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Abstract

The master thesis examines the adidactical potentials of using number tricks as

frame for teaching elementary algebra to low level math students at Danish STX.

A diagnostic test was made and implemented, and from this was de�ned target

knowledge. Using the theory of didactical situations, two lessons were designed

to speci�cally induce the target mathematical knowledge through adidactical si-

tuations. The lessons were analyzed using the theory of didactical situations, and

it was concluded, that high adidactical potentials exist when using number tri-

cks as a frame for teaching elementary algebra. It was also concluded, that the

test students in low level math classes in Danish STX exhibited both didactical

and epistemological obstacles with elementary algebra leading to misconceptions

such as
√
a+ b =

√
a +
√
b. Through the analysis, it was concluded, that in

cases, where the devolution leading to the adidactical phase was successful, the

misconceptions were successfully dealt with, while in cases where the devolution

was lacking, the misconceptions were not dealt with at all. Instances of broken

didactical contract, Jourdain e�ect and Topaz e�ect were observed. Post-lesson

diagnostics revealed, that progress had been made for the students both regarding

the speci�c misconceptions and the overall abilities to handle algebraic expres-

sions.
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Resumé

Specialet undersøger de adidaktiske potentialer i brugen af taltricks som ramme

for undervisning af elementær algebra til elever med lavt niveau af matematik på

STX i Danmark. En diagnostisk test blev udarbejdet og implementeret, og ud fra

denne blev de�neret tilsigtet viden. Ved brug af teorien om didaktiske situationer

blev to lektioner designet speci�kt med henblik på at inducere den tilsigtede viden

gennem adidaktiske situationer. Lektionerne blev analyseret med brug af teori-

en om didaktiske situationer, og det blev konkluderet, at der eksisterer et højt

adidaktisk potentiale ved brug af taltricks som ramme for undervisning af elemen-

tær algebra. Det blev også konkluderet, testeleverne udviste både didaktiske og

epistemologiske forhindringer ved elementær algebra medfølgende misforståelser

såsom
√
a+ b =

√
a +
√
b. Gennem analysen blev det konkluderet, at i tilfælde,

hvor devolutionen var succesfuld, blev misforståelserne afviklet succesfuldt, mens

i tilfælde hvor devolutionen var mangelfuld, blev misforståelserne slet ikke adres-

seret. Der blev observeret tilfælde af brudt didaktisk kontrakt, Jordain-e�ekt

og Topaz-e�ekt. Post-lektionsdiagnostisk test afslørede, at eleverne havde gjort

fremskridt både hvad angår de speci�kke misforståelser og hvad angår generelle

evner til at behandle algebraiske udtryk.
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1 Introduction

My thesis is about the teaching of elementary algebra to students with a low

interest in mathematics and or with poor previous experiences with learning

of mathematics. My personal background, which is also to a large extent my

motivation for choosing this particular subject, is as a teacher to exactly such

mathematics students in the Danish STX through approximately 7 years, and one

frustration, which has occurred repeatedly both in my own classes and in those of

my colleges, is that of many students never quite acquiring the basic meaning of

the simplest of algebraic operations. Even somewhat bright students again and

again show signs of some rather basic but deeply rooted misconceptions with

regards to elementary algebra, and it manifests itself throughout a wide range of

mathematical subjects.

1.1 Danish STX levels of mathematics

I've restricted myself to dealing with student in the Danish STX, who have initi-

ally chosen the lowest possible level of math. In Danish STX math can be chosen

at three levels named A, B and C respectively, with A being the highest level

and C being the lowest. The level C is mandatory for students at STX in Den-

mark (Gymnasiereformen, 2003). Students, who have chosen level C or B can

later choose to raise that level to a higher one. It is my personal experience as a

teacher, that the level C to a large extent consists of students, who have su�e-

red some personal defeats battling with mathematics throughout their previous

school years. I've taught level C classes for 7 years, and in every such class, the-

re have been predominately students with prior bad experiences with respect to

mathematics. Some have been all round below average students, but most have

generally been average or above average students with no outstanding problems

in other subjects than mathematics. The students, who participated in this the-
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sis, were all students, who had initially chosen level C but then after the �rst year

chose to raise the level to B. I chose to use students, who had raised their level,

in order to make sure not to include the students, who have a general apathy

towards working with mathematics, as it is my experience, that such students

exist to a small degree in the C classes, but not in the classes, who have raised

from C to B.1 Something could be said for including such students, but I have

chosen to work with the general premise, that the students are willing to parti-

cipate and have a personal interest in acquiring mathematical knowledge, since

otherwise it would be a completely di�erent project. As I have chosen to work

with one of my own classes (one which I have taught for almost two years and

thus know very well), I can say with some certainty, that this premise holds.

I �nd it particularly interesting to address the learning of algebra for these par-

ticular students, as they constitute a relatively new group of algebra learners in

the Danish school system. Only recently (in 2005 after the implementation of

the reform of Danish gymnasiums of 2003) did it become mandatory for every

STX-student in Denmark to take mathematics at least at level C, and combined

with the fact, that ever since this reform was implemented, there has been a year

to year increase of students in the Danish STX (UNI-C, 2015). In fact there has

been an increase from 23,015 students beginning an STX education in 2005 to

32,998 students in 2013. These facts imply, that a large amount of Danish stu-

dents, who previously would most likely never have had to bother with algebra,

all of a sudden was forced (well �voluntarily forced�) to deal with mathematical

subjects, which required some level of algebraic knowledge.

1Such students do to a relatively large degree seem to exist in the classes taking B level from

the beginning, but that's another story.
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1.2 Elementary algebra in the o�cial STX curriculum

This is an issue, which in my personal experience as a teacher has not yet truly

been resolved, and it's noteworthy, that explicit mentions of elementary algebra

is barely to be found in the curriculum for the STX student taking level C of

mathematics. The closest to an explicit demand for the teaching of elementary

algebra in the o�cial curriculum is the following line:

The students must (...) be able to use a symbolic language to solve

simple problems with mathematical contents. (UVM, 2015)

The word algebra is itself completely absent from the o�cial curriculum. And this

is despite the fact, that the students are demanded to work with a wide range of

subjects, which are all very di�cult to master without some basic knowledge of

elementary algebra. The only proper interpretation of the curriculum must be,

that the teaching of any and all algebra should be incorporated into the di�erent

subjects of the curriculum, however it almost seems as if it's expected, that the

students either possess the appropriate knowledge of elementary algebra upon

entering the STX, or that the subjects taught in the STX can stand on their own

without some speci�c attention to elementary algebra. From my experience as a

teacher both of these assumptions would be incorrect.

1.3 Number tricks as a catalyst

My thesis, however, is not about exploring whether or not the emphasis on ele-

mentary algebra in the STX curriculum is to small. It is my personal opinion,

that it is, and I believe arguments can be made to support my opinion, and that

(indirectly) they have been made (one can read, for examples, some of the mate-

rial referred to by Martinez (Martinez, 2008, p.3). My thesis is on the other hand

very much about what can be done to facilitate this transference of algebraic

knowledge onto students, who fall into the demographic mentioned above.
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The approach was suggested to me by my advisor, Carl Winsløw: Using so-called

number tricks (more on those in a later section, but for now: Think of the �mind

reading� math tricks, which children use) as a way to breathe life into an ot-

herwise relatively dry and perhaps even seemingly (to the student) meaningless

subject. I grabbed the suggestion instantly, as it right o� hand seemed like the

perfect angle on elementary algebraic operations, and it almost begs the use of

the use of the theory of didactical situations to design and analyze lessons - a

theory which I very much wanted to work with from the beginning.

1.4 Structure of the thesis

The structure of the thesis is as follows: First I go through the theory of didacti-

cal situations in section 2. Then in section 3, I elaborate on number tricks and

elementary algebra: What constitutes number tricks? Why are they interesting,

and what is their connection to elementary algebra? In section 4, I present my

statement of problem, in section 5: My methodology. Then I describe the process

of designing, implementing and analyzing both the diagnostic test and the main

lessons i sections 6-9. I �nish with a discussion and conclusion in sections 10 and

11.
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2 The theory of didactical situations

The theory applied throughout my thesis is that known as the Theory of Dida-

ctical Situations (TDS) developed by Guy Brousseau (Brousseau, 2002). In this

section, I'll explain the di�erent components of the theory as well as provide an

insight into some of it's possible applications.

It's important to note, that TDS is a scienti�c approach to a set of problems

rather than a theory of learning (Måsøval, 2011, p.79). It is an epistemological

theory (Winsløw, 2006, p.49) in the sense, that it treats the acquisition of know-

ledge by the students. In other words it is about the triadic relationship between

teacher, student and knowledge (Måsøval, 2011, p.21).

TDS accepts the underlying, constructivistic hypothesis, that a mathematical

notion is only understood, if it successfully solves some problem (War�eld, 2014,

p.13, Hersant & Perrin-Glorian, 2005, p.113). In this hypothesis lies a division of

any taught mathematical knowledge. On one hand there is the o�cial knowledge,

which is the target mathematical knowledge in it's pure form, and on the other

hand there is the student's personal knowledge (Winsløw, 2006, p.51), which

will be a composite knowledge based on the student's previous knowledge and

his/her work with the problems to which the o�cial knowledge is a solution. The

important di�erence between the two thus lies in the integration of the knowledge

into the individual - the personalization of the knowledge so to speak.

There is an important task for the teacher with respect to this status of knowledge

for the students termed re-de-contextualizing and re-de-personalizing (War�eld,

2014, p.15, Herbst & Kilpatrick, 1999, p.6). This is the last step of a processing

of some mathematical knowledge, when successfully transferring it to a student.

Usually mathematical knowledge does not emerge as some pure mathematical
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result. It will usually emerge in some personal context, from which it needs to

be de-contextualized and de-personalized in order to become o�cial knowled-

ge. In a teaching situation, the aim is to �rst put that knowledge back into a

context for the student and thus personalize the knowledge once again - ter-

med re-contextualize and re-personalize. Then lastly, once the knowledge has a

personal nature for the student, it must once again be de-contextualized and de-

personalized in order to be used as o�cial knowledge. This last step is what is

termed re-de-contextualized and re-de-personalized, and it is at the heart of what

is called institutionalization, which is described later.

2.1 What is meant by didactical?

The word didactical seems to be a somewhat loaded word with slightly di�erent

interpretations. So just to be clear, in this thesis the word didactical is to be

understood simply as being about the conveying of knowledge. Thus it is impli-

citly about the entire triadic relationship between teacher, student and knowledge

mentioned earlier. This relationship is illustrated by the so called didactical tri-

angle (Andersen, 2006, p.72) in �gure 1. The �gure should be read as follows:

The edge between two vertices represents the relation between these two vertices,

and this relation draws it's meaning from the opposing vertex (Winsløw, 2009,

p.18). So the relation between student and teacher, their interaction with each

other, draws it's meaning from the knowledge to be conveyed.

2.2 Game metaphor

Brousseau metaphorically describes the teaching situation as a game played by

the students:

Modeling a teaching situation consists of producing a game speci�c

to the target knowledge, among di�erent subsystems: the educational

12



Figure 1: The didactical triangle as presented by Andersen, 2006. The edge between two vertices represents

the relation between these two vertices, and this relation draws it's meaning from the opposing vertex (Winsløw,

2009, p.18).

system, the student system, the milieu, etc. There is no question of

precisely describing these subsystems except in terms of the relations-

hips they have within the game. (...) The game must be such that the

knowledge appears in the chosen form as the solution, or as the means

of establishing the optimal strategy (...) (Brousseau, 2002, p.47.)

In general, Brousseau makes heavy use of metaphors. They are not to be taken

literally or accurately. On the contrary they are productive because of their di-

stance from the reality (Måsøval, 2011, p.32). The game as a metaphor works well

because of similarities between the structures of games and teaching situations.

A game is played by someone who apply strategies within some rules, and a price

can be won, if the game if played successfully. In the metaphorical game of the

teaching situation, the learners play against the milieu (a concept, which will be

explained later) (Herbst & Kilpatrick, 1999, p.9) , the didactical contract (which

will also be elaborated on later) constitutes the rules, and the prize of winning

the game is the target mathematical knowledge (Herbst & Kilpatrick, 1999, p.8).
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The game metaphor also aptly puts into perspective, that not only can you win

the knowledge, but if the teaching situation does not go well, the knowledge can

certainly as well be lost for the student. By that I don't just mean not acquired

but lost in the sense, that it probably will prove even more di�cult to acquire in

the future, than it was before.

2.3 Didactical and adidactical situations

When speaking of a situation, Brousseau's de�nition varies from the one usually

found in a dictionary. Everywhere in this thesis it is implied, when speaking of a

situation, that it is a situation in which some element of transferring knowledge

to a student occurs. It is thus implied, that a situation combines some mathe-

matical knowledge, the meaning and possible uses of that knowledge and some

connection(s) to the student's previous knowledge. It's tempting to name such

a situation a didactical situation, but this term is used to separate a didactical

situation from an adidactical situation - two terms, which I will elaborate on

soon.

A prerequisite for any situation - be it didactical or adidactical - is, that the

teacher wants to teach and students want to learn (Winsløw, 2006, p.54-55). This

may seem obvious, but it's an important notion to make, as it points out, that

TDS is not about the psychology of getting a student interested in receiving the

knowledge. It's is in stead the tools with which to study the process of acquiring

mathematical knowledge.

Next I'll be explaining the concepts didactical and adidactical situations, which

will be followed by an overview of the standard situations of teaching - phases of

teaching of which some or all seem to always occur when teaching mathematics

is happening. First though, it should be stressed, that a situation should not be

viewed as a discrete object. Often situations of di�erent types will be seen em-
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bedded within or overlapping each other (War�eld, 2014, p.9).

The term didactical situation is reserved for the situations, where there is an

interaction between the teacher and the student, and the intentions with these

interactions are clear. In any situation, where the teacher's intentions are succes-

sfully hidden from the students, and the students can function without interaction

with the teacher, the situation is termed adidactical (War�eld, 2014, p.12). As

mentioned, situations can be embedded within each other, and obviously one can

imagine didactical situations occurring in the middle of adidactical ones (the tea-

cher intervenes in order to help a process along), so the division of situations into

didactical and adidactical ones might seem strange, but indeed it is a matter of

dividing the situations based on the level of degrees of freedom with respect to

the control by the teacher (Andersen, 2006, p.71).

Brousseau de�nes the adidactical situation like so:

(...) Between the moment the student accepts the problem as if it were

her own and the moment when she produces her answer, the teacher

refrains from interfering and suggesting the knowledge that she wants

to see appear. The student knows very well that the problem was

chosen to help her acquire a new piece of knowledge, but she must

also know that this knowledge is entirely justi�ed by the internal logic

of the situation and that she can construct it without appealing to

didactical reasoning. Not only can she do it, but she must do it because

she will have truly acquired this knowledge only when she is able to

put it to use by herself in situations which she will come across outside

any teaching context and in the absence of any intentional direction.

Such a situation is called an adidactical situation. (Brousseau, 2002,

p.30)
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According to Brousseau, the act of teaching is the devolution of appropriate adi-

dactical situations to the students (Brousseau, 2002, p.31). The word appropriate

should be understood as follows: The student possesses the su�cient, prior know-

ledge in order to acquire the target mathematical knowledge, and the didactical

milieu (a term which will be explained later) of the situation is set up properly.

2.4 Standard situations

According to TDS there are �ve di�erent standard situations, which are all im-

portant ingredients when teaching mathematics. These will be explained below.

2.4.1 Devolution

Devolution is the (didactical) situation, in which the teacher prepares the stu-

dents for some adidactical situation. This includes inducing the students to take

responsibility for the adidactical situation (Måsøval, 2011, p.47, War�eld, 2014,

p.16). It is thus a very important situation, since a failure here most likely will

result in a failure in the following adidactical situation. The devolution entails

devolving to the students the problems to be addressed adidactically as well as

setting up the rules of the adidactical situation (staying in the game metaphor).

Since the aim is to equip the students to take on the adidactical situation by

themselves, it is of great importance, that the devolution is planned carefully.

The teacher is faced with a paradox when devolving to the students: Devolving

to much (i.e. giving away too much of the answers to the problems in the devolu-

tion) will deprive the students of the chance of actually acquiring the knowledge.

Likewise the student - by accepting that the teacher gives too much away - also

plays a role in removing the chances of learning (War�eld, 2014, p.18).
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2.4.2 Action

In the devolution situation, the teacher has set the stage for an adidactical phase.

Following this she withdraws, and the students take on the problems on their

own - often in groups. They now interact with each other, the problems and their

previous knowledge. This is called the situation of action. Previous knowledge is

applied to the problems, and if the problems are well designed, the problems lead

the students to concrete issues concerning the target mathematical knowledge.

The teacher can choose to be completely absent during this phase, but it can

certainly be prudent to stay as an observer and to intervene in cases, where the

students are stuck. In case of intervention, it's important to keep in mind the

paradox mentioned in the last section, as such an intervention not only can be

the key to adjusting the milieu in a positive way, but can certainly as well cause

any number of negative e�ects to the adidactical situation, that will follow.

2.4.3 Formulation

The (adidactical) situation of action will naturally be heavily mixed up with that

of formulation, however the two are distincted between, as the essences of them

are indeed very distinct. In the formulation situation, the students collectively

develop the language necessary in order to express their observations, and through

discussion an agreement on common meaning is achieved (Måsøval, 2011, p.52).

This situation is sparked by that of action, as a need for a language with which

to explain thoughts and hypotheses to each other arises in the groups of students.

It is thus very much dependent on the situation of action being successful in the

sense, that the students in their work with the problems have been forced to

develop ideas/postulations, which they are now forced to formulate to each other

in order to reach some sort of mathematical consensus.
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2.4.4 Validation

The third type of adidactical situation is the situation of validation. In this pha-

se we see the establishment of theorems (Måsøval, 2011, p.52). It is thus also

interwoven with the previous situations, as it is in some sense the aim of the

formulation phase and thus serves partly as a kind of feedback situation to the

success of the formulation (and action) situation. This situation is all about the

conveying of the individual student's convictions, and this shows the importance

of this phase, as conveying of conviction generally plays a very important part of

mathematics (War�eld, 2014, p.10).

The validation phase will often involve the necessity of some or all of the students

to change their convictions and revise their hypotheses. Counterexamples can be

very e�ective with this respect (Martinez, 2008, p.10), as it shows immediately

and undeniably that something is wrong, so an incorporation of the possibility to

easily (or naturally) create counterexamples can be an e�ective tool in keeping

the adidactical nature of the situation alive.

2.4.5 Institutionalization

The last situation is one of didactical nature. It is that of institutionalization,

which is where the teacher re-enters in order to make the students conscious

about what knowledge they have developed, and how it relates to what they

knew before. In other words it is the situation, in which meaning is given to the

newly acquired knowledge. (War�eld, 2014, p.12).

Through the setting up of the adidactical situations, the teacher has attempted to

re-contextualize and re-personalize the target knowledge. The institutionalization

serves to perform the re-de-personalization and re-de-contextualization mentio-

ned above. The knowledge is made o�cial, and given conventional terminology

(Måsøval, 2011, p.53).

18



2.5 Didactical milieu

A few times above, I've mentioned the term milieu. This is another one of Brous-

seau's metaphors (for a biological system (Winsløw, 2006, p.56), or society as the

factor of the contradictions, di�culties and unbalances (Martinez, 2008, p.6)). It

is to be understood as the subset of the student's environment with only features

relevant to the target knowledge (Måsøval, 2011, p.55). It's is thus the students,

their physical surroundings, the space in which they act, the teacher (if present),

the materials they use, the problems at hand, the knowledge at hand, the di�-

culties that exist or arrive, etc.

According to the theory, the students learn by adapting to the milieu, in which

they act, and the acquired knowledge from this learning will be the result of

these adaptations (Martinez, 2008, p.6). Now since the milieu of the student is

free from didactical intentions in any adidactical situation (Herbst & Kilpatrick,

1999, p.6), this implies something important concerning the desirability of the

resulting knowledge: If the situation is arranged in a way, so that certain social

skills are su�cient (rather than some target mathematical knowledge) in order

to survive in the milieu, then these social skills are likely to be acquired in stead

of the target knowledge (Måsøval, 2011, p.34). Likewise there is a danger of al-

gorithms being the acquired knowledge in stead of the mathematical meaning, in

any case where the memorizing and using of an algorithm makes it possible for

the student to �survive� in the milieu. This is a very important notion to keep

in mind when acting as the teacher, as teaching can be thought of as organizing

the didactical milieu in a way, so that the target mathematical knowledge is a

necessary acquisition in order to survive in it (Måsøval, 2011, p.34).

Accepting the premise, that the students construct their own knowledge as a re-

sponse to the didactical milieu into which they have been placed by the teacher

(as accepted by Herbst & Kilpatrick (Herbst & Kilpatrick, 1999, p.6)), the im-

portance of careful considerations concerning the milieu are obvious. Especially

19



it's the adidactical situations, which signal the importance of the didactical milieu

(Herbst & Kilpatrick, 1999, p.6), and when constructing an adidactical situation,

an a priori analysis of the situation is of great importance for establishment of

the milieu (Måsøval, 2011, p.54) and the resulting knowledge acquired by the

students.

2.5.1 Adidactical potential

The didactical milieu of any given situation may contain an adidactical potential.

The existence of an adidactical potential means, that it is possible to have an adi-

dactical situation with students working independently from the teacher, but the

teacher may choose to ignore it (Hersant & Perrin-Glorian, 2005, p.117, Winsløw,

2006, p.58). Many situations have no room for any adidactical feedback, and so

they contain no adidactical potential. Obviously for a situation to be classi�ed as

adidactical, an adidactical potential must be both present and explored. How the

didactical milieu is set up is important with respect to how much adidactical po-

tential exists. Di�erent approaches to the target mathematical knowledge yields

di�erent levels of adidactical potential. A classical lecture for instance, as seen in

most university courses, obviously contains no adidactical potential what so ever,

and must be classi�ed as purely didactical - a situation of institutionalization wit-

hout any of the other types of situations present. Such a situation can easily be

tweaked, though, in order to incorporate small situations with some adidactical

potential: Small breaks in the classical lecture setup, where students interact with

each other in attempts to solve problems posed by the lecturer opens up for the

existence of adidactical potentials. Designing such situations requires attention

to the milieu which is being set up - especially: Does surviving the milieu require

the students to acquire the target knowledge, and can the milieu be survived in

other ways than acquiring the target knowledge? The answers to these questions

should be yes and no respectively, if the adidactical potential is to be the most
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prudent. I'll be visiting the subject of designing teaching situations further in a

later section.

2.6 Didactical contract

In an earlier section, I mentioned that the rules of the metaphorical game played

by the students against the milieu is called the didactical contract. I'll elaborate

on that concept in this section. According to Måsøval, the didactical contract

consists of the rules and strategies for the game between the teacher and the

student-milieu which are all speci�c to the target knowledge (Måsøval, 2011,

p.48).

The word contract often indicates some level of awareness of an agreement betwe-

en two parties (student and teacher), however a didactical contract should not be

considered an actual contract but rather as an interplay of obligations (War�eld,

2014, p17, Herbst & Kilpatrick, 1999, p.9). Also it should not be considered as a

pedagogical contract (Måsøval, 2011, p.48). Thus a didactical contract in bullet

form cannot be made available (War�eld, 2014, p18).

So why the word contract? This relates to what is really also the interesting

part of the didactical contract: The breaking of it. Because it is the breaking of

the contract, that is de�nitely the most revealing (War�eld, 2014, p.17, Måsøval,

2011, p.50). While it's not really possible to explicitly state, what constitutes the

breaking of a contract beforehand, then whenever the contract is broken, everyo-

ne involved tend to act as if an actual contract has been broken (War�eld, 2014,

p.17). This is seen for instance as students getting annoyed, because they feel, that

the teacher is asking the impossible of them, or by the teacher getting annoyed

because the students aren't carrying out the tasks assigned to them, even though

they should be able to do so. An often used example of the breaking of a didacti-

cal contract is that of the contract behind the problem with �nding �the captains

age�. In this example, the following problem was posed: �On a boat, there are 26

21



sheep and 10 goats. What is the age of the captain?� According to Måsøval, in a

third grade class, 78% of the students gave the answer 36 (Måsøval, 2011, p.49).

Obviously the answer stems from adding the only two numerical values given in

the problem, but why do such a large percentage give this answer despite the fact,

that it quite obviously to pretty much anyone makes absolutely no sense? The

answer according to TDS is, that it is the result of a broken didactical contract.

Inadvertently a contract has been established between the teacher and the stu-

dents, which implicitly dictates, that when given a word problem by teacher, the

students can solve the problem with the information given, and usually they are

to use the already acquired knowledge (for a third grader this would be simple

arithmetics) on some or all of the numerical values gives in the problem. So they

simply do that regardless of the context of the problem. The didactical contract

was broken, when the teacher posed a problem, which could not be solved. Note

that the students may very well be aware of the fact, that their answer (or maybe

even the problem) is nonsensical, however it is rooted deeply in them, that an

answer should be provided, and rather than giving the answer, that the problem

can't be solved, they get annoyed by the fact that the teacher has posed such a

problem, and they give the answer, they think the teacher most likely expects.

The didactical contract is established mainly in the situation of devolution (War-

�eld, 2014, p.53), which underlines the importance of this situation. Likewise

devolution and institutionalization are important ways of regulation the didacti-

cal contract (Hersant & Perrin-Glorian, 2005, p.116).

2.7 Obstacles

In this section, I'll be explaining the di�erent types of obstacles, which students

experience during their acquisition of new mathematical knowledge. By obstacle

is meant a set of di�culties or constraints on the students with respect to the
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acquisition of the target mathematical knowledge. TDS distinguishes between

three di�erent types of obstacles: Epistemological, didactical and ontogenic.

2.7.1 Epistemological obstacles

An epistemological obstacle is when old learning occasions struggle with new lear-

ning (War�eld, 2014, p.14). An example is a student, who possesses the previous

knowledge, that multiplying a number with another number makes the resulting

number bigger than the original number. This previous knowledge has served the

student successfully in the past, but with the introduction of multiplying with

fractions or negative numbers, it serves as an epistemological obstacle, as the new

knowledge invalidates his previous beliefs, which now must be regulated.

2.7.2 Didactical obstacles

Didactical obstacles are those, which stem from the choices made by the teaching

institutions (War�eld, 2014, p.14). An example could be that a school chooses to

use a mathematics teaching book, which teaches the students, that π = 3.14. This

can potentially root so deep in the students understanding of π, that when the

student later needs to modify his/her knowledge of π to now being the relationship

between circumference and diameter of a circle, then the didactical obstacle in

question occurs.

2.7.3 Ontogenic obstacles

An ontogenic obstacle is an obstacle, which occurs because of the students limi-

tations (War�eld, 2014, p.14). As an example it will most likely prove di�cult to

teach a baby to count even before some sort of language is established. Likewise

a three year old child will most likely experience ontogenic obstacles when trying

to instantly count groups of objects with more than 5 objects contained, as the

brain is yet not fully developed to that particular task.
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2.8 Didactical phenomena

When analyzing a teaching situation using TDS, seven di�erent didactical pheno-

mena are sought. These are the counterproductive e�ects, which occur in cases,

where the target knowledge is not acquired by the students. Identifying which

phenomena is occurring in a given situation helps bringing clarity to what's going

on. The seven di�erent didactical phenomena will be described below.

2.8.1 Topaz e�ect

Topaz e�ect refers to giving away the answer in the question (Måsøval, 2011,

p.37). By continually posing easier questions to the students, the target knowledge

gradually disappears. I provide the following example: The target mathematical

knowledge at stake is the justi�cation (proof) for the fact that the function de-

termining the area under a curve is an anti-derivative of the function determining

the curve. The students know how to determine anti-derivatives beforehand, and

the milieu is set up, so that the knowledge needed to survive in it is simply the

ability to determine the area under a given curve. The student are supposed to

be guided through a proof, that the area function is in fact an anti-derivative and

is thus to personalize and appreciate, that their previous knowledge serves this

�new� purpose. However in attempts to help the students along the way through

di�culties, the teacher ends up reducing the entire task to simply in stead posing

the problem of �nding anti-derivatives and using these to compute the area. The

target mathematical knowledge is lost, but the student has survived the milieu

with only the super�cial knowledge of how to use an algorithm.

2.8.2 Jourdain e�ect

Jourdain e�ect refers to the giving of a scienti�c name to trivial activities (Må-

søval, 2011, p.38). Overeager to witness progress in the student, the teacher over

interprets a product of the student to mean that the student has gotten a grasp
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of some larger mathematical meaning. In the cases, where this meaning is in fact

not grasped by the student, it's a case of the Jourdain e�ect. It is a special case

of the Topaz e�ect, and as an example, take the situation described above about

anti-derivatives and area functions. At the end, the students have not acquired

the target mathematical knowledge - the proof. However they have acquired the

knowledge, that (and how) the area can be computed using the result. If the

teacher �nishes o� by concluding, that since all the intermediate steps in the

situation has been ful�lled be the students, they have now proved the result in

question, then the Jourdain e�ect is in play, since the students have actually not

acquired any knowledge about the proof - only the result. Their only product is

the line of trivial exercises, which the teacher gradually has reduced the original

problem to in an attempt to help the students along.

2.8.3 Improper use of analogy

Improper use of analogy is when the teacher replaces a question with a new one,

with is identical to the old one only with some quantities changed (Måsøval,

2011, p.39). The skill learned is repetition and recollection - however the tar-

get mathematical knowledge is no longer necessary to survive in the milieu, and

so it disappears. An example, that many teachers probably recognize, is when

a student is having di�culties with a certain word problem and does not quite

understand the reasoning made by the teacher in her illustration of the solution,

then the teacher comes up with a new word problem with the same target know-

ledge and begins to walk the student through this in stead. The new problem

might be intended to have the same target knowledge as the �rst, but the in-

troduction of a problem of similar nature to the original one changes the milieu

for the student, and now the student can be successful in the milieu simply by

recognizing the similarities between the problems and remembering the trivial

steps involved in solving them without ever acquiring any knowledge about the
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actual problem other than the algorithmic way of solving it.

2.8.4 Meta-cognitive shift

Meta-cognitive shift is when a process originally introduced in order to further

some target knowledge becomes the actual object of learning (Måsøval, 2011,

p.40). As an example consider the use of a scale metaphor as an aid to understand

the logic behind equation solving (Sierpinska, 2011, p.4). The teacher uses the old

fashioned scale with two compartments balancing out each other as a metaphor

for an equation. The equality holds, when the metaphorical scale is balanced

- when the two compartments contain equal mass. The two compartments are

metaphors for the two sides of the equation, and the mass of a compartment is

a metaphor for the value of the mathematical expression in the �compartment�.

Once established, this metaphor allows the teacher to aid the understanding of

the logic behind the strategy of equation solving that consists of performing the

same operations on both sides of the equation in order to maintain the truth

value of the equation while in the process isolating which ever variable with

respect to which the equation is to be solved. Using the metaphor of the scale,

this corresponds to simply adding or subtracting equal amounts of weight to both

of the compartments simultaneously. Appreciating that this procedure doesn't

change the balance of the scale corresponds to appreciating, that performing the

same operations to both sides of an equation doesn't change it's truth value.

However: In order for this metaphor to have an e�ect, the students must be

acquainted with old fashion scales. In the case, where students are not, the teacher

will quickly �nd herself teaching the students about old fashioned scales in stead

of the target mathematics, and thus a meta-cognitive shift has occurred.
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2.8.5 Meta-mathematical shift

Meta-mathematical shift covers a substitution of some mathematical problem

with a discussion about the logic behind the solution (Måsøval, 2011, p.41). The

example given by Måsøval and Sierpinska (Måsøval, 2011, p.41, Sierpinska, 2011,

p.6) is where the problem at hand is an equation needed to be solved. The student

experience problems, and in an attempt to assist the student, the teacher begins

talking about the theory of equation solving in stead of the actual equation at

hand. She might address questions like: What is a mathematical expression?What

constitutes an equation? What does it mean to solve an equation. The discussion

thus turns from the mathematics at hand to the meta-mathematics of the same.

2.8.6 Dienes e�ect

The Dienes e�ect refers to the teacher's belief in the existence of what Måsøval

refers to as an infallible genesis of some mathematical knowledge independent

of the teacher (Måsøval, 2011, p.42). That is, according to Brousseau's theory,

the knowledge is acquired trough the student's own adaptation to the didactical

milieu. It does not automatically generate itself in the minds of the students as

a natural consequence of the students working with some set of problems. The

more con�dent the teacher is in the fact that the knowledge will be produced

automatically without her involvement, the more like she will be to fail installing

the knowledge in the minds of the students.

2.8.7 Aging of teaching

The aging of teaching e�ect refers to a scenario, where the teacher gradually

has modi�ed the teaching (through years of repetition perhaps) in a way so that

important meaning of the target knowledge has been removed (Måsøval, 2011,

p.45). Obviously it's not an e�ect, which I expect to witness anywhere in the data

collected in this thesis, as this isn't based on any repetition of any kind. However
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I do think it's worth including a description. So how does mathematical meaning

disappear through gradual changes of the teaching, and how does it do this in

an unapparent matter? Most likely by the gradual removal of the justi�cation for

whichever examples are used. On the surface it will seem like the students have

been through the same mathematics, as the problems devolved haven't changed,

but if the justi�cation is gradually removed or underplayed, then the meaning

follows the same path.

2.9 TDS as engineering tool

An integral part of this thesis is the design of a small set of lessons with high

adidactical potential. So it's only natural to address TDS from an didactical

engineering point of view.

Brousseau has written the following in an e-mail to Anna Sierpinska in 1999

(Måsøval, 2011, p.64):

The theory of situations is aimed to serve both the study and the

creation of all kinds of learning and teaching situations, whether they

are �spontaneous�, or the product of an experience or of a special di-

dactical engineering project, and whether they are e�cient or not.

It is not a method of teaching. The theory can provide some met-

hods of teaching, it can justify some methods and disqualify some

other methods, as the case may be. The theory contains models that

may support certain plans of action aiming at making the students

(re)discover some mathematics. This way the theory can make sugge-

stions for engineering.

According to Herbst and Kilpatrick, didactical engineering is the production of

possible/available meanings of student's activity (Herbst & Kilpatrick, 1999, p.7).

In other words it is the production of opportunity to learn (as opposed to simply

production of say mathematical material), and focus is on the production of the
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meaning - not the activities themselves. So in didactical engineering one should

try to induce speci�c obstacles in order to make the students realize the shortco-

mings of their previous knowledge and thus have a personal reason to acquire the

target knowledge.

According to Brousseau, an a priori analysis of the target mathematical know-

ledge is of high importance (Måsøval, 2011, p.28). Questions like

• What precisely IS the target knowledge?

• Which context might it be placed in?

• What is the students' previous knowledge relating to the target knowledge?

should all be examined beforehand by the teacher, as this helps furthering along

the setup of the appropriate didactical milieu.

Great emphasis should also be placed on the possibility for the students to con-

struct the target knowledge in the didactical milieu (Winsløw, 2006, p.58). To

this extent, the following three questions are helpful (Winsløw, 2006, p.60):

1. Are the students given the opportunity to get comfortable with the target

knowledge?

2. In working with the milieu: Can the students see a relation to and expand

and use their existing knowledge?

3. Does the milieu make it possible and necessary to construct the target

knowledge (at the least in some speci�c cases)?

Finally there is a lot to be said for implementation - adjustment - and re-

implementation of the teaching situations designed. However this has not been

an option for me with my didactical design, since I've only been allocated just

enough time with my test students to go through one single implementation.
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3 Number tricks and elementary algebra

In this section I'll be elaborating on number tricks and their connection to ele-

mentary algebra. This entails explaining just what exactly I mean by both terms.

First I'll be illustrating by example, what I consider to be a number trick. Second-

ly I'll deliver my own attempt at a de�nition of number tricks. Lastly I'll elaborate

on what exactly I mean by �elementary� algebra. I'll incorporate examples of dif-

ferent number tricks and their speci�c connections to elementary algebra along

the way.

3.1 What is a number trick?

So what do I mean by the term number trick? As mentioned in the introduction,

you should think about the �mind reading� tricks, that children use. Below is a

simple example (number trick 1, which is a simpler variation of number trick 2

in �Be A MatheMagician� (NCOM, 2008, p.1)):

Number trick 1

1. Think of a number.

2. Add two to your number.

3. Multiply the resulting number by 2.

4. Subtract four from the resulting number.

5. Divide the resulting number with your original number.

6. You now have the number 2.

Obviously the �trick� part of number trick 1 is fairly simple: A number of opera-

tions are performed to mask the fact, that the original number is canceled out in
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some manner, and so the resulting number is predetermined. The above number

trick is thus equivalent to the following:

(a+ 2) · 2− 4

a
= 2,

where a, which represents the number chosen be the participant, eventually can-

cels out.

The strength of even such a simple number trick with respect to teaching elemen-

tary algebra lies in the nature of how it is unfolded: It consists of some number

of operations, which are sequentially performed and with an intermediate result

being calculated between every step. So by implementing only operations familiar

to the participant, there is a fairly highly likelihood of success, i.e. that the par-

ticipant will reach the predetermined number (the mind will be �read�). However

it's one thing to master the arithmetics of simple addition, subtraction, multipli-

cation and division between any two numbers - something that pretty much every

STX-student does - but, as most mathematics teachers are aware, it's another

matter entirely to be able to correctly reduce the fraction

(a+ 2) · 2− 4

a

- an exercise in algebra, which many (low level math) STX-students would have

trouble performing correctly. To some extent one might think, that the two tasks

are the same, but in the case of the algebraic exercise of reducing the fraction,

the meaning behind the mathematics must come from within the student, and

here in lie obstacles. Having the students work with even such a simple number

trick as number trick 1 above provides the student with a didactical milieu, in

which he/she can:

• Act with the target mathematical knowledge: Do the calculations both

arithmetically and algebraically
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• Formulate the target mathematical knowledge: Write up mathematical rules

involved such as (a+ b) · c = ac+ bc

• Validate his/her own work with the target mathematical knowledge: Com-

pare at each step in the progress the arithmetical to the algebraic calculation

Thus a design based on number tricks should yield a high adidactical potential.

One way of highlighting the mathematics of a number trick is to explicitly formu-

late every step algebraically in a table. This is done for number trick 1 in table

1, and this is the way I'll be illustration number tricks' connection to elementary

algebra in every example from here on out.

Table 1: Table showing the algebraic formulations of the steps involved in number

trick 1.

Step: Word description: Algebraic formulation:

1 Think of a number. a

2 Add 2 to your number. a+ 2

3 Multiply the resulting number by 2. (a+ 2) · 2 = 2a+ 4

4 Subtract 4 from the resulting number. 2a+ 4− 4 = 2a

5 Divide the resulting number with your

original number.

2a
a
= 2

6 You now have the number 2. Con�rmed.

3.1.1 An attempt at a de�nition

I'm now ready to attempt a de�nition of a number trick: I think it is important

to restrict myself to be dealing with only number tricks, that are entirely mathe-

matical in nature, so...
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3.1.1.1 De�nition: Number trick

I de�ne a number trick to be a series of mathematical operations to be performed

on one or more numbers of choice (from some prede�ned set), arranged in such

a way, that the end result is predetermined regardless of the choice of number(s)

along the way.

Note that this de�nition makes no mention of the masking of the pre-determinedness

of the end result. So by my de�nition the following would constitute a number

trick:

Number trick 2

1. Choose a number.

2. Subtract you number.

3. You now have the number 0.

This would admittedly be a very simple and seemingly uninteresting number trick

(and I won't bother explicitly formulating the algebra in a table as with number

trick 1), but in as much as it does entail the choosing of a number from some set

and performing a mathematical operation on it in order to arrive at a predeter-

mined number una�ected by the chosen number, it is by my de�nition a number

trick. I believe it to be important, that even such a simple version should also be

considered a number trick, as it serves to exemplify the very core of the nature

and (my) purpose of number tricks. The fact that it's obvious what's going on in

the trick, is what makes it a perfect example of the structure/nature behind the

concept.

The reason that one might object to having such a simple series of operations

be named a number trick of course lies in the word �trick�. There is not much of

a trick in number trick 2. And that is of course an interesting aspect of number
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tricks - their status as tricks - however as my de�nition does not tamper in any

way with the possibility of creating a number trick, which is very �tricky�, I don't

consider for it to be a problem.

Anyway, something should be said about a number trick's ability to trick the

participant. A good trick is one with an e�ectful conclusion - a wow e�ect at

the end. Number tricks 1 and 2 above are both very simple ones, and they are

both unlikely to wow any STX-student, but one of the great things about number

tricks is, that they can really be varied in�nitely, and any and all operations can

be applied. Below is number trick 3: An example of a more elaborate number

trick, which masks the predetermination of the end result much more e�ectfully

(borrowed from Sultan & Artzt, 2011, p.24):

Number trick 3

1. Chose a three-digit number.

2. Construct the six two-digit numbers, that can be made out of the three

digits of your chosen number.

3. Add these six two-digit numbers together.

4. Now divide the resulting number with the sum of the three digits of your

original number.

5. Your resulting number is 22.

This would, if not wow the participant, then at least make him/her curious. One

way of satisfying such curiosity is to take a look at the algebraic formulation of

the steps involved. This is done in table 2.
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Table 2: Table showing the algebraic formulations of the steps involved in number

trick 3.

Step: Word description: Algebraic formulation:

1 Chose a three-digit number. abc

as in:

100a+ 10b+ c

2 Construct the six two-digit numbers,

that can be made out of the three digits

of your chosen number.

ab, ac, ba, bc, ca, cb

as in:

10a+ b, 10a+ c, . . . , 10c+ b

3 Add these six two-digit numbers toget-

her.

ab+ ac+ · · ·+ cb

as in:

10a+ b+ · · ·+ 10c+ b

= 22(a+ b+ c)

4 Now divide the resulting number with

the sum of the three digits of your ori-

ginal number.

22(a+b+c)
a+b+c

= 22

5 You now have the number 22. Con�rmed!

As seen in the algebraic formulations of the steps, this number trick makes use of

the nature of the decimal system to mask the pre-determinedness of the resulting

number. Basically the entire trick amounts to simply the following:

10a+ b+ 10a+ c+ 10b+ a+ 10b+ c+ 10c+ a+ 10c+ b

a+ b+ c
= 22

This is a fairly straight forward calculation, but the use of the nature of the deci-

mal system to mask the choices of a, b and c creates the �mystery�, and in order

to solve the mystery, one has to familiarize one self with the nature of the decimal

system. So number trick two would be a perfect aid, if the target mathematical

knowledge at hand was the nature of the decimal system in so much as it provides
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a didactical milieu with adidactical potential, in which a personalization of the

target mathematical knowledge is a necessity in order to survive.

As mentioned earlier, I will not place great emphasis in the part of teaching

which is about the creation of motivation to study a particular subject. Thus I

won't be all too concerned about the wow factor of the number tricks involved

in my lesson design. What I will have a great focus on, are the speci�c obstacles

induced by the algebraic formulation of the given number tricks. I do however

think, that's is highly appropriate to demonstrate the level of diversity, by which

number tricks can be formed, and I hope, that the very di�erent nature of the

two examples given has done that. Really the possibilities are endless. If a higher

level of mystery is aimed for, the number tricks can even be coupled with non-

mathematics as is the case with the example on page 564 of Koirala & Goodwin,

2000, where the numerical result is translated into letters of the alphabet and

further into countries and animals. This example, though, would not by my de�-

nition be a number trick in itself but rather a combination of a number trick and

something non-mathematical.

3.2 Elementary algebra

I've mentioned the term elementary algebra quite a few times so far - it's even in

the title of the thesis. In this section I'll elaborate a bit on just what exactly I've

been (and will be) talking about.

Most importantly, concerning my interpretation of the term elementary algebra,

are the following two points:

1. It deals with the generalization of arithmetics.

2. It does not deal with any algebraic structures outside the realm of the real

numbers.
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The second limitation is imposed by the fact, that the level C of STX mathema-

tics does not include any exploration of structures outside the realm of the real

numbers.

I'll further be limiting the term to include only the following four concepts:

1. Variables (as a tool used in order to accomplish generalization of arithme-

tics).

2. Evaluation and simpli�cation of algebraic expressions (what is often referred

to in STX as �reduction of expressions� even though this in some cases is a

bit misleading).

3. Solving of equations - in particular linear equations (including properties

of equality).

4. Substitutions (such as substitution of variables with expressions or conven-

tional (notational) substitutions).

An example of a combination of the �rst and the second concept is the evaluation

and simpli�cation of the expression a+ a+ b− b This can be simpli�ed to 2 · a.

This can then further be simpli�ed by using the notational convention, which

allows one to write 2 · a = 2a.

An example of the third concept is the solving of the equation:

x+ 3 = 2x+ 1

The typical approach by a level C STX student to this exercise would be to per-

form identical, speci�c operations on the expressions on either side of the equality

sign, such that eventually the variable, x is isolated on one side. For this parti-

cular example such operations could be −1 − x, yielding the result: 2 = x. So

obviously the �rst and the second concept is very much tethered to the third
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concept.

An example of the fourth concept is the exercise of combining the following two

formulas into one:

a = b+ c

b = 2 + c

This could be done in several ways resulting in formulas containing either a and

b or a and c. The typical solution would be to substitute the b in the �rst formula

with the expression of b in the second, resulting in the formula:

a = 2 + 2c

(In this last line, I've also made the conventional (notational) substitution of 2 · c

with 2c. Other examples of conventional notations are: a · a = a2 and a
b2

= ab−2.)

Finally my de�nition of the term elementary algebra also includes the opera-

tor precedence and the basic use of the following basic axioms of algebra on the

real numbers R:

1. a+ b = b+ a

2. (a+ b) + c = a+ (b+ c)

3. ∃0 ∈ R, : 0 + a = a+ 0 = a

4. ∃ − a ∈ R : a+ (−a) = (−a) + a = 0

5. a · b = b · a

6. (a · b) · c = a · (b · c)

7. ∃1 ∈ R : 1 · a = a · 1 = a
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8. a · (b+ c) = a · b+ a · c

9. ∃a−1 ∈ R : a · a−1 = a−1 · a = 1, for a 6= 0

I include the term �basic use� only to point out, that I do not consider it a task

of elementary algebra to work out complicated proofs of theorems based on the

basic axioms listed above. I do however consider it to be a task of elementary

algebra to master the axioms to the extent of solving problems �tting within the

above mentioned four concepts of elementary algebra.

It should be noted, that I at no point in time has had the intention of inclu-

ding all aspects of the above de�nition of elementary algebra into my lesson

design. The de�nition serves primarily as a limitation to what I allow myself to

include in my diagnostic test, and the mathematical content of the �nal design

very much depends on the speci�c outcome of the diagnostic test.
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4 Statement of problem

I want to address the very basic obstacles/misconceptions in working with ele-

mentary algebra that occur especially in the low level math (C-level) classes in

Danish STX.2 A relatively small emphasis is placed on this problem in the o�cial

STX curriculum, however the failure to gain an acceptable knowledge of the basics

of algebraic syntax and semantics have wide spread repercussions throughout the

rest of the curriculum. As a teacher of low level math classes in Danish STX for

approximately 7 years, I have personally felt both the di�culties of establishing

such a basic algebraic knowledge in the students and the despair that follows,

when students and teachers keep battling with the repercussions of the students

never getting it.

I aim to design a set of lessons speci�cally towards facilitating such knowledge.

I will be using Brousseau's Theory of Didactical Situations to design the lesson

set, and I will be building the lesson set around number tricks, in a way to try

to breath life into speci�c rules regarding manipulation of algebraic expressions

including formulas from the o�cial curriculum.

I will observe and record an implementation of the lesson set to a low level math

class, and through analysis of the collected data, I aim to answer the following

research questions:

1. What obstacles occur, when teaching elementary algebra to low level math

students in Danish STX?

2. What are the adidactical potentials of using number tricks to facilitate

knowledge about elementary algebra?

3. What e�ect did the lesson set have on the students' skills/knowledge?

2Note, that by this I include all students, who initially have chosen to take mathematics on

level C, regardless of whether or not they've chosen to later raise that level.
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4.1 Hypothesis

I hypothesize, that the obstacles are of a very basic, algebraic nature, i.e. I expect

that for even otherwise mathematically gifted students, the obstacles are rooted

in misconceptions concerning the simplest generalizations of arithmetic. One such

misconception could be: aa = 2a.

I hypothesize also, that using number tricks to facilitate knowledge about ele-

mentary algebra yields high adidactical potential, as it seems intuitively obvious,

that such exercises can contain all the necessary parts to that end (as argued in

section 3).

Lastly, I hypothesize, that by attacking concrete misconceptions with respect to

elementary algebra through number tricks in adidactical situations, a (positive)

number of these misconceptions can be exposed of.
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5 Methodology

In this section I'll be explaining the procedure by which my thesis has been ma-

de. I've included to a relatively large degree some re�ecting thoughts along the

process, since the methodology has been very much an evolving process along the

way. There has been no one real ��nal choice"of methodology, but rather many

�sub-�nal� choices, each following some attempts and circumstances. I feel that

this way of describing the methodology provides the best insight into the process

of especially producing and gathering the empirical data.

The basis of my thesis is the combination of three things:

• The use of the theory of didactical situations - both didactical engineering

and analysis

• Obstacles/misconceptions occurring when teaching elementary algebra to

low level math classes in Danish gymnasiums

• The use of number tricks as a way to breathe life to elementary algebra

The two main pillars of the thesis are: 1. the design and implementation of a small

set of lessons and 2. An analysis of the collected data. The design process de�nitely

proved to be somewhat more extensive than originally perceived. My original plan

was to rather quickly wrap up the design, so that the lessons could be quickly

implemented. However after numerous attempts at the design, I repeatedly ran

into issues regarding the target mathematical knowledge. In addressing the three

questions

• What precisely IS the target knowledge?

• Which context might it be placed in?

• What is the students' previous knowledge relating to the target knowledge?
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especially the last one caused me trouble.

5.1 Diagnostic test

From the beginning, I had known, that some sort of diagnostic test should be

performed - originally with the main purpose of measuring the e�ects of the les-

sons. During the attempts to design the lessons, it became more and more clear,

that the diagnostic test would have to be an integral part of the design process

itself. So eventually a diagnostic test was created and performed, following by an

analysis of the results, which led to the �nal de�nition of the target mathematical

knowledge, and then the main lessons were designed. This is very much a sim-

pli�cation of the process, both because a lot went wrong with my construction

of the diagnostic test (more on this in section 6), and because the de�nition of

the target mathematical knowledge and the diagnostic test proved to have some

sort of chicken-egg-relationship. The process of de�ning the target mathematical

knowledge can best be described by the following steps:

• Initial attempt at de�ning the target mathematical knowledge

• Design and implementation of diagnostic test

• Analysis of diagnostic test

• Rede�nition/�ne-tuning of de�nition of target mathematical knowledge

This strategy implies, that the diagnostic test was implemented before the main

lessons were designed.

The diagnostic test consisted of a number of small problems, which were duplica-

ted and administered to the students at the beginning of a mathematics class in

the following manner: Each student answered the same number of problems, but

each student did not answer the same problems as every other student - more
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problems were created than each student would answer. The purpose of this was

to be able to administer the exact same diagnostic test after the implementation

of the main lessons to the class as a whole, but without any individual student

being given the same problems twice. A total of three groups of problems were

created, and the students circulated these groups in the diagnostic testing. Ad-

mittedly only two groups would have enough to serve the practical purpose of

administering the exact same diagnostic test twice, however I chose to add a third

group in order to widen the pool of di�erent problems. After the �rst implemen-

tation of the test, I've re-thought that reasoning, and I probably wouldn't bother

make more than two groups, would I have to do it again.

5.2 The students

From the onset it was clear, that the test students were to be some of my own

students. I taught two mathematics classes at the time, and both �t the target

demographic. Arguments could certainly be made for the choosing of a di�erent

class than my own, but several practical reasons dictated, that it should be my

own students, which were used:

1. At the time I taught two of the only four classes, that reasonably3 �t the

target demographic. Both of my classes were better �ts than the rest, in the

sense that their choice of subjects as a whole upon entering the gymnasium

was collectively less mathematically orientated.

2. The bulk of my connection to teachers/gymnasiums was placed within my

own workplace, so it seemed obvious not to go outside my own school.

3. Due to the timing of the project, it would have proven di�cult to get

another teacher to give up lessons for his/her class, considering that the

3By reasonably I mean classes consisting mainly of students, who had chosen mathematics

at the lowest possible level upon entering the gymnasium.
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�nal examinations of the students were eminent.

4. The unsure nature of the project (timing, number of lessons, contents of

lessons) were unappealing to other teachers with respect to their personal

planning.

At the time I taught one class consisting of students who were in the midst of

the mandatory mathematics (level C) and one consisting of students, who had

all chosen to raise the level C to level B. As explained earlier, I chose to use the

latter.

5.3 The teacher

Originally I had planned to have someone else administer the lessons, so that I

could focus on observing the class and collecting the data. I had arranged for a

speci�c teacher to take on the job, but at the last moment something came up,

and I was forced to administer the lessons myself. This proved to not be a major

inconvenience, as the bulk of the lessons consisted of adidactical situations, and

thus I was relatively free to observe and collect data anyway.

5.4 Grouping of students

I chose the group the students rather than to have them work individually. This

was a fairly easy choice, since it certainly makes it a lot easier to collect data

from observing say 5 groups rather than 26 students. Also there's a lot to said

for the dynamics of the group, and in order to have a successful series of action-

formulation-validation phases, grouping seem like the obvious route to take.

The students were all placed in groups of 4-5 students based on the outcome of

their diagnostic tests. The grouping did not intentionally re�ect the total level

of the students in the sense that students who overall performed equally in the

diagnostic test were grouped together. In stead they were grouped based on the
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types of misconception they showed in the diagnostic test. I.e. students who

made somewhat identical errors in the diagnostic test were grouped together.

This resulted in a scenario, where every group had a somewhat diverse level of

mathematical talent amongst the members, which was intentional, as I hoped it

would lessen the need for teacher intervention in the adidactical situations by

increasing the odds, that some student(s) in each group would be able to take a

lead in cases, which could otherwise easily end in a kind of stall. It's important to

note, that there were clear di�erences between the groups as wholes talent-wise.

This seems to be a likely consequence from the way the groups were put together,

however within each group, the talent was not spread out evenly.

5.5 Design of the lessons

The design was relatively straight forward, once the analysis of the diagnostic

test was done. I did run into a few problems when analyzing the diagnostic test -

mostly as a result from the test not being as diagnostic as I originally had thought.

I elaborate on this in a later section. The main lessons had always been planned

to consist of a few number tricks for the students to work with - translate into

algebra - and with the target mathematical knowledge outlined very speci�cally

by the diagnostic test, this went fairly straight forward and according to plan.

5.6 A priori analysis of design

The a priori analysis of the design didn't go according to plan. The reason is,

that all of a sudden it was apparent to me, that the main lessons had to be

implemented very soon (within days) if not to cause serious challenges with the

schedule of the class involved. So the original plan to do an a priori analysis of

the design, and then to adjust the design accordingly, was scrapped, and the a

priori analysis was actually done after the implementation of the lessons. It was

done before any kind of review of the collected data, so it is still in some sense
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a true a priori analysis, however some of the purpose was lost. I don't think the

a priori analysis has thus been made irrelevant, as it is still quite purposeful to

have an outlined view of the expectations when analyzing the actual events.

5.7 Data collection

Each group had all their dialog recorded using laptops/phones. In addition to this

they all handed in every bit of material, they had produced during the lessons,

and a few times during their work, I photographed their work at speci�c moments,

where a group was at a point of particular interest. This served the purpose of

saving some written moment before any erasing potentially removed interesting

bits from the paper.

None of the collected data was reviewed until all lessons had been completed.

5.8 Analysis of collected data

The audio recordings were partly transcribed. I initially listened through the au-

dio �les at live speed noting only time stamps of any and all interesting passages.

Afterwards I cut out the interesting bits and collected these in a single audio �le.

This �le I once again listened to, and once again - this time more selectively - I

noted down the time stamps of the interesting bits. These bits were transcribed,

and the transcription was analyzed using the theory of didactic situations. The

analysis of the transcript was supported by the photos taken and the handed in

answers to the problems posed.

5.9 Post-lesson diagnostic test

As mentioned, the diagnostic test was created in way, so that it could be admi-

nistered twice with the exact same problems used both times, yet without any

student answering the same problem twice. Thus a second implementation would

give a decent indication whether or not an improvement had occurred.
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5.10 Summary of methodology

So in an attempt to sum up the methodology: The three research questions

1. What obstacles occur, when teaching elementary algebra to low level math

students in Danish STX?

2. What are the adidactical potentials of using number tricks to facilitate

knowledge about elementary algebra?

3. What e�ect did the lesson set have on the students' skills/knowledge?

were answered through the following respectively:

1. Through analysis of implementation of designed lessons using the theory of

didactical situations

2. Through didactical engineering and implementation of lessons using number

tricks as the context

3. Through implementation and analysis of pre- and post-diagnostic tests
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6 Diagnostic test and the target mathematical know-

ledge

In this section, I'll be addressing the diagnostic test and de�ning the target mat-

hematical knowledge. This includes describing the motivation for making the

diagnostic test, the process of making it, issues which have occurred along the

way, the implementation of it and the results from the pre-lesson implementation

- leading to the de�nition of the target mathematical knowledge.

Before the designed lessons were held (even designed), the students were given a

diagnostic test consisting of a number of small, simple problems all relating to

elementary algebra, and all �tting within the completed curriculum of the class.

The purpose of this diagnostic test was two fold:

1. By giving a diagnostic test before the lessons, the e�ects of the lessons could

be measured by giving the same diagnostic test after the lessons. Of course

giving �the same� test presented some challenges. I will touch upon that

below in the subsection �Challenges of measuring the e�ect of the lessons�.

2. In order to aptly design the lessons in such a way, that there is a balance

between what skills is previously owned by the students and what knowledge

is intended for the students to acquire, a diagnostic test must be held in

order to uncover the previous. (I.e. the diagnostic test aids in determining

the target mathematical knowledge of the main lessons.)

Elaboration on the second point: It's important to get a precise overview of

what the di�erent students can do, and what they can't do. This a�ects possible

grouping of students, and it very much a�ects the possibilities of contents of the

main lessons. It is of great importance to secure, that the target mathematical

knowledge functions as an extension of the already acquired knowledge in order
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for everyone to be able to follow the lessons, i.e. carefulness must be applied to

secure, that the mathematical content of the lessons are neither too hard nor too

easy.

6.1 Challenges of measuring e�ect of lessons

In order to gain the best possible comparison between the pre-lessons diagnostic

test and the post-lessons diagnostic test, the exact same diagnostic test was given

both times. Of course this presented a small challenge in that the same student of

course couldn't be given the exact same problems two times, since this obviously

would a�ect the results. How this challenge was overcome is described in section

5.1.

6.2 Contents of the diagnostic test

As mentioned, the diagnostic test was based on small problems all relating to (my

de�nition of) elementary algebra and all �tting within the completed curriculum

of the class. For this particular class that basically boils down to the following

two categories of problems:

1. Reducing (evaluating and simplifying) algebraic expressions

2. Solving linear equations

In order to best spread out the problems to the students, each of these two

categories were split up into three levels of di�culty. Then in stead of all problems

being assigned at total random, each student was assigned the same number of

questions from each subcategory of problems. This made the individual tests the

most diverse, and thus it prevented a possible skew from skilled students getting

all the hard problems, or one skilled student getting only easy questions etc.

Basically it ensured, that each student was tested thoroughly.
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6.3 Epistemological reference model

In order to best construct the diagnostic test, I �rst outlined an epistemological

reference model for the main lesson design.

An epistemological model is two things (Måsøval, 2011, p.28):

1. Some target mathematical knowledge

2. A process by with that target mathematical knowledge is learned

The diagnostic test had to of course re�ect in some sense the target mathema-

tical knowledge, as it besides being a tool helping with the design of the main

lessons also serves as a tool in measuring the results of the main lessons. So even

before designing the diagnostic test, it made sense to outline the epistemologi-

cal reference model for the entire project, i.e. the following questions should be

answered:

1. What is the target mathematical knowledge?

2. How can number tricks assist in the implementation of this target know-

ledge?

6.3.1 Target mathematical knowledge

As mentioned in section 5.1, the methodology gave a small challenge here: In

order to have the same test be diagnostic and a measure of e�ect, it had to both

precede the outline of the target mathematical knowledge and be designed with

the target mathematical knowledge in mind. This of course is an impossibility,

but in reality, it wasn't hard to overcome. Attacking the situation from a third

direction solved the problem: I needed to �rst answer the following questions:

• Which are the prerequisites of working mathematically with number tricks?
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• What is the mathematical range of number tricks?

Obviously the contents of the diagnostic test should contain elements of the an-

swers to both questions. This di�erentiation was intended to lie in the separation

into levels of di�culty. This was assumed to most likely result in students not

being able to give a correct answer to all the problems in the diagnostic test at

it's �rst run, but this was exactly the intention. I will go as far as saying, that

if they were able to answer all problems correctly, then that would have posed a

problem.

6.3.1.1 Prerequisites and range of working with number tricks

As I argued in section 3, the range of working with number tricks is really in�nite

within the �eld of elementary algebra, in the sense that number tricks can be

made as simple or as complex as one desires. Take for instance number trick 4

below, which is an extremely simple number trick though still a bit more complex

than number trick 2. It seems fair to assume, that every STX student should be

able to see through the mathematics of number trick 4 (which is the reduction

x+ 2− x = 2):

Number trick 4

1. Think of a number.

2. Add 2 to your number.

3. Subtract your original number from the result.

4. Your resulting number is 2.

The prerequisites of being able to work with a number trick of this level of di�-

culty is simply being able to add and subtract.
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An example of a more elaborate number trick could be the one representing

a2 + b2 + 2ab− (a+ b)2 = 0:

Number trick 5

1. Think of two numbers.

2. Square both numbers and add the two resulting numbers to each other.

3. Add to the result 2 times the product of the original 2 numbers.

4. Subtract from the resulting number the square of the sum of the original

two numbers.

5. Your resulting number is 0.

Obviously the prerequisites for working with this number trick are a bit more than

those of the former. The student must here be able to also square and multiply

numbers. In general, obviously, the prerequisites of working with number tricks

are familiarity with the mathematical operations included in the number tricks.

Conversely, one could argue that the prerequisites determine the range, in which

I can move around in my design, and then it all comes back to the fact, that the

diagnostic test should simply include levels of di�culty which are varied enough

so that:

1. Every student can answer something correctly, and

2. no student can answer everything correctly.

If this is achieved, then the main lessons can be designed with the purpose of

moving the students from their respective initial levels to higher ones while still

keeping within the pre-given range of the entire setup (which would then be con-

sidered the target mathematical knowledge). This last part is important in order

to be able to use the diagnostic test as a post-lesson measure of e�ect.

53



So now I'm ready to address the question: �What is the target mathematical

knowledge?�:

The target mathematical knowledge was originally thought to be de�ned through

the problems in the diagnostic test, varying for the individual student depending

on their initial stance. As my phrasing suggests, this was eventually altered, howe-

ver in order to provide the best insight into how the diagnostic test was formed,

and why I eventually made the choices I made, I will describe my detour, in what

I turned out to decide was a wrong direction, rather detailed. So from that par-

ticular stance, the only thing left was to choose the range of di�culty in which

to operate.

I had decided to de�ne three levels of di�culty in each of the two groups of

problems: Reducing mathematical expressions of symbols and solving linear equa-

tions. The de�nitions of di�culty had to be concrete with respect to mathematical

contents of the problems, as this would ultimately be the de�nition of the target

mathematical knowledge. It seemed reasonable to let the lowest level of di�culty

to some degree be de�ned by what students are expected to know, as they enter

the STX. Silkeborg, 2010 contains a set of problems designed to be just so, so

for the lowest level of di�culty, I chose to use problems from there as a basis.

Silkeborg, 2010 presents a somewhat wide selection of problems with respect to

di�culty, but seeing as my group of students all originally have chosen a composi-

tion of school subjects, which minimizes mathematics as much as legally possible

for students at STX at the time (combined with my personal knowledge of the

students as their teacher), I found it reasonable to pick problems from the least

di�cult portion of Silkeborg, 2010 as the basis for the lowest level of di�culty in

both groups of problems. (A more precise de�nition of the lowest level of di�culty

follows.)
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For the medium level of di�culty, I chose to use problems re�ecting, what the

students were expected to be able to solve at their current state. As they were

all very close to their �nal examination in mathematics, and seeing as they had

by and large �nished the o�cial curriculum, it seemed reasonable to choose the

problems of a medium level of di�culty from the most recent examination. These

problems by de�nition re�ect, what the students were expected to have learned

at this point. (As with the lowest level of di�culty, a more precise de�nition of

the medium level of di�culty follows.)

The highest level of di�culty should go beyond what the students were expected

to be able to handle at their current state, as this will de�ne the length of the

direction in which the main lessons can try to push the students. In the next

subsection I will go into details and de�ne this and the previous two levels of

di�culty.

De�nition of the levels of di�culty - reduction of mathematical expres-

sions of symbols

The lowest level of di�culty for the problems about reduction of algebraic expres-

sions was chosen to consist of very simple problems of the simplest type from

Silkeborg, 2010. Their purpose was thought to be to uncover whether or not the

students were able to correctly use addition, subtraction, multiplication and di-

vision, and whether they were able to correctly multiply two parentheses, when

reducing mathematical expressions. These two purposes were kept isolated from

each other by a division into 4 sub-levels of problems: a) Addition/subtraction, b)

Multiplication, c) Multiplying parentheses and d) Division. The list of problems

in this category along with the rest of the problems in the diagnostic test can be

found in table 3.
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The medium level of di�culty (and this is the point, were I truly went o� into the

wrong direction - more on that later) was chosen to be (to some extent) combina-

tions of the simpler problems from the lowest level. They were modeled after the

exam problems from (Exam-8-14, 2014, Exam-5-14, 2014), and they represented

the level of mathematical reduction, that the students are expected to be able to

handle at the end of the year (UVM, 2015). Besides from the operations tested

in the lowest level, the medium level also included the squaring of an expression,

which I knew, that all the students had worked explicitly with before.

The highest level of di�culty was sought to be problems consisting of all the

elements of the lower levels. Also they were made to contain two di�erent letter-

symbols rather than just one as in the previous levels, and they were also made

to require knowledge about multiplying/dividing powers of symbols. The main

di�culty in the problems of this level was in the hard mixture of the operations,

which required the students to have a very �rm grasp of the operator preceden-

ce and rules of association/distribution. The very things, that I had originally

considered to be the target mathematical knowledge.

De�nition of the levels of di�culty - linear equations

The levels of di�culty for the second type of problems, the linear equations, were

designed in exactly the same way as above, except for the fact that the lowest

level of di�culty was not divided into subgroups, and so I won't go into further

detail except to say, that those problems likewise can be found in table 3.
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Table 3: Table showing the entire set of problems in the diagnostical test.

R=reduction, E=equation, L=low, M=medium, H=high, and the letters in pa-

renthesis in the level column indicate the subtype: a=Addition/subtraction,

b=Multiplication, c=Multiplying parentheses and d=Division.

Type: Level: Problem 1: Problem 2: Problem 3:

R L(a) 5 + 2a− 2− a 8 + 4a− 3 + 2a 3a− 2 + 2a+ 4

R L(b) (5a) · 2 (2a) · 6 (6a) · 4

R L(c) (a− 1)(2− 2a) (3 + a)(3− 2a) (2− 3a)(1 + a)

R L(d) 2a−4
2

6+8a
2

9−3a
3

R M (a+ b)2 − a2 − ab (a− b)2 − b2 + ab (a+ b)2 − a2 + b2

R H 4(a+ab)(2a2−(2a)2)
8a3

2(b−ab)(4b3+(2b)3)
8b4

3(ab−a)(3a3−(3a)2)
9a3

E L 3x+ 1 = 7 2x− 1 = 5 4x+ 2 = 10

E M 2x+ 1 = 4x− 3 3x− 2 = x+ 4 x+ 3 = 5x− 5

E H (x+2)(3−x)
1+x

= 3− x (4−x)(2x+1)
2x−2

= 1− x (2−x)(4x−3)
2x+1

= −2x− 1

So in my (failed) attempt to construct the target mathematical knowledge, I ma-

naged to also construct the contents of the diagnostic test itself, as I (mistakenly)

went forward considering the problems comprising diagnostic test to be exactly

the target mathematical knowledge. Feeling able to provide satisfying answers

to the questions regarding target mathematical knowledge in section 2.9, I then

naturally went on to answer the second question regarding the epistemological

reference model, which is addressed in the next (sub)subsection.

6.3.2 How can number tricks assist in the implementation of the tar-

get knowledge?

As it should be quite clear by now, it has been my intention all along, that the

design of the main lessons make a heavy use of the theory of didactical situations.
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I postulate, that number tricks are especially well suited for this purpose, as they

mask elementary algebra with a nice, fun and almost game-like structure, which

promises a lot of adidactical potential. I've already made my arguments for this

in section 3.1, so I won't go further into it here.

6.4 Implementation of diagnostic test

Having constructed what I believed to be a diagnostic test, the next natural step

was of course implementation, and the diagnostic test was administered to the

class in April 2015. It went o� without any issues. The students were each given

9 problems (one column of table 3), they were not given a time limit, and the

last student handed in the solutions after approximately 15 minutes.

Back on track

It wasn't until I evaluated the results of the diagnostic test, that I realized, that I

had been going about it completely wrong. It was rather shortly into this process

apparent, that:

1. My target knowledge was not cleverly chosen.

2. My diagnostic test was really not diagnostic at all (at least in a way that

made sense).

After an appropriate amount of panic, I came to the realization, that the pro-

blems in the �rst four rows of table 3 could actually serve as a true diagnostic

test, especially since I received everything written by the students in their at-

tempts to solve the problems, and that the outcome of this �new� diagnostic test

would eventually de�ne a much more suitable target mathematical knowledge.

I'll elaborate on this:

In my construction of the diagnostic test, I had made what I suspect to be a
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quite widespread error among teachers: I had constructed a test designed to di-

agnose the ability to solve mathematical problems rather than a test to diagnose

misconceptions within a given mathematical knowledge. Reviewing the students'

solutions to the test, it was clear, that it wasn't really interesting from a dida-

ctical point of view, whether or not the problems were answered correctly. The

interesting part was the nature of any and all mistakes made in the attempt

at the solution. Thus, in order for the test to be truly diagnostic with respect

to misconceptions, the problems should be of a very simple nature, which the

majority of my diagnostic test was not. I brie�y considered creating a new test,

but seeing as I had already administered the �rst test, and seeing as a subset

of this test actually did serve it's true purpose, I opted to not. Note that the

problems of type �R� level �L(b)� in table 3 were by far the most successful with

respect to diagnosing misconceptions. Had I chosen to create a new diagnostic

test, it would certainly contain only problems of such a simple and focused nature.

My changed view on the diagnostic test brought clarity to the question of what

should be the target mathematical knowledge: It should naturally be the knowled-

ge with which the students had the most outspoken and similar misconceptions,

thus not to be precisely de�ned until after analyzing all the answers.

6.5 Results of the pre-lesson diagnostic test

Before recording any data based on the results, I had to choose just what exactly

to record. This was a good point to recall the dual purpose of the test: Mea-

suring e�ect of the lessons and determining the target mathematical knowledge.

At this point it was clear, that the target mathematical knowledge should be

de�ned by the speci�c misconceptions uncovered, so naturally I needed to record

in some manner the misconceptions occurring. The question was then, how to

measure e�ect. I chose to de�ne �e�ect� as a change in the number of those spe-
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ci�c misconceptions de�ning the target mathematical knowledge rather than the

students' ability to generally answer the problems correctly. This however posed

the following problem: When measuring the e�ect, how can I be sure, that I have

accounted for all the students exhibiting a speci�c misconception and not just

those, where the misconception in question was apparent? As a solution to this I

decided to record two things:

• The speci�c misconceptions occurring (and how often they occur)

• The total number of correct answers

I argue, that the last category should indicate whether any e�ect measured in

the �rst category is misleading or not.

Results of: Reduction - addition/subtraction

68% of the students answered this problem correctly showing no misconceptions

what so ever. The remaining students' answers thus contained errors. The errors,

which seemed appropriate to connect to a speci�c misconception, were all of the

following type:

1. a + b = ab

(I've given the misconception a number, in order to refer to it later.) There were

other errors either due to other misconceptions or simply sloppiness, however type

1 was the predominant, and it was fairly obvious as can be seen by the examples

provided in �gure 2 below.

A side note: The examples in �gure 2 could suggest, that a problem with the di-

dactical contract might have occurred rather than a genuine belief that a+b = ab:

Both students in question have actually answered the question correctly, before

they move on to incorrectly try to simplify the expression further. An explanation

for this could be, that the student feels, that it is expected of him/her to simplify
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Figure 2: Two examples of the misconception: a+ b = ab (ignoring the incorrect notation).

at all costs - the aim for the student might be more to make the expression take

up less space on the paper than to actually look at the mathematics.

Results of: Reduction - multiplication

73% of the students answered this problem correctly showing no misconceptions

what so ever. The remaining students' answers corresponded primarily to the

following misconception:

2. (ab) · c = ac · cb

It seems reasonable to assume that this is a more genuine misconception than 1,

and that the basis of it is a misconception of distribution (it would have been

interesting to see, if the misconception would also show itself, had the parenthesis

been removed). I've included an example in �gure 3.

As with the previous problem, other wrong answers occurred, but as before I've

only included the misconception, with which a relatively small amount of inter-

pretation needed to be applied in order to characterize it.

Results of: Reduction - multiplying parentheses

Only 18% of the students answered this problem entirely correctly, showing no

misconceptions what so ever. This drastic drop relative to the �rst two problems,
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Figure 3: An example of the misconception: (ab) · c = ac · cb.

was not surprising, as the complexity of this problem is a lot higher. Thus it

is also a much worse problem with respect to diagnostics than the previous two.

However, since I have received all intermediate calculations by the students, I have

been able to diagnose some misconceptions. These correspond to the following:

3. ab · b = ab

4. No operation precedence

5. General problems with (a+ b)(c+ d)

This one was harder to diagnose anything concrete from, since the problems se-

emed more wide spread, however 3 and 4 were pretty clear in several answers,

and I've included an example of each in �gure 4. Number 5 isn't really a miscon-

ception as much as a lack of knowledge, hence I've distinguished it from the rest

by having it not be in boldface like the rest. The last example of �gure 4 shows

an answer, which I feel clearly indicates, that the student has not acquired any

knowledge of how to proceed with such an exercise. I decided to include 5 in the

list, as it was fairly recurring, and that it therefor would be suitable as part of

the target knowledge.
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Figure 4: Examples of the misconceptions of type 3,4 and 5 respectively.

Results of: Reduction - division

32% of the students answered this problem correctly showing no misconceptions

what so ever. The remaining students' answers corresponded entirely to miscon-

ceptions regarding operator precedence (already noted as 4) and/or distribution:

6. a+b
c

= a
c
+ b

I've included an example of both the disregard of operator precedence and the

misconception regarding distribution in �gure 5

I've collected all the results of the test in table 4.
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Figure 5: Examples of the misconceptions of type 6 and 4 respectively.

Problem: Correct: Misconceptions (occurrence):

Addition/subtraction 68% 1) a + b = ab (18%)

Multiplication 73% 2) (ab) · c = ac · cb (14%)

Mult. of parentheses 18% 3) ab · b = ab (27%

4) No operation precedence(23%)

5) Problems with (a+ b)(c+ d) (14%)

Division 32% 4) No operation precedence(32%)

6) a+b
c

= a
c
+ b (32%)

Table 4: Overview of the results from the pre-lesson diagnostic test.

6.6 Final de�nition of the target mathematical knowledge

With a clear overview of precisely de�ned misconceptions occurring amongst the

students in the class, I chose to de�ne the target mathematical knowledge nar-

rowly as exactly the parts of elementary algebra with which the misconceptions

occurred. That is, the target mathematical knowledge is the following:

1. a+ b 6= ab
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2. (ab) · c 6= ac · cb

3. ab · b 6= ab

4. The operation precedence

5. The Rules of distribution

One might say, that there is some overlap in those �ve point, as for instance 2

could arguably be called a problem with distribution, however I chose to include

the entire list as the target mathematical knowledge, as the entirety of the list

re�ects the genesis of the target knowledge.

Since I initially set out to also include some speci�c formula from the o�cial

curriculum, I also included the quadratic formulas ((a+ b)2 = a2+ b2+2ab, etc.):

6. The quadratic formulas

I do this without hesitating, as it doesn't in any way cause a problem with my

methodology or anything else. On the contrary it opens up the opportunities for

the development of the number tricks in my design of the main lessons.

It's worth to note, that 9% of the students answered all 4 questions entirely

correct. Thus the target mathematical knowledge as I have de�ned it, could be

argued not to allow for acquisition of knowledge for all the students. However,

none of the students have answered all the problems in the diagnostic test (as

it was administered) entirely correctly, and some of the misconceptions de�ning

the target mathematical knowledge did appear in some answers for all students

without exception. Therefore, I chose not to concern myself with this any further

than to note down the total score of the test as it was administered, in order to

better evaluate the total progress. I chose to treat this total scoring a little di�e-

rent, as it really had nothing to do with diagnosing. In stead of simple giving 1
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point for correct answers and 0 points for incorrect answers, I scored each answer

with a rational number between 0 and 1. This procedure of course have it's build

in errors, as a level of interpretation on my side must occur, however, I still feel,

that this way of scoring provides a better number for a general comparison of

the pre- and post-lesson diagnostic tests. The pre-lesson score was 54% on

average.

Before moving on, the three questions by Brousseau in section 2.9 regarding

target knowledge, should be addressed:

1. What precisely IS the target knowledge?

2. Which context might it be placed in?

3. What is the students' previous knowledge relating to the target knowledge?

1) The target knowledge has been very precisely de�ned above.

2) It can and will be placed in the context of number tricks.

3) The students' previous knowledge has been diagnosed by testing.

With the target mathematical knowledge de�ned, the next step is the design

of the main lessons. This procedure is presented in section 7.
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7 Main lessons

I was able to allocate two lessons of each 90 minutes with the students. The two

lessons were about a week apart. I estimated, that 90 minutes should be enough

to cover two number tricks, so a total of four number tricks were developed. I

call these number tricks A,B,C and D respectively, in order to keep them sepa-

rate from the ones earlier in the thesis. A and B were administered in the �rst

lesson, and C and D were administered in the second lesson. C and D are more

advanced/complicated than A and B. I decided, that this wouldn't cause a time

issue, as I expected the devolution phase to be much shorter in the second lesson

than the �rst.

7.1 Design

As it's probably clear by now, the layout of the lessons is the following:

• Devolution - The students were placed in groups, problems were handed

out, and instructions on how to proceed were given.

• Adidactical phase - The students worked in groups with the problems.

• Institutionalization - A short discussion about problems and solutions having

occurred resulting in a precise formulation of the acquired knowledge.

It was the middle part - the adidactical phase, which needed to be designed, as

the devolution pretty much is laid out by this, and the institutionalization is de-

pendent on the actual events during the adidactical phase.

So four number tricks were designed with one eye �xed on the list of target

mathematical knowledge. The four number tricks are presented in tables 5-8 be-

low. They are presented along with the algebraic formulations, and I've included

a column with notes on which parts of the target knowledge is attempted induced
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by the step in question. The students did not receive the algebraic formulations.

They received a table for each number trick with a blank column for �lling in

the algebraic formulations and for �lling in an example along the way (feedba-

ck/validation).

Table 5: Number trick A along with algebraic formulation and target mathema-

tical knowledge attempted induced (TMK).

Step: Instruction: Algebraic formulation: TMK

1 Think of a number. a

2 Add this number to 4. 4 + a 1

3 Multiply the resulting num-

ber by 2.

(4 + a) · 2

= 8 + 2a

5, 4

4 Subtract two from the resul-

ting number.

8 + 2a− 2

= 6 + 2a

4

5 Subtract your original num-

ber from this - twice.

6 + 2a− a− a

= 6

4, 1

6 You now have the number 6. Con�rmed!
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Table 6: Number trick B along with algebraic formulation and target mathema-

tical knowledge attempted induced (TMK).

Step: Instruction: Algebraic formulation: TMK

1 Think of a number. a

2 Multiply 2 by this number. 2a

3 Multiply the resulting num-

ber by your original num-

ber.

2a · a

= 2a2

2 or 3

4 Multiply the resulting num-

ber by 4.

2a2 · 4

= 8a2

2 or 3

5 Subtract from the resulting

number the result of mul-

tiplying your original num-

ber by 2.

8a2 − 2a

6 Divide the resulting number

by your original number.

8a2−2a
a

= 8a− 2

5

7 Add 2 to the resulting num-

ber.

8a− 2 + 2

= 8a

8 Multiply the resulting num-

ber by 2.

8a · 2

= 16a

2 or 3

9 Divide the resulting number

by your original number.

16a
a

= 16

10 You now have the number

16.

Con�rmed!
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Table 7: Number trick C along with algebraic formulation and target mathema-

tical knowledge attempted induced (TMK).

Step: Instruction: Algebraic formulation: TMK

1 Choose two di�erent num-

bers and add them together.

a+ b 1

2 Multiply the di�erence be-

tween the two original num-

bers with the resulting num-

ber.

(a− b)(a+ b)

= a2 − b2
5,6

3 Multiply the two original

numbers together and sub-

tract that from the resulting

number - twice.

a2 − b2 − ab− ab

= a2 − b2 − 2ab

4

4 Multiply the largest of the

original numbers by itself

and subtract that from the

resulting number - twice.

a2 − b2 − 2ab− aa− aa

= −a2 − b2 − 2ab

5 Multiply the resulting num-

ber by -1.

(−a2 − b2 − 2a) · (−1)

= a2 + b2 + 2ab

5,2,3

6 Take the square root of the

resulting number.

√
a2 + b2 + 2ab

= (a+ b)

6

7 Subtract the sum of the ori-

ginal two numbers from the

resulting number.

(a+ b)− (a+ b)

= 0

5,4

8 You now have the number 0. Con�rmed!
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Table 8: Number trick D along with algebraic formulation and target mathema-

tical knowledge attempted induced (TMK).

Step: Instruction: Algebraic formulation: TMK

1 Choose three numbers cor-

responding to the date,

month and year of the bir-

thday of a group member.

a, b, c

2 Add 2 to the number repre-

senting the date.

a+ 2 1

3 Multiply the resulting num-

ber by 200.

(a+ 2) · 200

= 200a+ 400

5

4 Subtract 400 from the resul-

ting number.

200a+ 400− 400

= 200a

5 Add the number represen-

ting the month - twice.

200a+ b+ b

= 200a+ 2b

1

6 Multiply the resulting num-

ber by 5000.

(200a+ 2b) · 5000

= 1, 000, 000a+ 1, 000b

5

7 Add the number represen-

ting the year of birth.

1, 000, 000a+ 1, 000b+ c

8 The resulting number is

the birthday of the chosen

group member.

Con�rmed?

Number trick D arguably falls a little outside my de�nition of a number trick, in

that it doesn't actually result in a predetermined number in the same sense as all

the other examples trough out the thesis. I could argue, however, that it's really

all about how to interpret �predetermined number�, but basically I chose not to
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care (a view I regretted later, which will be addressed in section 10). One could

also point out, that I in number trick D have compromised my earlier comment

on not focusing on the trick part. Well, I couldn't resist. I likewise chose not to

care about the fact, that it very much opens up for a discussion about something,

that falls outside of the target knowledge. I basically thought it would be fun to

include the trick.

7.1.1 Outline of the lessons

Table 9 and 10 show outlines of the di�erent phases of the two lessons respectively.
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Table 9: Outline of lesson 1.

Phase: Description: Type: Time:

Devolution - Work sheets are handed out.

- Number trick A is run through

with an example (arithmetically).

- The �rst few steps are formula-

ted algebraically together.

- Instructions are given on how to

proceed with the assignment.

- The students are grouped.

- It's checked that all understand

the assignment.

Didactical 0-10m

Action/

formulation/

validation

- The students work in groups on

the assignment. They work out an

arithmetical example at the same

time as they formulate the alge-

bra, which provides feedback to

the group along the way.

Adidactical 10-

60m

Validation - The groups take turns to present

what they consider to be intere-

sting aspect of their work.

- The teacher directs a discussion

of the �ndings.

Didactical 60-

80m

Institutiona-

lization

- The teacher highlights the do-

minating algebraic rules/formulas

resulting from the discussion.

Didactical 80-

90m
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Table 10: Outline of lesson 2.

Phase: Description: Type: Time:

Devolution - Work sheets are handed out.

- A brief recap of the last lesson

is given.

- Instructions are repeated on

how to proceed with the assign-

ment.

- It's checked that all understand

the assignment.

Didactical 0-5m

Action/

formulation/

validation

- The students work in groups on

the assignment. They work out an

arithmetical example at the same

time as they formulate the alge-

bra, which provides feedback to

the group along the way.

Adidactical 5-65m

Validation - The groups take turns to present

what they consider to be intere-

sting aspect of their work.

- The teacher directs a discussion

of the �ndings.

Didactical 65-

85m

Institutiona-

lization

- The teacher highlights the do-

minating algebraic rules/formulas

resulting from the discussion.

Didactical 85-

90m
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It follows from the far right columns, that the adidactical phases take up consi-

derably more than half the total time of the two lessons combined. This promises

an e�ective exploitation of the adidactical potential of the lessons.

7.2 A priori analysis of lessons

As mentioned in section 5, the a priori analysis was actually conducted after the

implementation. Well that is: Only partly, because the entire design was made

with the inducement of speci�c obstacles through knowledge about the students'

misconceptions about the target mathematical knowledge collected with the di-

agnostic test in mind. So I argue, that a level of a priori analysis was conducted

before the implementation of the design - and the result of that �analysis� are

the numbers in the far right columns of tables 5-8, namely the list of speci�c

misconceptions expected to occur.

Part of the a priori analysis (which was conducted after the implementation)

is the addressing of the following three questions from section 2.9:

1. Are the students given the opportunity to get comfortable with the target

knowledge?

I argue, that they are. The didactical milieu of the adidactical phases of

the lessons has an incorporated feedback (a comparison of the arithmetical

example of both the number trick's instructions and the reduced interme-

diate algebraic expressions), which at every step through the number trick

tells the students (well indicates at least) whether or not they are on the

right track. In case of a misconception about the algebraic formulations,

the arithmetic example will demonstrate, that an error has occurred, and

the group of students will be forced to discuss the issue - formulating, hy-

pothesizing, validating the algebraic formulations.

2. In working with the milieu: Can the students see a relation to and expand
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and use their existing knowledge?

I argue, that it's highly likely, that they can. The relevant existing knowled-

ge in the milieu is the arithmetical knowledge corresponding to the genera-

lizations in the algebra, that comprise the target knowledge. My expecta-

tion is, that the students, faced with a misconception causing a halt in their

progress through the feedback mechanism, will eventually see a connection

between the arithmetics and the algebra, and use this connection to expand

their algebraic knowledge.

3. Does the milieu make it possible and necessary to construct the target know-

ledge (at the least in some speci�c cases)?

Again, I argue that it does. Given that the design has been successful, and

the intended misconceptions arise as planned, there will arise points, where

existing knowledge can be expanded to the target mathematical knowledge,

and furthermore an expansion of the existing knowledge (the generalization

of the arithmetics) is necessary to surviving the milieu, i.e. to complete the

assignment.

As mentioned in section 2.9, I did not apply the process of implementation -

adjustment - re-implementation for practical reasons. I do feel justi�ed to say

however, that my design at this stage was ready for an implementation.

7.3 Implementation

The lessons were administered in may 2015 to 2a at Borupgaard Gymnasium in

Ballerup, Denmark. The students were all willing participants, and everything

went o� without any major problems.
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8 Analysis

I've chosen to focus on 3 speci�c episodes, in which some battle for the target

knowledge occurs. The letter S indicates, that a student is talking, and T indicates

teacher. I've translated all talk into English.

8.1 Episode 1: A successful overcoming of two misconcep-

tions

Episode 1 happens in group 1, while they are working on number trick B. They

have without any problems correctly arrived at the fraction 8a2−2a
a

in step 6. As

we enter, they are attempting to simplify it. They have been working out an

arithmetical example using 5 along the way.

1. S1: Isn't it just 8a2 − a, then?

2. S2: Yes.

3. S3: Shouldn't we check that?

In line 1, S1 demonstrates two misconceptions: One is that the denominator

shouldn't be distributed to all the terms in the numerator, and the other is, that

2a
a

= a. It's immediately agreed upon by S2 in line 2, but then fortunately in

line 3, S3 suggests to check it with the arithmetical example. They calculate the

arithmetics using 5 (on calculator), and conclude, that it's incorrect:

4. S3: This one is not right. I don't think you can just remove the division

sign.

5. S4: Yes, because this a cancels out this one. (Points to the denominator and

the a in 2a.)

6. S2: But then isn't there one a left..? Yes, there's one a left, yes.

7. S1: We could also just say 8a2 divided by a, because that's just 8a. Isn't

that easier?
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8. S2: Yes, let's do that.

9. S1: But is it then 8a− a or 8a− 2a?

10. S2: Then it is 2a, right?

11. S1: Yes.

12. S3: (Calculates the arithmetical example.) It's still not right.

S3 questions the canceling out of the denominator, S4 rea�rms the misconception

regarding distribution by pointing out, that the denominator cancels out with the

last term of the numerator. S2 then in line 6 rea�rms the second misconception.

Then in line 7, S1 suggests a way to not to deal with the second misconception,

but her suggestion is yet again rea�rming the misconception regarding distribu-

tion, as she suggests, that they simply let the denominator cancel out the �rst

term in stead. S1 shows the �rst sign of correcting the misconception in line 9,

but it doesn't take with anyone - including herself. S3 checks with the example,

and concludes, that it's still incorrect.

This bit of dialog is very important, as it very clearly shows, that the miscon-

ception regarding distribution is very deeply rooted. I argue, that this especially

follows from line 7, as it is here directly used a means to move forward. I.e. it isn't

just some rule, they are following without giving it any thought. It is a rule, that

they explicitly bring up and use as a way to �x some problem. Fortunately the

adidactical milieu is equipped with the feedback mechanism of the arithmetical

example, and they conclude, that it's still incorrect. The feedback mechanism

thus works properly giving the milieu a high adidactical potential, as well as un-

derlying the importance of a counter example as a tool in the validation phase.

Following this bit of dialog, there is then a pause and some idle talking back and

forth, and then the teacher, who have been listening in, intervenes:

13. T: As I understand it, you all agree, that this isn't entirely correct, and now

you are stuck?

14. S4: Yes.
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15. T: OK. Is there another way to write your fraction?

16. S3: You mean reduce it?

17. T: I'm talking purely notation. Is there another notation for division?

18. S4: We could use a slash. (They write: 8a2 − 2a/a.)

19. S1: But then you need a parenthesis.

20. S2: (Enthusiastically:) Yes, but then it has to be divided into both terms.

The teacher leaves.

21. S1: Yes that's it. . . Then it's 8a− a.

22. S2: Yes!

23. S4: Yes!

The teacher intervened to further along the situation, thus brie�y turning the

situation into a didactical one. He posed the leading question about changing the

notation, and as soon as the question is understood by the students, He with-

draws again, thus turning the situation back into an adidactical one. Note, that

the comment by the teacher could potentially have led to a metamathematical

shift, had the students not realized on their own, that the use of a slash required

a parenthesis. This could have led to a discussion about notation and operator

precedence in stead of the mathematical misconception at hand: Distribution.

Fortunately this didn't occur though, and the students successfully rewrote the

fraction to (8a2 − 2a)/a. This very quickly prompted S2 to recognizing, that the

denominator should be distributed amongst the terms in the numerator. Obvious-

ly the students possessed a previous knowledge about distribution, however they

clearly hadn't previously attached that knowledge to a fraction. At the sight of

the di�erent notation, they expanded their previous knowledge about distribu-

tion to include fractions. (Side note: Here it would be quite interesting to see,

whether this newly acquired, successful, rule of distribution of denominator into

terms of numerator would cause the epistemological obstacle of thinking, that

also a numerator shall be distributed amongst terms in the denominator.)
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There was still the issue of the second misconception though, and the dialog

continues:

24. S3: (After checking the arithmetic:) OK, but it's still not right.

25. S4: But...?

(Pause.)

26. S3: (Referring to 2a/a:) With 5, that's 2 times 5, that's 10. And 10 divided

by 5 is 2. So it's a that cancels out.

27. S1: Yes, because it's 2 times a divided by a, so that's clear.

28. S4: Then it is 8a− 2.

29. S2: Then we're left with 8a− 2, that makes sense.

30. S3: That also �ts with the example.

31. S2: Fantastic.

So once again the feedback mechanism provided a counterexample, and caused

the students to re-evaluate. The breakthrough came, when S3 in line 26 addres-

sed the arithmetical example and compared that with their generalized algebraic

formulation. She recognized the pattern, and once the new hypothesis had be-

en put forward, S1 saw and conveyed the logic behind it, and the rest of the

group jumped on board. The feedback mechanism provided a high likelihood,

that the answer was correct, and after the above dialog ended, they proceeded

with the rest of the number trick without further problems. The overcoming of

the second misconception happened as a result of examining the meaning behind

the expression 2a/a. First it was compared to an arithmetical example, and then

some formulation of the logic behind the general simpli�cation was made and

validated. Thus the new knowledge was built on the arithmetical knowledge (line

26) and some previously owned knowledge of multiplication and division being

each other's inverse operations (line 27).

Quite obviously the adidactical milieu did not allow the students to survive wit-

hout correcting their two misconceptions. The feedback mechanism was crucial
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to that end. The interesting question now is, what caused the misconceptions?

Was there a speci�c didactical obstacle behind them? This was brie�y addressed

later in the lesson - in the didactical phase of validation. S3 explained to the

class, that they encountered this problem with the distribution in the fraction,

and that they solved it by using a slash as notation. Then the teacher asked:

32. T: Why do you think that you all had trouble, when it was on the form of

a fraction, but not when you used a slash?

33. S3: I don't know. I think it's because, that when we saw the parenthesis,

then we just remembered it.

34. T: So you think, that you knew all along, but you just had to remember?

35. S3: Yes, because we did know eventually. We didn't look up any rules.

36. S4: I think maybe it's because, that with numbers you don't have to do it

in all the terms.

37. S1: Well yes you do.

38. T: (To S4:) Explain that? What do you mean by that?

39. S4: When I calculate a fraction with numbers, I just type them in, and then

it comes out correct. It also works with this example.

This last bit from S4 indicates, that at least for her, the obstacle was of a didacti-

cal nature: The consistent use of a calculator as a tool had rendered it unnecessary

for her to acquire knowledge about what happens along the process. It's unclear

whether she was talking about calculation a fraction in steps, i.e. 3+5
2

= 3+5

(enter, returning 8) /2 (enter - returning 4), or she was using a calculator that

allows her to punch in a fraction, and then just returns the result, but based

on my recollection of the calculator she held, I would say that it's the �rst, and

in this case the use of the tool had rendered her unaware of the fact, that she

was actually changing the operator precedence by the intermediate punching of

enter - even though she had not punched in a parenthesis. It's tempting to argue,

that this constitutes an epistemological obstacle, as she had had success with a
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practice in the past (as long as it's an arithmetical task, and the calculator is

used correctly, no issues occur), but when her previous, arithmetical knowledge

was expanded to the generalized case, then her knowledge was insu�cient and

needed to be adjusted. I argue though, that by that logic any didactical obstacle

could be said to be epistemological. In stead, since this obstacle was not really a

consequence of some generally incorrect, personal knowledge, it was not an epi-

stemological obstacle. Rather: The unfortunate instructions on how to calculate

fractions on a calculator could easily have caused the didactical obstacle leading

to the misconception at hand.

8.2 Episode 2: An instance of insu�ciency of the adidacti-

cal milieu and two instances of didactical phenomena

The second episode unfolded during the second lesson in group 2's work with

number trick C. They'd reached step 6, where they were about to simplify the

expression
√
a2 + b2 + 2ab. This proved to be very problematic. Along the way

they had worked out an arithmetical example using a = 5 and b = 4.

Figure 6: Photograph of a moment, where the students reach an impass when working with number trick C.
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1. S4: Take the square root of the number. Hrrr!

2. S3: That must be 9 then (referring to the arithmetical example).

3. S4: (Loudly, playfully:) I is niiine! It's true. It's the sum of two original

numbers, so we subtract that, and it's 0. Yeah, we've solved it.

4. S5: It makes sense.

5. S1: Then let's just add a root sign there, and we're done.

So here is seen a potentially hazardous aspect of this particular use of number

tricks. The students were convinced, that they had solved the problem. They had

to the extent of their knowledge completed the given task. They had survived the

milieu. But they really hadn't dealt in any way with the speci�c target knowledge

of that particular step of the number trick, which is the quadratic formula. In

stead, they looked ahead in the steps and realized, that the simpli�cation of the

square root at hand had to be a+ b in order for everything to �t. However, they

only really worked out the arithmetics - they never had any interaction with the

algebra at stake. This example clearly shows the necessity of devolving to the

students, that every step of the algebraic formulation must be veri�ed algebrai-

cally.

Fortunately, in this episode, that had been properly devolved. The group conti-

nues:

6. S2: OK, so then that's just plus right?

7. S1: No we, can't say that it's nine, that's only...

8. S4: Didn't it give nine?

9. S1: Yes, but that's just the example.

10. S5: Yes, but we don't know that.

11. S2: Oh.

12. S4: Why?

13. S1: It was equal to a+ b, but we don't know that.

14. S3: Aren't we supposed to simplify that?
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15. S5: Yeah...? But that's what we did. No we didn't.

16. S1: Where did a+ b come from.

17. S4: They came from there (referring to the last steps of the number trick).

So the students realized on their own, that they were missing one crucial step.

This is actually quite impressive - e�ective devolution or not. But that was far

from the only issue making this particular episode interesting. The group was

now faced with the task of simplifying the square root - they were engaging with

the milieu to win the target knowledge at stake:

18. S3: But I think, this is wrong, because a2 + b2, that gives a + b, but then

what about +2ab?

19. S4: It was the square root... It was the square root of this (referring to the

arithmetical example), that gave 9.

20. S3: Yeah?

21. S4: Yeah yeah, but...

22. S1: Well we know that it's nine, but we should also say why, right?

23. S2: OK, so a+ b yields those two right, but then what about 2ab?

Line 18 shows, that S3 had a speci�c misconception regarding the target know-

ledge at stake: That
√
a2 + b2 = a + b. Most likely this was stemming from the

misconception regarding distribution of operators stating:
√
a+ b =

√
a +
√
b,

but line 18 doesn't speci�cally provide that information. The misconception was

rea�rmed by S2 in line 23, but it's still not clear, whether or not it was a case of

distributive misconception, and thus it is not yet possible to address the nature

of the obstacle leading to the misconception.

The group continued to talk about the problem of simplifying
√
a2 + b2 + 2ab

to a + b for almost 5 minutes without providing any useful information before

�nally giving up and calling for the teacher. The fact, that a group as insisting as

this one (they did choose on their own not to bow out of the assignment in the
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beginning of the episode, and they have spent a long time discussing something

intensely with no progress what so ever) chose to call it quits from the adidacti-

cal situation and call for the teacher, speaks to the fact, that there might be an

insu�ciency of the adidactical milieu with respect to allowing for the students

to become intimate with the target knowledge at stake without interference by

the teacher. It seems reasonable to read from the episode, that there was a gap

between the previous knowledge (the arithmetical and algebraic skills previous-

ly acquired) and the target mathematical knowledge (an intimate knowledge of

the quadratic formula), which the feedback mechanism of the adidactical milieu

couldn't bridge.

The teacher entered:

24. S1: Our example is correct, but we don't know why the square root is a+ b.

25. T: Your example is correct?

26. S3: Yes.

27. T: So what you need to do is to show, that those two are the same (pointing

at
√
a2 + b2 + 2ab and a+ b?

28. S1: Yes!

29. T: OK, how can you do that?

30. S1: Well we know that the square root of a2 and b2 are a and b, but then

what about 2ab?

In line 30, S1 rea�rmed the misconception, and she also provided information

about it's nature. It's pretty clear from her statement, that it was indeed a case

of faulty operator distribution, and thus it seems reasonable to diagnose it as

an epistemological obstacle: The student has had success in the past with distri-

buting operators on addition of terms, however while it's correct with respect

to multiplication, it is not correct with respect to root taking, and her previous

knowledge failed her in the given situation.
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They continue:

31. S4: Is that just nothing then, or what?

32. S5: No it must give something.

33. S3: It gives the square root of 2ab (laughs).

(...)

34. T: So you are saying, that the square root of a2 + b2 + 2ab is the square

root of a2 plus the square root of b2 and so on?

35. S1: Yes. Isn't it? It isn't.

Lines 34 and 35 makes it unquestionably sure, that the misconception was one

of distribution.

36. S4: When he says it like that, it isn't.

37. T: (Smiling) Well... Is there a way, that you can check it?

38. S3: It's 9, and 4+5 is 9. And then 2 · 4 · 5 that's... wait... that's 40, right.

So that's not right.

39. T: OK, so now you've shown, that you can't do that. You can't just split

up the square root like that.

40. S4: Why?

41. T: Your example doesn't �t to it.

Nudged along by the teacher, the students once again made use of the feedback

mechanism of the milieu, and they provided a counterexample to their miscon-

ception. The teacher quickly grabbed that, and he concluded that the students

have proven, that their misconception is false. However, here the teacher was a

little too quick, which was made apparent by line 40. A Jourdain e�ect has oc-

curred, as the teacher has concluded, that the students have �shown, that you

(...) can't just split up the square root like that�, whilst the only thing that has

actually occurred is, that the students calculated an arithmetical example. There
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is no indication, that they grasped the connection between their example and the

disproving of their misconception. As this was all regarding the very core of the

speci�c target mathematical knowledge, that is actually a fairly big problem. The

students might very possibly walk away from the situation with the knowledge,

that you can't distribute every operator on added terms, but they haven't be-

en given an opportunity to personalize that knowledge. The insu�ciency of the

adidactical milieu prompted a didactical situation, and there counterproductive

e�ects are much more likely to occur.

The episode continues:

42. S1: OK but so then what?

43. T: But then what's the problem? You choose to take the terms in the square

root and split those up and take the square root of that and that and that.

And you can't do that, can you? So what can you do?

44. S4: We don't know.

45. S5: Uhhh!

46. T: It's not surprising, that you can't do that. It's the same as when you have

(a+b)2. That's not just a2 plus b2. There's something more. (Pause.) But is

there another way to test, that something is the square root of something?

47. S4: What do you mean?

The teacher continued in lines 43 and 46 to almost institutionalize the target

knowledge, still before the students had had a chance to personalize it, even

though the comments by the students in no way indicate, that they had grasped

the knowledge. �We don't know.� �Uhhh!� �What do you mean?�

The teacher then went on to provide a hint as to how to proceed, now that the

misconception is �removed�:

48. T: Well in stead of going from there to there, is there another way? Can

you move in a di�erent direction?

87



49. S3: Can't you take the square of that one (a+ b)?

The teacher smiles and leaves.

50. S4: But were not supposed to square that?

51. S3: No but if you square that, then aren't you supposed to multiply it with...

No.

52. S4: We HAVE to �nd out of it.

The teacher then posed the very leading question in line 48, and being the tea-

cher in question myself, I can't add, that he also actually moved his index �nger

from a+ b to the square root, as he said �Can you move in a di�erent direction?�,

making it a clear cut case of Topaz e�ect. The result was eminent, as S3 grabbed

the ball and suggested exactly what she was suppose to suggest: To move from

a + b to a2 + b2 + 2ab by squaring the �rst. The teacher left thinking, that they

were on track, but as the following comments show, no real progress had actually

been made.

The students discussed for a few minutes without getting closer. Then the teacher

reappeared.

53. T: Have you reached anything?

54. S4: Nooo.

55. T: (At S3:) You said something very sensible wright before I left?

56. S1: We've done that. We squared it, and it gave 81.

57. S4: Well we squared a+ b, and it gave 81.

58. T: OK, but what if you square a + b without using numbers. What does

that give?

59. S4: What?

60. T: a plus b squared. What's that? If you do it algebraically?

61. S1: Well that gives a2 + b2?

62. T: Does it? Take it from there.

Teacher leaves.
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First of all, line 56 clearly shows, that the question posed by S3 as a result of the

Topaz e�ect earlier did not re�ect any acquired knowledge at all. The students

weren't even thinking algebraically but rather arithmetically. The teacher then

continues the Topaz e�ect by delivering the target mathematical knowledge wit-

hout any personalization (or maybe even apprehension) of the knowledge going

on for the students. The speci�c target knowledge this time around is an intima-

te knowledge of the quadratic formula. I say intimate, because it is not just the

knowledge of the formula, it is actually knowledge enough of it to recognize it

backwards. That target knowledge was potentially lost in this situation.

After the teacher left, the students quickly decided to use arithmetical examples,

and they wrote out the square, and they ended up concluding, that in general

(a + b)2 = a2 + b2 + 2ab. They also fairly quickly saw the connection to their

problem, and they ended up writing as shown in �gure 7. This indicates, that the

damage by the Topaz e�ect wasn't as crucial, as it might could have been, and

that the students despite all did acquire at least some of the target knowledge.

Figure 7: Final solution by the students to step 6 in number trick C.

8.3 Episode 3: An instance of failure of the feedback me-

chanism and a possible break of didactical contract.

The third and last episode described the work by group 3 with number trick A.

They were using 2 in their arithmetical example, and the had reached step 3 after
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Figure 8: Final �solution� of number trick A by group 3.

having simpli�ed (a+ 4) · 2 correctly to 2a+ 8 in step 2:

1. S1: So that's 2a+ 8.

2. S2: I just don't understand, why it's 2a+ 8?

3. S1: Because, if you have to multiply into the parenthesis, then it's 2 times

a and 2 times 4. That's 2a+ 8.

4. S2: Oh yeah.

So far, so good. They seem to have possessed correct previous knowledge about

distribution of multiplication on added terms.

5. S1: OK, so now we have (2a+ 8)− 2.

6. S3: OK, so that's −2 times 2a.

7. S1: Yes. −2 times 2a.

Here they exhibited the following misconception: At the sight of a parenthesis

and a number following it directly, they �knew� to multiply that last number into
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the parenthesis. They didn't seem to make a connection with the instruction of

subtracting, that led them to write up their expression, and so they recognized

the (2a+ 8)− 2 as (2a+ 8)(−2).

8. S2: But that's just −4a?

9. S3: Is it?

10. S1: I don't know?

11. S2: Yes because minus 2 times 2, that's 4, and then there is an a, you just...

you just put that outside.

12. S3: Is that right?

13. S2: I would think?

(Long pause.)

14. S3: Why isn't anyone else saying anything?

15. S2: (In an almost angry tone:) Or then just write it down. If it's wrong,

then it's wrong.

From the above exchange, it's clear, that this group was very uncertain about the

task at hand. Especially line 15 indicates, that the students weren't completely

comfortable. In fact this entire exchange even indicates a dissatisfaction with the

situation. The comment in line 15 could easily be interpreted as a sign of some

didactical contract being broken. Perhaps S2 felt, that the teacher neglected his

responsibility by not being there to check o� the answers along the way.

The exchange continued:

16. S1: So what was it? 4a? No −4a.

17. S2: And then it would be 8 times -2, that's just -16.

18. S4: Is a our number?

19. S2: Yes.

20. S1: What's the next?

21. S3: We have to subtract the original number... twice.

22. S4: Then it's just that one minus 4?

91



23. S3: Mmm.

In this bit of exchange two things were made apparent: 1) No one seemingly

thought to calculate the arithmetical example, and so the milieu provided no

feedback, and hence the misconception wasn't dealt with. 2) S4 had not yet

grasped the concept of a as a variable. This is clear from lines 18 and 22. She

didn't seem to think of a as a variable but rather as simply a placeholder for the

number 2. Without displaying any signs of talking about the arithmetical check

up, she still swaps a for 2.

24. S1: It's this part in a parenthesis, and then minus 2 times a.

25. (Long pause.)

26. S4: Isn't that then just a2? Because it's two times.

27. S3: 2a and a2 is that the same?

28. S4: Ehhm?

29. S4: No I don't think so?

30. (Long pause.)

In line 26 another misconception surfaced: That 2a = a2. The following lines

show, that the other students were unsure of this fact, but yet again no one

seemingly thought to address the arithmetical example.

31. S2: But I just don't understand this one: What's that? Minus 2?

32. S1: That's minus 4a.

33. S2: Oh. And so that one is minus 16, but then why −2a?

34. S1: Because we subtract the original number twice.

35. S2: Oh yeah dammit.

These lines are actually quite interesting, because here it was made explicit, that

the −2a was a consequence of subtraction, and following this, the group did not

proceed to treat −2a as a factor to be multiplied with the parenthesis (see �gure

8), as they did previously. This could indicate, that the group would actually
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have had a decent chance of overcoming that particular misconception earlier,

had they just applied the feedback mechanism.

36. S3: But what's the original number?

37. S1: That's a.

38. S2: Oh.

39. (Long pause.)

40. S3: Shall we check, if it's correct?

41. S1: Yeah.

42. (Pause.)

43. S1: It's �ne. It becomes 6, so we're done.

So having written up an (incorrect) expression in the �nal step without any

attempt to simplify it, the group �nally once again decided to check their arith-

metical example. However, they had seemingly lost sight of the purpose of the

example, as apparently all they did was to check, whether the number trick did

in fact return 6 by the use of 2 as a chosen number. They concluded, that �it's

�ne�, and they were �done�.

After that, they moved on to the next number trick.

So obviously the feedback mechanism failed in episode 3, resulting in a situa-

tion, where none of the misconceptions were dealt with in any way what so ever.

Clearly no new knowledge was acquired by anyone. The question then is: What

went wrong? I argue, that this is a case of lacking devolution. Especially the very

last bit of the devolution phase in table 9 must have bit neglected. Following epi-

sode 3 (in the group's work with number trick B), the teacher checked in with the

group, and quickly realized the problem: That the feedback mechanism wasn't

being used correctly, and after once again going through the purpose of arith-

metical example, the group's work with number trick B was of a similar nature

as that illustrated in episode 1, thus con�rming, that the negative outcome of
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episode 3 was indeed a result of a lacking devolution (and thus underlining the

importance of the proper attention to the devolution phase).
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9 Post-lesson diagnostics

Approximately one week after the implementation of lesson 2, the students were

given the diagnostic test once again. I administered the test in it's entirety (that

is: the entire set of problems in table 1), in order to compare the total scores. The

result of this test, regarding the occurrence of the speci�c misconceptions noted

from the �rst run of the test, is displayed in table 11 below:

Problem: Correct: Misconceptions (occurrence):

Addition/subtraction 73% 1) a + b = ab (14%)

Multiplication 86% 2) (ab) · c = ac · cb (9%)

Mult. of parentheses 23% 3) ab · b = ab (9%

4) No operation precedence(14%)

5) Problems with (a+ b)(c+ d) (14%)

Division 36% 4) No operation precedence(14%)

6) a+b
c

= a
c
+ b (27%)

Table 11: Overview of the results from the post-lesson diagnostic test.

The total score of the entire class for all the questions in the post-lesson diagnostic

test was 69%.

9.1 Comparison of pre- and post-lesson tests

Below, in table 12, is a comparison between the pre- and post-lesson results:
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Category: Pre: Post:

Correct answers in addi-

tion/subtraction

68% 73%

Correct answers in multiplication 73% 86%

Correct answers in mult. of pa-

rentheses

18% 23%

Correct answers in division 32% 36%

Occurrence of type 1 18% 14%

Occurrence of type 2 14% 9%

Occurrence of type 3 27% 9%

Occurrence of type 4 23%, 32% 14%, 14%

Occurrence of type 5 14% 14%

Occurrence of type 6 32% 27%

Overall score 54% 69%

Table 12: Comparison between pre- and post-diagnostic tests.

It's apparent, that the two lessons have had a positive e�ect on both the speci�c

misconceptions of the target mathematical knowledge and on the general ability

of the class to work with elementary algebra. Every number has improved except

the one representing the occurrence of misconception number 5, which hasn't

changed at all. It's worth noting here, that misconception 5 was not only the one

with the widest de�nition, it also wasn't as much a misconception as simply a

lack of knowledge.
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10 Discussion/perspectives

In this section, I'll discuss the validity of some of procedures and results from

my thesis, as well as re�ect on the perspectives following thereof. What I will not

discuss in this section, are the e�ects, misconceptions and obstacles, which I have

uncovered in my analysis, as I feel, those have been properly discussed along the

way.

10.1 The diagnostic test

The diagnostic test proved to consume a relatively large part of my time working

on the thesis for what should now be quite obvious reasons. It's clear to me now,

that my initial design of the diagnostic test was based on a misconception of my

own regarding what constitutes diagnostics with respect to didactics of mathe-

matics. Consequently the diagnosis of the misconceptions in the class could very

likely have been improved considerably, had the test been constructed with much

simpler problems each designed to diagnose very speci�c misconceptions. I do

however think, that the outcome of the mess was acceptable, as a number of pre-

cisely de�ned misconceptions actually were diagnosed and consequently treated.

Besides having been the single biggest pain of working with the thesis, it has also

been the greatest epiphany for me personally, how powerful a tool a carefully con-

structed diagnostic test can be, and thus it's perhaps the single most important

outcome of my work with the thesis for me personally.

10.2 The choice of teacher

I taught the class myself out of sheer necessity, and that is something, that could

easily pose some problems. First of all, it could have made it di�cult to properly

observe the situations in the classroom. Second of all it makes the analysis very

personal, as I then analyze to a large extent my own professional work. Even
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though (and this is generally important to note) the pointing out of negative

e�ects of choices by a teacher in an analysis in no way is intended to re�ect the

teacher's abilities to teach - but rather just to bring focus to e�ects themselves, it

does impose a level of self consciousness to the analyzer, as the object of analysis

is himself. I feel, that I have been able to not take on the role of the defender

of the teacher in my analysis, but clearly I would choose another person as the

teacher, had I had the opportunity.

10.3 The speci�c choice of number tricks

I brie�y touched upon, earlier, the nature of number trick D. Seeing as I had laid

out a speci�c de�nition of number tricks and the premise, that I wouldn't concern

myself with the trick part, number trick D was admittedly an odd choice, and

after having reviewed the implementation of the lessons, I have to further admit,

that I should have kept myself to my original plan. The conundrum of whether

or not to include a trick of D's nature is interesting though, because it re�ects

on the (possibly counterproductive) impulse of the teacher to introduce material,

that really isn't well suited for the speci�c situations., on the grounds that he/she

�nds it interesting. That really is outside the scope of my thesis though, so I'll

only say this: Were I to do it over, I would have not included number trick D.

10.4 The e�ect of the lessons

Even though it is clear from the results, that some positive e�ect occurred as a

result of the two lessons, it does not in any way re�ect from the results, whether

this e�ect was due to the speci�c contents of the lectures (working adidactically

with number tricks) or simply a result from working with elementary algebra.

Personally I suspect, that a large part of the progress measured was due the

carefully designed content of the lesson. I base this on the fact, that this particular

class had previously been working with elementary algebra in a more traditional
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way, and to my recollection, that didn't really cause any progress. I don't however

have any numbers to support that suspicion. It would de�nitely be interesting

to add a control group to the experiment, thus revealing how large a part of the

progress was due to speci�cally working adidactically with number tricks.
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11 Conclusion

In conclusion, I'll try to sum up some of the interesting points of the thesis, as

well as address my three research questions.

11.1 Summation

The implementation of a diagnostic test revealed the following misconceptions

regarding elementary algebra:

1. a + b = ab

2. (ab) · c = ac · cb

3. ab · b = ab

4. No operation precedence

5. Problems with (a+ b)(c+ d)

6. a+b
c

= a
c
+ b

The didactical design based on these and the use of number tricks, resulted in

two lessons with a total of 61% of the time allocated to adidactical situations.

The analysis of the implementation revealed, that in some cases, the adidactical

potentials of these situations were exploited e�ect-fully, while in others, the failu-

re to correctly use the built in feedback mechanism resulted in failure to properly

exploit the adidactical potential.

The analysis revealed following points of interest:

• One possible case of a didactical obstacle

• One possible case of an epistemological obstacle
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• One case of the Jourdain e�ect

• One case of the Topaz e�ect

• One possible breaking of didactical contract

The comparison of the pre- and post-diagnostic tests showed a general improve-

ment in the students ability to handle elementary algebra, as well as a decrease

in the occurrence of the speci�c misconceptions listed above.

11.2 Addressing the research questions

In this subsection I'll attempt to sum up some concise answers to my three

research questions:

1. What obstacles occur, when teaching elementary algebra to low level math

students in Danish STX?

Both didactical and epistemological obstacles were observed, however more

interestingly is the nature of the misconceptions related to those obstacles:

They were all of a relatively simple nature. Some of the misconceptions

could even be argued to actually just be misconceptions regarding conven-

tions of notation.

2. What are the adidactical potentials of using number tricks to facilitate know-

ledge about elementary algebra?

I argue, that I have demonstrated, that the adidactical potentials are high,

as especially episode 1 shows, that following an e�ect-full devolution, the

design clearly allowed the students to personalize the target knowledge with

very little to no interaction with the teacher.

3. What e�ect did the lesson set have on the students' skills/knowledge?

As the comparison of the two diagnostic tests show, a positive e�ect oc-

curred in two parts: 1) There was a clear drop in the occurrence of the
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misconceptions of the target knowledge. 2) There was a generally increased

ability to handle algebraic expression amongst the students after the les-

sons. The analysis indicates, that at least some of the students were allowed

to personalize the target knowledge.
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