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Abstract 

 

This thesis in didactics of mathematics examine whether Fermi problems can be used as an 

introduction to mathematical modelling and functions of one or more variables in Danish high 

schools at C-level. To answer this question, a teaching sequence dealing with Fermi problems is 

developed and tested in a Danish 1st year high school class.  

Using the theory of didactical situations, both an á priori analysis and an á posteriori analysis of 

the teaching sequence is conducted. Through this analysis, the didactical opportunities and 

challenges concerning Fermi problems as a tool for introducing mathematical modelling is 

investigated. 
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2. Abstract 

This thesis in didactics of mathematics examine whether Fermi problems can be used as an introduction to 

mathematical modelling and functions of one or more variables in Danish high schools at C-level. To answer 

this question, a teaching sequence dealing with Fermi problems is developed and tested in a Danish 1st 

year high school class.  

Using the theory of didactical situations, both an á priori analysis and an á posteriori analysis of the 

teaching sequence is conducted. Through this analysis, the didactical opportunities and challenges 

concerning Fermi problems as a tool for introducing mathematical modelling is investigated.  

 

Resumé 

Dette speciale i matematikdidaktik har til formål at undersøge, hvorvidt Fermi problemer kan anvendes i 

forbindelse med en introduktion til matematisk modellering og funktioner af én eller flere variable, som led 

i undervisningen i matematik på gymnasiets C-niveau. For at besvare dette spørgsmål udvikles et 

undervisningsforløb der omhandlende Fermi problemer, med det formål at teste forløbet i en dansk 1.g 

klasse.  

Ved brug af teorien om didaktiske situationer udføres en á priori samt en á posteriori analyse af 

undervisningsforløbet. På baggrund af disse analyser, udforskes de didaktiske muligheder og udfordringer i 

forbindelse med brugen af Fermi problemer, som værktøj til introduktionen af matematisk modellering.   
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3. Introduction 

What does it mean, when we talk about a mathematical model? In general, any model is a simplified 

representation of a real object, situation or system – a mathematical model being no exception, is created 

using objects with mathematical characteristics, for instance equations and functions.  

Creating a mathematical model is essentially a transformation from a real-world situation into the abstract 

world that is the world of mathematics, wherein we can manipulate or “solve” the model through use of 

mathematical techniques. The usage is then when we re-enter the real world, bringing along the solution, 

which here can prove to be a solution to the real-world problem as well. An important characteristic of this 

process is that we both start and finish in the real-world; potentially leaving behind the mathematical 

model as an applicational tool that has done its part.  

The role of mathematical models in today’s society is indispensable, and as a consequence, the teaching of 

mathematical modelling also hold great importance. This fact is evident from the evolving of the 

mathematics curricula in schools; the Danish high schools not being an exception.  

But how do we effectively introduce mathematical modelling in today’s high schools?  

Inspired by the teaching ideas of the renowned physicist, Enrico Fermi, we turn to Fermi problems for the 

answer. A Fermi problem is an estimation problem, in which estimates for various quantities are needed in 

order to solve the problem at hand. An example of such a problem could be “How many blades of grass are 

there in the park?” or “What is the population of the earth?” or “How many kernels of popcorn does it take 

to fill up this room?” 

The exact answers to all of these problems are almost impossible to find, though through reasonable 

estimation of various parameters, a model that constitutes the answer is within reach. This model can be 

considered as a multivariate function in which the parameters act as variables.  

Classically, the introduction of functions in Danish high-schools are through use of the formal definition. But 

is it possible to use Fermi problems in order to give students a realistic conceptual understanding of what 

constitutes a mathematical function?  

In this thesis, I will attempt to give an answer to this question, and also highlight the challenges that arise 

when using Fermi problems as a part of a teaching sequence. This will be done through the use of a 

teaching sequence that I have designed.  
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4. The theoretical framework 

In the following chapter, I will give a short description of the theoretical framework that is the foundation 

of this thesis. The framework in question is the theory of didactical situations (henceforth abbreviated TDS), 

developed by Guy Brousseau in the 1970’s and 1980’s, resulting in a publication in 1997: “Theory of 

Didactical Situations in Mathematics”.  

This work was in large developed as a result of the founding of thirty institutes: The Research Institutes on 

Mathematical Education (IREM) aswell as the research center Centre d’Observation pour la Recherche sur 

l’Enseignement des Mathématiques (COREM), which would function as a research laboratory on the 

observation of the teaching of mathematics.  

The following sections will give insight into the theoretical foundation of the thesis, and provide the 

necessities with respect to an a priori analysis of the developed teaching sequence as well as an á posteriori 

analysis of the carried-out sequence. 

TDS 

The foundation of TDS as a tool is epistemological rather than psychological or pedagogical (Winsløw, 

2006), and one of the greatest strengths of this theory as an analytic tool is the providing of various 

templates in examining the specific teaching situations with respect to the didactic triangle: teachers 

influence, the students’ roles, and the mathematical knowledge to be taught. It is important to point out, 

that TDS does not provide teachers with a model for “good practice”; it is - however - an excellent tool for 

analyzing teaching (Hersant & Perrin-Glorian, 2005). 

TDS is, in its nature, very diverse, and can be used both as practical analysis of teaching situations, in 

designing lesson plans and teaching situations; and it is also a research program that has evolved through 

the last 40 years in the didactics of mathematics (Winsløw, 2007). 

A fundamental idea of TDS is that, that it is not sufficient for a teacher to just deliver knowledge to a 

student in order for the student to achieve what is desired. It is here we acknowledge that there are two 

different types of knowledge which we will call personal knowledge and official knowledge. These differ (as 

the names suggest) in the following way: personal knowledge is understood as how the individual perceives 

the knowledge at hand - often informal and implicit; and the official knowledge is the knowledge 

represented in scholarly texts, scientific articles etc. An important part of TDS is that new knowledge is 

attained by expanding personal knowledge through problems and exercises, followed by a formalization 

transitioning into official knowledge.  
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With this in mind, it is easy to draw parallels to the world of science. A scientist’s work is (usually) a product 

in the form of new official knowledge; however, the process of creating this knowledge is based on the 

scientist’s work and development of personal ideas and informal models and hypotheses.  In mathematics, 

we often see the final product (official knowledge) in the form of a mathematical theorem followed by a 

proof, but this product has no information regarding the development of the knowledge at hand. 

According to Winsløw (2007), it is natural to consider both a student’s personalization of official knowledge 

as well as institutionalization of personal knowledge. In order for a student to attain official knowledge, she 

first has to personalize it. It is here the role of the teacher stands out; seeing as she must carry out the role 

of being mediator between the official knowledge at hand, and the student’s personalization of it. In order 

for the teacher to effectively do this, she establishes a milieu in which the potential of the student attaining 

the objective knowledge is maximized. We call this environment the didactic milieu, and in general, these 

are situations where acquisition of official knowledge takes place. More specifically, these can take form of 

problems, exercises, lecturing etc. One could think of the student’s performance in this milieu as playing a 

game; if the game is won, she will attain the personal knowledge at hand, provided that the milieu is 

designed accordingly.  

An example 

Let us consider a classic example courtesy of Guy Brousseau: the puzzle exercise (Winsløw, 2007). This 

exercise is part of a teaching sequence in which students (age 12-14) are to learn about proportionality. In 

this exercise, the students (in groups) are given a puzzle in which the pieces are triangles and rectangles 

(see Figure 3.1). 

 

Figure 1: A puzzle (Winsløw, 2007). 

Now the students are to create an enlarged model of the puzzle, where the pieces of size 4 cm are to 

measure 7 cm instead. Here it is expected that the students will attempt an additive approach, i.e. adding 3 

cm to each side of the puzzle. By trial, the students will find that this attempt is faulty, and the milieu 
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hereby provides direct feedback, forcing the students to rethink their approach. In order for the students to 

“win the game”, they have to use the multiplicative approach. 

It is reasonable to believe, that the students solving this exercise alone, doesn’t provide them with an 

established knowledge of the general idea behind proportionality. It is, however, a step in which the 

teacher can establish the general idea that is to be taught. It is also very valuable to note the explicitness of 

the two strategies at hand (additive versus multiplicative): In order for the students to acknowledge the 

correct approach, they have to be aware of the difference between the two. This acknowledgement is 

crucial for the students to later gain the knowledge of the general principle.  

In general, didactic milieus are created by the teacher through a re-personalization of the official 

knowledge (as in the example above). By interacting with this milieu, the students are to acquire the 

intended knowledge.  

Didactic and adidactic situations 

In TDS, there are five distinct types of situations - or phases - which doesn’t necessarily occur in a given 

order in a teaching sequence. These situations are either didactic or adidactic (or a combination thereof) - 

the difference being that the teacher is directly interacting with the milieu.  

• Devolution. The teacher establishes the milieu. This can be through an introduction of the problem 

at hand; here it is the student’s task to understand the problem at hand, as well as the rules of the 

game. In the puzzle-example, the teacher might, for instance, clarify which tools are available. We 

consider this phase to be mainly didactic, as it more often than not, demands direct teacher-

student interaction.  

 

• Action. The students are working with the milieu without teacher interaction. This constitutes an 

adidactic situation, with the exception of adaptability of the milieu in the case that the task at hand 

is too difficult. In the example, the students are attempting to create the enlarged model of the 

puzzle.  

 

• Formulation. The students formulate hypotheses about the problem at hand - this may be with or 

without teacher interaction, making this phase situationally didactic or adidactic.  

 

• Validation. The students - often in conjunction with the teacher - assess the various hypotheses at 

hand. This is often in the form of a discussion between the students and/or the teacher, making the 
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situation didactic in nature. In this situation, one or more new devolution situations may arise (i.e. 

if a given hypotheses demands further assessment through action and formulation).  

 

• Institutionalization. In the final situation, the teacher presents the official knowledge at hand. This 

often as an extension of the validation situation - and this is (almost) always didactic in nature.  

In this thesis, I will mainly focus on adidactic situations, which, according to Hersant and Perrin-Glorian 

(2005), can give rise to the construction of milieus with adidactic potentials. In the words of Hersant and 

Perrin-Glorian:  

[…] In ordinary teaching, actual adidactic situations are rare, but one can observe situations that have 

some adidactic potential. This means that there is a milieu, which provides some feedback to the actions of 

the students, but the feedback alone may be insufficient for the students to produce new knowledge on 

their own. In this case, the teacher may have to intervene to modify the milieu, for example, so that the 

student becomes aware of an error. We say “potential” because the teacher may ignore this potential and 

manage the situation without using it, evaluating by himself the students’ answers, instead of waiting for 

the students to react to a feedback of the milieu. But if the situation has no such potential the teacher can 

do nothing but react by himself to students’ actions. (Hersant and Perrin-Glorian, 2005) 

When we discuss didactical situations, we are bound to consider the so called didactic variables that are 

essential to the given situation. These are often considered as potential variations in the didactic milieu, 

which in turn does not affect the target knowledge at hand. As a teacher, it is crucial to identify the didactic 

variables in order to handle potential pitfalls that may arise when students work in the milieu. This can also 

function as a tool for potential modifications of the milieu during the unfolding of the situation, should the 

students run into (foreseen) trouble.  

Didactic contracts 

In order for the student (and the teacher) to win the game at hand, they must eventually learn the target 

knowledge at hand - and in order to play the game, the students must follow a set of rules set by the milieu 

and the teacher. These rules can be considered as informal contracts between the student and the teacher; 

in other words, they are based on the mutual expectations of the parties in the given situation.   According 

to Hersant and Perrin-Glorian, the model of a didactic situation includes both an adidactic situation and 

such a didactic contract.  

This - somewhat strict - notation is based on the work of Brousseau, where he specifically considers an 

experiment regarding the case of the schoolboy Gäel. Gäel was a young student who generally performed 
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at a level below average in mathematics, and in the studies, Brousseau noticed that Gäel had a tendency to 

generally answer questions in a manner, as to how he expected the teacher would want it - thereby 

satisfying the contract at hand. An example of such a situation is given in Winsløw (2007, my own 

translation): 

[…] In the beginning of the interview, Gäel is proposed the following problem: On a parking lot, there are 57 

cars. 24 of the cars are red. Find the number of cars on the parking lot that are not red. Gäel thinks for a 

moment, and responds: “I will do, what my teacher has taught me.” He then writes 57 followed by 24 

below, and ultimately the answer 81. The quote is a direct appeal to the only authority he acknowledge in 

this situation; the teachers. […] In following analogous situations, Gäel again repeats the mistake, but 

through a series of games (…), in which he fulfills the contract, Gäel eventually realize that a problem at 

hand can have authoritative properties, which in turn make some answers more correct than others 

(Winsløw, 2007 p. 146-147)   

It is easy to draw the conclusion, that this phenomenon only occur with smaller children, but further 

studies show that it also occur for older students, exemplified by a study conducted by the physics 

didactician C. Linders  (Winsløw, 2007).  

In order to give a good description of what exactly constitutes a didactic contract, I will use the definition as 

given by Hersant and Perrin-Glorian (2005):  

Didactical contracts can be distinguished by four dimensions, namely 

• The mathematical domain (i.e. the mathematical field relevant wrt. the knowledge at hand)  

• The didactic status (i.e. the student’s familiarity with the subject at hand; new, old or in between) 

• Nature and characteristics of the ongoing didactic situation 

• The distribution of responsibility (i.e. the amount of responsibility the teacher leaves with the 

student) 

Furthermore, Hersant and Perrin-Glorian distinguish between three levels in the structure of didactical 

contracts; i.e.  

• Macro-contracts (concerned with the main teaching objective) 

• Meso-contracts (the realization of an activity, i.e. in the form of solving an exercise) 

• Micro-contracts (corresponding to an episode wrt. an activity, i.e. answering a sub-question with 

regards to an exercise)  
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It is clear that the dimensions are highly mutually dependent. Let us, for instance, consider the dimension 

regarding the mathematical domain concerning algebra. Here the didactic status concerning the student’s 

familiarity with this particular field may be a whole new knowledge, or it may be old knowledge (i.e. already 

institutionalized). There is an in-between, which is the knowledge in development. Here Hersant and 

Perrin-Glorian again distinguish between different states, namely recently introduced knowledge, 

knowledge in the course of institutionalization and institutionalized knowledge, which must be consolidated. 

This is exactly the dimension distribution of responsibility, seeing as the teacher gradually leaves the 

student with higher responsibility. The nature and characteristics of the ongoing didactic situation is self-

explanatory, but still considered as a dimension in the sense that students are able to recognize the 

teacher’s expectations, with respect to the situation at hand.  

When considering the various levels of contracts, it is only when considering micro-contracts that the 

dimensions are fully stable. Contrarily, the dimensions are rarely stable when considering macro-contracts. 

It is therefore obvious to define a macro-contract as an implication of meso- and micro-contracts. An 

illustration of this principle as formulated by Hersant and Perrin-Glorian is shown in Figure 3.2 below.  

 

Figure 2: The structure of didactic contracts 
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The didactic obstacles  

Consider again the situation of Gäel as discussed in the previous section. In this example it becomes clear 

that a fundamental paradox arises; the contract is implicit and informal - and it only becomes explicit the 

moment it is broken. Also, it cannot be fulfilled if it does not vanish. This paradox is clear in the case of 

Gäel, where his reaction to a given problem is dominated by his attempt to do what he expects is wanted 

from the environment - and thereby fulfilling the contract. If we consider didactic situations, it is essential 

that the didactic contract is not a dominating factor when achieving the winning strategy. It is therefore 

evident, that the contract must - in a sense - be suppressed for the student to achieve the intended 

knowledge.   

It is evident that there potentially are consequences because of the properties of the didactic contract.  

Students can develop a contract-oriented behavior as a result; also, the teacher may be inclined to fulfil the 

part of her contract at all costs.  

The Topaze effect 

This effect arises when the teacher - in an attempt to avoid the student “losing” the game- gradually 

simplifies the problem at hand, until the solution is eventually delivered directly to the student. In this 

process, the intended knowledge necessary to provide the answer, changes.  

The Jourdain effect 

This effect is a form of the Topaze effect. In this case, it is the teacher who - be it intentional or 

unintentional - does not admit the student’s lack of knowledge in the given situation. The teacher wrongly 

recognizes that the student has institutionalized the intended knowledge, perhaps because the student just 

follows trivial instructions from the teacher - or just coincidently answers correctly.  

It is worth to note that there are also other potentially unfortunate effects due to the nature of didactic 

contracts (such as metacognitive shifts and improper use of analogies), but we will not go into further detail 

regarding those.  
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Didactic transposition 

In 1980, the French didactician Yves Chevallard gave his first course on the didactic transposition. Heavily 

inspired by the work of Guy Brousseau, this would lay ground to a new theory in the didactics of 

mathematics. The basic idea is – evidently – based around the transposition of mathematical knowledge; 

how it transfers between different institutions, and specifically how it adapts when transferred from one 

institution to another. We are interested in what happens when a select piece of scholarly knowledge is 

edited and morphed to be applicable in everyday teaching. In the work of Bosch and Gascón (2006), the 

theory of didactic disposition handles four types of knowledge, namely 

• The scholarly knowledge (the academic point of view) 

• The knowledge to be taught (as determined by the educational board in curricula) 

• The taught knowledge (as taught in the classroom); and 

• The learned, available knowledge.  

The process of the didactic transposition is also illustrated in Figure 3.3 (see below).  

 

Figure 3: The didactic transposition process (Bosch and Gascón, 2006) 

The scholarly knowledge is developed primarily by mathematicians, and is a part of the university and/or 

the scientific society. The knowledge to be taught is part of the educational system, i.e. in the form of a 

curricula. An example of this would be the new curricula describing the course of mathematics at C-level in 

Danish high schools1. In this, we find the following academic goals (own translation), which are relevant 

when working with Fermi problems:  

• Handling simple formulae, formulate simple variable dependencies and be able to use symbolic 

language to solve problems with a mathematical content. 

• Translate between the four data-representations in the form of table, graph, formula and everyday 

language. 

• Use simple functions for modelling purposes given sets of data, (…) and a developed critical sense 

regarding the scope and usefulness of the model in question. 

                                                           

1 https://www.uvm.dk/-/media/filer/uvm/gym-laereplaner-2017/stx/matematik-c-stx-august-2017.pdf (August 1, 
2017) 

https://www.uvm.dk/-/media/filer/uvm/gym-laereplaner-2017/stx/matematik-c-stx-august-2017.pdf
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• Using mathematical programs for experiments and developing mathematical concepts, and also for 

handling symbols and solving problems 

• Demonstrate and convey knowledge on mathematical application in select areas, including 

handling problems originating from everyday life and society. 

We also identify the central material as follows (own translation): 

• The concepts of functions, characteristics of linear functions (…) and their graphical representation 

• Fundamental properties of mathematical models, simple mathematical modelling by use of the 

above-mentioned functions (linear, power, exponential) and combinations thereof.  

We also note the following regarding the didactic principles (own translation):  

[…] A part of the course material in the basic course (…) is regarding linear models, including linear 

functions. […] In the everyday teaching situations, mathematical reasoning, problem solving and modelling 

is highly emphasized through independent work of the students, and formulating mathematical questions 

and problems is at the center of attention. When working with mathematical modelling, the students 

should gain insight into how the same mathematical theories and methods are applicable to widely 

different phenomena […]  

It is worth to note, that the wording of the curricula enable the teacher to very freely decide how the 

central material is taught. In most cases, the teacher will make use of textbooks, old exam assignments, and 

the (with respect to the curriculum) associated teaching plan, when selecting the specific knowledge to be 

taught.   

The knowledge taught is what is taught by the teacher in each teaching situation, and the corresponding 

learned knowledge is what the students themselves are able to formulate, apply and even teach to other 

students.  

According to the theory of didactic transposition, it is of grave importance that all of the types of 

knowledge are taken into consideration when analyzing a didactic problem. It is consequently – in our case 

– important to understand the academic point of view when working with linear functions and modeling, in 

order to understand the same mathematical concepts subject to high school mathematics.   
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5. The scholarly knowledge to be taught 

In the following chapter, I will give a brief presentation of the relevant academic subjects that I will be using 

throughout this thesis, and how these subjects are linked with the curriculum of mathematics at C-level in 

Danish high schools.   

Mathematical models and modelling using Fermi problems 

Modelling 

Mathematical modelling as a learning and teaching subject has become a very prominent topic in the last 

decades, as the need for mathematical application in science and technology is ever growing (García, 

Gascón, Higueras and Bosch, 2006). This development has also greatly influenced the mathematics 

curricula of Danish high schools in recent years, and in 2002, the Danish department of education published 

the report Kompetencer og matematiklæring – Idéer og inspiration til udvikling af matematikundervisning i 

Danmark (Niss and Jensen, 2002). In this report, the authors present eight fundamental mathematical 

competences, that find its validity in all levels of the educational system (be it elementary school, high 

school, university etc.). Here the term competence is defined as:  

[…] someone’s insightful readiness to act in response to a certain kind of mathematical challenge of a given 

situation (Blomhøj and Jensen, 2007, p. 47).  

 

Figure 4: A representation of the eight mathematical competences presented in the KOM report (Blomhøj and Jensen, 2007) 

One of the competences is that of mathematical modelling, consisting of both the analysis –  and the 

creation of – mathematical models.  
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The analysis part is the student’s ability to identify the properties and the foundation of a given 

mathematical model, as well as identifying the scope and validity of the model. This includes the ability to 

“de-mathematize” a presented mathematical model in the sense of deciphering and interpreting results 

given by the model, with respect to the situation.  The creation part is the competence of actively creating a 

model based on a specific situation (i.e. mathematizing), thereby brining mathematical concepts to life, 

with the goal of applicational usage in said situation.  

According to Blomhøj and Jensen (2007), the process of mathematical modelling can be divided into six 

sub-processes: 

• Formulation of task 

• Systematization  

• Mathematization  

• Mathematical analysis 

• Interpretation/evaluation 

• Validation 

The formulation of task is regarding the real-world situation, where the student finds motivation in order to 

engage in the modelling process. This leads to the establishing of a domain of inquiry.  

The systematization is the first step of translating the perceived reality into a model. Here the students aim 

to limit, structure and simplify the domain of inquiry. This process give rise to a system with respect to the 

situation.  

The mathematization is the second step of the translation of the real-world situation into a mathematical 

model, in which the resulting systematization is mathematized.  

The mathematical analysis is the analysis of the mathematical model, where, for instance, a mathematical 

solution to a given problem is found. This leads to a result of the mathematical model in question.  

The interpretation/evaluation is the process of assessment: is the result reasonable with respect to the 

empirical data at hand? This process give rise to either action, where decisions are made based on the 

consequences of the result, or insight in sense that new knowledge of the real-world situation is acquired.  

Finally, the model undergoes a process of validation, where extent and validity of the model undergo a 

questioning. This can be in the form of comparing the model to new empirical data.  
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Figure 5: A representation of the mathematical modelling process (Blomhøj and Jensen, 2007) 

According to Blomhøj and Jensen (2003), the modelling process is not linear, but rather cyclical (as 

illustrated by the double arrows in Figure 5) – in other words, when undergoing the overall process of 

modelling, it is not unusual to undergo some of the sub-processes several times. A simple example of such 

a modelling process is i.e. an inquiry regarding how much it costs to actively do fitness in a fitness center.  

Fermi problems 

The term Fermi Problem is named after the famous Italian physicist and Nobel Prize winner, Enrico Fermi 

(1901-1954), whose most notable scientific contribution was the creation of the world’s first nuclear 

reactor, while he was a part of the Manhattan Project. Enrico Fermi was also a highly-appreciated teacher 

(Lan, 2002), and when teaching, he was very prone to stating problems like How many railroad cars are 

there in the US? or How many piano tuners are there in the Chicago? To answer these questions, he would 

use assumptions and estimates, which – often – would yield accurate and reasonable answers. These 

problems are examples of what we call Fermi problems (also known as back-of-envelope calculation 

problems), and Fermi himself firmly believed, that any “thinking person” (in the sense of physicists) could 

estimate any such quantity up to a factor 10 just using reasoning and intelligent estimates (Ärlebäck, 2009).  

Fermi problems in mathematics education 

The specific use of Fermi problems in mathematics education is not a subject that has been researched 

extensively, though they are mentioned in connection with the teaching of estimates and modelling. 
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According to Ross and Ross (1986), teachers use Fermi problems mainly for two reasons. The first, in the 

words of Ross and Ross,  

[…] to make an educational point: problem-solving ability is often limited not by incomplete information 

but the inability to use information that are already available […] (p. 175) 

The second, to show the students more aspects of what also constitutes mathematics; i.e. problem-solving 

in mathematics does not always yield an exact result. According to Sririman and Lesh (2006), Fermi 

problems also give rise to interdisciplinary work, and that the use of Fermi problems based on everyday 

situations hold higher meaning for the students while offering more pedagogical possibilities than 

traditional intellectual exercises: 

[…] For instance, Fermi problems involving estimates of fresh water consumption, gasoline consumption, 

wastage of food, amount of trash produced, etc have the potential to lead to a growing awareness of 

ecological problems related to the environment we live in as well as provoke critical thought when checking 

the accuracy of computations with different governmental and corporate resources. Such activities also 

present the possibility for interdisciplinary activities with other areas of the elementary curriculum and 

cultivating critical literacy (Sririman and Lesh, 2006 p. 249). 

Realistic Fermi problems 

The definition of realistic Fermi problems I will use in this thesis, is that of Ärlebäck (2009, p. 339-340). 

These are characterized by the following five properties: 

• they are highly accessible  

• they are realistic  

• they demand “a specifying and structuring of the relevant information and relationships needed to 

tackle the problem” (Ärlebäck 2009, p. 339) 

• they demand reasonable estimates of the relevant quantities 

• they promote discussion  

The first property is in the sense that the problems are accessible to all individual students at all levels, and 

that the complexity is highly flexible in nature. The second is that they have a clear real-world connection, 

which – as previously mentioned (Sririman and Lesh, 2006) – is a great pedagogical advantage. The third 

property meaning that the stated problem is open in the sense that strategies previously known to the 

students are not analogously applicable in solving the problem.  The fourth restricts the problem in the 

sense that there should not be any known numerical data associated with the problem stated. The fifth – 
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and last – is that they should be oriented towards group work, specifically promoting discussion regarding 

the relevance of the estimates in question. In the remainder of this thesis, a Fermi problem will refer to the 

above definition.  

The characteristics mentioned above define a type of problem very different from traditional problems 

when working with mathematics at high school level. It is therefore expected that the students (given they 

have no initial experience with these sort of problems), will perhaps be a little lost when first encountering 

a Fermi problem with these properties. The fact that students will work in groups, however, is hopefully 

going to prevent them from being completely stuck. 

How many piano tuners are there in Chicago? 

As a final remark on Fermi problems, we will give an example through Enrico Fermi’s own famous example: 

How many piano tuners are there in Chicago? 

First, it is a well-known fact, that the population of Chicago is about 3 million people. If we assume that an 

average family contains four members, we have approximately 750.000 families in Chicago. Seeing as 

Chicago is a city where music is of great cultural importance, we estimate that 20% of the families own a 

piano, such that there are approximately 150.000 pianos that demands tuning. If we assume that a piano 

must be tuned once a year, and that a tuner can service four pianos a day, with him working five days a 

week for 48 weeks a year, it would require a total of 150.000 ⋅
1

4
⋅

1

5
⋅

1

50
≈ 157 piano tuners to meet the 

requirements of the city. According to the Wikipedia entrance on Fermi problems2, the actual number is 

about 290, showing that our simple calculation only is off with a factor of 2.  

Fermi problems – why do they work? 

In general, Fermi estimates are highly applicable seeing as the estimations of the individual quantities of 

the terms in question often are close to the correct number. As a result, overestimates and underestimates 

will often help cancelling each other out, hence a Fermi calculation that involves multiplication of several 

estimates will probably be more accurate than one could fear.  

Since there is a natural correspondence between multiplying estimates and adding their logarithms, we can 

consider the overall over- or underestimation as following a random walk on the logarithmic scale, which 

will diffuse as √𝑛, where 𝑛 is the number of terms. Consequently, if one makes a Fermi estimate with 𝑛 

terms, where the standard deviation of 𝜎  (on the logarithmic scale), then the overall estimate will have 

                                                           

2 https://en.wikipedia.org/wiki/Fermi_problem  (last checked on the 1. of August 2017) 

https://en.wikipedia.org/wiki/Fermi_problem
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standard deviation of 𝜎√𝑛 (Mahajan, 2008). Consider a Fermi problem with 16 terms with standard 

deviation 2, then the expected standard error will have grown as 24 = 16. Therefore we expect the 

estimate to be within the range of 
1

16
⋅ 𝑝 and 16 ⋅ 𝑝, where 𝑝 is the correct value. When performing Fermi 

estimations, the margin of error is consequently highly dependent on the number of terms used as well as 

the margin of error of each estimated term. 

Estimations 

As already discussed, estimation represents a large part of the process when solving Fermi problems. As 

presented by Albaraccín and Gorgorió (2014), we define estimation as a rough calculation or judgment of 

the value, number or quantity at hand, where the value, which results from undergoing an estimation 

process, is dependent on the person who performs it. Albaraccín and Gorgorió identify four kinds of 

activities in relation to estimation, one of which is calculating values in predictive activities. This is the exact 

kind of estimation we will be working on in this thesis, and furthermore, the representations made do not 

allow for an exact answer to the problem at hand, but merely an approximation whose validity depends on 

how well the chosen model corresponds to the real-life situation.  

Functions and their use when modelling with Fermi problems 

Functions and their role in Danish high schools 

As of August 2017, the curriculum of C-level mathematics in Danish high schools has undergone a great 

change; among other things, the reintroduction of the concept of functions now play a part in both 

academic goals and central material (see the section didactic transposition). Previously, the notion of 

functions did not appear at all in the curriculum, rather the more informal concept of relationships between 

variables was central.  

The reintroduction of the concepts of functions give rise to making use of several representations of 

functions: formula representations, graphic representations, tables, computers (input/output) and even 

Venn diagrams.  

But what is a function, when considering the formal definition, from an academic point of view? Kiming 

(2007, p. 104) uses the following definition: 
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Definition. 

Let 𝐴 and 𝐵 be nonempty sets. A function 𝑓 from set 𝐴 to set 𝐵 (denoted by 𝑓: 𝐴 → 𝐵) is a relation 

between 𝐴 and 𝐵 satisfying the following conditions: 

1. For each 𝑎 ∈ 𝐴 there exists 𝑏 ∈ 𝐵 such that (𝑎, 𝑏) ∈ 𝑓, and 

2. If (𝑎, 𝑏) and (𝑎, 𝑐) are in 𝑓, then 𝑏 = 𝑐. 

If 𝑎 ∈ 𝐴, the unique element 𝑏 ∈ 𝐵 for which (𝑎, 𝑏) ∈ 𝑓 is denoted by 𝑓(𝑎). 

This definition is, however, not very “user friendly” when teaching functions to students in high school, as 

the students aren’t equipped with handling mathematical concepts at this level. As a result, functions are 

usually introduced using the correspondence relational view of functions (Slavit, 1997). Here the focus is on 

pairs of input- and output variables for which there for each input variable correspond exactly one output 

variable. With this view in mind, Danish high school students have traditionally been introduced to 

functions through use of the mathematical notions of domain and image, followed by a formal definition of 

functions, as well as compositions of functions and inverse functions (Carstensen, Frandsen and 

Studsgaard, 2013). In Carstensen, Frandsen and Studsgaard, the definition is as follows (own translation): 

Definition. 

A quantity 𝑦 is called a function of a quantity 𝑥 if there for each value of 𝑥 correspond exactly one value, 𝑦, 

denoted the function value of 𝑥. This is written as 𝑦 = 𝑓(𝑥). The set of numbers, for which the independent 

variable 𝑥 can assume values, is called the domain of the function, 𝐷𝑚(𝑓). The set of numbers consisting of 

all function values is called the image of the function, 𝑉𝑚(𝑓).  

For first-year high school students, this definition is – though a lot simpler than that of Kiming – very 

abstract and confusing, and it is mainly through the use of real-world examples and applications that 

students are able to understand the idea of this definition. In Laursen (2008), the author argues that a 

covariance view of functions (Slavit, 1997) can be used as an introduction to the concepts of functions (or in 

his words, variable relations) – specifically through the use of tables, graphs and equations. In the 

covariance view of functions, the focus is rather on the growth properties, and properties of the change of 

the variables (in this case, there are two variables) – i.e. what happens with one variable when we change 

another. This is usually introduced through use of tables, where calculations are performed and the 

resulting changes are observed. 
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Inspired by this work I am inclined to believe that the use of Fermi problems may prove rewarding as an 

introduction to the concepts of (linear) functions – as well as an introduction to mathematical modelling, 

specifically with the covariance view of functions as inspiration.  

Using functions when modelling Fermi problems 

Let us first define – in a mathematical sense – the elements that constitute a Fermi problem. Let 

{𝑥1, 𝑥2, … , 𝑥𝑛} be the set of estimates that are used in conjunction with solving the problem. Then we can 

formulate the solution 𝑃 as a product of functions 𝑓1 ⋅ 𝑓2 ⋅ … ⋅ 𝑓𝑖, with 1 ≤ 𝑖 ≤ 𝑛, as 

𝑃(𝑥1, … , 𝑥𝑛) = 𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛) ⋅ 𝑓2(𝑥1, 𝑥2, … , 𝑥𝑛) ⋅ … ⋅ 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛).  

If we consider the set of estimates as variables, the solution 𝑃 is a multivariate function of 𝑛 variables. In 

the case of realistic Fermi problems, we have a function 𝑃: ℚ𝑛 → ℚ (since, clearly, estimates are rational 

numbers). 

Example. 

Let 𝑃 be a solution to the following Fermi problem: 

How many drops of water is in a (rectangular) swimming pool? 

The solution 𝑃 is given as a product of the two functions 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4) and 𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4), where 𝑓1 is 

a function describing the volume of the swimming pool in cubic meters and 𝑓2 is a function describing how 

many drops of water is required to occupy one cubic meter of space. In this case, the functions are trivially 

defined as 

𝑓1: ℚ4 → ℚ      defined by   (𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦ 𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 

𝑓2: ℚ4 → ℚ      defined by   (𝑥1, 𝑥2, 𝑥3, 𝑥4) ↦ 𝑥4 

 whence the solution is 

𝑃(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋅ 𝑥4. 

This example illustrates that the functional aspects of Fermi problems are justified – in this case, we can 

define a multivariate function describing the number of drops of water in any rectangular swimming pool, 

in which we can estimate its dimensions and the number of drops of water occupying one cubic meter of 

space. It is easy to modify the example to handle any shape of swimming pool, however the number of 

relevant variable estimates will change, as it is directly dependent of the shape in question, also influencing 

the domain of 𝑓1. 
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It is obvious that the complexity of a Fermi problem directly relates to the complexity of its functional 

solution, as also described in the above situation. The point is, that the variable relations when handling 

Fermi problems give rise to considerations of a functional nature.  

Settings and representatives of functions 

The work with functions allows the use of certain settings and representatives, as described by Schwarz and 

Dreyfus (1995) and Bloch (2003). When introducing the concept of functions, teachers usually make use of 

graphs in order to represent a function; they generally work as effective representatives of the function in 

question. The graphical setting is not the only way in which functions have representatives, and Bloch 

(2003) argue that the following settings are available: 

• Numerical (i.e. tables of values) 

• Algebraic (i.e. formulas and equations) 

• Geometric (variable geometric magnitudes) 

• Graphic (line segments, curves)  

• Formal (symbols such as 𝑓, 𝑓 ∘ 𝑔, 𝑓−1, 𝑓(𝑥) etc.) 

• Analytic (used for heuristic purposes, we will not go into detail with this setting) 

Clearly it is very different how the mathematical work with functions is carried out in the different settings; 

a problem concerning one representative in a given setting does not constitute the same mathematical 

work in a different setting. So how do these various settings present themselves when working with 

functions with respect to Fermi problems?  

The numerical setting 

Often illustrated by a table, the numerical setting with respect to functions in general, is an examination of 

the dependent variable as the independent variables change. Consider for instance the function 

𝑓(𝑥1, 𝑥2, 𝑥3) = 3𝑥1
2 − 6𝑥2

2 + 𝑥3, 

a numerical representative could be in the form of a table such as this: 

𝑓 𝑥1 𝑥2 𝑥3 

0 0 0 0 

3 1 1 6 

-10 3 2 -13 

⋮ ⋮ ⋮ ⋮ 



26 | P a g e  
 

In the context of Fermi problems, such a representative can be used when considering the estimation 

parameters as variables; i.e. what happens when we vary the different estimates.  

The algebraic setting 

In general, when working with functions, students working in the algebraic setting can conclude various 

properties of the specific function at hand (traditionally in high school settings, these are exponential 

functions, power functions, linear functions and polynomials). For instance, one can deduce that the 2nd 

degree polynomial 

𝑓(𝑥) = 3𝑥2 − 6𝑥 + 2 

has two distinct roots (as the discriminant 𝑑 = (−6)2 − 4 ⋅ 3 ⋅ 2 = 12 is greater than zero), the function 

has a global minimum at 𝑥 = 1 and that the function is decreasing in the interval (−∞; 1) and increasing in 

the interval (1, ∞). 

It is also possible to algebraically manipulate the formula through various transformations; it is however 

not possible to see the curve.  

Bloch (2003, p. 9) notes that students in general have great difficulties with algebraic manipulation; “(…) 

algebra is a setting where they have little knowledge”.  

When considering Fermi problems, algebraic manipulation is highly relevant, as the dependency of the 

quantities in play necessarily are related through various equations. In the traditional case of “How many 

piano tuners are there in Chicago”, one can for instance algebraically manipulate (through a 

transformation) the relation  

𝑃 = 𝐼 ⋅ 𝐻 ⋅ Π 

where 𝑃 is the number of pianos in Chicago, 𝐼 is the number of inhabitants, 𝐻 is the number of households 

per inhabitant and Π is the number of pianos per household. The difficulties the students have – as 

mentioned above (Bloch, 2003) – are potentially easier to overcome, seeing as it is reasonable to believe 

that the nature of a Fermi problem give rise to higher intuitive understanding, than algebraic manipulation 

of some formula or equation in the traditional sense. 

The geometric setting 

This setting is – when working with functions in general – not used much (Bloch, 2003). It is, however, a 

situation that naturally may arise when working with some Fermi problems – i.e. the swimming pool 
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example as mentioned above. In this case, following the crude illlustraion in Figure 6, a geometric 

representative is in play. 

 

Figure 6: Crude illustration of rectangular swimmingpool with dimensions 𝒙𝟏× 𝒙𝟐× 𝒙𝟑. 

The graphic setting 

In the traditional sense, the graphic setting of functions is what “one can see in the window” (Bloch, 2003, 

p. 9). With respect to the polynomial  

𝑓(𝑥) = 3𝑥2 − 6𝑥 + 2 

(as used previously), it is the curve representative of this function (Figure 7). 

 

Figure 7: Curve representative of the function 𝒇(𝒙) = 𝟑𝒙𝟐 − 𝟔𝒙 + 𝟐. 
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In this situation, one can for instance validate previously calculated roots of the polynomial, or validate that 

the global minimum is in fact in the point (1, −1). 

When working with Fermi problems, the graphic representative is somewhat difficult to handle in a high 

school setting, seeing as the functions often are of more than one variable. However, if a student would 

consider the case in which all of the estimates except one, are fixed, it is possible (and potentially 

rewarding) to graph the solution to the Fermi problem as a function of this variable estimate. In this case, 

the problem will – more often than not – be a representative in the form of a linear function.  

The formal setting 

When traditionally considering functions, the formal setting concerns the formal definitions, theorems, 

proofs, etc. It is, however, not a setting that has high impact when working with Fermi problems, as the 

algebraic setting sufficiently covers what one might perceive as a formal setting. 

Ambiguity  

Students often tend to treat graphs, formulas and tables as if they unambiguously characterize a function. 

This is obviously not the case, as, for instance, any straight line segment does not necessarily ambiguously 

represent one linear function, or similarly, a table with a constant rate of change won’t necessarily 

represent one linear function. Consider for instance the table  

𝑥 -1 0 1 

𝑦 -1 0 1 

 

which, at first glance, represent the function 𝑓(𝑥) = 𝑥. It is, however, clearly not the only function 

satisfying the tabular values; all functions 𝑓(𝑥) = 𝑥𝑛 with 𝑛 ≥ 1, and 𝑛 odd also satisfy these values.   
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6. Defining the problem 

In today’s society, applied mathematical modelling serve as an indispensable tool within the fields of 

technology and science. This development has greatly influenced the various curricula in mathematics 

courses at high school level – and Denmark is no exception. As of august 2017, new curricula have taken 

effect, and the focus on mathematical modelling and applied mathematics is a big part of what constitutes 

the Danish courses of mathematics at A, B and C-level.  

When teaching mathematical modelling – or applied mathematics – it is important to realize that learning 

to apply mathematics is a very different activity than that of learning mathematics in the traditional sense. 

It is a very different skill set that is at use than that of understanding theorems, doing proofs and solving 

equations.   

The main purpose of this thesis is to investigate the hypothesis, that Fermi problems can be used as an 

entrance to mathematical modelling with functions of one or severable variables with respect to teaching 

mathematics at C-level in Danish high schools.   

In order to examine this, I have designed a teaching sequence that will be tested in a junior year high school 

class.  Specifically, I will analyze the adidactic situations that naturally arise when students work with Fermi 

problems. 
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7. How to overcome the problem 

In order to investigate the hypothesis, I have developed a small course consisting of various Fermi 

problems. This course was tested on 1.mn at Rødovre Gymnasium, and was carried out in April 2017 over a 

period of four lessons.  

The students, the teacher and the course 

The claim that the students of 1.mn are overly eager to learn mathematics would be a great exaggeration – 

this is also expected when considering the study program that they have chosen. They are either following 

a study program with primary courses in music, English and drama (1.m) or English, social studies and 

geography (1.n). The mathematics teacher is experienced with more than 15 years as a teacher at Rødovre 

Gymnasium.  In her opinion, the mathematical skills of the students are a bit below average, but there are a 

few students who excels. During the course, the students were divided into specified groups, in which the 

students were at a similar mathematical level. This was to, hopefully, gather data of a varying degree.  

The 1st lesson gives a short introduction to Fermi problems, where the students also get to work with a 

simple case. In the 2nd lesson the students work with more complex problems, with algebraic notation as 

the focus of study. The 3rd lesson increase the complexity, and uncertainty intervals are also handled. In the 

4th lesson, the focus is on the use of CAS and its applicability when modelling. 

Data 

The data used in this thesis is the course on Fermi problems, which will be described in further detail in the 

following sections, and observations made during the four lessons. In each lesson, several dictaphones 

were used to record what was going on. Seeing as a lot of the work was conducted in groups, dictaphones 

was assigned to three of those. There was also a dictaphone recording from the catheter in the didactic 

situations. This dictaphone was picked up by the teacher, who observed the students, in situations of 

adidactic nature. The students also handed in some written work, which was collected as part of the data 

used in the analysis. 

My role in was that of an observer. During situations of a didactic nature, I would sit in the back, taking 

notes. When situations of an adidactic nature were in effect, I would sneak around in the class-room, 

observing the work of the various groups. In an ideal world, my presence would not have been noted by the 

students, but curiosity and playfulness of the students often resulted in me interacting with the students. 
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Method of data analysis 

Through the use of the characteristics of realistic fermi problems as proposed by Ärlebäck (2009), a series 

of problems was designed. In order to identify what the students should estimate and model, an á priori 

analysis was also made of the problems (see the following section).   

It is important to point out, that the amount of data is huge, and analyses of all the data is therefore not 

conducted (this would be far too extensive in a master thesis, and the time constraints do not allow such an 

analysis). The focus is therefore on three specific situations, which are all adidactic in nature. The first 

situation is regarding the students first encounter with a Fermi problem. The 2nd situation is regarding the 

students work within the algebraic system, and the final situation is concerning the functional aspects of 

Fermi problems.   

The data relevant to the situations was afterwards handled in an á posteriori analysis, which is described in 

the subsequent chapters. 
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8. Design of a teaching sequence 

The following teaching sequence is designed specifically for use in Danish junior year high schools, possibly 

as an introduction to mathematical modelling and functions. The sequence has been tested in cooperation 

with Karen Mohr Pind in a 1.g class at Rødovre Gymnasium. In this sequence, the focus of interest is mainly 

on adidactic situation; specifically, on students working with Fermi problems in predefined groups 

determined by the teacher. In total, the sequence is run over the course of four lectures. 

The design of the sequence is heavily influenced by the characteristics of realistic Fermi problems as 

discussed earlier in the thesis (see chapter 5). I will in the following chapter give an overview of the lesson 

plan associated with each lesson as well as a presentation of the Fermi problems that are handled. 

The 1st lesson 

The first lesson is an introduction to the concepts of Fermi problems, where the focus is on establishing the 

ideas of the subject. Here the students will engage in solving the simple problem stated below. The focus 

here is more about understanding the concept, and we therefore allow the students to work informally 

with the problem.  The duration of this lesson is in total 100 minutes (including a small break). 

Material used 

The first assignment the students are to solve is formulated as follows: 

President Trump and the big numbers 

In order to sweeten the life of newly elected American president, Donald Trump, his advisors make use of 

alternative means in order to describe the situation of the world. They specifically wish to make use of 

“alternative facts”3 regarding Trump Tower, the Mexican wall and the presidential inauguration.  

Exercise 1 

In an attempt to advertise for Trump Tower, the president wants to give each visiting guest a letter that, 

among other things, describe the following: 

A. How many “5-kroner” (coins) one should stable to reach the top of the tower 

B. How long it takes to reach the top floor when riding the elevator. 

                                                           

3 A phrase that was actually used during a “meet the press” interview on January 22, 2017. For further information, 
see https://en.wikipedia.org/wiki/Alternative_facts (active as of august 2017) 

https://en.wikipedia.org/wiki/Alternative_facts
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As a group, you are to give reasonable estimates for the questions stated above. The answer is to be 

presented as a letter for the visiting guests.  

Lesson plan of the 1st lesson 

A lesson plan of the first lesson is given in the following table.   

Table 1 

Activity Time Role of teacher Role of students 

Introduction 

(Niels) 

7 min. An introduction to the 

subject as well as an 

introduction of Niels and his 

role during the sequence. 

Methods for data collecting 

is presented, and the 

groups are established. 

Listening; asking questions. 

Introduction to 

realistic fermi 

problems 

13 

min. 

Moderator Debate; a discussion on how many 

Pinocchio beads (or M&M’s) are in a jar, 

a discussion on the number of blades of 

grass are in the park. 

This debate is purely guessing; however 

strategies on how to come up with 

educated guesses should be considered.  

 

Fermi-problem: 

Classic Fermi-problem 

on the number of 

piano tuners in 

Chicago 

25 

min. 

Moderator; makes sure that 

the estimates used are 

reasonable; introduce 

relevant parameters that 

the students themselves do 

not think of. 

Debate; the students discuss which 

parameters are relevant in order to 

decide how many piano tuners are in 

Chicago. Furthermore, they must agree 

on reasonable estimates. 

Pause 5 min.  - - 

Introduction of the 

first Fermi-problem 

5 min. Explain the premises of the 

task at hand (the 

formulation of a letter) 

Listening; asking questions 

First Fermi-problem 

(1A) 

10 

min.  

Observer; supervisor. 

Teacher influence is 

minimal. 

The students work in groups on the 

Fermi problem formulated in exercise 

1A.  

Summary (1A) 7 min. Moderator; 

 

The groups present the different 

strategies (i.e. height of the tower, 

width of a 5-krone, etc.) 

Afterwards they propose a solution to 

the problem. Supposedly they have a 

critical mind regarding the estimates 
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and question the validity of these. The 

teacher notes the estimates on the 

black board. 

First Fermi-problem 

(1B) 

15 

min. 

Moderator; supervisor. 

Teacher influence is, again, 

minimal; she may refer to 

the previous summary 

situation.  

The students work in groups with the 

Fermi-problem given in exercise 1B. 

Discussion (1B) 7 min. Moderator/writer The students present their strategies 

and estimates; a proposed solution is 

worked out; they may also ask 

questions, and should discuss the 

proposed solution. 

Summary of the 

lesson and a short 

introduction to the 

next lesson 

6 min. Moderator 

 

The students listen and ask questions. 
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The 2nd lesson 

In the 2nd lesson, the focus is on formalization. The students are given a new problem in which formulas, 

variables and algebraic notation is used.  

Material used 

In the 2nd lesson, the students are given the assignment below. They are also handed a work-sheet in which 

variables, equations and their relations were to be written down. A Danish example of the work-sheet can 

be found in the appendix.  

Exercise 2 

In order to construct the Mexican wall, Donald Trump wants to investigate how much it will cost as well as 

the amount of building materials are to be used. In this exercise, you act as designers/engineers assigned to 

the project, and you are to answer the following question: 

A. If the Mexican wall would be constructed using lego blocks, how much would it cost? 

When answering this question, you may find it helpful to solve the following sub-questions: 

i. Which variables are relevant when solving this problem? (i.e. ℎ describing the height of the wall) 

ii. What are the relations between the variables (i.e. price, length, width, height, etc.)? 

iii. How many (regular) bricks does it take to construct the wall? 

iv. How many regular (2×4) legos does it take to build a regular brick? 

Since you are the main designers affiliated with this project, it is of great importance that all variables, 

estimates and equations are written down. 

Lesson plan of the 2nd lesson 

A lesson plan of the 2nd lesson is given in the following table. 

Table 2 

Activity Time Role of teacher Role of student 

Summary of the 
previous lesson 

8 min. Moderator Active participants in the 
summary; listening/ asking 

questions 

Introducing variable 
relations  

17 min. Lecturer. Using the examples on 
the black board, a formalization is 

carried out through use of 
variables and equations.  

Active participants; the students 
note the most important aspects 

for further use.  

Introduction 
(episode 2) 

3 min. Explaining the premises of the 
assignment 

Listening; asking questions 
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Fermi-problem (2) 20 min.  Observer; supervisor in case the 
students stall. 

The teacher should, as much as 
possible, attempt to avoid guiding 

the students. 
 
 

Group-work on exercise 2: The 
students share ideas and 

strategies. They should focus on 
relevant variables, estimates and 

equations, and explicitly write 
down which variables are used. 

Pause 5 min.   

Status (variable) 5 min. Moderator 
Writer; writes down relevant 
variables on the black board. 

The students present their 
findings; specifically, which 

variables are needed to answer 
the question. 

Further work on 
Fermi-problem (2) 

30 min. Observer; supervisor in case the 
students stall. 

The teacher should, as much as 
possible, attempt to avoid guiding 

the students. 
Creates a table on the black 

board in which the students can 
write down relevant variable 
relationships and estimates.  

Through use of the variables they 
have identified, the students work 
out relevant relationships between 

them. 
When the students have, an 

educated guess regarding the sub-
questions, they write it down on 

the black board. 
Finally, they work out a written 

formulation of their 
considerations; including formulas 

and variables that are in play. 

Discussion (2) 10 min. Moderator and writer The students present their 
estimates and variable 

relationships as well as arguments 
surrounding those. 

Final summary 5 min. Moderator Listening/asking questions 
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The 3rd lesson 

In the 3rd lesson, the focus is on formulization as well as the use of linearity, intervals and geometric 

representatives.  

Material used 

In the 3rd lesson, the students are given the assignment below. They are also handed a work-sheet similarly 

to that of the 2nd lesson (see the appendix).  

Exercise 3 

In order to clarify the statements that were made regarding the attendance of the inauguration speech, 

Trumps advisors seek answers to the following questions: 

A. If all of the inhabitants of Denmark were standing as closely together as possible, how much 

space would we occupy (area)?  

B. What about the population of Copenhagen? The United States of America? The world? 

Fill out the following tables after the classroom discussion of A and B. 

 Number of people pr. m2 

Maximum value  

Minimum value  

C. How many attended president Obama’s inauguration speech (see Figure 8)? Use both the 

maximum and the minimum value of the table above in your analysis.  

D. How many attended president Trump’s inauguration speech (see Figure 8)? Use both the 

maximum and the minimum value of the table above in your analysis. 

E. Choose a president; Trump or Obama. Argue, through use of the previous analysis, that it is your 

president who had the greatest attendance.  

 

Figure 8: National Mall when Trump was inaugurated in 2017 (left) and when Obama was re-inaugurated in 2009 (right). 
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Lesson plan of the 3rd lesson 

A lesson plan of the 3rd lesson is given in the following table.  

Table 3 

Activity Time Role of teacher Role of student 

Summary of previous 

lesson 

10 

min. 

Moderator Active participants in the summary; 

listening/ asking questions 

Introduction of 

exercise 3 (3I) 

3 min. Introducing the assignment 

and its premises. 

Listening and/or asking questions 

Fermi-problem nr. 

3A+3B (3I) 

25 

min. 

Observer/supervisor if 

needed (mainly if the 

students do not understand 

the questions). 

Focus on identifying relevant variables 

and estimates concerning populations 

and areas.  

Pause 5 min.   

Summary of 3A+3B 

(3I) 

10 

min. 

Moderator; The class are to 

agree on an appropriate 

interval (max/min) of how 

many people can occupy a 

given area.  

The students present their strategies, 

estimates and results. They also debate 

and ask questions regarding the validity 

of said results. 

Fermi-problem nr. 

3C+3D+3E (3II) 

32 

min. 

Observer  The students decide which president 

they want to argue for, and work out 

arguments as to why it is their president 

who had the highest attendance at the 

inauguration. 

Discussion of 3E (3II) 7 min. Moderator Debate on the problem at hand 

Summary 8 min. Moderator Listening, asking questions 

 

 

  



39 | P a g e  
 

The 4th lesson 

In the 4th lesson, the focus is on the use of CAS and how it is applicable when modelling, through the use of 

functions in Maple. 

Material used 

The assignments presented in lessons 1 through 3 are used again in this lesson. Furthermore, a Maple 

worksheet is introduced in which the students work out the problems stated.  

Lesson plan of the 4th lesson 

Table 4 

Activity Time Role of teacher Role of student 

Summary of 

previous lesson 

7 min. Moderator Active participants of the summary; asking 

questions. 

Introduction to 

modellering using 

Maple 

(8.4I) 

15 

min. 

Lecturer; Fermi problem nr. 

1 is solved through using 

the Maple-document 

handed out. 

Listening/Asking quesitons 

Fermi problem nr. 

2 (Maple) 

(8.4II) 

20 

min. 

Observer; supervisor 

(Maple technician) 

The students work with Fermi problem nr. 2, 

where they use the previously defined variables 

and relations. They are to write out a program 

that can solve the problem. Also the linear 

relation between price and length of the wall is 

examined as a function. 

Pause 5 min.   

Student 

presentation and 

summary 

(8.4II) 

7 min. Observer/”technical 

assistent” 

One (or more) of the students present their 

Maple-sheet that solves the problem (using the 

electronic black board). 

Introducing 

problem 3 

(8.4III) 

3 min. Introducing the premises of 

the third problem; 

specifically the linear 

relationship between the 

number of people and the 

minimum/maximum values 

of the previous lesson 

Listening, asking questions 

Fermi problem nr. 

3 (Maple) 

(8.4III) 

20 

min. 

Observer, Supervisor 

(maple-help) 

Group-work on the third problem. Again they 

write out a program that solves the problem; 

furthermore they define functions for both 

minimum/maximum values of the previously 

mentioned values, such that the program 

outputs an interval (of the space occupied) as a 
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function of the number of people (in a graphic 

representation). 

Student 

presentation and 

summary 

(8.4III) 

7 min. Observer/”technical 

assistent” 

One (or more) of the students present their 

Maple-sheet that solves the problem (using the 

electronic black board). 

Summary 10 

min. 

Moderator Listening/asking questions 

End of sequence 6 min. Niels’ final remarks Listening, asking questions 
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9. A priori analysis 

In this section, I will perform an a priori analysis of select situations, which are smaller parts of the teaching 

sequence, as described in the previous section (see tables 1, 2, 3 and 4). In each of the situations, we will 

first describe the phases (see section 4), followed by an analysis of the prior knowledge of the students, the 

knowledge to be taught and the objective milieu.  

A priori analysis of the 1st lesson (the 1st Fermi problem) 

Context 

We will now turn our attention towards specific situations in the teaching design of the first module. The 

overall goal of the lesson is to introduce a few, simple realistic Fermi problems (see Table 1).  This lesson is 

the first time the students will get acquainted with these types of problems, but they do have some 

knowledge of linear functions and basic algebraic methods.  

Specific situations 

In this analysis, we wish to point out the knowledge to be taught in specific situations, and also to clarify 

what the objective milieu is, and what knowledge the students possess with regards to the situation. We 

will consider the situations (mainly the adidactic ones) regarding the episodes described as the first (1A) 

and second (1B) problem: “How many 5-kroner coins should we stack in order to reach the top of Trump 

Tower?” and “How much time does it take to reach the top of Trump Tower, when riding an elevator?” 

Prior knowledge of the students 

Prior to these above-mentioned episodes, the students have only had a short introduction to the concepts 

of Fermi problems. It is therefore not reasonable to already conceive the knowledge to be taught as well 

established; it is rather knowledge under development. It is worth noting that the students are - prior to 

this teaching sequence - acquainted with the concept of linear equations, and also an elementary idea of 

the concept of functions.  

Phases of the episodes 1A and 1B 

Let us first consider the situations regarding episode 1A. In accordance with the teaching sequence, there 

will first be a didactical situation in the form of devolution, where the teacher introduces the assignment at 

hand. Here the teacher explains the premises of the problem - the students are supposed to give a qualified 

answer to the problem in the form of a letter - and the students are allowed to ask questions. This didactic 

situation is followed by an adidactic situation where the students (in groups) work with the problem at 

hand. This situation is expected to consist of various phases of action, formulation and validation; i.e. the 
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students will engage in the problem, formulate hypotheses and validate their work through group 

interactions. This situation is followed by a didactical validation phase, where the teacher and the students 

discuss the validity of the used estimates. This will lead to a didactical institutionalization phase, where the 

problem finally will be considered answered.  

In order to introduce the episode 1B, a new didactical devolution phase will take place. Here the teacher 

will point to the estimates agreed upon with respect to episode 1A (i.e. height of the tower, which is 

relevant in answering 1B). This is again followed by an adidactic situation where the students (in the same 

groups) work with the problem at hand. This situation will similarly consist of phases of action, formulation 

and validation. This situation is analogously followed by a didactical validation phase, though this time a 

didactical institutionalization will not take place. Instead, the students will engage in an adidactic 

institutionalization phase in which they write out the letter that answers the questions at hand. A table 

with a focus on the phases of the situations is given below: 

Table 5 

Episode Phase Situation 

Episode 1A  Devolution: Introduction and 

rules of the didactical game 

Didactical 

Action/formulation/validation Adidactical 

Classroom validation: Estimates 

are discussed  

Didactical 

Classroom institutionalization: 

Agreement upon an answer to 

the problem 

Didactical 

Episode 1B Devolution: Introduction and 

rules of the didactical game 

Didactical 

Action/formulation/validation Adidactical 

Classroom validation: Estimates 

are discussed 

Didactical 

 Institutionalization: Students 

write out letters 

Adidactical 

The knowledge to be taught 

In the episodes 1A and 1B, the knowledge to be taught is very similar. The students are to use realistic 

estimates for various parameters, in order to implicitly set up a system of equations, wherein the solutions 

of the problems lie. Specifically, in 1A the students should be able to give sensible estimates for parameters 

such as the thickness of a coin and the height of one floor. By giving these estimates, they should be able to 

find expressions that describe the height of Trump Tower, and thereby also establishing how many coins 
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one should stable in order to reach this magnitude. In 1B the students should be able to give sensible 

estimates of the speed of an elevator, and they should be able to discuss how many stops such an elevator 

on average would do on a bottom-to-top ride. This discussion should be sparked by the use of personal 

experience they themselves have of riding elevators. The use of systems of equations and methods of 

substitution should also appear in the process of solving this problem. 

The Objective Milieu 

In both problems, the objective milieu is defined by the assignment as shown in Figure 9 below. 

Furthermore, a stack of “5-kroners” is present in the classroom (for measuring if needed). There is a rich 

adidactic potential in this setting, since the possible paths to solving the problems all are based on common 

sense. Specifically, the adidactic validation phases in the group work situations are heavily based on this 

use of common sense, and the assignment will therefore give feedback to the students during the process 

of working out the solutions. 
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Figure 9 

In the process of solving the problem, the students are also asked to write relevant variables and estimates 

on the blackboard, thereby potentially inspiring other groups by giving hints/strategies. In the assignment, 

the groups are asked to do the following (last sentence): 

“In the groups, you must find sensible estimates that answer the two questions above.   Remember, that 

the answer must be in the form of a letter to the visiting guests.” 

The intents of letting the students work out a letter in order to answer the questions, are both such that 

they gain ownership of the problem, and thereby inspire the students to work out serious arguments and 

answers in the process. This phase of validation and institutionalization also hold a rich adidactic potential. 
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Expected student strategies 

If the students are to solve the problem in Figure 9, certain quantities must be reasonably estimated and 

modeled. In this case, one can expect that the students give estimates of the following quantities: 

• Height of the tower; possibly through use of 

o an estimate of the number of floors 

o an estimate of the average height of one floor  

• Width of a “5-krone” (coin) – the students might measure this directly 

• The speed of the elevator, including 

o an estimate of the average number of stops/starts during travel 

o an estimate of the average number of travelers using the elevator 

o an estimate of loading/offloading time 

We will consider the second part of the problem, where a solution could be as follows: 

Let 𝑃 be the solution to the problem. I then estimate that the number of floors of Trump tower is at least 

50 and at most 80. An educated guess would therefore be 65 floors. Through eye-measuring, I estimate the 

height of the class-room floor to be 3 m, so an estimate of the height of Trump Tower is approximately 65 ⋅

2,5 m = 195 m. I will now estimate the speed of the elevator through use of personal experience from 

riding elevators. When living at “Grønjordskollegiet”, it would take approximately 10 seconds to travel a 

height of 6 floors, hence I estimate that the average speed of an elevator is 2,4 m/s. In a skyscraper, such as 

Trump Tower, there are probably a lot of activity, whence many people use the elevators. Assuming that 15 

people in average enter the elevator from the start, it is reasonable to assume that during the travel, the 

initial passengers will require at least 12 stops before reaching the top. People might also enter along the 

way, so I estimate that an additional 5 stops is required. I also estimate that the loading/offloading time is 

16 seconds in average (people in New York are in a hurry), hence the total loading/offloading time is 

estimated to be 17 stops ⋅ 15
s

stop
= 255 s. The estimate of the time it will take is therefore 

𝑃 =
195 m

2,4
m
s

+ 17 stops ⋅ 15
s

stop
≈ 80 s + 255 s = 335 s ≈ 5,5 minutes  

The actual time it takes is probably a lot lower than that, since elevators in skyscrapers, of course, are a lot 

faster than your average student hall elevator. However, reasoning along the lines of the above, is what I 

expect from the students.  
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A priori analysis of the 2nd lesson (the 2nd Fermi-problem) 

Context 

As a follow-up to the first lesson, the teacher will first use the results from this lesson, and describe the 

relevant quantities by use of algebraic symbols. This will be followed up by explicit use of equations to 

describe how the problem was solved. The use of algebraic notation will lead to the episode we wish to 

analyze in the lesson connected to the 2nd Fermi problem; specifically, episode 2 (see Table 2). 

Specific situation 

As in the previous analysis, we wish to do a thorough analysis of the episode described as Fermi problem 

number 2 as part of the 2nd lesson (see Table 2): “In case the Mexican wall was built using Lego blocks, how 

much would the wall cost?”  

Prior knowledge of the students 

When engaging the 2nd Fermi problem, the students now have a grasp of the concept of Fermi problems. It 

is, however, still knowledge under development - especially regarding the use of variables and the 

dependencies of the involved quantities. The use of basic algebraic manipulation will be of greater 

importance when engaging in problem 2 (compared to earlier), seeing as one of the main aspects of this 

problem is for the students to introduce variables and using those in order to describe various relations 

between those variables.  

Phases of episode 2 

In episode 2, the teacher introduces the assignment at hand. Here she explains the premises of the 

problem - this time the students are engineers doing calculations for the construction of the Mexican wall - 

and the students are allowed to ask questions. This didactical situation is followed by an adidactic situation 

where the students (in groups) work with the problem at hand. This situation is expected to consist of 

various phases of action, formulation and validation; i.e. the students will engage in the problem, formulate 

hypotheses and validate their work through group interactions. In an intermediate validation phase, the 

teacher will - in a didactical situation - ask for relevant variables which the students will present. After this 

validation, the students will once again (in groups) engage in adidactical action/formulation/validation 

phases, in which they work out the relevant variable relations and estimates. Finally, the lesson will be 

concluded with a didactical phase of combined validation and institutionalization, with the students 

handing in their supplementary work sheets.  
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Table 6 

Episode Phase Situation 

Episode 2  Devolution: Introduction and 

rules of the didactical game 

Didactical 

Action/formulation/validation Adidactical 

Classroom validation: Variables 

are discussed  

Didactical 

Action/formulation/validation: 

Work with said variables in mind, 

work out equations (relations 

between variables) and estimates 

Adidactical 

Validation/Institutionalization: 

Discussion of solutions to the 

problem. Groups hand in work 

sheets. 

Didactical 

 

The knowledge to be taught 

In this episode, the focus is mainly on explicit algebraic modelling; i.e. formally defining relationships 

between symbolic representations of quantities. Giving good estimates for those quantities is still a focus 

point, and the students are in this sense still supposed to use their common sense. The complexity is, 

compared to problems 1A and 1B, a lot higher, though, and the explicit use of algebraic symbols is required, 

as a result.  

The Objective Milieu 

The objective milieu in this episode is provided by the assignment described in Figure 10 below, along with 

a worksheet, in which they are asked to fill out variables, estimates and connection to other variables (see 

Appendix 1). In this assignment, the students are supposed give a qualified solution to the Fermi problem 

of “the price of the Mexican wall, if this is built using Lego blocks“. In order for the students to not drown in 

the complexity of this question, underlying questions are also provided; i.e. “Which variables should we 

identify in order to solve this problem (i.e. ℎ for the height of the wall)?” and “What are the relationships 

between those variables (i.e. relationship between price, length, height etc.)?” 

These questions along with the worksheet provide some degree of scaffolding in order to guide the 

students into answering the questions in a satisfying manner; however, it still keeps the question open and 

- hopefully - intriguing for the students to engage. The realistic nature of this problem also functions as a 

built-in validation tool, seeing as the students use of common sense will function as a validation in itself.  
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Figure 10 

Similarly, to episodes 1A and 1B, the adidactic potential is high in this setting; also due to the fact that 

students are able to engage in the underlying questions without teacher interactions - also without giving 

too much away (i.e. in the sense of a Topaze effect). 

Expected student strategy 

In this Fermi problem, the students are expected to solve the problem with the explicit use of formulas – a 

clear difference to the more informal strategy proposed in the introduction. They are to write out formulas 

and use algebraic notation using the work-sheet (see Appendix 1), and the expected general strategy for 

solving the problem is as follows: 
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I start with estimating that the wall is 10 meters high, and denoting ℎ𝑤 as the height of the wall, I have 

ℎ𝑤 = 10𝑚 

Furthermore, I estimate that the width of the wall, 𝑤𝑤, is approximately 2 meters, and that the length of 

the wall, 𝑙𝑤, is 3000 kilometers, 

𝑤𝑤 = 2𝑚   and   𝑙𝑤 = 3 ⋅ 106𝑚 

Since the wall is to be built from legos, I need to estimate the size of such a block. As a kid, I played a lot 

with legos, and through this experience, I estimate that the dimensions are as follows: 

𝑙𝑏 = 4𝑐𝑚 = 4 ⋅ 10−2𝑚,   ℎ𝑏 = 1𝑐𝑚 = 1 ⋅ 10−2𝑚    and    𝑤𝑏 = 1,5𝑐𝑚 = 1,5 ⋅ 10−2𝑚 

Here, 𝑙𝑏 denote the length of one block, and ℎ𝑏 and 𝑤𝑏 denote height and width respectively. If I assume 

that the wall is completely solid, I can calculate an estimate for the number of blocks that are needed for 

the construction, 𝑛𝑏 using the following equation: 

𝑛𝑏 =
𝑙𝑤

𝑙𝑏
⋅

𝑤𝑤

𝑤𝑏
⋅

ℎ𝑤

ℎ𝑏
=  1 ⋅ 1013 blocks 

Through personal experience, I know that legos are expensive, and a box of legos with approximately 500 

pieces is about 400 kroner. Thus, the price for one block, 𝑝𝑏, is estimated to be 

𝑝𝑏 =
400 pieces

500 kroner
= 0,8

kr

pc
. 

The wall does not build itself, and labor must also be considered. If I assume that a worker can apply one 

piece per second, the total number of work-hours, ℎ𝑤, is 

ℎ𝑤 =
𝑛𝑏

3600
blocks
hour

≈ 2,8 ⋅ 109hrs. 

Assuming a salary, 𝑠, of 120 kr/hr, we estimate that the total price 𝑃 is 

𝑃 = ℎ𝑤 ⋅ 𝑠 + 𝑛𝑏 ⋅ 𝑝𝑏 = 8.3 ⋅ 1013 kr. 
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This price is, of course, completely ridiculous when compared to the actual estimate of the wall (which is 

estimated to be in the range of $12 billion to $15 billion)4, however, this perspectivation I do not expect 

from the students at this level.   

A priori analysis of the 3rd lesson (the 3rd Fermi-problem) 

Context 

While the previous sequences of Fermi problems have handled algebraic modelling in the sense of 

establishing linear relations between various quantities, they have not considered the potential of handling 

intervals of estimation of said quantities. Through my own personal experience, I find that this is 

conceptually difficult to grasp for students at this level, and an introduction should therefore be handled 

delicately. In order to examine the potential of a teaching sequence which handle these intervals of 

estimation, we consider a classic Fermi problem which is stated as follows: “How much room would the 

entire world population take up, if standing as close as possible side by side?”  

Specific situations 

In this problem, we consider a part of the 3rd lesson as described in Table 3; specifically, the situations 

connected to assignment 3 as given in Figure 11 below (see the objective milieu). This assignment gives rise 

to various interesting situations, and we will split this into two collections of situations (episodes): 3I and 

3II respectively (see Table 3 for clarification). In episode 3I, the students are asked to solve variants of the 

classic Fermi problem (as described earlier; see the previous section and chapter 5); namely the questions 

“If the population of Denmark all stood next to each other, how much space would we occupy?” This 

question is then followed up by an alternate version with modified populations (i.e. Copenhagen, USA, the 

world). The final part of 3I, is asking for an expression describing the area as a function of the size of the 

population in question; and also, which kind of function is in question. In the episode 3II an interval of the 

people/area is given in the form of a minimum number of people/m2 and a maximum number of people/m2 

(these numbers are estimated by the students themselves). This leads to questions 3C, 3D and 3E, where 

the students are to use the interval endpoints in order to estimate how many people were attending the 

inauguration speeches of Barack Obama (2009) and Donald Trump (2017) respectively, followed by an 

assignment in which they shall provide arguments for one or the other (regarding the question of which 

president had the most attendees).   

                                                           

4 https://www.cnbc.com/2015/10/09/this-is-what-trumps-border-wall-could-cost-us.html (active as of august 2017) 

https://www.cnbc.com/2015/10/09/this-is-what-trumps-border-wall-could-cost-us.html
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Prior knowledge of the students 

When engaging this lesson, the students are expected to be familiar with the process of solving simple 

Fermi problems; specifically, in defining variables, setting up equations and providing reasonable estimates 

describing the given situation. They also have knowledge of linear functions from an earlier teaching 

sequence, and knowledge of intervals.  

Phases of episodes 3I and 3II 

In episode 3I, the teacher first introduces the assignment at hand. She explains the premises of the 

problem - the students are to answer questions for Donald Trump’s advisors regarding the attendance at 

the inauguration speech - and the students are allowed to ask questions. This didactical situation is 

followed by an adidactic situation where the students (in groups) work with the problem at hand. This 

situation is expected to consist of various phases of action, formulation and validation; i.e. the students will 

engage in the problem, formulate hypotheses and validate their work through group interactions. In an 

intermediate validation phase, the teacher will - in a didactical situation - ask for relevant quantities 

regarding the maximum density (people/area).  

The students will then engage in episode 3II; here they will once again (in groups) engage in adidactic 

action/formulation/validation phases, in which they work out the relevant variable relations and estimates. 

Finally, the lesson will be concluded with a didactical phase of combined validation and institutionalization, 

where the students argue their respective standpoints.  

Table 7 

Episode Phase Situation 

Episode 3I  Devolution: Introduction and 

rules of the didactical game 

Didactical 

Action/formulation/validation Adidactical 

Classroom validation: Estimate 

interval is discussed  

Didactical 

Episode 3II Action/formulation/validation Adidactical 

Validation/Institutionalization: 

Debate; Who had the most 

attendees?  

Adidactical/Didactical 
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The knowledge to be taught 

In this episode, the focus is again on explicit algebraic modelling; i.e. formally defining relationships 

between symbolic representations of quantities. A new interaction, however, is in the use of intervals and 

how to apply a linear expression on an interval. The students are here, in groups, supposed to estimate a 

maximum of how many people can occupy a given area (say, 1 m2). These answers will vary from group to 

group, and in order to establish an interval, the lowest and highest estimates respectively, will be used to 

define the interval, which the students are supposed to work with, when engaging episode 3II. Also, the 

students are intended to use geometric considerations and the concept of concentration measurement; i.e. 

in the sense of population density, in order to properly solve the problem.  
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The Objective Milieu 

The objective milieu in these episodes is provided by the assignment described in Figure 11 below, along 

with a worksheet, in which they are asked to fill out variables, estimates and connection to other variables 

(see Appendix 2).  

 

Figure 11 

In this assignment, the students are supposed give a qualified solution to the following Fermi problems:  

3A: “If the population of Denmark all stood next to each other, how much space would we occupy?” 

3B: “What about the population of Copenhagen? The United States of America? The world?”  
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3C: “How many people were at Obamas speech (according to Figur 3)? Use both the maximum and 

minimum value from the table above. “ 

3D: “How many people were at Trumps speech (according to Figur 3)? Use both the maximum and 

minimum value from the table above. “ 

3E: “Choose a president; Trump or Obama. Argue from the answers of 3.C and 3.D that it is your president 

who had the greatest attendance at the inauguration speech” 

The students are here expected to be able to engage in answering the questions group-wise, this time 

without the use of scaffolding sub-questions. They will, however, get a worksheet (as in the 2nd Fermi 

problem), where they can fill out relevant information with respect to answering the questions. It is 

important to note here, that there will be a mid-way evaluation between questions 3B and 3C, where the 

interval of the number people per square meter is provided (see Figure 11).    

As a validation, again we find that the realistic nature of this problem functions as a built-in validation tool, 

where the students’ use of their own rationale will function as validation. 

Expected student strategy 

A possible solution to this problem is as follows: Let 𝐴(𝑝) be the function describing the occupied area as a 

function of the population, 𝑝. Let 𝐴1 be an estimate of how many people – on average – can occupy a space 

of 1 m2 (I assume that this is when standing shoulder to shoulder). I estimate that the value is 𝐴1 =

8 
people

m2  (it is possible to do a sub Fermi problem here through use of average width and thickness 

estimates. I will leave this to the reader). Let 𝐷 denote the population of Denmark. It is a well-known fact 

that the population of Denmark is roughly 5,5 million, and I will use this as my estimate. The general 

solution is then given as  

𝐴(𝑝) =
𝑝

𝐴1
, 

and in the case of the area for the Danish population, question 3.A, I find 

𝐴(5.5 ⋅ 106) =
5.5 ⋅ 106 people

8
people

m2

≈ 7 ⋅ 105 m2. 

Similar results may be found for the population of Copenhagen, The United States of America and the 

world, answering question 3.B. I now assume that an interval is given for the maximum and the minimum 
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number of people occupying one square meter respectively. Using the image, I will estimate how many 

people are occupying the area of the National Mall, see Figure 12, answering exercise 3C. 

 

Figure 12 

First, I will estimate the area of the mall, by use of eye measure. I consider one of the trees in the right 

corner, and assume that it has a height of 20 meters. I then assume that the width of the mall at the 

bottom is approximately ten times the height of the tree, a total of 200 meters. Now the length is a bit 

more tricky. Here I assume that the length is about 2.5 times longer than the width of the mall. I now have 

an estimate of the total areal; 𝐴𝑚 = 2.5 ⋅ 200 m ⋅ 200 m = 100000 m2. I will now estimate the number of 

people occupying the space. It looks like a lot of the space is occupied by trees, and it is therefore difficult 

to see if there are people standing below those. A reasonable upper bound is 80% of the area, and a 

sensible lower bound is 50%. I will settle on 65%. I now use a modified version of the function from before, 

where I isolate the population 𝑝: 

𝑝 = 8
people

m2
⋅ 0.65 ⋅ 105 m2 ≈ 5,2 ⋅ 105 people 

or about half a million. A similar analysis may be carried out for the Trump case, and I will leave this to the 

reader. In order to argue for which president had the most attendees – exercise 3.E – the aforementioned 

interval is used when calculating the estimation of the number; in this case in the form of an interval. If the 

resulting intervals overlap, it is possible to argue for either president as having the highest attendance.  
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A priori analysis of the 4th lesson (using CAS with Fermi problems) 

Context 

In this lesson, the students will be using CAS - specifically Maple - in order to algebraically model the Fermi 

problems discussed in the previous lessons. This includes describing some of the situations using functions 

of potentially multiple variables, which will be the main focus point. In order to secure a clear 

understanding of the objective, the students are asked to write Maple-code that is able to compute 

answers to the questions stated in problem two and three - in that way, they are comfortable with the 

assignment at hand.  

Specific situations 

We will again focus on the adidactic situations, where the students in groups work with the assignments at 

hand. Here they will rework their answers to the questions from the assignments shown in Figure 10 and 

Figure 11 (exercises 2 and 3). Before they engage in these, the teacher will introduce a pre-made Maple-

sheet (see Appendix 3), in which the 1st Fermi problem is treated. This sheet will also work as the objective 

milieu, where the assignments are stated.  

Prior knowledge of the students 

In this lesson, it is expected that the students are familiar with the theory described in lessons one, two and 

three, as well as the fundamental tools of Maple. Among other things, they know how to assign variables, 

define functions, plot graphs and solve equations. These tools are all fundamental in order to design Maple-

code that solves exercises 2 and 3.  

Phases of episode 4 

In episode 4I, the teacher first introduces Maple as a useful tool in solving the 1st Fermi problem. She also 

explains the premises of the 2nd problem: The students are to design Maple-code that is able to solve the 

2nd Fermi problem - a problem which they are already very familiar with. This didactical situation is followed 

by an adidactical situation where the students (in groups) work with the problem at hand. This situation is 

expected to consist of various phases of action, formulation and validation; i.e. the students will engage in 

the problem, formulate hypotheses and validate their work through group interactions. Finally, a voluntary 

student is to present the Maple-code for the rest of the class on the e-board (“electronic blackboard”).  

The students will then engage in episode 4II; here they will once again (in groups) engage in adidactical 

action/formulation/validation phases, in which they work out the Maple-code that can solve the 3rd 

problem. Finally, the lesson will be concluded with a didactical phase of combined validation and 

institutionalization, where the students also are to present the solutions. 
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Table 8 

Episode Phase Situation 

Episode 4I  Devolution: Introduction and 

rules of the didactical game 

Didactical 

Action/formulation/validation Adidactical 

Classroom validation: Estimate 

interval is discussed  

Didactical 

Episode 4II Action/formulation/validation Adidactical 

Validation/Institutionalization Adidactical/Didactical 

 

The knowledge to be taught 

The focus in this episode is on algebraic modelling using CAS, the modelling of functions – including graphic 

representation of a given problem. Potentially, the students may engage in multivariate linear functions; 

however, the graphic representation of those will be limited to single-variable ones.  

The Objective Milieu 

In order for the students to meaningfully engage this task, they are provided with the worksheets they have 

previously worked on, along with the aforementioned Maple-document, in which the 1st Fermi problem is 

treated. This document can be found in Appendix 3.  

Expected student strategy 

In this situation, I expect that the students more or less follow the guide as given in the appendix. The 

strategies are already well-documented, seeing as the assignments are already previously handled.   
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10. The realized teaching sequence 

The teaching sequence that was in fact carried out differed quite a bit from what was planned in the first 

place. In general, all the situations regarding Fermi problems did in fact demand a lot more time than my 

initial plan had taken into account. As an unfortunate result, the final lesson was therefore modified quite a 

lot.  

The 1st lesson 

In the first lesson, the introduction using the example “How many piano tuners are there in Chicago?” took 

in fact a little over 35 minutes, which was way more than anticipated. The reason for this was not a bad one 

– quite the contrary. The students showed a very high interest when going through this example, and a lot 

of parameters that were not anticipated came to fruition. The students, for instance, were very focused on 

the musical culture of Chicago, and used a lot of time arguing whether or not it was relevant to include 

pianos of bars, educational institutions, churches, piano stores, etc.  

It was also more time demanding to go through the summaries of problems 1A and 1B, and a result of this 

was that the students did not have the time to properly formulate the letter as intended in the assignment. 

They did, however, work with a high level of enthusiasm throughout the entire lesson, and in the following 

section I will present a short á posteriori analysis of the situation regarding problem 1B as highlighted in 

Table 5. 

Á posteriori analysis of episode 1B 

In the following analysis, I have included a short select dialogue of a group (Group A) of students, who, 

according to their teacher, are considered to be at a lower mathematical level. The group consist of four 

students – the three girls Anna (A1), Alma (A2) and Aisha (A3), and the boy Alan (A4) (all of the student 

names are pseudonyms). The situation is initiated with the teacher stating the purpose of the exercise, as 

well as the time-frame for which they are to solve the problem. Immediately after, the students proceed: 

1. A1: How much does an elevator weigh? 

2. A4 and A3: No idea, but how what is the speed of an elevator? 

3. A2: I think that we, sort of, just have to think about, how fast it is. 

4. A3: Ehm, what about we use… doesn’t it depend on how many times it stops on the way? 

5. A4: I don’t think it stops along the way. 

6. A1: Yeah I also think it’s without stops. 

7. A2: Ehm, shall we count in, waiting in line in order to use the elevator? 
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(The teacher overhears this question, and immediately answers) 

8. T: No! You consider from “I walk into the elevator and travel all the way up”. 

9. A3: What if others have to get off? 

10. T: No, there isn’t. You’re all alone and going all the way to the top. 

11. A3: (Frustrated) Arhhh.. but that could be the case..? 

Here we see clear signs of the students engaging constructively in the problem at hand. The 1st quote is 

somewhat irrelevant, and A4 and A3 quickly discard it, moving along with stating a more relevant: what is 

the speed of an elevator? In quote 4, A3 states a relevant problem, but unfortunately it is also quickly 

discarded by A4 and A1. The immediate interaction followed by the teacher, is – in my opinion – a violation 

of the didactical contract of the situation, in the sense that the solving of the problem holds higher 

importance than the process of solving the problem. Further on, the students proceed where they use 

information from the previous exercise, namely that the height of the tower is approximately 200 meters, 

and that there an estimated 62 floors in the building. 

12. A1: So each floor is approximately 3,2 meters.   

13. A3: But that means that… it should actually… ehm… run a distance of 200 minus 3,2 meters… 

because it doesn’t run all the way to the top.. you could say…  

14. A4: yes, yes. 

15. A3: So if we for instance consider the bottom of the elevator starting all the way down, it only 

reaches the floor, and not the top of the tower 

16. A4: yes exactly. 

17. A3: but are we just calculating with the 200, or shall we plus.. or minus…? 

18. A4: Yes we calculate using 200. 

19. A2: but how do we figure out how fast an elevator is? 

20. A4: No idea!   

21. A3 and A1: I have no idea how fast an elevator runs either. 

22. A1: It’s not like a roller-coaster. 

23. A3: This is difficult! 

After this, there is a long period where the students stall and instead starts paying attention to other things 

going on in the classroom (as well as the dictaphone), before the lesson eventually is ended.  

Unfortunately, following a very promising start, the students rather quickly give up on the assignment, 

which may be a direct consequence of the way in which they are used to act, when working with problems 
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in mathematics, that they are not immediately familiar with. At the end – in a didactic summarizing 

situation – the students immediately expect that the teacher delivers “the correct answer” to the students, 

which also indicate that the delivery of the premises of the assignment was not handed accordingly (or the 

students may just have missed the fact that the exact correct answer is not known – even by their teacher). 

This is also an unfortunate effect of the didactic contract that is in play here; the students are apparently 

used to being given the answer at some point, thereby not having to procure it themselves.  

In other words, the students violate the didactic contract in the sense, that they do not actively seek help 

when it is needed. It is worth noting, however, that there is a high potential in this assignment when 

working with students at this level; if the students would have sought the help they needed, they could 

perhaps have made a greater attempt at finding a solution.  

Another group (Group B) consisting of three girls, Berit (B1), Bente (B2) and Bodil (B3) and a boy, Brian (B3), 

also worked with the problem (again the names are pseudonyms). This is a group of average students, and 

their work with the problem at hand was as transcribed: 

1. B3: How tall is an elevator? 

2. B1: Ehhhmmm…. as tall as a floor? 

3. B2: I guess.. 

4. B4: Is it really a whole floor?? 

5. B3: No! I guess it’s a little less. 

6. B4: So it’s at approximately one floor per second? 

7. B1: I’m not sure about that… the thing with elevators is… if you run.. I mean if you go from one to 

two (floors, red.), its at one speed, but if you take from one to something more its another (speed 

red.). The point is, it will move faster with time… it will add more and more pace.. it accelerates.  

8. B4: Yes, it just says “wrooom!!” and then its up there. 

9. B1: exactly, so it accelerates, and then it slows down again.  

10. B3: When they made this exercise, did they ask people to not press the buttons at all floors? 

(students laughing) 

11. B1: (jokingly) Listen to this… I just wanted to go in/out on each floor 

12. B2: But seriously, if it’s from the bottom, aren’t we supposed to subtract one floor?? 

13. B1: Yes of course 

14. B4: There are 62 including the lower floor 

15. B3: I don’t know…. (pause)… How are we supposed to figure that out? 

16. B1: How long do you think it takes to run one floor? 
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17. B4: One-and-a-half second, and then it decreases to one second when it has run for a while. I don’t 

think it runs faster than one second (per floor, red.).. do you think? 

18. B1: So lets agree one approximately one second per floor. 

19. B2: It doesn’t just take one second!! 

20. B3: I don’t think so either! 

21. B1: Then one-and-a-half second per floor 

22. B3: I just think it takes quite a long time to ride an elevator.. or is it just me? 

23. B2: What about two seconds? 

24. B1: (counting) One… two… yeah that might be the case 

25. B2: So if we take from when we start moving, because there is a lot of time in the elevator spent 

on waiting for it to start, right? 

26. B4: Approximately 10 seconds. 

27. B3: 10 seconds of wait!! 

28. B1: Try and start the clock (she is probably referring to a mobile phone) so we can see how much 

time two seconds take. 

29. B3: The next time I ride the elevator, I will count this!! 

After quite a while, the students settle on four seconds per floor: 

30. B2: So it’s just 4 times 62? 

31. B4: Plus/minus 

32. B1: I think with acceleration, we can cut maybe…. five seconds off.. so what about we say its 240 

seconds? 

33. B2: Yes, approximately 

34. B4: That’s not that long, is it?..... It’s three minutes… No it’s more.. It’s four minutes… Five 

minutes… four minutes…  

35. B3: Does it really take five minutes to reach the 62nd floor? 

36. B1: Easily!! 

37. B4: Four minutes.. that sounds good 

38. B2: But there is also a big difference between those elevators (she refers to skyscrapers) and those 

in our old apartment.  

In this sequence, we see a lot of both modelling and estimating, for instance the quotes 12-14 indicate that 

of a modelling task. The fact that acceleration and deceleration also is considered is furthermore examples 

of actual modelling (quotes 7-9 and 16-17). The students also make a lot of estimates, and they discuss very 
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vividly how many seconds it takes to travel one floor (quotes 19-24), clearly making use of their own real-

world perception in the process (quotes 28-29). They even make their own validations in the sense that 

they discuss whether or not their result seems reasonable (quotes 35-38), and they also doubt the validity 

of their estimates. This builds up to the students finally agreeing upon four minutes as their answer. The 

final remark shows again, that they are validating the answer, as B2 (correctly) points out that skyscraper 

elevators are faster than those in Danish apartment buildings. In this situation, the students seemingly have 

full ownership over the problem, as per the terms of the didactic contract. The target knowledge – that is, 

the process of modelling a Fermi problem – is also somewhat acquired.  

The 2nd lesson 

In the 2nd lesson, the planned summary of the previous lesson also took a lot longer than anticipated. As a 

consequence, the time the student had to work with the Fermi problem clearly was not enough. The 

teacher and I therefore agreed to use part of the 3rd lesson as well.  

Á posteriori analysis of situations of episode 2 

In this analysis, I consider a sequence that is part of episode 2; specifically, that highlighted in Table 6. In 

this situation, the group we follow consist of three girls and a boy; Celia (C1), Cecilie (C2), Caroline (C3) and 

Carl (C4) (again pseudonyms). This group consist of the students of the class that are most gifted when it 

comes to mathematics.  

1. C4: Does anyone know, ehmmm… the standard size of a lego block? 

2. C3: I think it depends on whether we use duplo (larger blocks, red.) or the other ones 

3. C4: The normal ones, I think 

4. C3: But duplo’s are more effective because they are larger 

5. C4: I don’t think that we are allowed to use duplo’s 

6. C1: No.. We can ask? 

7. C4: I think we should use 2 times 4 centimeters.  

8. C2: It is 2 times 4! 

9. C1: I don’t think so… 

The students decide to ask the teacher for help, and she advises that the students should use the small, 

regular 2 times 4 blocks.  

10. C2: Its’ because, what we say… I think we can agree that a 2 times 4 is a good, normal one.. but 

that doesn’t mean that its 2 times 4 centimeters. 
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11. T: Yes exactly. But there are legos that are for small children that put it in their mouths, that’s what 

we call duplos. And I don’t think you are supposed to use those.  

12. C2: Because we talked about duplos because it would become a bit larger, and maybe more 

effective. 

13. T: You think it is easier that way. 

14. C3: If I were to build it I would certainly prefer the bigger ones 

(students laughing) 

When confronted with the problem, this group immediately considers what the definition of “legos” are. It 

is worth to note, that this strategy is not one I expected; when I think about legos, I personally always 

picture the regular 2x4 blocks. This is a clear example of making a model, where the group argue and 

negotiate on how to engage in solving the problem. The students also have an expectation that when in 

doubt, the teacher will give them the answer, but in this case (as opposed to the one in the 1st lesson), the 

teacher does not just give them a method; rather it is up to the students themselves to decide which path 

they choose. This also becomes apparent in the following situation: 

15. C2: (in discussing the height of the wall) 12 meters?!? Are you insane?! I don’t believe that for a 

second. Karen, won’t you say 12 meters is a bit too much?? 

16. T: I will not say anything! I want to hear what you have to say.   

17. C2: (simulating crying) That’s not fair! 

This clearly shows a shift in the establishment of the didactic contract, compared to what the students are 

used to. The responsibility is entirely the students’; a situation they seemingly are not used to.   

The group then carry out a discussion regarding the dimensions of the wall and the dimensions of the lego 

blocks, which is followed by an intermediate class-discussion regarding the findings so far: 

18. (other student): We also thought about.. maybe… that the wall should also be under the ground.. 

19. T: Why? 

20. (other student): Because.. then they can’t dig under the wall.. 

21. T: Yeah, we could imagine that a sneaky Mexican would decide to dig his way under the wall, right? 

22. C2: (enthused) That’s genius!! Why didn’t we think of that? 

Here, the group validate the work of another student, and also make use of this consideration, in order to 

calculate the number of legos needed to build the wall. They afterwards engage in a process of mass-

calculations through use of the various estimates they have found. The transcript of this situation is, 
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however, very vague, but given their written work it is clear, that they have the right idea, and have 

understood the intended use of algebraic notation, in accordance with what was the target knowledge: 

 

Figure 13: Work-sheet of group C, part 1. 

 

Figure 14: Work-sheet of group C, part 2. 
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The concept of estimation is, however, seemingly not something they have yet clearly understood, as 

demonstrated by the groups use of decimals and lack of significant figures. I would have expected to see 

the use of scientific notation, i.e. a total price of the wall of 2,2 ⋅ 1012 kr. 

Afterwards, the group engage in a discussion regarding labor: 

23. C1: Well… Then we are supposed to find out how many workers we think are needed to build this… 

because… how much time will he (she probably refers to Trump) use? 

24. C4: (jokingly) He can just get some slaves to do it! 

25. C2: Well… now we are… we stand… if we take Trumps point of view… there should not be any pay 

for the workers…. The Mexicans are supposed to build it for free.. or mexico can pay for it… that’s 

what he said…  

26. C1: That’s probably not realistic… 

27. C2: But a lego wall is not realistic in the first place 

28. C1: But now if there were to be some (workers)… I have no idea… it takes a long time to build lego 

if they should all be connected… 

29. C3: How long is the Chinese wall? 

The students have apparently lost their motivation, and find the discussion regarding labor very confusing 

and difficult. It doesn’t help either, that they are abrupted by a student from another group, who finds a 

discussion regarding Roskilde festival a lot more interesting. The group seemingly does not study the 

problem any further afterwards.   

The following didactic situation takes place after the class have found the number of pieces of legos that 

are needed to build the wall, as well as the cost of those pieces. The setting of the situation is in the form of 

a discussion, where the subject is the price of the labor. The teacher’s role is that of mediator rather than a 

lecturer.    

1. T: But what about the wages? 

2. Boy student 1: We assumed that the wages of Mexicans are 30 kr. per hour.  

3. T: OK, we assume that Mexicans work for 30 kr. per hour.  

4. Boy student 2: That sounds reasonable 

5. Girl student 1: That is a really low payout. 

6. Boy student 1: Yeah but Mexicans don’t make that much money. 
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7. T: So we have a variable we will call “løn”… right? because we already have a variable called 𝑙 (she 

refers to the length of the wall).. So a Mexican worker is paid 30 kr./hour, but it takes more than 

an hour to build this wall. What else do we need to find the total payout? 

8. Girl student 2: We also need to know how many workers there are 

9. Girl student 3: And their age, because they are not paid the same amount (she refers to age-

different wages) 

10. Girl student 4: I think the age doesn’t matter. 

11. T: I think we need to use an average wage at this point, if we are to ever get the result… How long 

does it take to build the wall? 

12. Boy student 2: 2 years.. or one year with 100.000 workers. 

13. T: Now you are just guessing randomly. We have to find a reasonable estimate. How can we 

estimate the time it will take? 

(students murmuring) 

In quote 1, the teacher asks the question that sets the stage for the situation at hand. Associated with this 

situation, she also attempts to establish a contract in which the students are to take responsibility for 

establishing an algebraic expression of the estimate of the wages. The students do seem to have difficulties 

understanding what is required in order to answer the question. This is clear from the triadic dialogue 

(Winsløw, 2007 p. 164) that occur in this situation.  In quotes 7, 11 and 13, the teacher both evaluate the 

previously attempted answers, as well as establishes new micro contracts in the form of new questions. 

The rules are, however, apparently unclear to the students, evidenced by the final, completely random 

guess (quote 12).  

14. C1: We have to figure out how many workers there are, how many hours they work each day, and 

how many days they work.. right? 

15. T: That is a good guess, but we can simplify by figuring out how many man-hours it takes to 

construct the wall… so we have to figure out how fast we can assemble legos in order to calculate 

how much time is required.. how much time is required to assemble 13,2 ⋅ 1012 lego bricks? 

(students are murmuring again) 

16. T: How many bricks can we assemble in an hour? 

17. C1: In one second we can assemble two legos.  

18. T: How many bricks is that per hour? 

19. C1: 60… no wait.. a lot more than that… no it’s 60 times 60.. 3600 lego bricks per hour. 

20. T: Do we agree on 3600 lego bricks per hour? 
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21. C1: If we work really fast.  

22. Girl student 5: That is for one person, right? 

23. T: Yes.. so that is how many lego bricks we assemble per hour.. how long does it take to assemble 

13,2 ⋅ 1012 lego bricks? Come on…. calculate calculate calculate…. 

24. Boy student 2: I get 28712 

25. T: I’m not sure about that result… 

26. C3: I get 3.6 ⋅ 109 hours 

27. T: That I believe. Now we have the number of hours. How much does it cost to assemble the wall? 

(students are murmuring) 

28. C2: I got 1,08 ⋅ 1011 …?  

29. T: That I believe.  

30. Girl student 4: That’s great, Karen! 

31. T: We don’t have much time left, but as a final remark, are there any parameters we need to 

include? Have we forgotten anything? We don’t have the time to do it 

32. Various students: Cement… Transport… Dig a hole… 

33. T: Yes, those are parameters that could be relevant too. 

The rest of the situation is also in the form of a triadic dialogue, but it also bears distinct resemblance to 

that of a Topaze effect situation. This comes to show in the on-going establishment of micro-contracts in 

which it is unclear whether or not the students understand the evaluations. The guessing nature of the 

students’ contributions also bear resemblance to the case of Gäel: they simply guess in a manner, in which 

they expect, it is what the teacher wants to hear.   
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The 3rd lesson 

Due to the nature of the lessons carried out earlier, the teacher had to use a bit of time in order to tie up 

some loose ends regarding the 2nd Fermi problem. The introduction of the 3rd Fermi problem was delivered 

approximately 30 minutes into the lesson (20 minutes later than anticipated), and the teacher and I further 

went on to agree to use some time of the 4th lesson, such that the plan could be carried out as smoothly as 

possible. As a result, the first 25 minutes of the 4th lesson actually correspond to the final situations as 

planned in accordance with the 3rd lesson (see Table 3). 

Á posteriori analysis of episode 3II 

In the following analysis, we will consider the highlighted situations of episode 3I, as illustrated in Table 7. 

Again, we follow Group B (Berit (B1), Bente (B2), Bodil (B3) and Brian (B4)) in the adidactic situation where 

they are to solve exercises 3C, 3D and 3E. In a previous situation (episode 3I), they have established 

estimates for how much space is occupied by various populations.  

1. B2: How many people were there at president Obama’s inauguration? Use both the minimum and 

the maximum value from the table above. 

2. B4: Here’s a paper… we can write on that.  

3. B1: So we are…. We must figure out how big the place is (National Mall, red.), so that is.. yeah.. 

that is what we need… so the estimate for the variable.. is that something we google?  

4. B3: We are supposed to limit our use of google.. 

5. B4: The place? Isn’t it okay to find out how big it is? 

Immediately, the group formulate the task at hand, but they decide to use a search engine in order to 

establish the area of National Mall. Here it is clear, that the didactic contract is not clearly specified, as the 

students are not completely sure as to whether or not they are allowed to do this. In this case, they were in 

fact supposed to use the geometric representation and measuring abilities. 

6. B4: 59 acres.  

7. B2: Can we get that as a number we can use? 

(students laughing) 

8. B4: 59 acres! 

9. B2: Okay…? 

10. B3: Okay…? 

11. B4: Don’t be so angry! 
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The group suddenly lose focus, and a few minutes is used on a non-related debate. Finally, B2 asks the 

question: 

12. B2: How much is one acre? 

13. B1: I don’t know.. look it up 

14. B3: Another excellent question 

15. B4: But that’s all of it (the whole area).. That doesn’t work… It’s not just this (probably points to 

the figure), it’s all of it! (frustrated) Why don’t they give us an idea of how big this is?? Now I’m 

mad! 

16. B2: Ehm…. How many parts is it divided into? One.. two… three.. four.. five.. approximately even 

sized.  

17. B1: I have figured out why it is like that. It’s from two different times of the day, or something.. It 

was something about one of the pictures was taken in the end, and the other at the beginning. 

Here they identify the actual problem at hand; using a search engine to solve the problem is not optimal. 

However they do not identify how the solution could be made. The afterwards group goes into a debate 

regarding time and place, as well as a discussion on the next questions of the exercise. This goes on for a 

bit, along with some irrelevant situations. 

18. B2: Okay let’s do some maths… Ehmmm… yeah… Okay… Brian you said the 59 acres was for the 

whole area of the park, not just the lawn..  

19. B4: Yeah, I think it was for the whole park. 

20. B2: Okay… then it won’t help us that much, but let us just say that if we cut in half, then I think it 

fits approximately.  

21. B1: But 59 acres… We are supposed to figure out how much one acre is in square meters.  

22. B2: Okay.. it’s actually.. we are supposed to figure out how many people on average can fit in one 

square kilometer. That is easier than square meters.  

23. B3: Can’t we just convert it? 

24. B2: Yeah…. But… so can you!  

25. B4: Isn’t it just by moving a zero? 

26. B3: I’m not sure about that 

27. B2: An acre is an area of 100 m times 100 m. That’s 10.000 square meters…. So Its 59 times 

10.000.. That’s quite a lot! 

28. B1: We can just apply zeros… 

29. B3: (Calculating) Okay… So it’s… 59… yeah… 59…. Divided by…. How do we do this? 
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30. B2: So the idea is, we have this much space here (probably points at the figure).. 

31. B3: Yeah, so I have done it wrong.. I should multiply instead of dividing.. Okay… 

32. B2: So… My guess is… they take up two thirds of the space…  

Unfortunately, the group completely stalls after this, even though they were in fact heading in the right 

direction. The intended use of geometry was in this case completely missed, and the responsibility as to 

who violates the didactic contract in this case is perhaps on the students, as they do not seek out help from 

their supervisor, or perhaps on the teacher, as she has not established the terms accordingly.  

In the following sequence, we consider the didactic situation in which the problems of episode 3II are 

evaluated. The various groups have beforehand written their proposed solutions to the problems on the 

black board. 

1. T: So, one of the groups have estimated that the mall is 390.000 square meters… Do we agree on 

that? 

(Students complain) 

2. T: Seemingly not.. How did you estimate the size of the mall? 

3. Girl 1: What we did was… whats on the black board… we took… we googled how big the mall was.. 

it said 59 acres… or something… so we assumed that’s the whole area including trees, lawn, and so 

on…  

4. Girl 2: But then its 590.000 square meters? 

5. Girl 1: Yes that’s what it says the whole park is.. but the point is we use… you know… the whole 

park is including the park, lawn, trees, and all that stuff, and that’s not on the picture.. we cant see 

all of it on the picture.. so therefore, we estimate that we can see approximately two thirds of the 

picture…  

6. T: OK, so using this, you have estimated that the minimum is 1 million and 560 thousand and 

maximum 5 million and 70 thousand… So if we look down here, a group has used the whole area… 

but then you have divided by 5.. why is that? 

7. Girl 3: Because we could see on the picture that there are some occupied spaces and some that 

are not.. we estimated approximately one fifth on the Trump picture…  

8. T: So what you are saying is that the people in the Trump picture take up about one fifth of the 

area.. Is that what you are saying? 

9. Girl 3: Yes. 

10. T: Good. And then you said that if its 4 people per square meter we end up here (points at black 

board), and if its 13 people per square meter we end up here (points at black board). 
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11. Girl 3: Yes.  

Again, we find a situation in which a triadic dialogue is present. In this case – conversely to the previous 

didactic situation – the students seemingly have a higher responsibility towards their contractual 

obligations. We also see a situation in quote 5, where a student to student validation takes place. In quote 

6, the teacher establishes a micro contract in which the student of quote 7 contribute with mathematical 

knowledge through use of geometric arguments.  

12. T: Okeydokey. Then we have Obama down here (points at black board)…. Approximately 80 

percent of the mall is occupied… some of you have used the total area… so that’s 472.000 square 

meters… And then you have calculated with 4 per square meter and 13 per square meter… So that 

leads us to the last question… Let me read it up… Choose a president, Trump or Obama.. you have 

already done that… Argue from the analysis that it’s exactly your president who had the highest 

attendance. 

13. Girl 2: Clearly Trump had a higher attendance, since on this day it was rainy so actually most of the 

people are crowded up under the tents… and the people are sitting on each other’s shoulders…  

14. T: So how many attendees are there? 

15. Girl 2: More than Obama… 

16. T: That’s might just be the best answer in this case… 

(classroom laughing) 

17. T: What do you think (points at another student)? 

18. Girl 4: Obama! You can see it from the calculations… Even if there were 4 per square meter at 

Obama’s inauguration and 13 per square meter at Trump’s there would still be more attendees at 

Obama’s inauguration…  

19. T: Yes! As you can see there’s not a big difference between these two numbers (points at black 

board), so this is very dependent on the estimate we use, right? With another estimate we can 

argue that there are a lot more or a lot less.. right? And they actually say that sometimes in the 

news… that they have fitted an estimate to get an appropriate answer… 

In this short transcript, we find both a situation in which a student completely misunderstands the purpose 

of the exercise (quote 13, 15). She does not use mathematical arguments as was intended, but the teacher 

later makes up for this with help from another student (quotes 18-19). In this case, we have a situation of 

validation (18) as well as institutionalization (19).  
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The 4th lesson 

As previously mentioned, this lesson underwent quite a dramatic series of changes, when compared to that 

of the initial lesson plan. This heavily influenced the amount of time the students had to solve the problems 

stated (see Appendix 3). As a result, none of the groups managed to do the third assignment, which in light 

of the intended target knowledge was the interesting one. The students did, however, work a bit with 

assignment two, and an example hereof will be given below.  

Á posteriori analysis of episode 4I.  

We will consider the episode 4I, in which the students use Maple in order to algebraically model the 

solution to the 2nd Fermi problem. Specifically, we will focus on the situation highlighted in Table 8. The 

group we follow is again Group C, who are considered to be the students of the class with the highest 

mathematical skillset. Following a situation in which the teacher goes through the first assignment using 

Maple (see Appendix 3), the students engage in solving assignment 2 in a similar fashion. C2 is writing on 

the computer with guidance from the rest of the group: 

1. C2: Let’s take height, width and length of the wall…  

2. C3: I have no idea what we’re doing right now, cause I can’t see the screen! 

3. C1: We are solving this exercise (probably points at the paper)! 

4. C2: So the height was 10 meters, right? 

5. C4, C3 and C1 simultaneously: Yes.  

6. C2: Then we have the width of the wall… ehmm…. The width of the wall… it was..  

7. C4: Was it one? Or two?  

8. C1: I think it was 2 meters wide, when we did it in class 

9. C3: I think so too 

10. C2: I don’t know what to write… Are we just writing the length of the wall we found? 

11. C3: We should find the volume of the wall.. and divide it with the volume of a lego block… right? 

12. C4: I didn’t get that, sorry.. 

13. C3: In order to find the number of legos, we should find the volume of the wall and divide it with 

the volume of a lego block.. And we should use millimeters…  

(C2 is writing on the computer, in an inaudible situation.. It appears as if the others have stalled 

a bit, as discuss a lot of non-relevant topics) 

The above situation clearly shows that the students are engaged in the problem at hand, but when working 

with CAS in groups, it is almost impossible to keep the whole group focused simultaneously, as – for 
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obvious reasons – only one can write at a time. The students demonstrate clear use of modelling skills as 

well as discussions aimed at estimating the relevant parameters.  

14. C2: Guys, we have the number of blocks now.. but we need to count in workers and wages… Did 

we write anything on this?  

15. C3 and C1: No, because we didn’t take this into account ourselves… 

16. C4: Let’s just say they are paid 30 kroner per hour.  

17. C2: But it was that thing about how fast they could assemble… 

18. C4: Wasn’t it something like 3500 an hour? Wasn’t it? 

19. C1: How many legos could we assemble per second.. 

20. C4: Per second?! 

21. C1: Yes, how many per second… 

22. (simultaneously) C4: One 

C1: Two 

23. C2: (counting) that’s doable… okay so now we calculate… so 60… one per second... that’s 60 per 

minute… in an hour that’s…. 3600 blocks that can be assembled… and how many legos should be 

assembled in total? 

24. C4: ******* many! 

25. C2: Is it this number (assumably points to the screen)? 

26. C3: I think so… but we need to write this down…  

27. C1: So we call this 𝑛.. 𝑎… Who works (number of “arbejdere”, red.)… Not length workers, cause we 

have used length before…  

28. C4: Ah, okay..  

29. C2: Should I figure out how many hours is needed? It was 3600 per hour, right? Wait a sec… one… 

two... three…  

30. C3: Shouldn’t we find out, per person, how many he can assemble per hour, then we can figure out 

how many hours one person should do… and then we can distribute among them… 

31. C1: We just need to find out how long it takes to build the wall and therefore how much we should 

pay for that… then it doesn’t matter how much they work each day… 

32. C2: So, we just need the number of legos… and that was 60 times 60…. Right? 

33. C3: This is more than a million-million legos!! Is it trillion??  

34. C2: Billion I think… 
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The students discuss the numbers for a while before ending up with a solution. In the situation above they 

also demonstrate modelling skills, and their use of a real-world rationale is very much there (quote 23 and 

29). They also demonstrate knowledge regarding use of algebra and variables, specifically symbolic 

representation of the variables in play (quote 27).  

35. C2: I will call this 𝑡𝑛 the number of legos... Then it takes a total of 3,6195 times 109 hours… Then I 

should multiply this with the hourly wage, right?... That’s 1,0858 times 1011 kroner… 

36. C3: I also think there should be someone to supervise…  

37. C4: like guards…? 

38. C3: Yes, but they should be paid 60 kroner per hour… we don’t need that many guards… I think 

there should be one guard per 100 workers…  

39. C2: So if we say there is a worker per 50 meters of the wall… then there are this many workers 

simultaneously (points at the screen) 

40. C1: I think we should say a worker per 10 meters… Trump wants this wall built! 

41. C2: Then I think there should be one guard per 200 workers…  

Here the students add flavor to the problem at hand, even though they know this may not be necessary. 

This is a very strong property of working with such a problem; the enthusiasm and engagement of the 

students is clearly present – even after working with this for many days. After this situation, the lesson is 

over, and the students hand in their Maple-worksheet associated with the assignment. Below is an excerpt 

of the Maple-document handed in by Group C. 

In Figure 15Fejl! Henvisningskilde ikke fundet., the group demonstrate an impressive display of using 

symbolic notation, which likely is derived from the nature of the variables in play, and the general realistic 

nature of the problem. They have clearly gained an ownership relation towards the assignment, which also 

was the intention of the initially established didactic contract.   



75 | P a g e  
 

 

Figure 15 
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11. Discussion 

In this chapter, I will attempt to answer the research question, that Fermi problems can be used as an 

entrance to mathematical modelling with functions of one or severable variables with respect to teaching 

mathematics at C-level in Danish high schools, through use of the observations in the previous section.  

The initial problem (of finding the number of 5-kroners needed to reach the top of Trump tower) was quite 

successful, which was also to be expected, as the complexity of the problem was very low. The problem is 

also quite similar to that characterized by an ordinary linear equation – one could perhaps even argue that 

it is not a Fermi problem at all (in the sense of Ärlebäck). Transcripts of this problem have been omitted, 

and the more interesting case of estimating the time it will take for an elevator to reach the top of Trump 

tower was analyzed instead. 

In this episode – Fermi problem number one, part B – the students were at first glance very confused as to 

how to proceed with answering the questions at all. This even though the Piano-tuner example was 

provided before they went on with the task.  

A possible reason for this, is that the class is used to mathematics being performed in an absolute certain 

way; that a mathematical problem is always defined absolutely, and with it is associated one – and only one 

– correct solution. This characteristic is definitely challenged when working with Fermi problems, since “the 

correct” answer to such a problem (using Ärlebäck’s definition) is (almost always) impossible to find. 

In the analysis, the students show signs of engaging in actual mathematical modelling; they do formulate 

the task, they do systematize through identifying relevant parameters (to a certain degree) – but the only 

mathematization taking place is stating basic estimates that were established in the previous exercise. A 

possibly unfortunate situation also arises, when the teacher applies a restriction to the exercise at hand, 

thereby modifying (one could argue breaking) the didactic contract as well as the milieu. The student 

(Aisha, A3) indeed has a great point in considering intermediate stops as a factor. I am not certain that this 

was an intentional move on behalf of the teacher (as the mathematical skill of the group is quite a lot lower 

than average), but I did point out to her after the lesson, that this was not the intention of the assignment.  

Group B handle the similar situation with a seemingly higher enthusiasm, motivation and expertize, they 

immediately show clear-cut signs of actual modelling, and even consider acceleration and deceleration as a 

relevant factor. The students of Group B also make use of extra-mathematical knowledge (Ärlebäck, 2009) 

in the sense that they draw from personal experience as to how fast an elevator is. Motivation and interest 

is also present, and a student even wants to examine the speed of an elevator the next time she rides one! 
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The target knowledge was certainly acquired in this situation, where the informal approach to modelling a 

Fermi problem was carried out in an acceptable way. The students in this situation demonstrated processes 

of interpretation, evaluation and validation in accordance with Blomhøj and Jensen (2007), albeit the 

processes of mathematization and mathematical analysis was somewhat implicit. This was, however, also 

expected, due to the informal nature of the problem.   

In the 2nd episode, the target knowledge is the algebraic formulization of a Fermi problem – in this case the 

problem of estimating the price of the Mexican wall if it’s built using lego blocks. In this episode, the 

students demonstrate that they undergo all the processes that constitutes a modelling problem, as 

described by Blomhøj and Jensen (2007). There is still evidence that the students are not entirely secure in 

this type of didactic environment, which is demonstrated by their frustration, that the teacher refuses to 

give absolute answers, when they run into trouble. This is evident in the sense that the responsibility of the 

didactical contract mainly lies with the students when in an adidactic situation such as this. 

The written work of Group C shows that they have in fact introduced variables, variable dependencies and 

algebraic notation, which was the main objective with respect to target knowledge. The lack of scientific 

notation when using estimates is however a big issue, and should have been dealt with explicitly. It is, 

following this observation, very clear, that the concept of an estimate is not yet properly established.  

In the classroom validation situation of episode 2, a triadic dialogue with traces of a Topaze effect take 

place. Though it indicates that a lot of the students have not fully found an answer to the problem, this 

does not necessarily mean that the objectives of the lesson have failed; a partial solution to the problem 

may still prove fruitful in this regard, as observed above.  

In the 3rd episode, a part of the target knowledge was unfortunately completely missed by the students. 

The target knowledge in question here is the geometric modelling potential that was present in the 

assignment. This was definitely something both the teacher and I could have prevented through a 

modification of the objective milieu (maybe by banning search engines, or by a limitation of the problem), 

and it is surely something that one should take into consideration when using this teaching sequence.  

In the given situation, the students took to search engines in order to find results for the relevant 

parameters regarding area, rather than estimating these through geometric argumentation. In the 

observation of Group B, they lose focus when they are unable to make use of the result of Google, and the 

process of establishing a mathematical model in the form of an estimate is eventually abandoned. The 

students in general do, however, again demonstrate use of algebraic notation along with variable 

dependencies in a similar manner to that of episode 2. This could indicate that a consolidation of the target 
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knowledge of the previous episode. In the associated class-room didactic validation situation, the students 

do demonstrate that the intended target knowledge regarding intervals is acquired. It is reasonable to 

believe, that the realistic nature of the problem at hand has helped with this understanding; the students 

can relate to the fact that there were between 1,5 million and 5,6 million people present at Obama’s 

inauguration – i.e. an answer in the form of an interval. The work with intervals – albeit implicit – is also 

demonstrated in the validation situation, where a mathematical argument on which president had the 

highest attendance was presented. A problem does arise as well in this situation. A student attempts at an 

argument solely through the use of non-mathematical perspectives. This is a real danger when working 

with problems of this kind; there is evidently a risk that the mathematization process is lost if the milieu is 

not designed properly.   

The biggest inconvenience – or maybe even failure –  in this thesis, was the fact, that the anticipated 

sequence of the final lesson was never carried out as intended. The students should have explicitly worked 

with functions as a part of this episode, but time constraints (maybe as a result of poor planning) interfered 

with this goal. Evidently, this was a big part of the actual research question of the thesis, which specifically 

mentions functions as part of the mathematical modelling, so one can only speculate as to whether or not 

Fermi problems in fact do constitute a good tool with respect to introducing functions in C-level 

mathematics.  

The episode was not a complete disaster, however, as the students demonstrated a remarkable ability to 

model the 2nd problem through use of variable dependencies and variable declarations in Maple. This is not 

a far step from actually defining a function – one could even argue that this is the case – however the 

graphical representation (which is a huge part of the function concept) was not at all present. This aspect is 

therefore still an interest of study – one I definitely will examine further when teaching my own classes.  

The main motivation of using Fermi problems was the adidactic potential that they naturally possess. When 

students work in groups, problems such as this evidently spark discussion with clear-cut properties of 

mathematical modelling, and this feature seemed to work out in most cases presented here. Of course, 

there are exceptions; specifically, there is a danger that the students lose focus if they stall, and don’t seek 

out help autonomously.  

When one decides to do Fermi problems in a teaching situation, one should also be very considerate of the 

didactic variables that are in play. For instance, Ärlebäck (2009) states that “group dynamics are essential 

for the evolution of and activation of the different sub-activities during the problem-solving process (…) 

Group behavior is strongly influenced by individual preferences and group composition (…)” (p. 354) This “ 
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double-edged sword” was also evident in this teaching sequence; for instance Groups B and C worked really 

well with decent dynamics, whereas Group A and an unspecified group presented with having severe 

difficulties engaging in the problems of the sequence. 

After the teaching sequence was carried out, an evaluation of the process took place with the teacher. In 

her opinion, the sequence “was an unqualified success”, where the assignments, among other things, had 

promoted student activity from otherwise dormant students. She would even go as far as saying, that “the 

sequence had had a positive influence on the student evaluations”.  

But let us again turn our attention towards the research question. Can Fermi problems be used as an 

entrance to mathematical modelling with functions of one or severable variables? Through the writing of 

this thesis, along with the experience of observing the designed teaching sequence in action, I personally 

firmly believe that this is the case!  

The line between modelling a Fermi problem, and making use of one of the representatives of functions as 

described in chapter five is seemingly very subtle; this combined with possible transitions between those 

representatives using a Fermi problem could very well inspire further studying on the subject.   
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12. Conclusion 

The aim of this thesis was to examine whether Fermi problems could be used as an introduction to 

mathematical modelling and functions of one or more variables in Danish high schools at C-level. To answer 

this question, a teaching sequence dealing with Fermi problems was developed and tested in a junior year 

high school class at Rødovre Gymnasium. The design of the sequence was heavily inspired by the ideas of 

Jonas Ärlebäck (2009) on the use of realistic Fermi problems as an introduction to mathematical modelling.  

Using the theory of didactical situations (Winsløw, 2007), both an á priori analysis and an á posteriori 

analysis of the teaching sequence was conducted, and following this analysis, it was evident that the 

intended knowledge regarding explicit algebraic modelling, estimating quantities, using intervals, 

establishing variable dependencies, and performing algebraic modelling in a CAS environment was 

acquired. The intended knowledge regarding geometric modelling and functions was, however, not 

acquired – and seeing as the latter was due to time constraints, this still remains an interesting potential 

topic of study.  

The thesis furthermore illustrates a series of didactical challenges concerning the use of Fermi problems as 

a tool for introducing mathematical modelling. Specifically, the adidactic nature in which Fermi problems 

are conducted, should be handled with care – especially concerning the design of the associated milieu as 

well as the design of the groups who are to act on it.  
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14. Appendix 1 (Worksheet used in exercise 2) 

I skal i nedenstående tabel udfylde med relevante variable, estimater og sammenhænge i benytter i 

forbindelse med svaret på opgave 2.  

 Variabel Estimat for variabel Sammenhæng mellem andre 

variable? 

Højden af muren, ℎ ℎ = 4 m .... ? Højden ℎ afhænger af... 

Højden ℎ har indflydelse på 

prisen... 

   

   

   

   

   

   

 

I skal ydermere finde ligninger der beskriver de relevante sammenhænge mellem de forskellige variable. 

Indsæt disse herunder: 

 



83 | P a g e  
 

15. Appendix 2 (Worksheet used in exercise 3) 

I skal i nedenstående tabel udfylde med relevante variable, estimater og sammenhænge i benytter i 

forbindelse med svaret på opgave 3.  

 Variabel Estimat for variabel Sammenhæng mellem andre 

variable? 

Areal af pladsen, 𝐴 𝐴 = .... ? Arealet 𝐴 afhænger af... 

Arealet 𝐴 har indflydelse på... 

   

   

   

   

   

   

 

I skal ydermere finde ligninger der beskriver de relevante sammenhænge mellem de forskellige variable. 

Indsæt disse herunder: 
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16. Appendix 3 (Maple document used in the 4th lesson) 
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