𝑛𝑔𝑡ℎ 𝐵𝐴𝐵′ < 𝐵𝐶 + 𝐵′𝐶 

It is easily seen by triangle computations that 𝐵𝐵′ < 𝐵𝐶 + 𝐵′𝐶. But to see that the arc 

length lies in between is more difficult.  The first inequality can be accepted by recalling 

the Euclidian definition of a straight line as the shortest way between two points. Then 

𝑂 𝜃 

𝐵 

𝐵′ 

𝐶 
𝑃 

𝐴 
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then arc length 𝐵𝐴𝐵’ will at most be equal to 𝐵𝐵’, never less than. To accept the last 

equality we must trust our eyes by looking at the figure. But a figure is not a valid proof, 

thus the inequality is still up for some discussion, but let us continue using it.  

By the unit circle definition of sine and tangent we get 𝑃𝐵 = 𝑃𝐵′ = sin (𝜃), which leads 

to 𝐵𝐵′ = 2sin (𝜃), and 𝐵𝐶 = 𝐶𝐵′ = tan (𝜃), since 𝑂𝐵 = 𝑂𝐵′ = 1. Therefore we get the 

inequality:  

2sin (𝜃) < 2𝜃 < 2tan (𝜃) 

Since tan(𝜃) =
𝑠𝑖𝑛𝜃)

cos (𝜃)
, dividing by 2sin (𝜃) gives us: 

1 <
𝜃

sin (𝜃)
<

1

cos (𝜃)

Taking the reciprocal and changing the sign will change the sense of the inequality two 

times and give us: 

− 1 < −
sin(𝜃)

𝜃
< −cos (𝜃) 

If we add 1 to each term we get: 

0 < 1 −
sin(𝜃)

𝜃
< 1 − cos (𝜃) 

If 𝜃 approaches 0, then cos (𝜃) approaches 1 and 1 − cos (𝜃) approaches 0. So 1 −
sin(𝜃)

𝜃
 is 

squeezed in between to quantities approaching zero, thus also 1 −
sin(𝜃)

𝜃
approaches 

zero, giving us that: 

lim
𝜃→0

sin(𝜃)

𝜃
= 1 

The derivative of 𝑓(𝑥) = sin(𝑥) then becomes: 

𝑓′(𝑥) = lim
ℎ→0

(
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
) = lim

ℎ→0
(cos (𝑥 +

ℎ

2
) ∗

sin (
ℎ
2)

ℎ
2

) = cos(𝑥) 

□ 

Likewise we can show that the derivative to 𝑓(𝑥) = cos(𝑥) is 𝑓′(𝑥) = − sin(𝑥). Even 

though differentiation is a branch of the analytic mathematic, we have to use the 
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geometric world to fully understand and explain the behavior of trigonometric 

functions. This is one of the reasons why trigonometric functions are so complex and 

difficult to fully understand.  

As a counterpart to the differentiation let us mention the integration. A function 𝐹(𝑥) is 

said to be the antiderivative to 𝑓(𝑥) if 𝐹′(𝑥) = 𝑓(𝑥). Since sin(𝑥)′ = cos (𝑥), the 

antiderivative to cos (𝑥) must be sin (𝑥) and likewise since cos(𝑥)′ = −sin (𝑥), the 

antiderivative to sin (𝑥) is −cos (𝑥). Remember that when differentiating functions 

containing constants the constants just vanish, so in fact also −cos(𝑥) + 𝑐 is an 

antiderivative to sin(𝑥). We have:  

𝑓(𝑥) = sin(𝑥) ⇒ 𝐹(𝑥) = –  cos (𝑥)  +  𝑐 

𝑓(𝑥) = cos(𝑥) ⇒ 𝐹(𝑥) =  sin (𝑥)  +  𝑐 

where 𝑐 is a constant. The derivative and antiderivative show us that there is an 

interesting connection between the two trigonometric functions. Even though this is 

interesting it is not the most useful definition of the trigonometric functions.  

2.2.6 The inverse of sine  

With the parametrization of the unit circle we used the arc length to define sine and 

cosine. In this section we will use the integral. As seen in section 2.2.5 the integral of sine 

is no simpler than sine itself. However the integral of the inverse of sine, also called 

arcsine, turns out not to involve trigonometric functions, so we will define arcsine and 

then define sine and cosine in terms of arcsine. The arcsine function is the function 

arcsin: [−1,1] → ℝ defined by: 

arcsin (𝑥) = ∫
1

√1 − 𝑡2
𝑑𝑡

𝑥

0

 

for all 𝑥 ∈ [−1,1]. The integral is improper when 𝑥 = 1 and 𝑥 = −1 (Bloch, 2011, p. 373). 

Hence the proof of the convergence in ±1 is similar to the proof of the fact that 

𝜋 = ∫
1

√1−𝑥2
𝑑𝑥

1

−1
 converges at ±1, shown in section 2.2.4. In order to construct the sine 

function from the arcsine some properties must apply to the arcsine. We assume that 

arcsine is the inverse of sine when 𝑥 ∈ [−1,1] and vice versa, indirectly assuming that 

arcsine has an inverse, ergo must arcsine be bijective. In order to be bijective let us first 

show that arcsine is continuous: 
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From the definition of arcsine and the fundamental theorem of Calculus, saying that the 

integral is an antiderivative to the integrand, we know that arcsine is differentiable on 

(−1,1) with arcsin ′(𝑥) =
1

√1−𝑥2
 for all 𝑥 ∈ (−1,1). Hence arcsine is continuous on (−1,1). 

The integral arcsin(1) is improper meaning that: 

arcsin(1) = ∫
1

√1 − 𝑡2
𝑑𝑡

1

0

= lim
𝑦→1−

∫
1

√1 − 𝑡2
𝑑𝑡

𝑦

0

= lim
𝑦→1−

arcsin(𝑦) 

So for 𝑥 = 1 the limit exists and lim𝑦→1− arcsin(𝑦) = arcsin(1), so in 𝑥 = 1 arcsine is 

continuous from left. The same argument holds for 𝑥 = −1, making the entire arcsine 

function continuous.  

Next let us consider the range of arcsine, in order to show that arcsine is surjective. The 

domain is [−1,1], so let us first consider: 

arcsin(1) = ∫
1

√1 − 𝑡2
𝑑𝑡

1

0

 

Recall that the definition of 𝜋 is the improper integral: 

𝜋 = ∫
1

√1 − 𝑥2
𝑑𝑥

1

−1

= 2 ∗ ∫
1

√1 − 𝑥2
𝑑𝑥

1

0

 

where the last equation follows from the fact that the unit circle is symmetric around 

the 𝑦-axis. Hence arcsin(1) =
𝜋

2
. To find arcsin(−1), we first show that arcsin(−𝑥) =

−arcsin(𝑥) for all 𝑥 ∈ [−1,1]: Let 𝑥 ∈ [−1,1]. By using the substitution 𝑢 = −𝑡 , which 

implies that 𝑑𝑢 = −𝑑𝑡 we see that: 

arcsin(−𝑥) = ∫
1

√1 − 𝑡2
𝑑𝑡

−𝑥

0

= −∫
1

√1 − (−𝑡)2
(−1)𝑑𝑡

𝑥

0

= 

−∫
1

√1 − 𝑢2
𝑑𝑢

𝑥

0

= − arcsin(𝑥) 

The above gives us that arcsin(−1) = −arcsin(1) = −
𝜋

2
. So the range of arcsine 

is [−
𝜋

2
,
𝜋

2
], hence the function arcsin: [−1,1] → [−

𝜋

2
,
𝜋

2
] is surjective.  

Since arcsin ′(𝑥) =
1

√1−𝑥2
> 0 for all 𝑥 ∈ (−1,1) arcsine is strictly increasing, hence 

injective, which is seen in the following proof:  
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Let 𝑥1, 𝑥2 ∈ [−1,1] and 𝑥1  ≠ 𝑥2. Then 𝑥1 < 𝑥2 or 𝑥1 > 𝑥2 and since arcsine is strictly 

increasing it implies that arcsin(𝑥1) < arcsin(𝑥2)  or arcsin(𝑥1) > arcsin(𝑥2), hence 

arcsin(𝑥1) ≠ arcsin(𝑥2)                         □ 

To sum up we have shown that the function arcsin: [−1,1] → [−
𝜋

2
,
𝜋

2
] is bijective and 

hence have an inverse function arcsin−1: [−
𝜋

2
,
𝜋

2
] → [−1,1]. The sine function is the 

function sin: ℝ → ℝ defined as the periodic extension of the function 𝑓: [−
𝜋

2
,
3𝜋

2
] → ℝ 

defined by:  

𝑓(𝑥) = {
arcsin−1(𝑥)                  𝑖𝑓 𝑥 = [−

𝜋

2
,
𝜋

2
]

arcsin−1(𝜋 − 𝑥)        𝑖𝑓 𝑥 = [
𝜋

2
,
3𝜋

2
]

 

The function 𝑓 is well-defined, because arcsin−1 (
𝜋

2
) =  arcsin−1 (𝜋 −

𝜋

2
).  By definition, a 

periodic extension of a function  𝑔: [𝑎, 𝑏] → ℝ is the function ℎ:ℝ → ℝ with period 𝑏 − 𝑎, 

such that ℎ|[𝑎,𝑏] = 𝑔, under the assumption that 𝑔(𝑎) = 𝑔(𝑏) (Ibid., p. 372). In the 

definition of sine we have: 

𝑓 (
3𝜋

2
) = arcsin−1 (𝜋 −

3𝜋

2
) = arcsin−1 (−

𝜋

2
) = 𝑓 (−

𝜋

2
) 

Hence sine is a well-defined periodic extension of the function 𝑓. From this definition we 

can state some of the well-known facts about the sine function. First of all we see that 

sine has the period 
3𝜋

2
− (−

𝜋

2
) = 2𝜋. Hence we have that sin(𝑥 + 2𝜋) = sin(𝑥) , ∀𝑥 ∈ ℝ. 

Then no matter what 𝑥 ∈ ℝ we choose we can end up in the interval [−
𝜋

2
,
3𝜋

2
] just by 

adding or subtracting 2𝜋. Hence sin(𝑥) = 𝑓(𝑥), ∀𝑥 ∈ ℝ. If we want to calculate some of 

the values of sine let us first state that sine is strictly increasing because arcsine is. 

Consider a strictly increasing function 𝑔:ℝ → ℝ and its inverse 𝑔−1: ℝ → ℝ . The 

definition of strictly increasing implies that 𝑥1 < 𝑥2  ⇒ 𝑔(𝑥1) < 𝑔(𝑥2) for some 𝑥1, 𝑥2 ∈

ℝ. Since  𝑔−1 is the inverse we have by definition 𝑔−1(𝑔(𝑥1)) = 𝑥1 and 𝑔−1(𝑔(𝑥2)) = 𝑥2, 

hence 𝑔(𝑥1) < 𝑔(𝑥2) implies that 𝑔−1 is strictly increasing since 𝑔−1(𝑔(𝑥1)) = 𝑥1 <

𝑔−1(𝑔(𝑥2)) = 𝑥2. Hereby arcsin(𝑥) < arcsin(𝑦) ⇒ sin(𝑥) < sin (𝑦)for all 𝑥, 𝑦 ∈ [−1,1]. 



33 
 

Recall that arcsin: [−1,1] → [−
𝜋

2
,
𝜋

2
] and hereby arcsin−1(𝑥) = sin |

[−
𝜋

2
,
𝜋

2
]
: [−

𝜋

2
,
𝜋

2
] →

[−1,1]. Now we are able to find some values of sine: 

sin (−
𝜋

2
) =  −1 , sin (

𝜋

2
) =  1 , sin(0) = 0 

Where the last result follows from the fact that arcsin(0) = 0 and hence also 

arcsin−1(0) = 0. In fact we can say that: 

0 < sin(𝑥) < 1, ∀𝑥 ∈ (0,
𝜋

2
) 

−1 < sin(𝑥) < 1, ∀𝑥 ∈ (−
𝜋

2
,
𝜋

2
) 

−1 ≤ sin(𝑥) ≤ 1, ∀𝑥 ∈ ℝ 

This leads to the definition of cosine. By use of the unit circle and its natural 

parametrization we defined sine and cosine independently, here we will define cosine in 

terms of sine. The cosine function is the function cos: ℝ → ℝ defined by   

cos 𝑥 = {

√1 − sin2 𝑥              𝑖𝑓 𝑥 ∈ [−
𝜋

2
+ 2𝜋𝑛,

𝜋

2
+ 2𝜋𝑛]  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℤ

−√1 − sin2 𝑥        𝑖𝑓 𝑥 ∈ [
𝜋

2
+ 2𝜋𝑛,

3𝜋

2
+ 2𝜋𝑛] 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛 ∈ ℤ

 

This definition is well-defined since sine is never greater than 1 and neither is sine 

squared. From this definition we can deduce the famous trigonometric identity: 

cos2(𝑥) + sin2(𝑥) = 1, and we can also prove the derivative of the two trigonometric 

functions. We will not go in to details here, but just conclude that both sine and cosine 

can be defined in terms of the function arcsine.  

The name arcsine may seem strange, but an explanation is found in section 2.2.4, 

concerning the natural parametrization of the unit circle. One parametrization of the 

unit circle is 𝑟(𝑡) = (√1 − 𝑡2, 𝑡), 𝑡 ≥ 0 where the arc length from (1,0) to the unique 

point (𝑥, 𝑦)where 𝑥 ≥ 0 is: 

∫ |𝑟′(𝑡)|𝑑𝑡
𝑦

0

= ∫ √
𝑡2

1 − 𝑡2
+ 1 𝑑𝑡 =

𝑦

0

∫
1

√1 − 𝑡2
𝑑𝑡

𝑦

0

= arcsin(𝑦) , 𝑦 ≥ 0  

Thus for 𝑥, 𝑦 ≥ 0 arcsine determines the arc length on the unit circle, hence arcsine gives 

a kind of angle between circle points. Finally sine takes arcsin (𝑦) to the second 
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coordinate of the direction angle’s point on the unit circle, ensuring that the unit circle 

definition of sine still holds.  

This section has shown us a rigorous definition of sine and cosine as functions. The 

approach to the notion of function is here dynamic, first of all because both sine and 

cosine are defined by analytic expressions, but more intuitively we can, by sine taking 

the arcsin (𝑦) to the second coordinate, see the function as a process. The section has 

also shown us a definition with technical complications such as working with improper 

integrals, defining arcsine in terms of an integral instead of just the inverse of sine and 

finally the fact that we need an extension of the arcsine function in order to define the 

entire sine function in terms of arcsine. All of these are good reasons for not introducing 

this definition in a Danish high school.  

2.2.7 Differential equations  

The trigonometric functions can also be defined as the solution to some differential 

equations. In fact sine is the solution to the initial value problem: 

𝑦′′ = −𝑦, 𝑦(0) = 0, 𝑦′(0) = 1 

and cosine is the solution to:  

𝑦′′ = −𝑦, 𝑦(0) = 1, 𝑦′(0) = 0 

To verify this let us first consider the general homogenous second order differential 

equation: 

 𝑎𝑦′′ + 𝑏𝑦′ + 𝑐𝑦 = 0 

where 𝑎, 𝑏 and 𝑐 are constants. A possible solution to this equation is a function where a 

constant multiplied by the second derivative plus a constant multiplied by the first 

derivative plus a constant multiplied with the function itself equals zero. The 

exponential function 𝑦 = 𝑒𝑟𝑥 has the property that 𝑦′ = 𝑟𝑒𝑟𝑥 and 𝑦′ = 𝑟2𝑒𝑟𝑥, hence the 

exponential function is a solution if: 

𝑎𝑟2𝑒𝑟𝑥 + 𝑏𝑟𝑒𝑟𝑥 + 𝑐𝑒𝑟𝑥 = 0 ⇒ (𝑎𝑟2 + 𝑏𝑟 + 𝑐)𝑒𝑟𝑥 = 0  

𝑒𝑟𝑥 is never zero, so 𝑦 = 𝑒𝑟𝑥 is a solution if 𝑟 is a root of the equation:  

𝑎𝑟2 + 𝑏𝑟 + 𝑐 = 0 
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This equation is called the characteristic equation and in the case with the differential 

equation  𝑦′′ = −𝑦 we get: 

𝑟2 = −1 ⟺ 𝑟2 + 1 = 0 

This equation has the irrational roots ±𝑖 so 𝑦1 = 𝑒𝑖𝑥 and 𝑦2 = 𝑒−𝑖𝑥 are solutions to the 

differential equation. Hence: 

𝑦(𝑥) = 𝐶𝑒𝑖𝑥 + 𝐷𝑒−𝑖𝑥 

is a solution for all choices of  the constants 𝐶 and 𝐷. Using Euler’s formula, which 

connects the complex exponential to the trigonometric functions we can rewrite the 

solution as: 

𝑦(𝑥) =  𝐶(cos(𝑥) + 𝑖 sin(𝑥)) + 𝐷(cos(𝑥) − 𝑖 sin(𝑥)) 

= (𝐶 + 𝐷) cos(𝑥) + 𝑖(𝐶 − 𝐷)sin (𝑥) = 𝐸 cos(𝑥) + 𝐹 sin(𝑥) 

where 𝐸 = (𝐶 + 𝐷) and 𝐹 = 𝑖(𝐶 − 𝐷) are still just constants. Let us consider the initial 

values 𝑦(0) = 0and 𝑦′(0) = 1. This gives us: 

𝑦(0) = 𝐸 cos(0) + 𝐹 sin(0) = 𝐸 ⇒ 𝐸 = 0 

Differentiating our solution gives us: 

𝑦′(𝑥) =  −𝐸 sin(𝑥) + 𝐹 cos(𝑥) ⇒ 

𝑦′(0) = −𝐸 sin(0) + 𝐹 cos(0) = 𝐹 ⇒ 𝐹 = 1 

So the solution to the initial value problem, 𝑦′′ = −𝑦, 𝑦(0) = 0, 𝑦′(0) = 1, is: 

𝑦(𝑥) = sin (𝑥) 

Likewise we can consider the initial values 𝑦(0) = 1, 𝑦′(0) = 0 and get: 

𝑦′(0) = −𝐸 sin(0) + 𝐹 cos(0) = 0 + 𝐹 = 0 ⇒ 𝐹 = 0 

𝑦(0) = 𝐸 cos(0) = 1 ⇒ 𝐸 = 1 

So the solution to the initial value problem,  𝑦′′ = −𝑦, 𝑦(0) = 1, 𝑦′(0) = 0, is: 

𝑦(𝑥) = cos(𝑥) 

The uniqueness theorem for second order differential equations (Lindstrøm, 2006, p. 

538) tells us that both sine and cosine are the only solutions to the given initial value 
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problems. Defining sine and cosine as these solutions makes them static objects, and 

since we in High school would normally have a dynamic approach to functions, this 

static approach would not help the students grasp sine and cosine as functions.  Second 

order differential equations are not a part of the curriculum in Danish high schools, so it 

would demand a considerable amount of new theory to present the trigonometric 

functions as solutions to second order differential equations. Nonetheless, we have 

included the definitions here because they could be presented as an interesting result 

when the students are introduced to mathematical modeling.  As Camilus (2012) 

observes in her thesis the traditional teaching of differential equations focuses on 

finding solutions, just as we have done here. However, if we instead focus on the 

differential equation as a modeling tool and the solutions as concrete descriptions of 

scientific processes, then it would be easier for the students to validate the solutions 

(Camilus, 2012, p. 42).  As supplementary material one could introduce the second order 

differential equation, for example in connection with a physics course on harmonic 

oscillations, where the students would see the differential equations as a useful model 

and moreover they would see that trigonometric functions can be used to describe the 

wave pattern we often see in the real world. Hence they get a good argument for 

knowing these functions.  

2.2.8 Power series  

Defining sine in terms of a power series would create a type of power series called a 

Taylor series. A Taylor series is a function expansion containing an infinite sum of terms 

calculated from the values of the function’s derivatives in a given point. Since both sine 

and cosine are infinitely differentiable we can create their Taylor polynomials. A 

function’s Taylor polynomial is the highest 𝑛th-degree polynomial, which has the same 

function value and the same first 𝑛 derivatives as the function it represents in a point 𝑎: 

𝑇𝑛𝑓(𝑥) = ∑
𝑓(𝑘)(𝑎)

𝑘!

𝑛

𝑘=0

(𝑥 − 𝑎)𝑘 

Let us consider 𝑓(𝑥) = sin(𝑥) around the point 0, if we differentiate this function we get: 

𝑓′(𝑥) = cos (𝑥) 

𝑓′′(𝑥) = −sin (𝑥) 
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𝑓(3)(𝑥) = −cos (𝑥) 

𝑓(4)(𝑥) = sin(𝑥) 

The fourth time we differentiate we end up where we started, so this process will repeat 

itself if we continue. If we evaluate these derivatives in the point 0 we get: sin(0) =

0, cos(0) = 1,− sin(0) = 0,− cos(0) = −1, sin(0) = 0 and so on. Hence the first terms in 

the Taylor polynomial would be:  

𝑇𝑛sin(𝑥) = 0 + 
1

1!
𝑥 +

0

2!
𝑥2 −

1

3!
𝑥3 +

0

4!
𝑥4 +

1

5!
𝑥5 +

0

6!
𝑥6 −

1

7!
𝑥7 … 

= 𝑥 −
1

3!
𝑥3 +

1

5!
𝑥5 −

1

7!
𝑥7 … 

and with 𝑛 terms we get the Taylor polynomial:  

𝑇𝑛sin(𝑥) = ∑(−1)𝑘+1
𝑥2𝑘−1

(2𝑘 − 1)!

𝑛

𝑘=1

 

In the same manner we can find the Taylor polynomial for 𝑓(𝑥) = cos (𝑥): 

𝑇𝑛cos(𝑥) =  ∑(−1)𝑘
𝑥2𝑘

(2𝑘)!

𝑛

𝑘=0

 

If we let 𝑛 go to infinity we get the Taylor series and as we will see both sine and cosine 

equal their Taylor series. If we consider the Taylor polynomials, then it is only locally 

around 0 that 𝑇𝑛sin(𝑥) = sin (𝑥). The amount by which 𝑇𝑛sin(𝑥) differs from sin(𝑥) is 

called the remainder and is defined as:  

𝑅𝑛 sin(𝑥) =  
1

𝑛!
∫ 𝑠𝑖𝑛(𝑛+1)(𝑡)

𝑥

0

(𝑥 − 𝑡)𝑛𝑑𝑡 

Hence: 

sin(𝑥) = ∑(−1)𝑘+1
𝑥2𝑘−1

(2𝑘 − 1)!

𝑛

𝑘=1

+ 𝑅𝑛 sin(𝑥) 

In order for sine to equal its Taylor series the remainder must approach zero when n 

approaches infinity. Remember that sine and its 𝑛 + 1 derivative are continuous on the 



38 
 

interval [0, 𝑥]. Let 𝑀 be the number such that |sin(𝑛+1)(𝑡)| ≤ 𝑀, ∀𝑡 ∈ [0, 𝑥], and 

assume 𝑥 > 0. Then we have: 

|𝑅𝑛 sin(𝑥)| =
1

𝑛!
|∫ 𝑠𝑖𝑛(𝑛+1)(𝑡)

𝑥

0

(𝑥 − 𝑡)𝑛𝑑𝑡| ≤
𝑀

𝑛!
∫ (𝑥 − 𝑡)𝑛

𝑥

0

𝑑𝑡 =
𝑀

𝑛!
(
𝑥𝑛+1

𝑛 + 1
)

=
𝑀

(𝑛 + 1)!
𝑥𝑛+1 

Since all the derivatives of sine are either ±sin (𝑥) or ±cos (𝑥) then 𝑀 = 1 is an upper 

bound and we get: 

|𝑅𝑛 sin(𝑥) | ≤
1

(𝑛 + 1)!
|𝑥|𝑛+1 

The left side clearly approaches zero when 𝑛 approaches infinity and so does the 

remainder, so we get: 

sin (𝑥) = ∑(−1)𝑘
𝑥2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

 

In the same manner we can show that cosine equals its Taylor series. In order for the 

functions to go from ℝ to ℝ we need to ensure that the series converges in the entire ℝ, 

i.e. have a radius of convergence that equals infinity. Using the ratio test (Lindstrøm, 

2006, p. 638) we get: 

lim
𝑘→∞

(−1)𝑘+1 𝑥2(𝑘+1)+1

(2(𝑘 + 1) + 1)!

(−1)𝑘 𝑥2𝑘+1

(2𝑘 + 1)!

= lim
𝑘→∞

(−1)𝑘+1𝑥2𝑘+3(2𝑘 + 1)!

(2𝑘 + 3)! (−1)𝑘𝑥2𝑘+1
 

= lim
𝑘→∞

(2𝑘 + 1)!

(2𝑘 + 3)!
|𝑥|2 = lim

𝑘→∞

|𝑥|2

(2𝑘 + 1)! (2𝑘 + 3)!
= 0 

Since the limit is zero for all values of 𝑥 the Taylor series converge for all 𝑥 and we say 

that the radius of convergence equals infinity. The same argument can be used for 

cosine, so the trigonometric functions can be defined as power series. Now let us see 

what use we can make of them.  First we see that we can easily find some of the known 

properties for both sine and cosine: 
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sin(0) = ∑(−1)𝑘
02𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

= 0 + 0 + ⋯ = 0 

sin(−𝑥) = ∑(−1)𝑘
(−𝑥)2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

= ∑(−1)𝑘
−(𝑥2𝑘+1)

(2𝑘 + 1)!

∞

𝑘=0

= − ∑(−1)𝑘
𝑥2𝑘+1

(2𝑘 + 1)!

∞

𝑘=0

= −sin (𝑥) 

cos(0) =  ∑(−1)𝑘
02𝑘

(2𝑘)!

∞

𝑘=0

= 1 + 0 + 0 + ⋯ = 1 

cos(−𝑥) =  ∑(−1)𝑘
(−𝑥)2𝑘

(2𝑘)!

∞

𝑘=0

= ∑(−1)𝑘
𝑥2𝑘

(2𝑘)!

∞

𝑘=0

cos (𝑥) 

Since the radius of convergence is infinite the Taylor series are differentiable, and the 

derivative is found by differentiating term by term. From this we find that: 

sin′(𝑥) = ∑
(−1)𝑘

(2𝑘 + 1)!
(2𝑘 + 1)𝑥2𝑘

∞

𝑘=0

= ∑
(−1)𝑘

(2𝑘)!
𝑥2𝑘

∞

𝑘=0

= cos(𝑥) 

cos′(𝑥) = ∑
(−1)𝑘

(2𝑘)!
(2𝑘)𝑥2𝑘−1

∞

𝑘=1

= ∑
(−1)𝑘

(2𝑘 − 1)!
𝑥2𝑘−1

∞

𝑘=1

= ∑
(−1)𝑘+1

(2𝑘 + 1)!
𝑥2𝑘+1

∞

𝑘=0

= − ∑
(−1)𝑘

(2𝑘 + 1)!
𝑥2𝑘+1

∞

𝑘=0

= −sin(𝑥) 

This proof of trigonometric functions’ derivatives is based purely on analysis, so in 

contrast to the earlier proof of the derivatives we do not have to use the unit circle here. 

Hence this proof seems more rigorous and simultaneously it is brief, so one may think 

that this would be favored. However, in order to make this proof rigorous we need to 

prove that a power series is differentiated term by term, and that a power series is 

differentiable if it has an infinite radius of convergence. A drawback is that these proofs 

involve numerous statements about the convergence of different series, hence in order 

to reach the desired knowledge concerning trigonometric function we would need a 

great deal of power series theory. This has a theoretical level way beyond what is 

expected for high school students. In addition the connection from this power series 

definition to the unit circle is difficult to realize, which could provoke the students’ 
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fractional idea of the trigonometric functions. The connection between the power series 

and the unit circle requires the complex numbers, which we will now consider.  

2.2.9 Complex numbers 

The connection between the power series and the unit circle is realized when sine and 

cosine is defined in the field of complex numbers. The Cartesian representation of the 

complex number is: 

𝑧 = 𝑎 + 𝑖𝑏 

where 𝑎 and 𝑏 are both real numbers and 𝑖 is the imaginary unit satisfying 𝑖2 = −1. 𝑎 is 

called the real part and denoted 𝑅𝑒(𝑧) and 𝑏 the imaginary part, denoted 𝐼𝑚(𝑧) of the 

complex number 𝑧. The mathematician Casper Wessel defined the complex number to 

be a vector in the plane, so 𝑧 = 𝑎 + 𝑖𝑏 just represent the vector, i.e. the point (𝑎, 𝑏) in the 

plane. In this way the complex number is an extension of the real line to the complex 

plane. Notice that 𝑧 = 𝑎 = 𝑎 + 𝑖0 is the point (𝑎, 0), which lies on the real line, so all real 

numbers are included in the complex (Lindstrøm, 2006, p. 114). The complex numbers 

can also be explained by polar coordinates (𝑟, 𝜃). Here 𝑟 represent the length of the 

vector, and 𝜃 the angle between the vector and the 𝑥-axis. Recall that the geometric 

interpretation of cosine and sine is respectively the 𝑥- and 𝑦- coordinates to the points 

on the unit circle. The connection between Cartesian and polar coordinates is seen in the 

Figure 2.8. 

 

Figure 2.8: (Retrieved from Lindstrøm, 2006, p.115) 

So if the point (𝑎, 𝑏) represents the complex number 𝑧 = 𝑎 + 𝑖𝑏 we get the polar form: 

𝑧 = 𝑟 ∗ cos(𝜃) + 𝑖𝑟 ∗ sin(𝜃) = 𝑟 ∗ (cos(𝜃) + 𝑖 sin(𝜃)) 
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Let us now see how sine and cosine are defined in the field of complex numbers. Rudin 

(1987) begins his book “Real and Complex Analysis” by stating that the most important 

function in mathematics is defined, for every complex number 𝑧, by the formula: 

𝑒𝑧 = ∑
𝑧𝑛

𝑛!

∞

𝑛=0

 

The ratio test shows that this series converges for every complex numbers, and this 

leads to the fact that the important addition formula 𝑒𝑎𝑒𝑏 = 𝑒(𝑎+𝑏) is valid for all 

complex numbers 𝑎, 𝑏. Next he defines sine and cosine as the real respectively the 

imaginary part of 𝑒𝑖𝑥: 

cos(𝑥) =  𝑅𝑒(𝑒𝑖𝑥),  sin(𝑥) = 𝐼𝑚(𝑒𝑖𝑥)  𝑥 ∈ ℝ 

This is equivalent to Euler’s formula: 

𝑒𝑖𝑥 = cos(𝑥) + 𝑖 sin(𝑥) 

Comparing Euler’s formula with the polar form of the complex number we get that 𝑒𝑖𝑥 

represents all the numbers lying on the unit circle in the complex plane. Hence 

(cos(𝑥) , sin (𝑥)) are points on the unit circle, which coincide with the geometric 

interpretation of sine and cosine. Also the addition formulae for the trigonometric 

functions can be deduced from Euler’s formula: 

cos(𝑥 + 𝑦) + 𝑖𝑠𝑖𝑛(𝑥 + 𝑦) =  𝑒𝑖(𝑥+𝑦) = 𝑒𝑖𝑥 ∗ 𝑒𝑖𝑦 = 

cos(𝑥) + 𝑖𝑠𝑖𝑛(𝑥) ∗ (cos(𝑦) + 𝑖𝑠𝑖𝑛(𝑦)) = 

cos(𝑥) cos(𝑦) + 𝑖2 sin(𝑥) sin(𝑦) + 𝑖𝑠𝑖𝑛(𝑥) cos(𝑦) + 𝑖𝑐𝑜𝑠(𝑥) sin(𝑦) = 

cos(𝑥) cos (𝑦) − sin(𝑥) sin(𝑦) + 𝑖(sin(𝑥) cos(𝑦) + cos(𝑥) sin(𝑦)) 

Splitting up in real and imaginary parts we get the addition formulas: 

cos(𝑥 + 𝑦) = cos(𝑥) cos (𝑦) − sin(𝑥) sin(𝑦) 

𝑠𝑖𝑛(𝑥 + 𝑦) = sin(𝑥) cos(𝑦) + cos(𝑥) sin(𝑦) 

This section shows us that through the complex numbers we have a relation between 

exponential growth and circular movement, and this relation makes it possible to 

deduce rules about well-known phenomena. The wider our mathematical knowledge is 
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the more we see the connection between things and get the ability to compute 

knowledge without having to remember everything.  

One thing is missing in the above, namely an argument for switching from 𝜃 as the 

argument to 𝑥 and 𝑦. The argument is the answer to why an angle can be represented by 

an arbitrary real number.  This answer was found in section 2.2.4 where we showed that 

the angle is defined as the arc length on the unit circle.  

2.2.10 Fourier series 

In section 2.1 we saw that the development of the notion of function happened through 

the study of trigonometric series. The mathematician Joseph Fourier investigated, in 

connection to his investigation of heat diffusion, the representation of various functions 

by trigonometric series. As mentioned earlier Fourier proved that an (to him) arbitrary 

function can be expressed as a sum of an odd and an even function. He also proved that a 

sine series can describe an arbitrary odd function on the interval [−𝜋, 𝜋] and a cosine 

series can describe an even function on the same interval. The result is that an arbitrary 

function can be expressed in the interval [−𝜋, 𝜋] by (Godiksen et.al., 2003, p. 44): 

𝑓(𝑥) =
1

2
𝑏𝑜 + ∑(𝑎𝑛𝑐𝑜𝑠(𝑛𝑥) + 𝑏𝑛𝑠𝑖𝑛(𝑛𝑥))

∞

𝑛=1

 

Where 𝑛 ∈ ℕ  and the coefficients 𝑎𝑛 and 𝑏𝑛 are  

𝑎𝑛 =
1

𝜋
∫ 𝑓(𝑥)cos (𝑛𝑥)𝑑𝑥

𝜋

−𝜋

 

𝑏𝑛 =
1

𝜋
∫ 𝑓(𝑥)sin (𝑛𝑥)𝑑𝑥

𝜋

−𝜋

 

Here we must be aware of Fourier’s notion of a function. He asserts that he has proved 

that arbitrary functions can be expressed as a series of trigonometric function, but in 

fact he only shows it for piecewise-continuous functions. Moreover his proof only 

concerns the interior of a given interval. The values at the endpoint could easily be 

calculated, and the periodicity of trigonometric functions enabled one to extend the 

original function to the entire real line (Katz, 2009, p. 782). Hence the functions Fourier 

considers are continuous periodic functions.  Another lack in Fourier’s investigation is 

that he does not show that his series convert. This is first proven by Dirichlet in 1829.  
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The theory of Fourier series is way beyond the mathematical level in high school, and in 

fact it does not give us a clear definition of trigonometric functions, but it is briefly 

presented here because it shows that trigonometric functions are important functions, 

both now and in the historic development of mathematics.   

2.3 The trigonometric functions in Danish high schools 

In the previous sections we have seen several different approaches to the trigonometric 

functions, not all suitable for high school students. The transition from the scientific 

knowledge to knowledge we can expect the students to gain is called the external 

didactical transposition. In this section we will examine the result of this transposition, 

namely how trigonometric functions are introduced at Danish high schools and what the 

students are expected to learn. We will only consider A-level students. Jonathan Barret 

(2012) creates in his thesis an epistemological reference model concerning the 

trigonometric functions in high school (A- and B-level). His model builds upon two 

formularies and several written exam tasks, in other words the official specifications 

regarding the teaching of trigonometric functions. This section is built on Barret’s model, 

but we also consult the written exams from 2011 until now, in case we see a change in 

tasks. Moreover we will consult the textbook used in the class we will observe. The 

textbook is built upon the Syllabus1 issued by the Danish ministry of education, and 

often the teacher will use the book instead of the Syllabus when the teaching is planned 

(Winsløw, 2006, p. 83). In Denmark it is the teacher who decides which book she will 

use in her teaching, therefore the book chosen gives us, first of all a picture of the official 

specifications, but also a picture of how the teacher thinks the teaching should be 

planned, based on the expectation that she follows the book in her teaching.  

Even though the teaching in high schools can be organised without consulting the 

Syllabus we will here briefly examine the extent to which the trigonometric functions 

appear herein. The central material in mathematics on A-level has ten categories, where 

the trigonometric functions appear in four of those (Matematik A - stx, juni 2013): 

- Ratio calculations in right triangles and trigonometric calculations in arbitrary 

triangles 

                                                        
1 The Syllabus is as set of official documents, which describes the purpose and guidelines for a given 
teaching subject, here Mathematics. Syllabus replaces the Danish word “Læreplan”.   
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- The notion 𝑓(𝑥), characteristics of the elementary functions, including sine and 

cosine, characteristics of these functions graphic path and  the use of regression 

- The derivative of the elementary functions 

- The antiderivative of the elementary functions 

The central material alone does not cover all the academic targets. The students need to 

be taught in supplementary material. The Syllabus does not concretize this material but 

mentions general topics which should be taught in order to reach the academic targets 

(Ibid.). As an example where trigonometric functions could be included in the 

supplementary material we have a course in differential equations models or a course in 

the history of mathematics. In the former one could introduce the second order 

differential equation and in the latter one could work with Euler’s formula and hereby 

include trigonometric functions, exponential growth and complex numbers. But 

implementation of trigonometric functions in the supplementary material is the 

teacher’s choice so let us not focus more on this. The fact that trigonometric functions 

appear in four out of ten categories shows that it is an important subject in high school. 

Barret (2012) creates an overview of the trigonometric functions in high school by 

consulting a formulary2 issued by the Danish ministry of education. The formulary gives 

an overview over the formulas and symbols related to the central material presented in 

the Syllabus (Barret, 2012, p. 14). After examining the formulary and the exam tasks 

Barret analyzes the teaching of trigonometric functions in terms of three sectors; a 

geometric, an algebraic and an analytic. The geometry sector involves the calculation of 

line segments and angles, the algebra sector the trigonometric identities and the 

calculation of exact values of the trigonometric functions by use of formulas, and the 

analysis sector involves graphs, harmonic functions, differential calculus and integral 

calculus  (Barret, 2012, p. 30). Here we will only consider the last sector because until 

this part it is not required to acknowledge sine and cosine as functions.  

The formulary contains the graphs of sine and cosine, as well as the derivative and 

antiderivative to both functions (Ibid., p. 20). The harmonic function is not presented in 

either the formulary or the exam tasks Barret consulted, but he includes it in his analytic 

                                                        
2 A formulary is a collection of formulas, presenting the students with an idea of what formulas they 
should be able to use in the written exams. Formulary is replacing the Danish word “formelsamling”.   
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sector because of their application in physics in connection with modelling of periodic 

phenomena (Ibid., p. 41).  With the term “harmonic function” Barret refers to the class of 

functions represented by the analytic expression: 𝑦 = a sin (𝑏𝑥 + 𝑐), and if we consider 

these functions we find them represented in at least one exam task each year for the last 

five years.  The exam tasks are a picture of what the students are expected to learn, 

hence a guideline for the teachers, so there must have been a change in the contents in 

the teaching of the trigonometric functions over the last years, and the analytic 

expression is represented in various textbooks used in Danish high schools today 

(Nielsen & Fogh, 2006; Carstensen, Frandsen & Studsgaard, 2008). 

If we consider the textbook (Nielsen and Fogh, 2006) used in the teaching, we will 

observe that the chapter called “the functions sine and cosine” starts by introducing 

radians as a new angle measure, followed by an extension of the notion of angles to also 

include angles larger than 360° and negative angles, which arise if you move clockwise 

on the unit circle. In this way it is possible to extent the notion of angle to include all real 

numbers. Next is the graphs of the trigonometric functions presented and the definition 

of a periodic function is established. The next subchapter is called “sine curves in 

general” and starts by introducing the general formula for a sine curve: 

𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑 

Then the four constants are explained. The constant 𝑑 displaces the curve in the 

direction of the 𝑦-axis. The constant 𝑎 is called the amplitude and indicates the maximal 

oscillation from the line 𝑦 = 𝑑. The constant 𝑏 indicates the number of oscillations on 

the line segment 2𝜋 on the 𝑥-axis and the constant 𝑐 indicates the displacement in the 

direction of the 𝑥-axis (Ibid., p. 43). In the end of the chapter is an example where a 

given dataset is plotted by using a CAS-tool. The plot looks like a sine curve, so the next 

step is to do sine regression on the data.  The result is a function with concrete values for 

𝑎, 𝑏, 𝑐 and 𝑑. The derivatives and antiderivatives are not introduced in this chapter, but 

in separate chapters concerning respectively differential and integral calculus. In both 

chapters the derivative/antiderivative is just presented in a box together with other 

functions’ derivative/antiderivative. Nowhere is a proof or an explanation for the 

derivative/antiderivative to the trigonometric functions presented. The reason is 

probably that the Syllabus only demands that the students know the derivative and 
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antiderivative, not the proofs behind (Matematik A - stx, juni 2013). So even though the 

proof of the derivative (see section 2.2.5) has a suitable level for a high school class, it is 

not prioritized.  

Another interesting thing in the textbook is the quick step from the specific functions 

sine and cosine to the class of functions called sine curves.  Nowhere is it explained why 

the graphs of sine and cosine looks like they do. Instead the textbook focuses on how we 

can change the form and placement of a sine curve in the coordinate system by changing 

the constants. The reason could be that the Syllabus requires that the students learn the 

use of sine regression (see p. 40). Regression is about finding the best model to describe 

a relationship between a dependent and an independent variable. In the situation of sine 

regression that is to find the function 𝑓 ∈ ℱ𝑡𝑟𝑖𝑔that describes the given dataset best. In 

order to validate such a result the students must be able to explain what the different 

constants in the class of trigonometric functions indicate.  

The Syllabus also requires that the students know the characteristic graphical path of 

sine and cosine (see p. 40). The best way to acknowledge these graphs is to realize the 

relation between them and the unit circle definition of sine and cosine. As we will see in 

the next section this realization is not easy.  

2.4 The transition from geometric tool to function 

In Danish high schools trigonometry is introduced in three different contexts; first as a 

geometric tool for solving triangle problems, here sine and cosine are defined as ratios 

between sides in a right triangle, secondly as the coordinates of the intersection 

between a ray and the unit circle and finally as functions with real numbers as input. 

This transition from a geometrical tool to an analytic function may create some obstacles 

in the student’s interpretation of sine and cosine. These possible obstacles will be 

analyzed here.  

The first obstacle could arise with the notion of function. If the students shall be able to 

acknowledge sine and cosine as functions, it is significant that they have an idea of the 

notion of function. Demir (2012) made in connection with his thesis “Students’ Concept 

Development and Understanding of Sine and Cosine Functions” a test of Dutch students’ 

interpretation of functions. Here he saw that the students were not able to give a formal 
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definition of a function. Out of twenty-three students, eighteen referred to a formula to 

explain what a function is and seven also mentioned a graph. Only five referred to an 

input-output mechanism, although other students might have meant a similar 

mechanism when talking about formulas where you can fill in 𝑥 to get 𝑦 (Demir, 2012, p. 

57). This shows that most of the students have a dynamic interpretation of the notion of 

function. The test also showed that the students tended to mark graphs they did not 

know as non-functions.  We would expect to see the same result in a Danish high school 

because, like at Dutch high schools, the students are not presented to a formal definition, 

but only to different examples of functions. 

When introducing sine and cosine as functions the big problem is that the functions do 

not have an analytic expression. There is no explicit formula which can give the students 

a 𝑦 when they plug in a specific 𝑥. Hence the students must rely on the graphs in their 

validation of sine and cosine as functions. But a graph is just a representation of a 

function, not a formal definition. So in order to accept sine and cosine as functions the 

students must realize the relation between the definition of sine and cosine as 

coordinates on the unit circle to graphs of sine and cosine. This is another big challenge. 

It would require an insight in the change from an angle measurement to the real 

numbers as input. But still one will not be able to make an exact correspondence 

between the points on the unit circle and the graphs of the trigonometric functions, 

because not all real numbers will give appropriate outputs, and moreover who can tell 

whether the functions are defined in the entire ℝ? This would require some of the 

mathematics mentioned in section 2.2.4, mathematics too difficult for high school. The 

question is how to minimize the gap between the mathematical insights needed to 

realize the relation between the unit circle definition of sine and cosine and the graphs, 

and the mathematical insight high school students are able to comprehend? We will try 

to answer this as a closure to this chapter.  

Since the big problem seems to lie in the transition from unit circle coordinates to the 

graphs of the trigonometric functions, it could be convenient if we could present the 

functions outside the geometric field and without dealing with the notion of angle. This 

is possible if we define sine and cosine in terms of either the inverse of sine, differential 

equations or power series. The problem with both the inverse of sine and the power 
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series is that the mathematical knowledge needed is too difficult for high school 

students. Moreover the definition in terms of power series has no clear link to the unit 

circle definition, which could provoke student’s fractional idea of the trigonometric 

functions. The differential equations is good as supplementary material, but seeing sine 

and cosine as solutions to differential equations only gives a reason for why we need 

sine and cosine as functions and not a better perception of these functions. So none of 

the three approaches mentioned would be suitable for high school. The complex 

numbers could be introduced, but again we would have to deal with the notion of angle, 

and the link between a part of a complex number and a function from ℝ to ℝ will also be 

too difficult in high school. Hence the only way to improve the students’ conception of 

sine and cosine as trigonometric function is through a reduction of the gap between the 

unit circle coordinates and the graphs of the trigonometric functions. This could happen 

through an introduction of the natural parametrization of the unit circle. Of course all 

the theory mentioned in section 2.2.4 will be too much to handle. However it could be 

explained that in order to make the transition we need to be able to trace the entire unit 

circle, and this is possible if we can construct a natural parametrization of the unit circle. 

That is, when 𝑡 ∈ ℝ traverses an interval 𝐼 ⊆ ℝ, the corresponding point 𝛾(𝑡) will 

traverses an arc length on the unit circle. The simplified proof of the curve length 

sketched in Figure 2.7 could, together with the definition of arc length, be introduced to 

a (clever) high school class. The existence proof could be left out and instead one could 

move directly to the construction of the natural parametrization using the unit circle. 

Most A-level high school students should be able to follow this construction. Hence this 

presentation will reduce the gap, but it is not possible to remove it completely. The rest 

of this thesis concerns how this problem is handled in a concrete course of 

trigonometric functions at a Danish high school.  
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3. THEORY  

3.1 The didactical transposition 

To elucidate the problematic we will use Guy Brousseau’s theory of didactical situations 

(from now on shortened to TDS). This theory is chosen because its foundation is that 

learning is a social activity, hence it is perfect as a tool for analyzing interactions 

between students internally and with the teacher. Before presenting the theory we will 

establish what a didactical situation is and how it arises. The first step is the didactical 

transposition from mathematics as a science to mathematics as a teaching subject. When 

a mathematician does research she sets up hypotheses, tries to prove them, discovers 

mistakes, and finds less difficult proofs and so on. But before communicating new 

knowledge to the public, she suppresses all these digressions and finds the most suitable 

way to present her work, often in an axiomatic way. She must conceal all personal 

reasons which lead her in these directions and contextualize all her remarks. She must 

find the most general theory within which the results remain valid. Thus she 

decontextualizes and depersonalizes her knowledge as much as possible (Brousseau, 

1997, p. 22).  

In the classroom the student’s work is very similar to the mathematician’s. The 

epistemological hypothesis in subject matter didactics, says that human knowledge can 

be formulated as answers to problems (Winsløw, 2006, p. 38). So in order for the 

student to gain new knowledge she must be presented with a problem to which this new 

knowledge is the answer. In the process towards this knowledge the student formulates 

hypotheses, makes proofs, exchange ideas with others and so on, all activities we also 

see in the mathematician’s work.  

To make such a learning situation possible the teacher must ensure that the student has 

the right tools, in terms of old knowledge, and that the problem given ensures the 

construction of the new knowledge. In fact the teacher has to do the exact opposite of 

the mathematician. She must recontextualize and repersonalize the knowledge, such 

that it can become the student’s knowledge (Brousseau, 1997, p. 23). This is a central 

part of the didactical transposition.  Next she must, together with the student, 

redecontextualize and redepersonalize the knowledge in order for it to be official 

knowledge.   
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In fact we will call the above the internal didactical transposition, insinuating that we 

also have an external. The internal didactical transposition is the transposition from the 

official teaching-based knowledge, such as curriculum and textbooks, to the didactical 

situation created by the teacher. The external didactical transposition is the 

transposition from the scientific knowledge to the official teaching-based knowledge 

(Winsløw, 2006, p. 19). We saw this transition in chapter 2, by first presenting the 

scientific approaches to the trigonometric functions and next the teaching-based 

approach.  

3.2 The didactical (and adidactical) situation 

As mentioned above, it is the teacher’s job to create a learning situation where the 

student has the best possibilities for constructing personal knowledge. Such a situation 

occurs if the teacher creates a milieu where the student has the ability to start using a 

strategy based on her existing knowledge, but the obstacles in the milieu soon makes 

her realize that she has to change her strategy to adapt to the milieu, thereby creating 

new personal knowledge. It is important that the knowledge is drawn from the student’s 

own interaction with the milieu, hence the teacher cannot give the answer, and it is best 

if the teacher is sometimes absent from the milieu. A situation where the teacher does 

not intervene is called an adidactical situation. If the teacher does not intervene, it is 

important that the milieu created has the ability to give the student feedback on whether 

she is right or wrong. The extent to which a milieu has this ability is called the 

adidactical potential.  The word “adidactical” does not indicate that the situation has no 

didactical intention. In fact there is a lot of work connected to devolving an adidactical 

situation that provides the student with the most independent and most fruitful 

interaction possible. The teacher must decide which information she needs to 

communicate to the student, what questions she should ask, and what method is the 

best, and so on. Thus the teacher is involved in a game with the system of interaction 

between the student and the milieu provided by the teacher. This game, or broader 

situation, is the didactical situation (Brousseau, 1997, p. 31).  

Winsløw (2006) describes the learning situation as a combination of two games: The 

student’s interaction with the milieu created by the teacher in order to personalize the 

official knowledge and the teacher’s work initiating the student’s game and afterwards 
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making the results official knowledge. Winsløw calls this the didactical double game 

(Winsløw, 2006, p. 137).  

3.3 The five phases of TDS 

The didactical game in a learning situation can, according to TDS, be divided into five 

phases. Later on we will analyze specific learning situations drawing on TDS, hence it is 

essential to look at these five phases. As an example to illustrate the phases we will use 

the puzzle problem described by Brousseau (1997). The students get a puzzle where the 

pieces are as shown in the figure: 

 

Figure 3.1: The puzzle presented to the students (retrieved from Måsøval, 2011, p. 29) 

The task is to enlarge the puzzle such that the sides measuring 5 cm on the given puzzle 

will measure 8 cm in the new puzzle. The target is to extend the students’ knowledge 

about proportionality. Let us consider the phases of the learning situation.   

3.3.1 Devolution 

The teacher introduces the task and explains the rules of the game. In our example she 

could decide that the students shall work in groups of four and that every student must 

enlarge at least one piece of the puzzle. She must also make it clear that the task is not 

solved until the new pieces fit together. In this introduction the teacher devolves the 

didactical milieu to the students. Hence the students also have a responsibility for 

understanding the given task. They can ask clarifying questions which the teacher can 

answer to make sure everyone knows what is going to happen. The teacher makes the 

students accept the responsibility for the coming (adidactical) learning situation and 

accepts the consequences of this transfer of responsibility (Brousseau, 1997, p. 230). 

The devolution is a didactical situation.  
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3.3.2 The situation of action 

In this phase the students interact with the milieu, they play the game. An expected 

observation would be that the students add 3 to all sides of their puzzle, but when trying 

to assemble the puzzle they will see the pieces are not compatible. Hence the students 

must change their strategy in order to adapt to the milieu and win the game. The teacher 

does not intervene in this phase; hence we have an adidactical situation. But if the 

obstacles from the milieu seem too big, the teacher can devolve a modified milieu 

(Winsløw, 2006, p. 138). In our example she can display a table on the blackboard 

showing the side lengths in original and in enlarged puzzle: 

 

Figure 3.2: Side lengths in original and enlarged puzzle (Retrieved from Måsøval, 2011, p. 30) 

This could make the action look clearer and lead the students to argue something like: 

“If 5 becomes 8, then 1 must become 8/5. Hence each side length must be multiplied by 

8/5”. This is a formulation of a strategy to win the game, which lead us to the next phase.  

3.3.3 The situation of formulation 

In this phase the students formulate and compare their observations and different 

strategies to win the game. The knowledge developed in the situation of action is 

personal knowledge, but here the knowledge needs to be shared, hence the students 

must try to formulate the strategies developed. The teacher may re-enter the game here 

in order to make sure that the formulations are available to all. Hence this phase is often 

didactical.  

3.3.4 The situation of validation  

Now we have one or more explicit strategies to win the game and the aim is to validate 

these strategies. This is done through argumentation and sometimes experimentation. 

Brousseau (1997) claims this phase is about establishing theorems in a broad sense. To 

state a strategy as a theorem you must confirm that what you say is true. The students 

must be able to use the mathematics as a reason for accepting or rejecting a theory 

(Brousseau, 1997, p. 15). They need to be able to make a kind of proof. This ability to 
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prove is not innate, but developed out of the desire to convince others about the truth of 

a statement or property. As Brousseau (1997) asserts: 

In mathematics, the “why” cannot be learned only by reference to the authority of 

the adult. Truth cannot be conformity to the rule, to social convention like the 

“beautiful” and the “good”. It requires an adherence, a personal conviction, an 

internalization which by definition cannot be received from others without losing 

its very value. We think that knowledge starts being constructed in a genesis of 

which Piaget has pointed out the essential features, but which also involves 

specific relationships with the milieu, particularly after the start of schooling. We 

therefore consider that for the child, making mathematics is primarily a social 

activity, not just an individual one (Brousseau, 1997, p. 15). 

Thus the construction of mathematical knowledge emerges through the conviction of 

the truth and this conviction is ultimately socially established. The teacher can decide 

whether she wants the students to validate each others’ strategies or if she will do the 

validation herself.    

3.3.5 Institutionalization 

In the previous phases the knowledge to be taught has functioned as the solution to a 

problem given to the student under conditions which allow her to find the solution 

herself. In this phase the personal contextualised knowledge constructed in the previous 

phases is made public by a decontextualisation. The teacher is the main actor here. She 

presents to the students the official formulations, the definitions and theorems 

considered important for the contextualised knowledge to gain the status of cultural 

knowledge (Måsøval, 2011, p. 53). As a part of the institutionalization the teacher may 

present the students for the same problem, but in a new context to make sure that the 

knowledge is decontextualized. In the example with the puzzle the teacher must state 

that similarity is a multiplicative structure. To enlarge a figure you must multiply each 

side by a fixed factor. The decontextualisation can be made by presenting the students 

with another puzzle.  

It is important to establish that these five phases do not always come in the order above. 

And sometimes the same phase appears more than one time within a learning situation. 

For example in the situation with the puzzle the situations of action and formulations 
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can be repeated to enable and strengthen the validation. Just imagine that the teacher 

decides to validate one of the formulations by letting the students create new pieces.   

3.4 The milieu 

Above, the milieu has been mentioned without really defining it. We will do that now. As 

mentioned above the teacher devolves a learning situation to the student consisting of 

the student and a milieu which the student can act on. This milieu consists of the 

problem to be solved and the tools available to do so. The milieu is a subset of the 

student’s environment consisting only of those features that are relevant for learning a 

given piece of knowledge (Måsøval, 2011, p. 55). This means that the students do not 

construct the knowledge of algebra in interaction with the same milieu as the milieu in 

which they construct the knowledge of probability theory (Brousseau, 1997, p. 23). 

Moreover, the milieu is not stable but changes throughout a learning situation. Briefly 

explained the situation of action is the milieu for the situation of formulation and so on. 

This is illustrated in the figure below in terms of the different roles of the student (S) 

and the teacher (T).  

 

Figure 3.3: The different roles of the student and the teacher in the didactical milieu  
(Retrieved from Måsøval, 2011, p. 56) 

Let us look at it from the inside and out. First we have the objective situation consisting 

of the mathematical problem given to the student. The milieu for the objective situation 

is the “reality” in the problem and the student (S5) interacting with this milieu is a 

hypothetical person, the person who is in the problem, for example: “A group must 

enlarge a puzzle...” The objective situation is the milieu for the situation of reference, 

where a student (S4) tries to solve the problem. The next level is the learning situation 
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where the student (S3) tries to reflect on the situation with S4 trying to solve the 

problem. Here the situation of reference is the milieu. S3 and S4 can be the same 

student. Next we have the didactical situation where a student (S2) and a teacher (T2) 

act on the learning situation as a milieu and finally we have a metadidactical situation 

where a student (S3) and a teacher (T3) have the didactical situation as the milieu to act 

on. It is in this situation that the teacher constructs her lesson and it is also here that the 

rules between the teacher and student are negotiated, i.e. the didactical contract is 

created (see section 3.5). If we compare this figure with the five phases of TDS we may 

say that the objective situation is the milieu devolved by the teacher, the situation of 

reference can be associated with the situation of action, where the student acts on the 

problem and the learning situation can be associated with situation of formulation. The 

didactical situation is the situation where the teacher may appear for the first time, and 

this can be associated with the situation of validation. It is here one reflects on what has 

been learned.  

The teachers fundamental task is to design a milieu in such a way that the student is able 

to interact with it, but the milieu also has to challenge the student so the student has to 

think in new ways to adapt to the milieu, because knowledge is gained by adapting to a 

given milieu (Brousseau, 1997, p. 30) 

As a part of the objective milieu we will in this thesis focus on the graphic milieu. That is 

the part of the milieu involving graphs. It differs from the rest of the milieu by giving the 

students a visual idea of the task they are handling. In this thesis the graphic milieu is 

important because trigonometric functions cannot be represented by a simple analytic 

expression, hence the graphs are needed.  

3.5 The didactical contract 

In order to make sure that the game in the learning situation is won by the students, i.e. 

the students learn something, it is important that both the teacher and the students 

participate in the game and follow the rules of the game. These rules form the didactical 

contract between student and teacher, and this contract is often implicit. To describe the 

didactical contract we will use the structure used by Hersant and Perrin-Glorian (2005).  

They distinguish between four dimensions of the didactical contract: The domain of the 

knowledge, the didactic status of the knowledge, the characteristics of the didactic 
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situation and the distribution of responsibility (Hersant & Perrin-Glorian, 2005, p. 118). 

These dimensions are not independent, especially the three last ones depends on each 

other, as we will see later.  

The domain is a dimension in the contract because certain techniques will be favoured 

and others will be improbable within a certain mathematical field. The teacher can 

change the domain by referring to a mathematical field the students had not thought of, 

or she can translate the problem to a new mathematical context, hereby enhancing the 

learning (Ibid., p. 118). The second dimension, the status of the knowledge, can be 

distinguished as entirely new knowledge, entirely old knowledge or knowledge in 

development. This dimension is related to the distribution of responsibility, because the 

teacher can leave more responsibility with the students in the case of old knowledge, 

than in the case of new knowledge. But if the status of knowledge is new the teacher still 

has the possibility to delegate the responsibility to the students if the situation has a 

milieu endowed with an adidactical potential. Hence the distribution of knowledge is 

depending on both the status of knowledge and the characteristics of the didactical 

situation.   

Besides the four domains, Hersant and Perrin-Glorian (2005) distinguish three levels of 

the didactical contract: The macro-, the meso- and the mico-contract. The macro-

contract is mainly concerned with the teaching objective or the target knowledge, the 

meso-contract is concerned with the realization of an activity, e.g. solving an exercise 

and the micro-contract is concerned with a concrete episode, e.g. a specific question in 

an exercise.  

On each level some of the domains stay stable, but only at the level of micro-contract 

they all stay stable and by contrast only few or none of them stay stable at the level of 

macro-contract. So in order to analyze the macro-contracts we must start by analyzing 

the micro- and the meso-contracts. The micro-contracts are defined mainly by the 

distribution of responsibility between teacher and student and the meso-contract is 

deduced from two dimensions: The existence of a milieu with adidactic potential and the 

status of knowledge at stake (Ibid., p.120). The structure of the didactic contract is 

illustrated in Fig. 3.4.  
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Figure 3.4: Structure of the didactic contract (Retrieved from Hersant and Perrin-Glorian, 2005, p. 120) 

In this thesis we will mainly analyze small episodes with associated micro-contracts in 

order to reach the larger meso-contract in each situation. Hence the distribution of 

responsibility is very important. According to the knowledge at stake the teacher can 

delegate the responsibility in didactic situations of formulation, validation and the 

institutionalization in two different ways, creating two different micro-contracts: 

Micro-contract of collective production: 

Here the knowledge at stake is available for most students. The teacher asks questions 

and most students raise their hands to answer and the teacher allows one student, then 

another one and so on. The teacher may also ask a specific student to check her 

knowledge; others wait and may intervene in case of an error. This is a micro-contract of 

individual production, inside the micro-contract of collective production (Ibid., p. 136).    

Micro-contract of agreement: 

Here the knowledge at stake is only available to a few students. The teacher relies on 

these few students and let them speak and the rest of the students are then supposed to 

agree more or less tacitly.  
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3.6 Effects of the didactical contract  

The didactical contract is the implicit rules by which we can win the didactical game, but 

sometimes the teacher’s eager attempts to fulfil her part of the contract results in 

situations where the game is “won” without the students gaining the target knowledge.  

Here we will look at two of these effects of the didactical contract. 

3.6.1 The Topaze effect 

This effect appears when the teacher, in an attempt to avoid mistakes from the students, 

gradually reduces the difficulty of the task, such that she in the end more or less just 

gives the students the answer (Winsløw, 2006, p. 148). This effect can be seen for 

instance when the teacher uses very leading questions.   

3.6.2 The Jourdain effect 

This effect appears when the teacher agrees to recognize the indication of a scientific 

insight in the student’s behaviour or answer even though the student is just following 

the instructions from the teacher (Ibid., p.148). This effect can be seen in the work with 

CAS-tool were the students just follow a guide and click on the right button. In the end it 

is concluded that the student has now learned to make regression, for example.   
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3.7 Obstacles in the teaching  

The best learning situation appears when the student works in a milieu that provides 

her with some obstacles she must overcome to reach the target knowledge. Hence it is 

an important part of the a priori analysis to realize what obstacles the student may run 

into. In the following we will consider some of the obstacles. TDS distinguishes between 

three different types of obstacles: 

1. Obstacles of epistemological origin 

2. Obstacles of ontogenic origin  

3. Obstacles of didactic origin 

An epistemological obstacle is when old knowledge struggles with new knowledge 

(Warfield, 2006). As an example we can look at a child’s knowledge concerning 

multiplication of numbers. The child knows that multiplying two numbers gives a bigger 

number, but this knowledge becomes false when the notion of numbers is expanded to 

include fractions and negative numbers. As Camilus (2012) explains the epistemological 

obstacles are related to the nature of the knowledge, hence they are built into a piece of 

knowledge independently of the student, teacher and situation (Camilus, 2012, p. 13). 

Often one uses a historic approach to identify epistemological obstacles and in this 

thesis the aim is that the subject-matter didactic analysis could help identifying some of 

the epistemological obstacles.  

The ontogenic obstacles are related to the student’s cognitive level. It is not possible to 

teach a child to add and subtract before she has learned to count. In this thesis we will 

not focus on the ontogenic obstacles.  

The didactical obstacles are those who are produced by the teaching system. They can 

originate from the curriculum, the textbook, the teacher, the methods etc.  As an 

example we can use the number 𝜋. In the early years of school students learn 

that 𝜋 = 3,14. The teacher tells them that, and it might even figure in the textbook. When 

they reach higher levels they have to think of 𝜋 as the ratio between diameter and 

circumference in a circle. The “old knowledge” could lead to a didactical obstacle to the 

“new knowledge”.  
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4. RESEARCH QUESTIONS  

The purpose of this study is to examine how students in Danish high schools make the 

transition; from working with sine and cosine as tools to investigate (essentially) 

triangles to working with them as functions. Hence a fundamental question is what 

students acknowledge as a function, and as we saw in the subject-matter didactic 

analysis this question does not have a clear answer.  Thus the first research question is: 

RQ1: What didactical strategies does the teacher deploy to help the students make the 

above transition?  

The chapter concerning the subject-matter didactics shows that the teaching of 

trigonometric functions always will involve graphic milieus in some way. Therefore the 

next two questions are asked: 

RQ2: How are graphic milieus presented to the students? 

RQ3: What role do the graphic milieus play in the students’ transition? In particular what 

adidactical potentials are found in the milieus of the episodes we observe?  

The didactic literature on trigonometric functions all agrees that students have 

difficulties in the above transition (Weber, 2005; Demir, 2012; Orhun, n.d.). Hence the 

research questions could lead up to a discussion whether the role of the graphic milieu 

could be changed in order to make the transition from geometrical tool to function 

easier.  
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5. METHODOLOGY 

In order to answer the research questions, I have followed a third year A-level class in 

their course on trigonometric functions at Gefion High school in Copenhagen. The course 

lasts four lessons and the content of the lessons is described in chapter 6. In this chapter 

the method for data collection and data analysis are described.  

5.1 Method for data collecting 

Prior to the course I received the teachers’ plan for the course together with a worksheet 

which was handed out to the students. This material together with the observations 

made during the four lessons is the data used for answering the research questions. 

Before each lesson I placed a Dictaphone on the catheter, one in the middle of the 

classroom, one in the back and finally one on myself. In this way I could compile all 

conversations, but most important I was sure that the conversations I overheard were 

recorded. An exception was the last lesson. Here the students made group work 

throughout the whole lesson; hence I had Dictaphones placed at three groups and one 

on myself. The sound recordings have been useful to capture the dialogues between 

students, but also between students and teacher. This has eased the process of 

identifying micro-contracts in the different episodes.  

During whole class teaching I sat in the back and made notes. From here I could capture 

the choices made by the teacher, including what was presented on the smart board, 

which students was asked, the type of work mode and how much time was devoted to 

the different tasks. When the students worked in groups I walked around between them 

intercepting their conversations. When I found something interesting I took pictures of 

their computer screens or even sometime videos. This visual data has been useful to 

understand what the students were looking at through their discussion and it has been 

useful to identify the visual feedback from the milieu. Throughout the course I tried to 

make my presence as invisible as possible, in order to make the data as realistic as 

possible. Only few times did the students address me in person and often it was just to 

ask about my project or my education.  
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5.2 Method for data analysis 

I have selected three different situations to be analyzed. First a situation where the 

students work in groups with sine regression, next a situation consisting of both group 

work and institutionalization of the constants in the formula for the general sine curve, 

and finally a situation where a group of students tries to institutionalize sine curves in 

general. The first situation is chosen to show how obstacles of the milieu sometimes can 

be too big. The second situation is chosen to show the interaction between students and 

teacher and the last situation is chosen to identify how much the students have learned 

through this course.  

The situations are divided into small concrete episodes determined by a specific 

question such as “why does the curve look differently than we expected?”. The dialogues 

in these episodes help us identify the micro-contracts. The aim of this study is to 

examine the students’ perception of sine and cosine as functions. This is done by 

analyzing their interactions, both internally and with the teacher. That is why TDS is 

chosen as the theoretical tool. The term didactical contract reveals the responsibility 

between student and teacher, hence the status of the knowledge at stake. The status of 

the milieu also reveals the status of the knowledge at stake and moreover the student’s 

interaction with this milieu reveals something about the knowledge available for the 

student.     

In the transcriptions and translations of the dialogues I came across spoken language 

and phrases not possible to translate from Danish to English. Hence I have given myself 

the liberty to reformulate some sentences making sure not to lose the content. I have 

tried to make the transcriptions as realistic as possible and since they represent the 

spoken language some of them may be confusing to read. I believe this will not influence 

the understanding of the content.   
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6. THE COURSE OF STUDY  

To get insight into the teaching of trigonometric functions in a Danish high school, I have 

followed a third year A-level class in their course on trigonometric functions. The class 

was composed by students from two different classes. The two first years, the students 

have had mathematics on level B, but now they have chosen to upgrade to A-level. The 

teacher has taught half of the class the first two years, whereas the other half is new to 

her. The first half of the class is used to work with the CAS-tool Nspire, because this is 

the tool the teacher prefers, whereas the other half is used to work with the CAS-tool 

Maple. Even though the teacher is not familiar with Maple, she has chosen to let the 

students themselves decide which CAS-tool they will use. I have followed the class in 4 

lessons and present an overview in Table 6.1. 

Lesson Teaching targets3 Structure of Lesson 

1 

(90 min) 

Applications of the trigonometric 

functions 

Use the notion of radians 

Try to work in practice with the 

trigonometric functions 

First a short introduction to 

periodic functions. Next group 

work on radians using a 

worksheet4 handed out by the 

teacher. Then an introduction on 

the smart board to sine and cosine 

to a number instead of an angle. In 

the last half an hour the students 

work experimentally by exploring 

how a point on a circle moves, 

when the circle rolls forward.  

2 

(90 min + 

55 min) 

Draw the graphs of the trigonometric 

function using the CAS-tool 

Argue for periodicity  

Do sine regression using the CAS-tool 

Create a model by using a 

trigonometric function 

First a recap of last lessons activity 

of examining a point’s movement 

on a circle. Next the drawing of 

sine, cosine and tangent, first in 

groups and next in plenum on the 

smart board followed by a 

discussion of periodicity. Then an 

introduction to makes sine 

regression in Maple and Npsire, 

                                                        
3 The teaching targets are the targets set by the teacher for each lesson. In Appendix 2 they are formulated 
by the teacher, but she changed her plan during the course, so the targets in the Appendix and the ones 
here are not identical.  
4 The worksheet is presented in Appendix 1. 
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followed by group work were the 

students make sine regression on 

the data collected last time. The 

last one and a half hour the 

students work with the function 

class 𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑 to 

create a model of the Ferris wheel 

in Tivoli.  

3 

(90 min) 

Differentiate and integrate 

expressions containing the 

trigonometric functions.  

First the students are asked to 

refresh the knowledge concerning 

the four constants in the 

expression for a general sine curve. 

Next the students are asked to find 

the derivative of sine and cosine 

using their CAS-tool and share the 

result in plenum. The same 

procedure is used for finding the 

antiderivative. The rest of lesson is 

used to solve exercises looking like 

the ones in the written exam. 

4 

(90 min) 

Communicate your knowledge of the 

trigonometric functions to your 

classmates.  

This lesson was a self-study lesson, 

and the students were asked to 

create documents for their own 

homepage5. The teacher divides 

the students into groups, gives 

each group their own topic 

concerning the trigonometric 

functions and leaves the class. The 

rest of the lesson the students 

work on their documents in 

groups.  

Table 6.1: An overview of the course of study 

  

                                                        
5 The homepage can be viewed at:  http://www.infogeist.dk/html/gefiongymnasium/infogeist-
1oma/matematikbogen2/topic_1.html 
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7. ANALYSIS OF SITUATION 1 

7.1 Context 

This situation takes place in lesson 2. Lesson 2 was actually two teaching periods 

divided by a short break, and it consisted of a variety of assignments and a lot of changes 

in the work mode. Therefore the lesson is divided into different parts depending on the 

work mode. The situation we here will consider is marked with yellow in Table 7.1. The 

situation marked with orange will be analyzed in next chapter.  

Duration 
(min:sec) 

Activity Work mode 

1 Repetition of the term “radians” Whole class 
teaching 

7 A recap of last lessons activity of examining a point’s 
movement on a circle, when the circle is moving forward. 
In particular a determination of the relationship between 
diameter, amplitude and period.  

Whole class 
teaching 

11 Drawing sine, cosine and tangent in the CAS-tool Individual 
work 

5:30 Drawing sine, cosine and tangent on the smartboard Whole class 
teaching 

5 Group discussion about the relations sin(𝑥) =
sin(𝑥 + 𝑝 2𝜋) and cos(𝑥) = cos(𝑥 + 𝑝 2𝜋) 

Group work 

5:30 A recap of the discussion together with a discussion of the 
term “periodicity” 

Whole class 
teaching 

2.30 Introduction to make sine regression in Maple and Nspire Whole class 
teaching 

18.30 Making sine regression on the data collected last time Group work 

7:30 Presentation of exercise 8 in the work sheet: The Ferris 
wheel in Tivoli. Including a presentation of the function 
class 𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑  

Whole class 
teaching 

7:30 Attempt to determine the values 𝑎, 𝑏, 𝑐, and 𝑑 in the 
concrete exercise with the Ferris wheel.  

Group work 

1:30 Determination of the values 𝑎 and 𝑑  Whole class 
teaching 

2 Introduction on how to determinate the four constants’ 
impact on a sine curve, by drawing different sine curves 
where one constant is changed at a time.  

Whole class 
teaching 
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14:30 The determination of the four constants’ impact on a sine 
curve, by use of the CAS-tool 

Group work 

5 Break  

6 Continued group work with the determination of the 
constants’ impact. 

Group work 

11 Collective determination of the four constants’ impact on a 
sine curve 

Whole class 
teaching 

Approx. 5 Determination of the value 𝑏 in the concrete exercise with 
the Ferris wheel. Hereafter the students are free to go.   

Group work 

Table 7.1: An overview of lesson 2 

In the previous lesson the students did an activity where they rolled a wheel along a 

table and measured the corresponding 𝑥- and 𝑦- values, and next plotted them in either 

Nspire or Maple. The target for the students was to get insight into what a circular 

movement looks like graphically. In the present situation the assignment is to do sine 

regression on the data collected last time by the use of a CAS-tool. The teacher has 

introduced how to do it both in Nspire and Maple and the students are now supposed to 

do it using the data they collected last time. Prior to the observed situation the students 

have drawn the graph of the trigonometric functions both individually in their CAS-tool 

and in plenum, with the teacher as “the secretary” writing on the smartboard. The result 

is shown in Fig. 7.1. 

 

Figure 7.1: A picture of the smartboard (tan(x) has not yet been drawn) 

The teacher introduces the task by saying: “Now let us return to the wheel we rolled. We 

shall try to figure out whether it is a sine function. Is it possible to get something which 

looks like these curves? [Points at the smartboard] “. This tells the students that the result 

of the sine regression must be a function represented as a graph, which looks like one of 

those in Fig. 7.1.  
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7.2 A priori analysis of situation 1 

Before examining what went on in the situation we will make an a priori analysis, 

determining the target knowledge of the situation, what knowledge the students 

possessed and the content of the milieu they were working in. Let us first consider the 

task “to do sine regression on the data collected last time by use of the CAS-tool”. A 

problem arises, because the task from last time was misunderstood by the students 

resulting in data not modeling a sine curve but a cycloid. The teacher was not present in 

the last part of the previous lesson and therefore not able to correct them.  In the 

worksheet the task was formulated as: “We will examine how a point on a circle moves as 

the circle moves forward. [...]For each circulation you must have 7-10 values of 𝑥 and 𝑦. 

Measure 2 to 3 circulations.” (Appendix 1, p. 2). The problem is that the students 

interpret the 𝑥- value as the 𝑥-coordinate to the point on the circle, whereas the 𝑥- value 

is in fact the traveled distance of the circle. The difference is illustrated in the Fig. 7.4. 

              

Figure 7.2: Two different interpretations of the task in exercise 4 in the work sheet.  

The two different interpretations lead to two different graphs. The former gives a 

cycloid whereas the latter gives the desired sine curve. 

7.2.1 Target knowledge 

The teacher’s intention with the task is to make the students comfortable with doing 

sine regression in a CAS-tool. The target knowledge is to learn the instrumented 

techniques attached to sine regression and to be able to validate the result.  In this 

situation we will observe the students’ work in Nspire. Here they choose the application 

“lists and spreadsheets” and plug in their data in two lists. Hereafter they choose the tool 

“statistics” and next the button “sine regression”. The result could look like: 

𝑦 

𝑥 

𝑦 

𝑥 
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Figure 7.3: An example of sine regression in Nspire 

This looks very confusing, and since the students have not been introduced to the 

expression for a general sine curve they will not be able to compare the values of the 

constant in the expression with the graph on the smartboard. Moreover the teacher 

implicitly said that the result of the regression would be a graph looking like those on 

the smartboard, hence the students are not done yet. To get a graphic representation 

they choose the application “Diagrams and statistics”, which plots the data from the two 

lists in a coordinate system. From here the students can press a button called “examine 

the data” and next “show sine regression”. The result is a sine curve approximating the 

measured points and an analytic expression for the curve: 

 

Figure 7.4: An example of sine regression in Nspire 

The students are not supposed to learn the theory behind sine regression, but they know 

that regression is a method for finding the best function (within a given class of 

functions) to model a given data set. Graphically this could be rephrased to find the best 

curve (of a given type) through the given points. Hence they can validate their result 

visually just by looking at the graph and the measured points; if these coincide the 

regression must be good. The comparison with the graph on the smartboard could lead 

to some obstacles, since the students may expect their result to be exactly as the graph 
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of sin (𝑥). The realization that the result of sine regression is not, necessarily, the 

function sin (𝑥), but an element 𝑓 in the class of functions ℱ𝑡𝑟𝑖𝑔 (section 2.1), is also a 

part of the target knowledge.  

7.2.2 Students’ knowledge 

The students have been working with CAS-tools for over two years and they have 

previously learned how to do linear regression in Nspire. The sine regression only 

requires the use of the “sine” button instead of the “linear” button, so the knowledge 

concerning the instrumented techniques is essentially old knowledge.  

The knowledge concerning sine regression must be considered entirely new knowledge. 

The students have just been introduced to sine as a function and so far all they have seen 

is the graphic representation. The teacher has no intention of explaining the theory 

behind sine regression, and the students know that linear regression gives the linear 

curve that best models the data set given; hence they may conclude that sine regression 

gives the curve of sin (𝑥). Also the graphs on the smartboard give the students the idea 

that the result of the sine regression is the graph of sin (𝑥). This is not the case since the 

result of the sine regression is a general sine curve (see p. 11), which has not yet been 

introduced to the students. Hence also the graphic representation of sine regression is 

considered new knowledge.  

The fact that the students must validate a result as being a sine curve, without knowing 

what a sine curve is, must be an obstacle to them. It is didactic because it is the teacher’s 

choice to introduce sine regression before sine curve. The intention can be to create this 

obstacle on purpose in order for the students to extend their knowledge concerning sine 

curves.  

7.2.3 The Milieu  

The objective milieu consists of the problem to be solved, in this case “Use Nspire to 

make sine regression on the data collected last time” and the tools available for solving 

this problem. The primary tool is Nspire. By using the teacher’s guide for sine regression 

the students will be giving the analytic expression 𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑, which they 

can plot to get a sine curve. Besides Nspire, the milieu is also supported by the graph of 

sine on the smartboard. The students can easily compare the graph in Nspire with the 
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one on the smartboard. Hence the graphic part of the milieu has a good feedback 

potential.  

Another element of the milieu is the data collected last time. Since the data does not 

model a sine curve it may be difficult to get a graph, which approximates the measured 

data, and this could be an obstacle when the students have to validate the result of the 

sine regression. The obstacle is didactic because it originates from the formulation of the 

task from the previous lesson.  

Doing sine regression on the data will create a sine curve, even though the data should 

be modelled by a cycloid. If a sine curve does not oscillate around the 𝑥- axis, the 

students may reject it as a correct result because they would expect it to look like the 

graph of sine presented on the smartboard. The idea that al sine curves look like the sine 

function may be an obstacle. Moreover the evident black box status of the sine 

regression may also be an obstacle. If the feedback from the milieu does not show what 

the students expect, the students would normally develop their old knowledge to adapt 

to the milieu, but here the students do not have any knowledge concerning the sine 

regression, so all they can do is change their input in Nspire. Even though the graphic 

part of the milieu has a good feedback potential, the adidactical potential in the milieu is 

weakened by the student’s lack of knowledge about what the graphic milieu represents.  

7.3 A posteriori analysis of situation 1  

The a posteriori analysis will build on dialogues in the class room. The situation we 

observe involves a group, working in Nspire, consisting of a girl and three boys, in the 

dialogues named boy 1, 2, 3 and a girl from another group named Kimmi, plus the 

teacher. Uninteresting parts are left out of the dialogues and marked by //. The entire 

dialogue is presented in appendix 3. The students in the group have done the regression, 

and drawn the graph together with the points from last time: 
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Figure 7.5: A picture of the students’ screen 

The situation we will observe is supposed to be adidactical. The teacher has devolved a 

milieu where the students should be able to do sine regression, and get an appropriate 

result. But as we will see the students find themselves unable to adapt their knowledge 

to the milieu, and the teacher has to intervene making the situation didactical. Our 

analysis will concern, first the adidactical part of the situation, and next the didactical 

part. The girl, Kimmi, from the other group comes to look at the boys’ result: 

1. Boy 1 We can’t make it work. 

2. Kimmi Oh. You can’t make it work. But there is one missing. 

3. Boy 1 We have our points here, but the graph doesn’t want to go to 

zero. 

4. Kimmi It is the same problem with ours. Our regression… It just says 

that in Nspire it will not do it apparently. It must be because it 

doesn’t approximate.  

5. Boy 2 But it is not even close to the points if you see. 

6. Kimmi Oh. Can I see? 

7. Boy 2 It is almost the opposite of the points.  

8. Boy 1 Doesn’t it look like it is the half of the points? 

9. Boy2 Yes, that’s what it does.  

10. Kimmi What? Is it the half of the points?  [Go gets her own computer] 

11. Boy 2 [Looks at girl’s computer, which shows a graph not hitting the 

x-axis, but with the same period as the points plotted.] Okay, 

yours also looks weird. 

12. Kimmi So ours up here. Here it works fine enough...   

The first quote tells us that the boys believe that their graph is a bad model of the data 

points. Looking at their graph (Fig. 7.5) we must agree. In quote 2 we do not know what 

Kimmi means when she says that there is one missing, but maybe she refers to the fact 

that the graph shows the point (0,0) as a measured point, whereas this point is not 
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visible in the list of data. This is because the boys did not realize that the movement 

started in the point (0,0) before typing in all the points, so they just added the 

point (0,0) in the end. In quote 3 we see that boy 1 expects the graph to approach the 𝑥-

axis. This is either because he knows that regression makes the best fitted curve through 

the measured points, and since the point plot shows three points on the 𝑥- axis he would 

expect the curve to approach these, or it is because the graph of sin (𝑥) oscillates around 

the 𝑥-axis, and his expectations to sine regression is a result looking like the graph 

of sin (𝑥).  Kimmi informs the boys that they are not the only ones with that problem. Her 

explanation is that it is because the curve does not approach the points on the 𝑥- axis, 

hence she knows that regression is about finding the curve that models the data points 

best. Boy 2 is also aware of this, because he questions the fact that the curve is not even 

close to the points. In quote 7-9 boy 1 and 2 agrees that the curve is half of the points 

(Fig. 7.5). They do not use the term “period” in their formulations. Even though 

trigonometric functions was introduced as periodic functions, and the students have had 

time to work with the connection between the unit circle and the period of 𝑓(𝑥) =

sin(𝑥), the knowledge concerning periodicity is still new knowledge. In quote 11 the 

boys see Kimmi’s graph, which may look like the one in Fig. 7.6. 

 

Figure 7.6: A suggestion to how Kimmi’s graph may look like 

Even though the period here is correct, boy 2 still thinks that the curve is wrong. It 

shows that the curve’s closeness to the 𝑥- axis is an important element in the students’ 

validation of the curve. Kimmi, on the other hand, accepts her graph to be correct even 

though it does not approach the 𝑥-axis. Either she knows that a general sine curve does 

not have to oscillate around the 𝑥-axis, or more likely she just accepts that the points on 

the 𝑥-axis are too far away for the curve to approach these, just like for linear regression, 

where there could be “outliers”.  
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The entire dialogue shows students trying to explain what they see, but no one tries to 

change anything. This is probably because the students’ knowledge concerning the 

mathematical theory behind sine regression is insufficient in order for them to adapt to 

their situation. They do not know what to change.  

A few minutes later the teacher comes by and the struggle with the period continues. 

The students try to do regression one more time, but this time with the point (0,0) as the 

first data point in the list, in contrast to earlier where they had just typed it as the last 

point. This makes the period of the graph change, so it becomes the same as the period 

of the data points (Fig. 7.7). But the group is still not satisfied: 

 

Figure 7.7: A picture of the students’ screen 

1. Boy 2 It still doesn’t hit zero. 

2. Kimmi It still doesn’t hit. Look we get the same [shows her computer 

to the teacher] 

3. Teacher But what is the period here? It matches. It has two arcs. 

4. Boy 1 Yes, that is correct. It matches. 

5. Teacher Yes. The other thing is just because you have chosen exactly 

one above, that’s why it doesn’t come down. But this one, it 

matches [points at the graph]. 

 // 

6. Teacher It isn’t because you used a ruler there didn’t started in zero, 

but a little bit over? 

7. Boy 1 No, we used my ruler and it added 0,6, so we subtracted 0,6 

from all points. 

8. Kimmi Maybe the paper has been moved a bit. 

9. Boy 2 Yes, there are a lot of sources of errors. 
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Quote 1 shows that hitting the 𝑥-axis is still important for the students. In quote 3 the 

teacher wants the students to focus on the period and in quote 5 she says that the reason 

why it does not hit the 𝑥-axis is that the students must have added 1 to all the points 

besides the ones where the wheel hit the table. This seems a bit confusing, but she 

probably means that it is possible to choose whether the graph should hit the 𝑥-axis or 

not, just by adding or subtracting a given number to all your points, thus implicit also 

saying that sine curves do not have to hit the 𝑥-axis. At the end she validates the 

students graph by saying that the new curve matches the measured points. In quote 6 

the teacher tries to find reasons why the students’ graph does not hit the 𝑥-axis. She 

tries to help the students in their attempt to get the graph down to the 𝑥-axis, but one 

could question whether this would help the students reach the target knowledge; to do 

sine regression and validate the result. Maybe the teacher believes that if the students 

see the graph oscillating around the 𝑥-axis, they would accept it as a correct result and 

hereafter they will be able to see how the graph can be moved in the direction of the 𝑦-

axis without changing its character as a sine curve.  

It is worth noticing that the teacher does not point out that the data collected does not 

model a sine curve. This may be because she has not realized that the task from the 

previous lesson could be misunderstood. Most likely she realizes that the data collected 

does not model a sine curve when she looks at the students’ screen. She may think that 

this is due to measuring mistakes made by the students, but to redo the task from last 

lesson will take too much time and she believes that the target knowledge of the present 

situation can be reached even though the data does not model a sine curve.  

The teacher has in this situation devolved an adidactical milieu leaving much of the 

responsibility for learning to the students. This is accepted by the students because the 

primary work is technical work in Nspire, which should be old knowledge. But since the 

mathematical knowledge in the situation is entirely new the students do not have the 

tools to change their actions. The meso-contract of the situation is the technical action in 

the CAS-tool and a part of the meso-contract is that if obstacles occur the teacher must 

intervene, because the knowledge to be taught is still just recently being introduced.  
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8. ANALYSIS OF SITUATION 2 

8.1 Context 

This situation also takes place in lesson 2. It is marked with orange in Table. 7.1. Since 

the work mode changes in the situation we observe we will consider the situation as two 

phases (not phases in the sense of TDS). The first phase is just before the break and we 

observe a group working with sliders in Nspire, this phase is called phase 2A. Next we 

observe the teachers institutionalization of the four constants, this is called phase 2B. 

The assignment in the situation is to determine how the four constants impact on a sine 

curve. The teacher shows the importance of this by giving the students an exercise 

where they need to know the constants’ impact. The exercise given is: 

8. The Ferris wheel in Tivoli has a diameter of 15 m. One round takes 15 sec. The 

tour starts 5 m above the earth.  

a) You have to figure out how the height of the basket you are sitting in 

changes in time. 

b) How high above the earth are you after 20 sec.? 

c) At what time are you 17 m above the earth for the first time? 

(Appendix 1, own translation) 

The transition from the group work on sine regression to the presentation of exercise 8 

is a monologue by the teacher: 

“One can see that every time something oscillates like this [refers to the data, 

which the students have just made sine regression on] then one can describe it as a 

function like 𝑎 𝑠𝑖𝑛(𝑏𝑥 + 𝑐) + 𝑑 [writes the formula and a sine curve on the 

smartboard] In everyday language one calls it a sine curve, something waving like 

this [points at the curve on the smartboard]. This is regardless of how the period 

is, how big the difference is and how it is displaced in both the direction of 𝑥 and 𝑦. 

Then one will get an expression like this. That is why, when someone has 

something looking like this and one has points [draws points on the sine curve] 

from a collection of data, then one will be able to do sine regression and get the 

expression. But sometimes you have a verbal description and from this you can 

produce the expression. That is what we are going to do now.” 
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When presenting exercise 8 the teacher draws the information on the smartboard 

together with the information drawn during her monologue (Fig. 8.1): 

 

Figure 8.1: The smartboard during exercise 8 

In order to solve subtask a) you must figure out a way to describe the height above the 

earth as a function of time. After the teacher’s monologue the students know that the 

function must be of the form 𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑, but the question is what the four 

constants are.  

At first the teacher lets the students try to find the constants in groups. They find the 

constants 𝑎 and 𝑑 to be respectively 7,5 and 12,5, but when they are going to find 𝑏 

and 𝑐 the teacher changes the concrete assignment; “Describe the height above the earth 

as a function of time” to the more general assignment; “ Use the CAS-tool to describe the 

four constants’ impact on a sine curve“. To see what a constant does to the curve, the 

teacher asks the students to draw different sine curves where they change one constant 

at a time. Recall that some of the students have Nspire as CAS-tool and others have 

Maple. In Nspire you can create so-called sliders for each constant, hereby changing the 

constants continuously. In Maple this would require some programming, or else the 

students have to manually change the constants in the expression. In the situation we 

observe, the sliders in Nspire are used to explain the constants’ impact, both in phase 2A 

and 2B.  

8.2 A priori analysis of situation 2 

Even though the situation consists of two phases I have decided to make one a priori 

analysis of the entire situation, primarily because the target knowledge is the same in 
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the two phases. In the cases where we have some deviations we will make the deviation 

clear by referring to “phase 2A” or  “phase 2B”.  

8.2.1 Target knowledge 

The target knowledge in this situation is to be able to use the CAS-tool to explain how 

the four constants a, b, c and d impact on the class of trigonometric functions 

ℱ𝑡𝑟𝑖𝑔 = { 𝑓(𝑥) = 𝑎 sin (𝑏𝑥 + 𝑐) + 𝑑|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}  called sine curves.  This is relevant 

because one of the teacher’s targets for this lesson is that the students are capable of 

creating a model using a trigonometric function (Appendix 2). In order to do so you 

must know the meaning of the different elements in the model. The task is presented as 

a subtask to solve exercise 8. Thus the teacher clarifies, through a concrete example, the 

importance of knowing these constants’ behavior in order to create a model using a 

trigonometric function.  

            

Figure 8.2a                                                                                               Figure 8.2b 

The benefit of the sliders in Nspire is that the students immediately get an explicit 

picture of the constant’s behavior. When changing the sliders for 𝑎 from a small value to 

a greater one, they will immediately see that the amplitude of the sine curve becomes 

greater (Fig. 8.2a+b). The target knowledge is to see that the amplitude is two times the 

value of 𝑎. In the same way the student will easily see that 𝑑 displaces the curve on 

the 𝑦-axis. When using the sliders for b the students will see that the period of the 

function is changed. Hence an intuitive description of 𝑏 could be that “𝑏 is the length of 

the period”, but here one has to notice that when 𝑏 is made greater the period becomes 

smaller. The period and 𝑏 is inversely proportional. If we call 𝑇 the period we have the 

relationship: 
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𝑇 =
𝑘

𝑏
 

where 𝑘 is the proportionality factor. To find 𝑘 one can let 𝑏 equals 1, and then read off 

the period. The period will be 2𝜋, giving the relation: 

𝑇 =
2𝜋

𝑏
 

This makes good sense since we know the period of 𝑓(𝑥) =  sin (x) is 2𝜋. 

When changing the slider for 𝑐, one will see the curve moving in the direction of the 𝑥-

axis. The question is whether it moves in the positive or the negative direction. The 

answer is negative direction, which is observed by looking at one of the curve’s 

intersections with the 𝑥-axis. If 𝑐 = 0 (and 𝑑 = 0) then the intersection is in 0. If we 

change 𝑐 to 2, the intersection is in -2, for 𝑐 = 4, the intersection is in -4 and so on. 

Hence 𝑐 displaces the curve, in such a way, that if 𝑐 is made greater the curve is 

displaced in negative direction. These mathematical insights achieved by using the CAS-

tool are also a part of the target knowledge.  

8.2.2 Students’ knowledge 

In phase 2A we consider a small group of students working in Nspire and in phase 2B we 

observe the entire class, including both students working in Nspire and students 

working in Maple, hence the students’ instrumented techniques are not the same in the 

two phases. In phase 2A the small group of students is asked to create sliders in Nspire, 

the teacher does not explain how to do this, and the students do not seem to have any 

problem with this task, so here the knowledge concerning the CAS-tool is old knowledge. 

In phase 2B the case is a bit different. The teacher presents the sliders in Nspire on the 

smartboard, but we now have students who have never worked in Nspire, so the use of 

sliders is probably a new technique to them. But these students working in Maple do not 

have to create the sliders themselves, and the use of the sliders is intuitively clear, so we 

do not see this as an obstacle to reach the target knowledge.   

Prior to this situation the students have drawn the graph of sin(𝑥) and they have made 

sine regression in their CAS-tool where the result was a function of the form 𝑓(𝑥) =

 𝑎 sin (𝑏𝑥 + 𝑐) + 𝑑 and a corresponding graph. Here the students tried to validate their 

results with statements such as “It is not a sine function, because the graph does not hit 
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the 𝑥-axis”. This is a reasonable conclusion because they have only seen sine curves 

oscillating around the 𝑥-axis. So far their knowledge concerning sine curves does not 

involve curves oscillating around the line 𝑦 = 𝑑, but still they have an idea of the graph 

as periodic with a wave-like shape. So the graph of sine curves must be considered as 

knowledge in development.  

The students have just been introduced to sine as a function, and now they also have to 

acknowledge sine as an element in a family of functions. This could be an 

epistemological obstacle to some of the students, because their perception of functions 

does not include family of functions. Neither does the textbook or Syllabus indicate that 

the students should relate to this.  

In phase 2A the students have only worked with concrete examples of sine curves and 

are (partly) able to decide whether a given graph is a sine curve or not. But they have 

not worked with the general characteristics of a sine curve, so the meaning of the 

constants 𝑎, 𝑏, 𝑐 and 𝑑 must be considered as new knowledge in phase 2A.  In phase 2B, 

the students have had time to work with these constants in Nspire, so here the 

knowledge is in development.  

8.2.3 The milieu 

The objective milieu consists of the problem to be solved, here “explain how the four 

constants 𝑎, 𝑏, 𝑐 and 𝑑 impact on a general sine curve 𝑓(𝑥) =  𝑎 sin (𝑏𝑥 + 𝑐) + 𝑑” and the 

tools available. In phase 2A the students first of all have the CAS-tool Nspire at their 

disposal. They draw the graph of 𝑓(𝑥) and create four sliders. By using the slider for the 

constant 𝑎, they may for instance see that the amplitude is changing (Fig. 8.2a+b). In this 

way the milieu can help the students formulate hypotheses about the constants’ 

behavior and moreover the milieu will provide the students with feedback concerning 

their hypotheses. If the hypothesis about 𝑏 is that “𝑏 is the length of the period”, then 

one will expect the period to be greater when 𝑏 is made greater. Testing this in Nspire 

will show the opposite; the period will become smaller when b is made greater. Hence 

Nspire can be used in both the formulation and validation of hypotheses concerning the 

constants’ behavior, thus the milieu supported by Nspire has a high adidactical potential 

when working with this particular task. The milieu also consists of information written 

on the smartboard (see Fig. 8.1). 
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In phase 2B the milieu is changed, because here we have students who are used to work 

in Maple and students who are used to work in Nspire, so the milieu of each student 

depends on the CAS-tool he/she uses. Common to all is the presentation on the smart 

board, where the teacher uses Nspire to create four sliders and the graph of 

𝑓(𝑥) =  𝑎 sin (𝑏𝑥 + 𝑐) + 𝑑. The students working in Nspire will not experience a big 

change in the milieu, but the students working in Maple will get a whole new visual 

response from the milieu. In Maple they had to create a new graph each time they 

changed a constant, hereby letting the milieu provide them with lots of different graphs. 

Now they can see one graph changing form as the different constants are changed, and 

this could be an advantage. The graphs created in Maple are all static representations of 

functions, but when we use the sliders in Nspire we change this static representation to 

a dynamic one. We have a family of functions, where each function is a static object, but 

the graph is dynamic. It is changing depending on which function it represents. This 

dynamic approach to the graphs of the sine curves may give the students a feeling of 

controlling the process, a “hands on” feeling and hereby ease the learning. As mentioned 

before the notion of a family of functions can be difficult to interpret, and here we could 

actually talk about a family of a family of function. If we consider one parameter at a 

time, and let the other be fixed we get one family of functions, for example: 

𝑓𝑎(𝑥) = 𝑎 sin (𝑥) 

Since we have 4 parameters we can consider four of these families, and on top of that we 

have to consider them as one family, namely: 

ℱ𝑡𝑟𝑖𝑔 = { 𝑓𝑎,𝑏,𝑐,𝑑|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ} where 𝑓(𝑥) = 𝑎 sin (𝑏𝑥 + 𝑐) + 𝑑 

It is no wonder that this could be difficult, and by splitting up, and looking at one 

constant at a time the students only have to focus on one thing at a time. But it is 

important, that the pieces are collected, and the students get an idea of what the family 

of trigonometric functions represents. The graphic milieu with the sliders will hopefully 

give them the idea that the family is all the functions looking sinusoidal. We can displace, 

stretch and compress any sinusoidal function in both the direction of 𝑥 and 𝑦, and it is 

still a sinusoidal function belonging to the family of trigonometric functions.  
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But to sum up, the milieu in both phases is supported by an algebraic part; the family of 

functions ℱ𝑡𝑟𝑖𝑔 and a graphic part; the graph window with sliders in Nspire.  

8.3 A posteriori analysis of situation 2 

We analyze phase 2A and 2B separately. Each phase is split into episodes defined by the 

micro-contract at stake and represented by the dialogue in the given episode. In the 

dialogues, uninteresting phrases are left out. This is marked by //. The whole dialogue is 

presented in appendix 4 and 5.   

8.3.1 Phase 2A 

We observe a group consisting of two girls and a boy. Kimmi, one of the girls, sits in the 

middle and is the only one typing on her computer. Just before the observed situation 

Kimmi has orally formulated the behaviour of the four constants to the teacher: 

“𝑎 changes the length of top and bottom in the curve, 𝑏 is the period, or the length 

of the period. The wave length, makes it greater or smaller. 𝑐 moves the curve on 

the x-axis and 𝑑 moves the curve on the 𝑦-axis.”  

The group continues to change the sliders in order to validate their formulations. Since 𝑐 

displaces the curve on the 𝑥-axis Kimmi expects that the curve goes through (0,0) when 

𝑐 is zero. But Nspire presents her with a graph going through (0,1), so she asks the 

teacher for help:  

 

Figure 8.3: Kimmi’s screen 

1. Kimmi Bente...Why is it, that when I start by letting the 𝑐-value be 

zero, then my graph doesn’t starts in zero?  

2. Teacher It has something to do with the sine part. 
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3. Kimmi So, this is our graph [points at her screen]. But if one lets 𝑐 be 

zero, because it displaces it.   

4. Teacher Yes, then the whole sine part becomes zero. 

5. Kimmi No, because it is just added by zero. So it just.. This one just 

becomes “sine to 𝑏𝑥” 

6. Teacher Yes, and 𝑥 is zero here, right? At the 𝑦-axis 𝑥 is zero. 

7. Kimmi Yes, then the whole sine part becomes zero.  

8. Teacher Yes, then the whole sine part becomes zero. But then there is 

still 𝑑 left, so in zero you start in 𝑑.  

9. Kimmi Okay, so if we let this one be zero [refers to the slider for 𝑑] // 

Now we start in zero. 

In this episode we have a micro-contract of individual production, since the 

development of knowledge involves only the teacher and one student. The episode 

starts with Kimmi asking the teacher a question, showing the teacher that the milieu 

devolved has some obstacles. The teacher has created an adidactical situation were the 

students should be able to validate their formulations using the CAS-tool.  But the fact 

that Kimmi needs to ask the teacher for help, hereby making the situation didactical, 

indicates that either the feedback potential in the milieu or the students’ knowledge is 

not as good as expected.  

The teacher says that it has something to do with the sine part, referring to the formula 

for a sine curve, or in fact just the part "𝑎 sin(𝑏𝑥)". Kimmi continues to consult the graph 

window, explaining that if one lets c be zero, then the graph should not have moved, 

because c displaces the graph, and if 𝑐 is zero, it is the same as doing nothing. The 

teacher agrees by saying yes, but refers again to the algebraic part of the milieu by 

saying that the sine part becomes zero. Now Kimmi also consults the formula, but 

disagrees with the teacher and needs to be reminded that 𝑥 is not 𝑥, but zero, since she 

is interested in a point on the 𝑦-axis. Kimmi is so focused on the constant 𝑐 that she 

forgets to include the meaning of the other constants. The graph on her screen is 

representing the function 𝑦 = sin(𝑥) + 1, but to Kimmi the graph represents the 

function 𝑦 = 𝑎 𝑠𝑖𝑛(𝑏𝑥 + 0) + 𝑑, where the constants 𝑎, 𝑏 and 𝑑 are not in focus. She is 

not aware that a formula including a constant actually represents a family of functions, 

so when considering an expression as 𝑦 = 𝑎 𝑠𝑖𝑛(𝑏𝑥 + 0) + 𝑑 she must first fix the 

constants 𝑎, 𝑏 and 𝑑, and be aware of the fixed values impact on the curve, before being 

able to validate the behaviour of the constant 𝑐. Kimmi does not grasp this at first, but 
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with the teacher’s help she gets the idea. Then she tries to let 𝑑 equal zero in her graph 

window, and then she gets a graph going through (0,0). Kimmi uses the graphic milieu to 

validate her hypothesis that in order to have a sine graph going through (0,0) you must 

let both 𝑐 and 𝑑 be zero.   

It may seem a bit misleading that the teacher says that the reason why the graph does 

not goes through (0,0) has something to do with the sine part, when it is in fact the 

constant 𝑑, which influences on the graphs displacement. But if the teacher had just 

informed that 𝑑 was the reason why, we would have had a clear Topaze effect were the 

teacher’s desire to let Kimmi win the didactical game would make her just give away the 

answer. By letting Kimmi use the formula of a sine curve to realize that when both 𝑥 and 

𝑐 is zero we get 𝑦 = 𝑑, Kimmi creates the personal knowledge needed to accept that the 

graph does not pass (0,0), including the fact that the graph is affected by all the involved 

constants at the same time. This creation of personal knowledge is important in order to 

reach the target knowledge, because if the knowledge is not personalized to the student, 

it does not become a part of the student’s knowledge, but just some institutionalised 

knowledge the student may not relate to any situation. The conversation between the 

teacher and the group continues:  

1. Kimmi But how can we then calculate the real 𝑏- and 𝑐- values? 

2. Teacher Yes, you may consider that. You can consider that if you have 

the period here [points at the graph on the screen]. What does 

that have to do with 𝑏? 

3. Kimmi It lasts 𝑏, a period. Or half a period. 

4. Teacher It has something to do with the period. 

5. Boy It is how long it takes for each wave.  

6. Kimmi The length of the period 

7. Boy Yes the length of the period.  

8. Teacher Mmm.. 

9. Kimmi  It was 15 seconds it took. 

The situation has now changed because the question no longer concerns the behavior of 

the graph, but how to find the values of 𝑏 and 𝑐 in exercise 8. The boy in the group 

interferes, but still we have a micro-contract of individual production, because the 

knowledge at stake is not available to most of the students in the class, mainly because 

they are not part of the conversation. The responsibility for solving the problem is with 



84 
 

Kimmi and the boy. In quote 4 the teacher makes a partial (implicitly negative) 

validation, but she does not state whether Kimmi is right or wrong, but encourages her 

to continue looking at the period. In quote 8 the teacher just mumbles an “Mmm”, 

indicating that she agrees, but does not want to validate the students’ formulations. We 

have a micro-contract saying that the teacher must not clearly validate the student’s 

formulation, because the responsibility of creating the knowledge in development is 

with the students. Quote 9 refers to exercise 8 and the fact that it took 15 seconds to 

complete a period, but instead of focusing on the exercise the teacher wants them to 

look at the graph on the screen: 

 
Figure 8.4: Kimmi’s screen when both 𝒄 and 𝒅 are zero.  

1. Teacher Then try to look here. What is the period here?... In relation to 

what 𝑏 is. 

2. Kimmi 𝑏 is 1 here and the period is… [Tries to read the period directly 

from the screen] 1, 2, 3, 4, 5.. A little bit above 5, maybe. I 

cannot quite see it. 

3. Teacher No, but then you can find two maxima.  

4. Kimmi [Works in NSpire for a while] Okay, 6,28 

 5. Teacher Mmm, and what is that? 

6. Kimmi That is the length 

7. Teacher What is 6,28? It is a very nice number. 

8. Girl  It is two times π 

9. Teacher Yes. So now you can consider why it is exactly 2𝜋. 

10. Girl  That is because it is the circumference 

11. Boy  It is the circumference. 

In this episode the teacher wants the students to see the relation between the period 

and the constant 𝑏. The teacher guides the students by asking questions, hereby taking 

more of the responsibility, probably because she knows this is entirely new knowledge. 
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In quote 1 the teacher wants the students to use the graphic milieu, maybe because she 

in the previous episode realized that the students have not realized that 𝑏 is not the 

length of the period, but reversal proportional to this length. Girl 1 knows that 𝑏 is 1, 

because that is what the slider is set to, and she knows that the period is the length from 

wave top to wave top, so she starts using the graphic milieu to count the distance 

between the two wave tops. In mathematics, reading off a graph is less valid, than 

finding the value algebraically. One reason is, as here, that a reading will not always be 

precise. Thus if possible one should find the maxima algebraically, but in this case this is 

not yet possible, because the students have not learned how to differentiate sine and 

cosine, so the next best thing is to find the maxima using the CAS-tool (Fig. 8.5a). In 

quote 4-8 we see that it requires some efforts from the teacher before the students 

realize, or more likely guess, that the period is 2𝜋. In fact we are approaching a Topaze 

effect, where the teacher almost gives the correct answer. In quote 9 we are approaching 

a Jourdain effect. The teacher realizes that the students do not reach the target 

knowledge as quickly as she has expected, so she starts guiding them by giving 

instructions on what to do. If this continues the result could be that the students do not 

construct personal knowledge, but just becomes actors in the teacher’s presentation of 

the knowledge. These effects of the didactical contract show us that the teacher is very 

eager to let the students grasp the relation between 𝑏 and the period. In quote 10 the 

girl claims that the reason why the period is 2𝜋 is because it is the circumference. We do 

not know to what it should be the circumference, but the girl probably sees a link 

between this period and the circumference of the unit circle, which the students have 

spent a lot of time on the lesson before, when they were converting between degrees 

and radians. The teacher does not confirm this statement, but instead she wants the 

students to consider another value of 𝑏:  

1. Teacher So when 𝑏 is 1 you get 2π. What if 𝑏 is 2, what will you get 

then? 

2. Boy Then, we will get... Then we will get… 

3. Kimmi [Changes 𝑏 to 2 in Nspire] Then we get the same. 

4. Boy Yes 

5. Girl  Do we get the same? 

6. Kimmi Yes, we get the same. It is the only change we have made, the 

one with 𝑏. 
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7. Teacher [Looks at the screen and sees that Nspire now have found 

maximum of the first and third wave top (Fig. 8.5b)] But, try to 

look here. This isn’t the distance between the neighbor holes. 

 

      

                                         Figure 8.5a: The maxima when 𝒃 = 𝟏                    Figure 8.5b: The (local) maxima when 𝒃 = 𝟐 

8. Kimmi Oh yes, it has measured the third hole. 

9. Teacher But you are allowed to take these to values, but then you just 

have to remember that there are two periods.  

10. Kimmi Yes. So we have to divide by 2, then we get π.  

// 

11. Kimmi Okay, now we have it on 4.  

12. Teacher You could try to guess 

13. Kimmi [Hesitantly] It must be the half? One quarter?   

14. Teacher So when you make b 

15. Kimmi Greater 

16. Teacher Then.. 

17. Kimmi π becomes smaller. 

18. Teacher Then the period becomes smaller. 

The first part of this episode shows us that trusting the CAS-tool too much can be 

misleading. In the previous episode, Kimmi found the maxima by highlighting small 

parts of the graph, where she could see that the maxima would be, and hereafter letting 

Nspire find the maximum. If you change the period, then the graph changes and so does 

the placement of the maxima. But the parts you have highlighted in Nspire do not 

change, so the maxima giving to you by Nspire, is just the maxima in the highlighted 

parts, not necessarily the maximum of your graph. In our situation the change in period 

still results in wave tops in both highlighted parts, so the students do not see that it is 

not the first and second wave top, but the first and third.  

The second part of the episode contains a formulation of the correspondence between 

the constant 𝑏 and the period. Again we have a micro-contract of individual production. 
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In quote 12 the teacher wants Kimmi to guess what the period would be, giving her the 

responsibility for the knowledge to be taught. Kimmi’s answer in quote 13 shows the 

teacher that Kimmi knows that the period will be smaller than before, hence the teacher 

helps her, in quote  14-17, formulate the relation, hereby taking much of the 

responsibility for the formulation of the relation. In quote 18 the teacher chooses to 

correct Kimmi’s answer by repeating it with the word “period” instead of 𝜋. She could 

have given a negative validation and said: “ No, it is not 𝜋, which becomes smaller, but 

the period”, but instead she chooses the more positive solution, maybe because she 

knows that Kimmi meant period and not 𝜋 or maybe because she thinks that the context 

is more important than the correct word. A negative validation may have given Kimmi 

the idea that she was all wrong, whereas the partial positive validation makes her feel 

that she almost had the correct answer.    

Most part of phase 2A concerns the teacher’s attempt to lead the students towards 

certain points in order for them to gain their own personal knowledge about, the 

correspondence between the constant 𝑏 and the period. The meso-contract of the 

situation is the formulation of new knowledge. A part of the meso-contract is the fact 

that the students must produce the knowledge themselves using the questions from the 

teacher as guidelines. Towards the end of the situation the teacher has a tendency to 

break the contract, both when her questions turn into instructions and when they 

become to leading.    

8.3.2 Phase 2B  

This phase takes place in the end of lesson 2, right after the students’ group work. It is 

whole class teaching and the teacher leads the conversation. The teacher has projected 

her computer screen on the smartboard, so now everyone can see a sine curve and four 

sliders: 

 

Figure 8.6: The smartboard during the institutionalization 
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1. Teacher Okay, I think we will make a recap // We did more or less 

agree what happens with 𝑎, right? [Pause] Camilla? 

2. Camilla Eeh, the highest and lowest 𝑦-value. 

3. Teacher Yes. We can do this here [changes the slider for 𝑎]. Now 𝑎 

becomes a greater number, and we can see that the oscillations 

becomes greater. So what you can say is that a determines the 

oscillation in relation to the equilibrium position. If we try to 

find maximum and minimum for this one [Uses Nspire], then 

we see that minimum is 2,5 and maximum is 12,5, so there is a 

difference on 10. This difference is exactly 2𝑎, because it 

oscillates 𝑎 both ways, right? When 𝑎 is 5 it can go 5 up and 5 

down, and that corresponds to 2,5 and 12,5.  

4. Girl What was it you said? It determines the oscillations in relation 

to what? 

5. Teacher The equilibrium position. So, I can move it a little bit up, then it 

goes from 0,5 to 14,5, that is a difference on 14 and now 𝑎 is 

set to 7, right? You could of course move… [She changes 𝑑 to 

zero in Nspire] // So this was 𝑎, and 𝑑 we already have 

discussed. Now 𝑑 is zero, so it oscillates equally on both sides.  

 
The first thing to notice here is that the teacher has long monologues.  This is due to the 

fact that she now wants to institutionalize the four constants’ impact on a sine curve.  

She wants to make sure that all students know the meaning of the constants, and are 

able to formulate the meaning using the official terms. The pause in quote 1 is a pause 

where the teacher, after asking her question, waits for the students to raise their hands. 

In this way she gets an idea of how many students the knowledge is available to. The 

majority of the class raised their hands creating a micro-contract of collective 

production. In quote 3 the teacher validates Camilla’s answer by using the sliders on the 

smartboard, hereby taking responsibility for the knowledge at stake. She could have 

asked another student to validate, but by doing it herself she can incorporate the official 

formulation: “𝑎 determines the oscillation in relation to the equilibrium position.“ 

hereby institutionalizing the constant 𝑎. The teacher does not focus on the fact that 

Camilla’s answer is incorrect; in fact she gives the answer a positive validation by saying 

“yes”, but 𝑎 is not the highest and lowest 𝑦-value, and neither is it the distance between 

these two values, but only the half of it. This is either because the teacher accepts 

Camilla’s answer since she can connect 𝑎 to the highest and lowest 𝑦-value, or because 
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the teacher finds it more important to institutionalize the official formulation to the 

entire class. Either way Camilla’s role in the building of knowledge becomes 

unimportant.  

The term “equilibrium position” is probably used because the teacher also teaches in 

physics, and we see in quote 4 that this term is confusing, and maybe new, to some 

students. The teacher does not explain the term, but changes the value of 𝑑 to zero, 

hereby moving the equilibrium position to the 𝑥-axis, maybe to reduce the confusion. 

Her focus is on clearly showing how the graph changes when 𝑎 changes and hereafter 

she moves to the constant 𝑏. 

1. Teacher Then we have 𝑏 and 𝑐. Some of you examined what happens 

with 𝑏, right? What happens when you changes 𝑏? Eric? 

2. Eric The length of the period changes 

3. Teacher Changes, yes. So when you make b greater… 

4. Eric Then the period becomes smaller  

5. Teacher Yes. We can see that by changing this one. Now I make 𝑏 

greater, then I get a smaller period, and if I make 𝑏 small, then I 

get a very long period. So in a way you can say that 𝑏 and the 

period.. [Is interrupted by a student, but the interruption is left 

out here]. 

Here we have a micro contract of individual production inside the micro-contract of 

collective production. Eric answers to the teacher’s question, and she gives a positive 

validation by saying yes, but still she wants Eric to be more explicit in his formulation, so 

she starts a sentence and let Eric finish it. She did the same thing earlier when Kimmi 

had to explain the relation between 𝑏 and the period, which indicates that a part of the 

didactical contract is that the teacher implicitly can ask questions through unfinished 

sentences. The teacher lets Eric elaborate his answer and hereby have the responsibility 

for the formulation. This indicates that the teacher knows that the impact of 𝑏 is more 

difficult to formulate than the impact of 𝑎, so she wants to ensure that Eric, representing 

the entire class, has constructed a personal knowledge of the relation between 𝑏 and the 

period. In quote 5 the teacher validates Eric’s formulation by use of the sliders and after 

a short interruption she continues the institutionalization. 

1. Teacher But we agree that when you make 𝑏 greater the period 

becomes smaller. And the period is often called 𝑇, at least in 
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physics. Then one can say that 𝑏 and the period must be 

inversely proportional. That is, if you make 𝑏 twice as big, then 

the period becomes the half and vice versa. // If they are 

inversely proportional, then their product must be some 

constant. What constant is this? Here we can just see what 

happens if for example 𝑏 is 1 [She uses the sliders to illustrate]. 

How can I read the period most accurately? Martin?  

2. Martin Isn’t it from wave top to wave top?  

3. Teacher Yes. [She uses Nspire to find the two maxima]. How can we 

then calculate the period? I have found the two points where 

there is a maximum. Here 𝑥 is equal to 0,854 and here 𝑥 is 

equal to 7,14. The period is how far there is between these two 

points, and what is that? Nanna? 

4. Nanna It is 7 minus 0,854. 

5. Teacher Yes, 7,1 − 0,854. And if we calculate it what do we get? I think. 

Didn’t some of you do it? Kimmi? 

6. Kimmi It is 2𝜋 

7. Teacher It is in fact 2𝜋. So the product of 𝑏 and the period is 2𝜋, or one 

can say that 𝑏 is 2𝜋 divided by the period. So if you know the 

period you can figure out 𝑏, and also the other way around, if 

you know 𝑏 you can figure out the period.  

In quote 1 the teacher has a long monologue of pure institutionalization. She talks about 

the term “inversely proportional” and she does not involve the students, so we may 

assume that she expects this to be old knowledge. She ends her monologue by asking a 

question concerning the reading of the period. This indicates that here she wants the 

students to take responsibility. The knowledge concerning the period of a function is 

knowledge in development and by letting the students participate in the production of 

knowledge the teacher first of all sees to whom the knowledge is available. In quote 5 

the teacher asks Kimmi what the period is, because she knows that Kimmi has the right 

answer. By letting Kimmi give the answer the teacher lets the knowledge constructed in 

the group work become available for the entire class, hereby avoiding a repetition of the 

scenario where the students do not connect 6,28 with 2𝜋. In quote 7 the teacher again 

institutionalizes, but this time it is new knowledge. This should be easy to follow if all 

students have explored the relationship as the group in phase 2A did, and this is 

probably what the teacher had in mind when she designed the teaching.  
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1. Teacher So that was the 𝑏. Then we only lack the 𝑐. This we have up 

here. What happens when I change the 𝑐? Nille? 

2. Nille Then the curve displaces itself on the 𝑥-axis.  

3. Teacher Yes, so it just changes. It doesn’t changes shape or size, it is just 

displaced. So it has something to do with where the curve 

starts. If I let 𝑐 be zero, where does it start then?... Now I look a 

bit confused, I thought it would start in zero. [Changes her 

sliders in Nspire] Maja? 

4. Maja Then it starts in zero 

5. Teacher Yes, then it starts in zero. When c is zero it starts in zero. 

6. Kimmi But only if the 𝑑-value also is zero. 

 // 

7. Teacher Oh, yes. d also have an imfluence. But now I also have 𝑑 to be 

zero here. So the equilibrium point will be in zero. But the 𝑐-

value you can use to make it have a certain initial value. If we 

consider the case with the balloon swing, then the value of 𝑐 

depends on where you are, when it starts to turn around. But I 

just think we will write that 𝑐 is the displacement on the 𝑥-axis.  

Here we again have a micro-contract of collective production, where the teacher asks 

one of the students, raising their hand, and next reformulate the answer so it becomes 

more clear and formal.  In quote 3 the teacher says that the 𝑐-value has something to do 

with where the curve starts. This word “start” is then used several times by the teacher 

and the students, but a curve like the sine curve approaches infinity in both the negative 

and positive direction, so to talk about a starting point is absurd. We may assume that 

the teacher refers to an appropriate point from where we can describe our curve. In 

quote 6 we see that Kimmi wants to share the knowledge she developed in phase 2A, 

and the teacher agrees with her. In quote 7 the teacher tries to explain how you can use 

the 𝑐-value to give the sine curve a certain starting point. The terms equilibrium point 

and initial value are again terms that are frequent in physics, but maybe less familiar to 

the students. But she decides to just institutionalize the 𝑐-value as the displacement on 

the 𝑥-axis.  

The entire dialogue in phase 2A shows a classroom discourse of triadic dialogue, defined 

by Lemke (1990) as a three part Question-Answer-Evaluation pattern (Lemke, 1990, p. 

23). The teacher asks a question, waits for the students to raise their hands and then 

calls on a student. The student answers and the teacher evaluate the answer, either by 
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repeating what the student just said or simply by saying “yes”. The evaluation is here 

often followed by an explanation and an official formulation. In other words, the 

didactical milieu the teacher has created consists of small formulations followed by a 

more spelled out validation, which leads to the institutionalization.  The benefit of this 

triadic dialogue is that the teacher can lead the conversation towards the target 

knowledge and simultaneously observe which students the knowledge is available to, 

and to which it is not. A drawback is that the students do not influence the dialogue. The 

teacher decides which topics are discussed as we saw in the first episode with the 

question concerning the equilibrium position.  

The meso-contract in phase 2B is the institutionalization of new knowledge. The triadic 

dialogue is a part of the contract and the students know that the responsibility for 

validating the formulations is with the teacher.  
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9. ANALYSIS OF SITUATION 3 

9.1 Context 

This situation takes place in lesson 4, the self-study-lesson where the students had to 

create documents for their own homepage. The class has a homepage where they write 

about the subjects taught in class. The goal is to create an E-book, which can be used 

when they have to study for the exam. Before leaving the class the teacher divides the 

students into eight groups and gives each group their own topic concerning 

trigonometric functions: 

1. Graphs of sine, cosine and tangents 

2. Radians 

3. Periodicity 

4. Sine curves in general 

5. Sine regression in Maple 

6. Sine regression in Nspire 

7. The derivative of sine, cosine and tangens 

8. The antiderivative of sine and cosine 

The group observed got the topic “Sine curves in general”, hence the assignment in the 

situation can be interpreted as select and formulate the knowledge concerning the 

trigonometric functions you find relevant for explaining “sine curves in general” to your 

class mates. Lesson 4 was the only one where the students had homework to prepare. 

They were asked to read the chapter “The functions sine and cosine” (Nielsen & Fogh, 

2006, pp. 40-45). So besides the personal knowledge learned in the previous lessons, 

they also have the institutionalized knowledge from the textbook at their disposal.  

9.2 A priori analysis of situation 3 

9.2.1 Target knowledge 

The students are supposed to review the knowledge taught through three previous 

lessons and select the parts they find relevant for explaining sine curves in general. The 

target knowledge is to redepersonalize (see section 3.1) personal knowledge and make 

it official, i.e. produce an institutionalization of sine curves in general.  
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If we consider the textbook (Nielsen & Fogh, 2006) we find a section called “Sine curves 

in general” and we expect this to be the institutionalized knowledge the students should 

learn about sine curves in general. The section starts by presenting the general formula 

for a sine curve: 

𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑 

The constants are explained as:  

“𝑑 displaces the graph in the direction of the 𝑦- axis. Instead of oscillating 

symmetrically around the 𝑥- axis, the graph will oscillate around 𝑦 = 𝑑. The 

constant 𝑎 is called the amplitude and is the maximal oscillation from the 

line 𝑦 = 𝑑. The constant 𝑏 is called the cyclic frequency and indicates the number 

of oscillations corresponding to the length 2𝜋 on the 𝑥-axis. The length that one 

oscillation fills on the 𝑥-axis is called the oscillations period 𝑇. The relation 

between 𝑏 and 𝑇 is: 

𝑏 =
2𝜋

𝑇
 

The constant c is the displacement in the direction of the x-axis. “(Nielsen & Fogh, 

2006, p. 42, own translation).  

The students should be able to formulate the behavior of these constants. Likewise the 

students should be able to explain that the general sine curve is not just one function, 

but a class of functions. So when considering one specific sine curve you consider an 

element 𝑓in the class of trigonometric functions ℱ𝑡𝑟𝑖𝑔. As mentioned in section 2.1 it can 

be difficult to realize that one general analytic expression represents a great amount of 

functions, and hence a great amount of graphs. Likewise it can be difficult to explain to 

others.  

Moreover a presentation of sine curves in general will also include an explanation of 

what a sine curve is, including the graph’s wave-looking pattern and the term 

“periodicity”. If a graph is periodic it means that it repeats itself after a given time. In the 

case of a general sine curve it repeats itself after one oscillation, hence the period of a 

general sine curve is 𝑇. The ability to formulate the above is a part of the target 

knowledge.  
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9.2.2 The students’ knowledge 

Sine as a curve in a coordinate system was introduced to the students for the first time 

in lesson 2, and the same goes for the expression 𝑓(𝑥) =  𝑎 sin (𝑏 ∗ 𝑥 + 𝑐) + 𝑑. As we saw 

in situation 2 the students had time to work with the constants’ influence on the curve 

and especially the influence of the constants 𝑎 and 𝑑 will be considered knowledge in 

development and even old knowledge. The students have not had time to personally 

work with the constants 𝑏 and 𝑐, so the influence of those is considered new knowledge.   

The term periodicity has been mentioned to the students in the very first introduction to 

trigonometric functions, and in lesson 2 they had time to work with the relation 

between the period of the sine function and the circumference of the unit circle, hence 

the knowledge concerning periodicity is considered knowledge in development.  

In general we will say that the knowledge concerning general sine curves is knowledge 

in development. As we described in section 2.4 the transition, from sine as the 𝑦-

coordinate to a point on the unit circle to sine as a function, is difficult to realize. 

Through the last three lessons the students have had a lot of information concerning this 

sine function and in particular the more general sine curves. To process all this new 

information and decide what is relevant for a general sine curve, and what is not, may be 

a challenge for the students.  

9.2.3 The milieu 

The milieu is always attached to a task with criteria as to when the task is solved. In this 

situation the task to be solved is “create a document about sine curves in general”, and 

this does not have these criteria. There is no milieu around this task, only a media in 

terms of the textbook. Since the textbook has a section dedicated to this specific topic 

the book becomes an authority the students can rely on. 

In order to solve the task the students must create smaller tasks, which have the wanted 

criteria and hereby making small milieus. An example could be the task “describe the 

constants in the formulae for a general sine curve”. A part of this milieu is the CAS-tool 

Nspire. By means of the sliders in Nspire the students can easily change the constants in 

the expression for a general sine curve and immediately get a visual response in terms of 

a changed curve. Moreover this milieu is also supported by the documents the students 

have produced earlier in Nspire. The students can consult these documents and see how 
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they have solved a given problem before and use this as a guideline for the present 

problem.  

Since the teacher is not present in this situation the objective milieu plays a crucial role, 

because in an adidactical learning situation only the milieu can react on the students’ 

actions. The milieus’ ability to provide this feedback is called the milieus’ adidactical 

potential. With the task “describe the constants in the formulae for a general sine curve” 

Nspire has a very high feedback potential. If the students have a hypothesis about, for 

example, 𝑎’s behavior, the sliders in Nspire immediately tells them whether the 

hypothesis is correct or not. If the students are able to create these smaller tasks, they 

can create milieus with high adidactical potential. The teacher believes that the students 

are able to do so, because the knowledge concerning general sine curves has already 

been personalized through previous lessons. 

9.3 A posteriori analysis of situation 3 

The observed situation involves a group consisting of a boy and two girls, named girl 1 

and girl 2 in the dialogue. As before uninteresting elements are left out of the dialogue 

and marked by //. The entire dialogue is presented in appendix 6. The situation takes 

place half an hour into the lesson. It lasts 23 minutes and consists of three different 

episodes. First an episode concerning which graph illustrates a general sine curve best, 

next an episode where they compare a textbook example of a sine curve with the graph 

of sin(𝑥), and finally an episode where the boy struggles with the feedback from Nspire.  

In the first episode the group has begun writing their document and has written that the 

sine function is periodic with the period 2𝜋. After some discussions on whether they 

should add a graph with one period or multiple periods, they decide to add the former 

and then explain how this graph shows one turn around the unit circle, but in fact the 

graph could continue to infinity. They present the graph: 

 
Figure 9.1: The graph in the students’ document 
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But they are still not sure that this is the best way to present a general sine curve. Their 

doubt is due to the fact that the textbook presents two graphs; the function sin (𝑥) and 

an example of a general sine curve: 

 

Figure 9.2: The graph of 𝒇(𝒙) = 𝐬𝐢𝐧 (𝒙) (Nielsen & Fogh, 2006, p. 42) 

 

Figure 9.3: An example of a general sine curve (Nielsen & Fogh, 2006, p. 43) 

The students have changed the media to a milieu with the task “choose the graph, which 

represent a general sine curve best”. Let us consider their dialogue: 

1. Boy But shouldn’t we have a picture of this function instead of this? 

[Points first at the graph for a general sine curve and next at 

the graph of sin(𝑥)] 

2. Girl 1 No, why? 

3. Boy Yes, because this one [points at the general curve] looks a lot 

different. It doesn’t intersect the x-axis. 

4. Girl 2 Oh, but isn’t that just because… 

5. Girl 1 It MUST intersect the 𝑥-axis. 

6. Girl 2  ... They have inserted a 𝑑? 

7. Girl 1 Yes. It is the 𝑑 that does it. The thing where it intersects. 

8. Girl 2 But beside that, isn’t it just the same principle? 

9. Girl 1 Yes, yes. But I think this one [points at the general curve] is 

more correct than that one [points at 𝑓(𝑥)  =  𝑠𝑖𝑛(𝑥)]. Because 

our Nspire, it wouldn’t intersect the 𝑥-axis. I remember that 

from last time. [Small pause] But let us just explain what 𝑎, 𝑏 

and 𝑐 is. 

10. Girl 2 Yes, eeh.. Okay, 𝑎… [Looks in the textbook] 

11. Boy  But I just don’t think this one is a sine curve. It is a sine 

function. That is why it doesn’t make any sense.  
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12. Girl 1 Of course it is. It is this one. Isn’t it?  

13. Boy No, because this one is just 𝑓(𝑥)  =  𝑠𝑖𝑛(𝑥). It is just the sine 

function. This one [points at the general curve] is sine CURVES. 

Here you work with the constants 𝑎, 𝑏, 𝑐 and 𝑑.  

14. Girl 1 Mmm.. 

15. Boy Try to make one like this in Nspire 

The boy thinks that the graph presented in Fig. 7.3 is a more correct presentation of a 

sine curve, than the one presented in Fig. 7.2. His argument in quote 3 tells us that he 

does not believe that two different graphs can both represent a sine curve. One of them 

has to be more correct then the other. The boy interprets a sine curve as one function 

and not as a class of functions.  He leans towards the example of a general curve 

probably because this one is presented in the section called “sine curves in general” and 

the boy knows that the textbook represents the knowledge to be taught.  

Girl 1 is not willing to reject the graph of sin (𝑥). She believes that a sine curve must 

intersect the 𝑥-axis. This is a result of the previous lessons. In lesson 2 the class was 

presented to the sine function oscillating around the 𝑥-axis, and in the same lesson Girl 1 

was in the group from situation 1, where they were confused because their sine 

regression would not hit the 𝑥-axis. Thus Girl 1 has got the impression that sine curves 

oscillate around the x-axis.  But when Girl 2 suggests that the difference between the two 

graphs is the constant 𝑑, Girl 1 remembers that changing 𝑑 can prevent the curve from 

intersecting the 𝑥- axis. The girl’s knowledge concerning sine curves is still in 

development. In quote 9, Girl 1 argues that the general curve must be the correct one, 

because Nspire would not intersect the 𝑥-axis either, referring to the previous lesson 

where her group could not get the sine regression in Nspire to hit the 𝑥-axis.  Girl 1 

cannot rely on her own knowledge yet, so she has to use elements of the milieu to 

validate her hypothesis, here the fact that Nspire would not make the graph hit the 𝑥-

axis, so most likely the graph should not hit the 𝑥-axis.  Even though Girl 1 gets to this 

conclusion, she does not engage to replace the graph of sin(𝑥) but just suggests that they 

explain what the constants in the expression for a general sine curve do. She believes 

that this is a part of the assignment, and either she finds this more important than the 

choice of graph or she chooses this part of the task because this is old knowledge to her 

or because it is explicitly described in the textbook.  
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In quote 11 the boy rejects the sine function to be a sine curve because of its status as a 

function. The boy’s knowledge concerning the notion of function has the status of 

knowledge in development. He accepts the graph in Fig. 7.2 to be a function, but he does 

not realize that a sine curve also represents a function from the class of trigonometric 

functions. The boy makes a clear distinction between functions and curves, most of all to 

convince himself that it is okay that he cannot see the connection between the two 

graphs.  

The girls continue describing the constants and the boy finds his computer and starts to 

construct a general sine curve in Nspire with the use of sliders. When the girls are done 

Girl 1 asks if there is more in the textbook. The boy flips the page and discovers an 

exercise about a sine curve: 

 

Figure 9.4: Exercise in textbook (Nielsen & Fogh, 2006, p. 43) 

1. Boy Okay, there is a proper example 

2. Girl 1 But that is the same as the one we have made.  

3. Boy No.. 

4. Girl 1 Yes it is. 

5. Boy I am quite sure it isn’t. Because our function has the same 

oscillations on both. Our function goes from the period T, 2T 

[long pause]. But I think it is because it has a d we don’t have.  

6. Girl 1 Mmm.. 

  // 

7. Boy But then it is wrong all what we wrote in the beginning. 

Because here it doesn’t have the period 2T all the time. 

8. Girl 1 No 

9. Girl 2 Oh.. 
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10. Boy  Argh! 

11. Girl 1 it is bad, huh? 

12. Girl 2 What was it we had done wrong? 

13. Boy Look here. It doesn’t have the same oscillations on both sides 

of the x-axis. So the period where we say it goes from 0 to 2T 

and from 2T to 4T, it isn’t correct, because it only goes from 3,8 

to 6,1. I think it is because they have a d.  

[Long pause]  

14. Boy I think that what we wrote is correct. It has to be. Because if we 

move from wave top to wave top there is 2π.  

15. Girl 1 Yes there is.  

16. Boy  But it just doesn’t intersect the x-axis in π.    

In quote 1 the boy probably calls this exercise a good example, because the text says 

“The drawing shows a sine curve”. Here the group has a graph they know for sure is a 

sine curve. In quote 2 Girl 1 links the graph in the example with the one in Fig 7.1. It is a 

bit surprising that she immediately links a graph with one period to a graph with several 

periods. Here we must remember that the students have their CAS-tool right in front of 

them, so even though Girl 1 has inserted the graph with only one period in the 

document, she has seen it looking like the graph of sin (𝑥) in the textbook. So in fact the 

girl compares the graphs in Fig 7.2 and Fig. 7.4, and the similarity here may be the fact 

that they both intersect the x-axis. The girl’s knowledge of sine curves is still centered on 

this intersection.  

In quote 5 the boy will not accept the two graphs to be the same because the oscillations 

do not look the same. The sine function oscillates around the 𝑥-axis and the sine curve in 

the example does not. He refers to the period of the sine function, probably because he 

will use this as an argument for the graphs’ dissimilarity, but instead he concludes that 

the dissimilarity is due to the constant 𝑑. This is either because the constant 𝑑 has been 

mentioned before in their discussion or because the knowledge concerning 𝑑 is more 

consolidated in the boys knowledge of sine curves, than for example the knowledge of 𝑐. 

When trying to explain a phenomenon one will always try to find the answer in the 

personal old knowledge.   

In quote 7 the boy confuses 𝑇 with 𝜋.  The function sin(𝑥) has the period 𝑇 = 2𝜋, not 2𝑇. 

So what they have written in their document is not wrong, but they must not confuse the 

period of 𝑓(𝑥) = sin(𝑥) with the period of a general sine curve, and this is what the boy 
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does, both here and in quote 13. When confusing  𝑇 with 𝜋 he gets the idea that since the 

sine function has the period 2𝑇 and oscillates around the 𝑥-axis, then all function must 

oscillate around the 𝑥-axis if they have the period 2𝑇. The boy’s knowledge concerning 

periodicity is still new. Again he refers to the constant 𝑑 as the reason why the sine 

curve in the example does not oscillate around the 𝑥-axis, and he is right.  

After a long pause the boy finally accepts what they wrote in the document. In quote 14 

he realizes that his interpretation of the period was wrong and states that the period in 

the example is 2𝜋, showing us that he did confuse 𝑇 with 𝜋 before. But first of all the 

period is not 2𝜋 but 6, and secondly the boy still confuses the period of a general sine 

curve with the period of the sine function. In quote 16 he mentions why he got confused. 

If the period should be 2𝜋, the boy would expect the curve to intersect the 𝑥-axis in 𝜋, 

forgetting that both the constant 𝑐 and 𝑑 can influence on this.  

This episode is characterized by the boy’s attempt to explain the difference between the 

graph of the sine function and the graph of a general sine curve, both to the girls but not 

at least to himself. The episode has a micro-contract of agreement, because the girls do 

not contribute at all.    

Later on the boy again gets confused because his graph in Nspire does not match the one 

in the textbook. He does not say it, but maybe it is the meaning of period which is 

confusing him again.  

1. Boy Now it doesn’t make any sense at all. I don’t understand it 

2. Girl 1 Should we add pictures of everything? 

3. Boy No, but it looks odd. [He is very focused by what he sees on his 

computer screen. He is changing the constants by use of the 

sliders]. 

4. Girl 2 Why? 

5. Boy It still doesn’t fit. [Long pause] But we have explained what 

they do? 

6. Girl 1 Yes, but you wanted a picture [both girl laughs]. 

7. Boy So. Now it looks nicer. [He has changed the constants to a = 5, b 

= 2, c = 5, d=0, so the graph is as the one presented in Fig. 7.5c] 
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  Figure 9.5a: The screen in quote 1       Figure 9.5b: The screen in quote 5        Figure 9.5c: The screen at the end 

The boy wants the graph to look as much as possible as the sine function. If the function 

has a small period or is too far from the 𝑥-axis they boy does not accept it as a proper 

sine curve. To him the perfect sine curve is the sine function. He accepts his graph when 

it oscillates around the 𝑥-axis, so apparently 𝑑 = 0 is still a resistant requirement to him. 

The entire situation is characterized by the fact that the students easily get confused and 

easily change their minds. This is due to the fact that the knowledge at stake is still 

currently being learned. The term “sine curves” is a huge abstraction because it is a 

family of functions with four independent parameters. It requires a lot of work and time 

to interpret all four constants. Every time the students get confused they have to change 

their interpretation and hereby extend their knowledge. Moreover the realization of sine 

curves as more than one function is challenged by the fact that both the book and Nspire 

only presents one curve at a time.   

The meso-contract of the situation is the institutionalization of knowledge concerning 

sine curves in general. A part of the meso-contract is that the knowledge at stake is 

available for the students, either as their own personal knowledge or in the milieu. 

Otherwise the teacher would not have left them alone. The students know that the book 

presents the official knowledge and use it both explicitly when they have to formulate 

the impact of the constants, and more implicitly when the boy for example thinks that a 

general sine curve is more correct to present than the sine function. Also Nspire has an 

authority role. What Nspire produces is considered correct by the students. If Nspire 

does not give the feedback the students expect, they are convinced that they have made 

something wrong or misunderstood something.  This is seen both in the first episode 

where Girl 1 is convinced that a sine curve should not hit the 𝑥-axis, because it does not 

in Nspire, and in the last episode where they boy struggles with the feedback from 

Nspire.   
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10. DISCUSSION  

In this chapter we will discuss the observed situations in order to answer the research 

questions. The chapter will also include a discussion of the CAS-tool and a discussion of 

the graphic milieu.   

In situation 1 the students are challenged by the fact that Nspire produces a graph not 

hitting the 𝑥-axis. This is an obstacle to the students because they believe that sine 

curves must oscillate around the 𝑥-axis. Normally an obstacle would make the students 

change their actions in order to adapt to the milieu, but in this situation their old 

knowledge is insufficient. The question is why the teacher has chosen to give much of 

the responsibility for learning to the students, when clearly the knowledge at stake is 

new. The teacher’s intention with the task was probably, that by using the well-known 

instrumented techniques the students could get a sine curve fitting the measured points. 

The fact that this sine curve most likely does not oscillate around the 𝑥-axis, will make 

the students extend their knowledge of sine curves. The problem was that the data 

collected did not make the sine curve fit the data points, hence the step towards 

accepting sine curves not oscillating around the 𝑥-axis is blocked by the unexpected fact 

that the curve does not approach the data points. The teacher tries to find reasons why 

the students’ graph does not hit the 𝑥-axis, instead of just making it clear that sine 

curves do not have to oscillate around the 𝑥-axis. This might be because she believes 

that a graph which is neither fitting the data point nor oscillating around the 𝑥-axis is too 

big a challenge for the students. If the graph could just oscillate around the 𝑥-axis, the 

students may accept it as a sine curve, and from here the step towards acknowledging a 

sine curve oscillating around 𝑦 = 𝑑 is small.    

In situation 2 we saw that the teacher finds the knowledge concerning the constants in 

the general sine curve very important. She devotes one and a half hour to ensure that the 

students acknowledge these constants’ impact on a sine curve. There could be several 

reasons for this; firstly the teacher knows that the acknowledgement requires a personal 

need to realize these constants’ impact, a need which only appears if the students are 

faced with a problem where the answer lies within the constants. Secondly the teacher 

knows that the acknowledgement will require some time. As mentioned in section 8.2.3 

the students have to interpret sine curves as a family of functions with four parameters, 
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this requires the ability to both acknowledge the constants separately, but also 

acknowledge their compound impact on a sine curve. Moreover the students have to 

work with both an analytic and a graphical representation of a function and this switch 

between representations may also require extra time. Thirdly the teacher must find the 

knowledge concerning the general sine curve very important. This is probably due to the 

fact that sine curves have been represented in the written exams for the last five years 

(section 2.3).  

Situation 3 gives us an insight in the students’ personal knowledge after a course in 

trigonometric functions. An interesting part is that the assignment given is so open that 

the students have to create smaller tasks in order to create milieus wherein they can 

work. This assignment is only possible because the knowledge the students are 

supposed to (re)institutionalize is already made personal and partly institutionalized by 

the teacher. The question is then whether the students learn something during this 

(re)institutionalization. The assignment alone does not ensure that knowledge is 

developed, but in the situation we saw that the students did extend their knowledge 

concerning sine curves. Even though the constants in the expression for a general sine 

curve were institutionalized by the teacher, the students had a hard time comparing 

different sine curves and realizing that the difference was due to the constants. The boy 

realizes that there is a distinction between a function and a curve, but he does not 

realize that a curve is a representation of a function. He considers two graphs and 

concludes that one is a function and the other a curve. His knowledge concerning 

functions does not include different representations of functions, because if it did, he 

would have known that both graphs are curves representing different functions. His 

knowledge concerning a family of functions is also weak, and that is why he so 

desperately wants to distinguish the two graphs. He does not realize that they are both 

elements in ℱ𝑡𝑟𝑖𝑔. The fact that the notion of function is abstract to the boy may inhibit 

his acknowledgement of sine and cosine as functions, and this could also affect his 

acknowledgement of the sine curves.  

A reason why the teacher chooses an assignment like the one in situation 3 is probably 

that she believes that the argumentation and discussion, concerning the selection of 

which knowledge is suitable for the given subject, is helping the students developing 
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their knowledge.  Moreover the documents created can be used as an evaluation of the 

students’ knowledge, but only few students participated in creating each document. 

More likely the assignment ensures the teacher that the students have proper notes for 

the exam.  

In all three situations periodicity is a challenge for the students. This is probably linked 

to the transition from unit circle to graph. If the students are aware that the graph of 

sine emerges as we traverse the unit circle, then they will be able to connect the period 

of a given sine curve to the circumference of the circular motion it models. On the other 

hand, the more abstract this transition is to the students the harder it gets to understand 

the periodicity.  

Linking the three situations we see that the teaching is focused on sine curves instead of 

the function sine. The focus is to acknowledge the possibilities connected to a sine curve 

more than to acknowledge the transition from unit circle coordinates to trigonometric 

functions. This is probably because the teacher uses the textbook as a guideline for her 

teaching and here the transition is not explained at all (Nielsen & Fogh, 2006). This 

didactical choice made both by the official instances and the teacher is most likely 

caused by the fact that the mathematical knowledge required for realizing this transition 

is way beyond what is expected in high school (see section 2.2.4). But maybe this 

realization could help the students acknowledging sine and cosine as functions. Most 

likely the students interpret a function as an input-output mechanism. If they can realize 

that sine tells them how far they are from the 𝑥-axis when they have travelled a given 

distance on the unit circle, then sine can be interpreted as a function. Likewise cosine 

can be interpreted as the function taking the distance on the unit circle as input and 

giving the distance to the 𝑦-axis as the output. If the students realize this, they also 

realize the transition from the unit circle to the graph. Thus the question is what is 

needed to make this realization. The natural parametrization mentioned in section 2.2.4 

is the mathematical foundation for the existence of sine and cosine as functions. Most 

likely all of this does not have to be acknowledged in order to interpret sine and cosine 

as functions. But the fact that there is a one-to-one correspondence between the real line 

and unit circle may help the students in the process.  
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Another reason for skipping a detailed explanation of the transition could be that the 

teacher finds it more important that the students know that sine and cosine are 

elements in the family of functions called “sine curves”. Besides mathematics the teacher 

also teaches physics and knows how useful sine curves are to model a great amount of 

periodic phenomena like oscillations, sound waves, the temperature throughout the 

years etc. In continuation of this the result of sine regression is a sine curve, as we saw in 

situation 1. This is another reason for focusing on sine curves instead of the sine 

function.  

The transition from sine as a value, either in a triangle or on the unit circle, to sine as a 

function is a big abstraction. But the next step; to realize sine as a family of function is an 

even bigger abstraction for the students. The students are challenged by the fact that 

they have to realize that different functions can all be the solution to a specific task, 

because they are all a part of the same family of functions; sine curves. Moreover they 

have to relate to four different parameters when they validate a given sine curve.  These 

challenges concerning sine curves may be the reason why the teacher chooses to spend 

most of her teaching on those.  

Even though the teacher does not spend much time on the transition from unit circle 

coordinates to functions, she uses most part of the first lesson to introduce the angle 

measure “radians”. Her motivation for this is that we want to give sine and cosine real 

numbers as inputs instead of degrees, and this requires radians. But why does a radian 

number equals a real number? Here the natural parametrization of the unit circle 

becomes convenient again. The radian number is a measure for the arc length 

subtending an angle in the unit circle, and this arc length has a one-to-one 

correspondence to the real line because the natural parametrization of the unit circle 

exists.  

10.1 The status of the CAS-tool 

In all the observed lessons the students had their computers right in front of them. The 

computer is the one tool the students always bring along and the teacher also uses it as 

an integrated part of the teaching. When the students have to realize the graphic path of 

sine and cosine in lesson 2, the teacher asks them to plot the functions in the CAS-tool 

and thereafter explain to her what they see. Then she explains how this graph relates to 
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points on the unit circle. Before computers were a part of teaching, the realization of the 

graphic path would have proceeded strictly opposite. The students would have had to 

create the graphs by considering the 𝑥- and 𝑦- coordinates after traveling certain 

distances on the unit circle. The use of the CAS-tool in a task like this may inhibit the 

students’ interpretation of sine and cosine as functions. Also when the students are 

introduced to the derivative and antiderivative of sine and cosine it is done through the 

CAS-tool. The teacher simply asks them to differentiate and integrate the functions using 

the CAS-tool and next they discuss the results in plenum. It seems like the presence of 

the CAS-tool makes it legal to use it anytime possible, in fact it is in favour over for 

example the textbook. This may also be the reason why the students give the CAS-tool an 

authority role as we saw in situation 3.  They have observed the teacher using the CAS-

tool both in her introduction to new knowledge, in her validation of knowledge in 

development and in the institutionalization. Thus the students assume that the CAS-tool 

is an authority they can rely on, and in most situations it is.    

10.2 The graphic milieu 

In all three situations the students interact with a graphic milieu, and in all of them the 

interaction concerns a general sine curve. The graphic milieu makes the interpretation 

of the constants in 𝑓(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑 easier. Especially the constant 𝑐 is difficult 

to explain without the sliders in Nspire. It may also be easier to relate to a family of 

curves instead of the family containing all the functions 𝑓𝑎,𝑏,𝑐,𝑑. The sine curves is just all 

the curves we can get when stretching, squeezing and moving the sine function both 

horizontal and vertical. But to grasp that every time we change one of the constants 

in 𝑓𝑎,𝑏,𝑐,𝑑  we get a new function, but still an element in  

ℱ𝑡𝑟𝑖𝑔 = {𝑓𝑎,𝑏,𝑐,𝑑|𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ} where 𝑓𝑎,𝑏,𝑐,𝑑(𝑥) = 𝑎 sin(𝑏𝑥 + 𝑐) + 𝑑 

is difficult. Just the notation will confuse the students. This is probably also the reason 

why both the textbook and the teacher talks about sine curves instead of the class of 

trigonometric functions. The graphic milieu is put on privileged form with the term 

“curves”. Still it can be a problem that the media, such as the textbook and Nspire, only 

display one curve at a time. It strengthens the students’ idea of the sine curve instead of 

a sine curve as an element in the family of sine curves. However, this is improved with 



108 
 

the sliders in Nspire, where one function is easily changed into another. The students 

just have to remember that every time the curve changes just a bit it represents a new 

function.  

The question is whether this graphic milieu can ease the transition from sine and cosine 

as unit circle coordinates to functions.  As we described earlier the transition is 

explained by the teacher focusing on the graph and then relating it to the unit circle. 

Here the graph is just a media, not a milieu the students can act on. This prevents the 

students from making the knowledge personal. Instead the students should consider the 

unit circle and then by themselves create the graphs, either in Nspire or on a piece of 

paper.  Thus the graphic milieu can ease the transition, but it requires that the students 

are familiar with the notion of function. If this is not the case it will be difficult to 

acknowledge sine and cosine as functions.  

Isabelle Bloch (2003) has made a study proving that students working within a graphic 

milieu became able to think of functions as objects and much better to formulate and 

discuss mathematical knowledge. Bloch creates a tool called “paths” and with these 

paths the students can prove whether a given graph represents a function or not. The 

rule is that a graph represents a function if there is only one direct path from each point 

of the 𝑥-axis (Bloch, 2003). With a tool like this the students could easily acknowledge 

the graphs of sine and cosine as functions.  
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11. CONCLUSION  

The aim of this thesis was to elucidate why high school students have problems with the 

transition from working with sine and cosine as geometric tools in (essentially) triangles 

to working with them as functions. In the subject-matter didactic analysis we saw that 

one of the challenges was to move from angles to real numbers as input. We also saw 

that sine and cosine can be defined through different branches of mathematics; in fact 

they can be defined in terms of both arcsine and power series, eliminating the “angle-to 

real number” problem. The problem here is that the mathematical theory behind this 

definition is too difficult for high school students. Hence the students have to face the 

transition from angle to real number. We suggested in the end of chapter 2 that this 

transition could be clarified with an introduction to the natural parametrization of the 

unit circle, and the fact that there is a one-to-one correspondence between the real line 

and the unit circle. The subject-matter didactic analysis also showed that the problems 

with the transition from geometric tool to functions may lie within the students’ 

conception of the notion of function. The students are not introduced to a formal 

definition of functions, but only to examples of functions. They lack a clear explanation 

to why a certain expression or graph represents a function, an explanation, which can be 

used to accept sine and cosine as functions.  

The observations at Gefion high school showed that the teacher has chosen to let the 

students acknowledge sine and cosine as functions through sine curves. She does not 

focus on the transition from unit circle to graph, but focus instead on how to make the 

students work with, and acknowledge the possibilities of sine curves.  This is a result of 

the external didactical transposition. Neither the textbook nor the Syllabus mentions 

this transition as important to realize. Instead the transposition focuses on the sine 

curves, both through the requirement of knowing sine regression in the Syllabus and the 

presence of sine curves in exam tasks. The students do extend their knowledge 

concerning sine curves, but as we saw in situation 3 this does not help them 

acknowledging sine as a function. Instead they make a separation between curves and 

function and only focus on curves.  

Even though the focus is not on the transition from unit circle to graph, the teacher does 

explain the connection. From the theory of didactical situations we know that in order to 
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learn, the student has to produce the knowledge personally. This is not the case here. A 

reason why the students have problems with the transition is because they do not 

realize, through personal actions, that sine tells them how far they are from the 𝑥-axis 

when they have traveled a given distance on the unit circle, and cosine tells them how 

far they are from the 𝑦-axis. If the students could realize this they could produce the 

graphs of sine and cosine. A challenge here is to connect the arc length of the unit circle 

to the real line. This could be solved by introducing the natural parametrization of the 

unit circle, as mentioned in the subject-matter didactic analysis. When the students have 

acknowledged the graphs as representing sine and cosine, they can use the vertical line 

test to acknowledge the graphs as functions.  

The fact that focus is on sine curves and not functions, shows us that the graphic milieus 

are preferred. They are first of all presented to the students through the CAS-tool. In all 

three situations the students produce sine curves in Nspire or Maple, either as a result of 

sine regression or by the use of sliders. Also the smartboard is a part of the graphic 

milieu, but in fact it only displays what the students have already produced themselves 

in their own CAS-tool. It is not until the last lesson, that the textbook becomes a part of 

the graphic milieu. It is in situation 3 where the students try to compare two graphs 

presented in the book.  

The graphic milieus play an important role in acknowledging sine and cosine as 

functions; first of all because their status as functions are stated by the teacher through 

graphs, secondly because sine curves are used as the representation of the 

trigonometric functions. In all the observed situations the graphic milieu had a high 

adidactical potential, especially when the milieu involved the use of sliders in Nspire. 

Hence the graphic milieus helps the students extend their knowledge of sine curves, but 

since the students do not know when to accept a curve as a function, this knowledge 

does not improve their acknowledgement of sine and cosine as functions.   

To sum up, both the subject-matter didactic analysis and the observations at Gefion high 

school has shown that there is at least two problems concerning the transition of sine 

and cosine from geometric tools to functions. Firstly a lack in the perception of 

functions, secondly the fact, that focus is not on the actual transition, but more on the 

possibilities the trigonometric functions gives us, illustrated though the sine curves. 
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Thus, if we want the students to acknowledge sine and cosine as functions, we may first 

of all introduce them to a formal definition of function, and not just examples. Next we 

must explain to them how traveling the unit circle can be interpreted as traveling the 𝑥-

axis, and then let them try to produce the graphs of sine and cosine. If they understand a 

function as an input-output mechanism they will realize that if we give sine a real 

number as input we get the distance to the 𝑥-axis as output. Hence sine can be 

acknowledged as a function in the domain of the real numbers.  
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APPENDIX 1 

Trigonometriske funktioner 
Vi støder ofte på fænomener, der varierer periodisk i løbet af tiden f.eks. tidevand, 

vekselstrøm, planetbevægelser og de fleste former for bølger. 

 

Kurver, der varierer pænt er ofte såkaldte sinusbølger. Vi vil i det følgende arbejde med 

sådanne kurver. 

For at beskæftige sig med disse funktioner, har vi brug for et andet mål for en vinkel end 

grader. Vi indfører vinkelmålet radianer. 

1. Sinus og cosinus blev defineret ud fra enhedscirklen altså en cirkel med centrum i (0,0) og 

radius 1. Hvis vi lægger en vinkel ind i koordinatsystemet, så dens toppunkt er i (0,0) og højre 

vinkelben er ud af z-aksen, vil vinkel afskære et buestykke på enhedscirklen.  Vi indfører nu 

et nyt mål for en vinkel som er længden af dette buestykke. Vi betegner det radiantallet for 

vinklen. Se figuren.         

 

Gradtal 30 45 60 90 180 360 450 720 

Radiantal          



116 
 

a) Bestem radiantal for følgende vinkler: 

 

Når man regner i radiantal, kan ”vinklen” godt være negative eller over 360. Til ethvert 

reelt tal svarer således en vinkel. 

 

2. Oversæt følgende tal, x til vinkler v (mellem 0 og 360). 

 

 

3. Argumenter for, at man kan tale om sinus og cosinus til et tal. 

 

4. Vi vil undersøge hvordan et punkt på en cirkel bevæger sig, når cirklen bevæger sig 

fremad. I skal trille en dåse eller lignende, der har markeret et punkt på periferien af 

cirklen.  

                               
For hvert omløb, skal I have 7-10 værdier af x og y. Mål 2 til 3 omløb. 

Bagefter skal I lave et punktplot af (x,y). 

 

a) Hvad er funktionens periode? – hvordan hænger det sammen med ”hjulets” 

diameter? 

 

b) Hvad er forskellen på laveste og højeste y-værdi? – og hvordan sammenlignet med 

”hjulets” diameter? 

 

 

x 1 2  2 7 10 20 -4 

v         
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5. Tegn grafer for funktionerne 𝑓(𝑥) = sin (𝑥) og 𝑔(𝑥) = cos (𝑥). I Nspire skal vinklen 

være indstillet til at regne i radianer. I Maple skal man skrive sin og cos med små 

bogstaver. 

 

 

6. Argumenter for, at sin(𝑥 + 𝑝 ∙ 2𝜋) = sin (𝑥) og cos(𝑥 + 𝑝 ∙ 2𝜋) = cos (𝑥). 

 

 

7. Gå nu tilbage til opgave 4, hvor du arbejdede med hjulet. Prøv at lave en 

sinusregression på data fra eksperimentet.  

 

8. Ballongyngen i Tivoli har en diameter på 15 m. Et omløb tager 15 sek. Turen starter 5 

m over jordoverfladen.  

a) I skal finde ud af, hvordan højden af kurven man sidder i ændrer sig med tiden. 

 

b) Hvor højt er man efter 20 sek.? 

 

c) På hvilket tidspunkt er man første gang 17 m over jorden? 

 

9. Plot funktionen 𝑓(𝑥) = tan (𝑥) i [-2; 2].  

 

a) Hvad sker der i punktet x = 
𝜋

2
 ? 

 

b) Er der andre tilsvarende punkter? 

 

c) Angiv definitionsmængden for funktionen 𝑓(𝑥) = tan (𝑥). 

 

 

10.  

 

 

 

 

 

 

 

 

11.   
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12. Funktionen tan(𝑥) =
sin (𝑥)

cos (𝑥)
. Benyt brøkreglen til at finde differentialkvotienten af 

tan(𝑥). 

 

13. Løs følgende opgaver: 

a) Bestem den afledede funktion 𝑓′(𝑥) til funktionen 𝑓(𝑥) = 1 + 3,22sin (2,14𝑡 −

𝜋). 

 

b) Bestem den afledede funktion 𝑓′(𝑥) til funktionen 𝑓(𝑥) = 2cos (3𝑥 − 4). 

 

c) Bestem den afledede funktion 𝑓′(𝑥) til funktionen 𝑓(𝑥) = 3𝑥 − 1 + cos (𝑥). 

 

d) Bestem integralet ∫ sin(𝑥) 𝑑𝑥
𝜋

0
. 

 

e) Bestem integralet ∫ x ∙ sin(2𝑥2 − 𝜋)𝑑𝑥
𝜋

0
. 

 

f) Bestem rumfanget af omdrejningslegemet der fremkommer, når grafen for  

𝑓(𝑥) = 2 sin(𝑥) + 1 i [0;] drejes 360 om x-aksen. 
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APPENDIX 2 

Trigonometriske funktioner - 
forløbsplan 

Onsdag 16.9 

Mål:  

Eleverne skal have en fornemmelse af hvad trigonometriske funktioner bruges til.  

De skal forstå og kunne anvende begrebet radianer og omsatte mellem grader og 

radianer. 

De skal prøve at arbejde i praksis med trigonometriske funktion (opgave 3) 

  

Kort intro om anvendelser – periodiske funktioner. 

Elever arbejder med opgave 1 om hvad radianer er og omregninger begge veje. De 

introduceres til sinus og cosinus til et tal i stedet for en vinkel. 

Opgave 1-4  (Arbejd selv fra 9.00). 

Hvis der er tid skal de også tegne grafer for 𝑓(𝑥) = sin (𝑥) og 𝑔(𝑥) = cos (𝑥). 

      

Torsdag 17.9 

Mål:  

Kunne tegne trigonometriske funktioners grafer vha. CAS-værktøj.  

Kunne argumentere for periodicitet. 

Kunne foretage sinusregression i CAS-værktøj. 

Kunne opstille en model ved anvendelse af en trigonometrisk funktion. 

 

Vi snakker om graferne for 𝑓(𝑥) = sin (𝑥) og 𝑔(𝑥) = cos (𝑥). Eleverne regner opgave 6 og 

vi snakker om funktionernes periodicitet. 

Vi vender tilbage til opgave 4 og foretager sinusregression på CAS. Opsamling. 

Vi regner opgave 8 om ballongyngen (model). 

Evt. regnes opgave 10. 
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Fredag 18.9 

Mål: 

At kende tangensfunktionens graf og definitionsmængde. 

At kunne regne opgaver med trigonometriske modeller.  

 

Opsamling fra sidst. 

Opgave 9 om tangensfunktionen regnes. Opsamling. 

Vi regner opgave (10 og) 11. 

 

 

Mandag 21.9 

Mål: 

At kunne differentiere og integrere udtryk med trigonometriske funktioner.  

 

Opsamling fra sidst Lektie s.40-45 (opgave 10 og 11).  

Differentialkvotient af sin, cos og tan findes vha. CAS. 

Stamfunktion af sin, cos og tan findes vha. CAS. 

Opgave 12 og 13 regnes. 
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APPENDIX 3 

Transcription of the dialogue in situation 1 

Boy 1:  We can’t make it work. 
Girl 1: Oh. You can’t make it work. But one is missing. 
Boy 1: We have our points here, but the graph doesn’t want to go to zero. 
Girl1: That is the same problem with ours. Our regression.. It just says that in 

Nspire it will not do it apparently. It must be because it doesn’t 
approximate.  

Boy 2: But it is not even close to the points if you see. 
Girl 1: Oh. Can I see? 
Boy 2: It is almost the opposite of the points.  
Boy 1: Doesn’t it look like it is the half of the points? 
Boy2: Yes, that’s what it does.  
Girl 1: What? Is it the half of the points?  [Go gets her own computer] 
Boy 2: [Looks at girl’s computer, which shows a graph not hitting the x-axis, but 

with the same period as the points plotted.] Okay, yours also looks weird. 
Girl 1: So ours up here. Here it works fine enough..  It doesn’t hit a point.   
 
Boy 2: It still doesn’t hit zero. 
Girl 1: It still doesn’t hit. Look we get the same [shows her computer to the 

teacher] 
Teacher: But what is the period here? It matches. It has two arcs. 
Boy 1: Yes, that is correct. It matches. 
Teacher: Yes. The other thing is just because you have chosen exactly one above, 

that’s why it doesn’t come down. But this one, it matches [points at the 
graph]. 

Girl 1: But how can it be that Nspire… 
Teacher: Try to plot your points in this window [points at the graph again]. 
Teacher: [To girl] it is because the distance is too far from the others to that point. 
Girl 1: Ohh.. It was just because I thought it was a bit weird. 
Teacher: It isn’t because you used a ruler there didn’t started in zero, but a little bit 

over? 
Boy 1: No, we used my ruler and it added 0,6, so we subtracted 0,6 from all points. 
Girl 1: Maybe the paper has been moved a bit. 
Boy 2: Yes, there is a lot sources of errors.   
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APPENDIX 4 

Transcription of the dialogue in phase 2A 
 
Girl 1 Bente...Why is it, that when I start by letting the 𝑐-value be zero, then my 

graph doesn’t starts in zero?  
Teacher It has something to do with the sine part. 
Girl 1 So, this is our graph [points at her screen]. But if one lets 𝑐 be zero, because 

it displaces it.   
Teacher Yes, then the whole sine part becomes zero. 
Girl 1 No, because it is just added by zero. So it just.. This one just becomes “sine 

to 𝑏𝑥” 
Teacher Yes, and 𝑥 is zero here, right? At the 𝑦-axis 𝑥 is zero. 
Girl 1 Yes, then the whole sine part becomes zero.  
Teacher Yes, then the whole sine part becomes zero. But then there is still 𝑑 left, so 

in zero you start in 𝑑.  
Girl 1 Okay, so if we let this one be zero [refers to the slider for 𝑑].. No, that we 

can’t.. Yes! Now we start in zero.  
Girl 2 But then it goes under the earth. 
Girl 1 No, but that was because I wanted to see why it was that if one had 𝑐, which 

displaces this one, why was it that you didn’t started in zero and that was 
simply because of 𝑑 at the end, which is the decisive factor. 

Teacher Mmm 
 
Girl  1 But how can we then calculate the real 𝑏- and 𝑐- values? 
Teacher Yes, you may consider that. You can consider that if you have the period 

here [points at the graph on the screen]. What does that have to do with 𝑏? 
Girl 1 It lasts 𝑏, the period. Or half the period. 
Teacher It has something to do with the period. 
Boy That is how long it takes for each wave.  
Girl 1 The length of the period 
Boy Yes the length of the period.  
Girl 1  It was 15 seconds it took. 
Teacher Then try to look here. What is the period here?... In relation to what 𝑏 is.  
Girl 1 𝑏 is 1 here and the period is… 
Boy The period is also the diameter 
Girl 1 [Tries to read the period directly from the screen] 1, 2, 3, 4, 5.. A little bit 

above 5, maybe. I cannot quite see it. 
Teacher No, but then you can find to maxima.  

[the girl works in NSpire] 
Girl 1 Okay, 6,28 
Teacher Mmm, and what is that? 
Girl 1 That is the length 
Teacher What is 6,26? It is a very nice number. 
Girl 2 It is two times 𝜋 
Teacher Yes. So now you can consider why it is exactly 2𝜋. 
Girl 2 That is because it is the circumference 
Boy  It is the circumference. 
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Teacher So when 𝑏 is 1 you get 2𝜋. What if 𝑏 is 2, what will you get then? 
Boy Then, we will get... Then we will get… 
Girl 1 [Changes 𝑏 to 2 in Nspire] Then we get the same. 
Boy Yes 
Girl 2 Do we get the same? 
Girl 1 Yes, we get the same. It is the only change we have made, the one with 𝑏. 
Teacher [Looks at the screen and sees that Nspire now have found maximum of the 

first and third wave top] But, try to look here. This isn’t the distance 
between the neighbor holes. 

Girl 1 Oh yes, it has measured the third hole. 
Teacher But you are allowed to take these to values, then you just have to remember 

that there are two periods.  
Girl 1 Yes. So we have to divide by 2, then we get 𝜋.  
Teacher  So this here was if it was 𝑥 and that one [Tries to point on something above 

the screen] was if it was 2𝑥. 
Girl 1 Yes, So now we need to have a period which is 15. 
 

[The teacher laughs a little, and tries to find a value of b that can help the 
students in their formulation of b. She repeats the quote “What if it was..” 
without suggesting anything. The students is focused on Nspire]  

 
Girl 1 Okay, now we have it on 4.  
Teacher You could try to guess 
Girl 1 [Hesitantly] It must be the half? One quarter?   
Teacher So when you make 𝑏… 
Girl 1 Greater 
Teacher Then.. 
Girl 1 𝜋 becomes smaller. 
Teacher Then the period becomes smaller. 
 

[The rest of the talk disappears in noise, since it is time for the break] 
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APPENDIX 5 

Transcription of the dialogue in phase 3B 

Teacher Okay, I think we will make a recap. [Projects her computer screen on the 
smartboard] I have made it with sliders because it is probably the easiest. It 
is quite inconvenient in Maple, so that I haven’t done. But here you have 
some sliders, so you can change the values of 𝑎 and 𝑏 continuously and see 
what happens with them. And we did more or less agree what happens 
with 𝑎, right? Camilla? 

Camilla Eeh, the highest and lowest y-value. 
Teacher Yes. We can do this here [changes the slider for 𝑎]. Now 𝑎 becomes a 

greater number, and we can see that the oscillations becomes greater. So 
what you can say is that 𝑎 determines the oscillation in relation to the 
equilibrium position. If we try to find maximum and minimum for this one 
[Uses Nspire], then we see that minimum is 2,5 and maximum is 12,5, so 
there is a difference on 10. This difference is exactly 2𝑎, because it oscillates 
𝑎 both ways, right? When 𝑎 is 5 it can go 5 up and 5 down, and that 
corresponds to 2,5 and 12,5.  

Girl What was it you said? It determines the oscillations in relation to what? 
Teacher The equilibrium position. So, I can move it a little bit up, then it goes from 

0,5 to 14,5, that is a difference on 14 and now 𝑎 is set to 7, right? You could 
of course move… So, if I want it to lies around the equilibrium position, then 
we agreed that 𝑑 must be zero, right? I must move 𝑑 down to zero, and then 
I just have to change my graph window [She does that]. Yes, now it fits. So 
this was 𝑎, and 𝑑 we already have discussed. Now 𝑑 is zero, so it oscillates 
equally on both sides. Then we have 𝑏 and 𝑐. Some of you examined what 
happens with 𝑏, right? What happens when you changes 𝑏? Eric? 

Eric The length of the period changes 
Teacher Changes, yes. So when you make 𝑏 greater… 
Eric Then the period becomes smaller  
Teacher Yes. We can see that by changing this one. Now I make 𝑏 greater, then I get a 

smaller period, and if make 𝑏 small, then I get a very long period. So in a 
way you can say that 𝑏 and the period.. [Is interrupted by a student, but the 
interruption is left out here] 

Teacher But we agree that when you make 𝑏 greater the period becomes smaller. 
And the period is often called 𝑇, at least in physics. Then one can say that 𝑏 
and the period must be inversely proportional. That is, if you make 𝑏 twice 
as big, then the period becomes the half and vice versa. I am sure you will 
discover this. I think some of you already touched the idea. So the question 
is. If they are inversely proportional, then there product must be some 
constant. What constant is this? Here we can just see what happens if for 
example 𝑏 is 1 [She uses the sliders to illustrate]. How can I read the period 
most accurately? Martin?  

Martin Isn’t it form wave top to wave top?  
Teacher Yes. [She uses Nspire to find the two maxima]. How can we then calculate 

the period? I have found the two point where there is a maximum. Here 𝑥 is 
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equal to 0,854 and here 𝑥 is equal to 7,14. The period is how far there is 
between these two points, and what is that? Nanna? 

Nanna It is 7 minus 0,854 
Teacher Yes, 7,1 − 0,854. And if we calculate it what do we get? I think. Didn’t some 

of you do it? Kimmi? 
Kimmi It is 2𝜋 
Teacher It is in fact 2𝜋. So the product of 𝑏 and the period is 2𝜋, or one can say that 𝑏 

is 2𝜋 divided by the period. So if you know the period you can figure out 𝑏, 
and also the other way around, if you know 𝑏 you can figure out the period.  

Teacher So that was the 𝑏. Then we only lack the 𝑐. This we have up here. What 
happens when I change the 𝑐? Nille? 

Nille Then the curve displaces itself on the 𝑥-axis.  
Teacher Yes, so it just changes. It doesn’t changes shape or size, it is just displaced. 

So it has something to do with where the curve starts. If I let 𝑐 be zero, 
where does it start then?... Now I look a bit confused, I thought it would 
start in zero. [Changes her sliders in Nspire] Maja? 

Maja Then it starts in zero 
Teacher Yes, then it starts in zero. When 𝑐 is zero it starts in zero. 
Kimmi But only if the 𝑑-value also is zero. 
Teacher No, that doesn’t matter. If 𝑐 is zero it says sin(𝑏𝑥) and if 𝑥 is zero 𝑏𝑥 

becomes zero. Then it says sin(0), which is 0, So if 𝑐 is zero, it will go 
through the point (0,0). If I for example says that 𝑐 is 2𝜋… 

Kimmi There is a plus between 𝑏𝑥 and 𝑐. 
Teacher Yes it says 𝑏 times 𝑥 plus 𝑐, and if 𝑐 is zero… 
Kimmi You told us that it was about the 𝑑. You told us just before, because we had 

𝑐 to be zero and then it went through -1, and that was because of our 𝑑.  
Teacher Oh, yes. 𝑑 also have an influence. But now I also have 𝑑 to be zero here. So 

the equilibrium point will be in zero. But the 𝑐-value you can use to make it 
have a certain initial value. If we consider the case with the balloon swing, 
then the value of 𝑐 depends on where you are, when it starts to turn around. 
But I just think we will write that 𝑐 is the displacement on the 𝑥-axis.  
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APPENDIX 6 

The transcription of the dialogue in situation 3   

Boy But shouldn’t we have a picture of this function instead of this? [Points first 
at the graph for a general sine curve and next at the graph of the function 
𝑓(𝑥)  =  𝑠𝑖𝑛(𝑥)] 

Girl No, why? 
Boy Yes, because this one [points at the general curve] looks a lot different. It 

doesn’t intersect the 𝑥-axis. 
Girl 2 Oh, but isn’t that just because.. 
Girl 1 It MUST intersect the x-axis. 
Girl 2 .. they have inserted a 𝑑? 
Girl 1 Yes. It is the 𝑑 that does it. The thing where it intersect. 
Girl 2 But beside that, isn’t it just the same principle? 
Girl 1 Yes, yes. But I think this one [points at the general curve] is more correct 

than that one [points at 𝑓(𝑥)  =  𝑠𝑖𝑛(𝑥)]. Because our Nspire, it wouldn’t 
intersect the 𝑥-axis. I remember that from last time. [small pause] But let us 
just explain what 𝑎, 𝑏 and 𝑐 are. 

Girl 2 Yes, eeh.. Okay, 𝑎… [Looks in the textbook] 
Boy  But I just don’t think this one is a sine curve. It is a sine function. That is 

why it doesn’t make any sense.  
Girl 1 Of course it is. It is this one. Isn’t it?  
Boy No, because this one is just 𝑓(𝑥)  =  𝑠𝑖𝑛(𝑥). It is just the sine function. This 

one [points at the general curve] is sine CURVES. Here you work with the 
constants 𝑎, 𝑏, 𝑐 and 𝑑.  

Girl 1 Mmm.. 
Boy Try to make one like this in Nspire 
 
Boy Okay, there is a proper example 
Girl 1 But that is the same as the one we have made.  
Boy No.. 
Girl 1 Yes it is. 
Boy I am quite sure it isn’t. Because our function has the same oscillations on 

both. Our functions goes from the period 𝑇, 2𝑇 [long pause]. But I think it is 
because it has a 𝑑 we don’t have.  

Girl 1 Mmm.. 
Boy Then I don’t understand how we do. Because then we need some points, 

and in the same time we should be able to find a,b,c and d and insert the 
regression. 

Girl 1 Yes, the sine regression. 
Boy So I don’t understand what we are supposed to say about sine curves in 

general. Should we insert a picture? Because did you have the points from 
last time? Then we could just use them couldn’t we? If we want to add an 
example. 

Girl 1 Yes, I have the ones we made in the group. 
Boy You can just make that then. Then insert that one.  
Girl 1 Yes, we can do that 
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Boy But this it is wrong all what we wrote in the beginning. Because here it 
doesn’t have the period 2𝑇 all the time. 

Girl 1 No 
Girl 2 Oh.. 
Boy  Argh! 
Girl 1 it is bad, huh. 
Girl 2 What was it we had done wrong? 
Boy Look here. It doesn’t have the same oscillations on both sides of the x-axis. 

So the period where we say it goes from 0 to 2𝑇 and form 2𝑇 to 4𝑇, it isn’t 
correct, because it only goes from 3,8 to 6,1. I think it is because they have a 
𝑑.  

Girl 2 Yes, it is because there is missing a 𝑑. We need to show where 𝑑 is here 
[points at the example in the textbook]. 

Girl 1 types on her computer 
Girl 1 Look. Her is a sine regression, right? 
Boy Mmm. [Long pause] I think that what we wrote is correct. It has to be. 

Because if we move from wave top to wave top there is 2𝜋.  
Girl 1 Yes there is.  
Boy  But it doesn’t intersect the 𝑥-axis in 𝜋.    
 
Boy Now it doesn’t make any sense at all. I don’t understand it 
Girl 1 Should we add pictures of everything? 
Boy No, but it looks odd. [Is very focused by what he sees on his computer 

screen. He is changing the constants by use of the sliders]. 
Girl 2 Why? 
Boy It still doesn’t fit. [Long pause] But we have explained what they do? 
Girl 1 Yes, but you wanted a picture [both girl laughs]. 
Boy So. Now it looks nicer. [He has changed the constants to 𝑎 = 5, 𝑏 = 2, 𝑐 =

5, 𝑑 = 0, so the graph is as the one presented in Fig. 7.5] 
Girl 1 That one you can’t really show in any way. Or maybe you can if you insert a 

before- and an after- picture.  
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